On Fri, Feb 23, 2018 at 12:55:20PM +0100, Peter Zijlstra wrote: > On Thu, Feb 22, 2018 at 03:08:51PM +0800, Boqun Feng wrote: > > @@ -1012,6 +1013,33 @@ static inline bool bfs_error(enum bfs_result res) > > return res < 0; > > } > > > > +#define DEP_NN_BIT 0 > > +#define DEP_RN_BIT 1 > > +#define DEP_NR_BIT 2 > > +#define DEP_RR_BIT 3 > > + > > +#define DEP_NN_MASK (1U << (DEP_NN_BIT)) > > +#define DEP_RN_MASK (1U << (DEP_RN_BIT)) > > +#define DEP_NR_MASK (1U << (DEP_NR_BIT)) > > +#define DEP_RR_MASK (1U << (DEP_RR_BIT)) > > + > > +static inline unsigned int __calc_dep_bit(int prev, int next) > > +{ > > + if (prev == 2 && next != 2) > > + return DEP_RN_BIT; > > + if (prev != 2 && next == 2) > > + return DEP_NR_BIT; > > + if (prev == 2 && next == 2) > > + return DEP_RR_BIT; > > + else > > + return DEP_NN_BIT; > > +} > > + > > +static inline unsigned int calc_dep(int prev, int next) > > +{ > > + return 1U << __calc_dep_bit(prev, next); > > +} > > + > > static enum bfs_result __bfs(struct lock_list *source_entry, > > void *data, > > int (*match)(struct lock_list *entry, void *data), > > @@ -1921,6 +1949,16 @@ check_prev_add(struct task_struct *curr, struct held_lock *prev, > > if (entry->class == hlock_class(next)) { > > if (distance == 1) > > entry->distance = 1; > > + entry->dep |= calc_dep(prev->read, next->read); > > + } > > + } > > + > > + /* Also, update the reverse dependency in @next's ->locks_before list */ > > + list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) { > > + if (entry->class == hlock_class(prev)) { > > + if (distance == 1) > > + entry->distance = 1; > > + entry->dep |= calc_dep(next->read, prev->read); > > return 1; > > } > > } > > I think it all becomes simpler if you use only 2 bits. Such that: > > bit0 is the prev R (0) or N (1) value, > bit1 is the next R (0) or N (1) value. > > I think this should work because we don't care about the empty set > (currently 0000) and all the complexity in patch 5 is because we can > have R bits set when there's also N bits. The concequence of that is > that we cannot replace ! with ~ (which is what I kept doing). > > But with only 2 bits, we only track the strongest relation in the set, > which is exactly what we appear to need. > But if we only have RN and NR, both bits will be set, we can not check whether we have NN or not. Consider we have: A -(RR)-> B B -(NR)-> C and B -(RN)-> C C -(RN)-> A this is not a deadlock case, but with "two bits" approach, we can not differ this with: A -(RR)-> B B -(NN)-> C C -(RN)-> A , which is a deadlock. But maybe "three bits" (NR, RN and NN bits) approach works, that is if ->dep is 0, we indicates this is only RR, and is_rx() becomes: static inline bool is_rx(u8 dep) { return !(dep & (NR_MASK | NN_MASK)); } and is_xr() becomes: static inline bool is_xr(u8 dep) { return !(dep & (RN_MASK | NN_MASK)); } , with this I think your simplification with have_xr works, thanks! Regards, Boqun > > The above then becomes something like: > > static inline u8 __calc_dep(struct held_lock *lock) > { > return lock->read != 2; > } > > static inline u8 > calc_dep(struct held_lock *prev, struct held_lock *next) > { > return (__calc_dep(prev) << 0) | (__calc_dep(next) << 1); > } > > > entry->dep |= calc_dep(prev, next); > > > > Then the stuff from 5 can be: > > static inline bool is_rx(u8 dep) > { > return !(dep & 1); > } > > static inline bool is_xr(u8 dep) > { > return !(dep & 2); > } > > > if (have_xr && is_rx(entry->dep)) > continue; > > entry->have_xr = is_xr(entry->dep); > > > Or did I mess that up somewhere?