my mistake. Thanks. I will split it. On Thu, Dec 5, 2019 at 3:17 PM Michael Rolnik wrote: > I think they do follow the division in the docs. > > On Thu, Dec 5, 2019 at 2:28 PM Aleksandar Markovic < > aleksandar.m.mail@gmail.com> wrote: > >> >> >> On Wednesday, November 27, 2019, Michael Rolnik >> wrote: >> >>> This includes: >>> - LSR, ROR >>> - ASR >>> - SWAP >>> - SBI, CBI >>> - BST, BLD >>> - BSET, BCLR >>> >>> Signed-off-by: Michael Rolnik >>> --- >>> target/avr/translate.c | 1123 ++++++++++++++++++++++++++++++++++++++++ >>> 1 file changed, 1123 insertions(+) >>> >>> >> Hello, Michael >> >> I said I am on vacation, and truly I am, but, fir the next version if the >> series, I would like to ask you to extract "data transfer" instruction (as >> defined in avr docs, MOV LD ST etc) from this patch, and create a new patch >> for them - so that the patches follow the division from docs. >> >> Yours, >> Aleksandar >> >> >> >> >> >>> diff --git a/target/avr/translate.c b/target/avr/translate.c >>> index 48a42c984a..dc6a1af2fc 100644 >>> --- a/target/avr/translate.c >>> +++ b/target/avr/translate.c >>> @@ -317,6 +317,15 @@ static void gen_goto_tb(DisasContext *ctx, int n, >>> target_ulong dest) >>> } >>> >>> >>> +static void gen_rshift_ZNVSf(TCGv R) >>> +{ >>> + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ >>> + tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */ >>> + tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf); >>> + tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ >>> +} >>> + >>> + >>> /* >>> * Adds two registers without the C Flag and places the result in the >>> * destination register Rd. >>> @@ -1508,3 +1517,1117 @@ static bool trans_BRBS(DisasContext *ctx, >>> arg_BRBS *a) >>> return true; >>> } >>> >>> + >>> +/* >>> + * This instruction makes a copy of one register into another. The >>> source >>> + * register Rr is left unchanged, while the destination register Rd is >>> loaded >>> + * with a copy of Rr. >>> + */ >>> +static bool trans_MOV(DisasContext *ctx, arg_MOV *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv Rr = cpu_r[a->rr]; >>> + >>> + tcg_gen_mov_tl(Rd, Rr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * This instruction makes a copy of one register pair into another >>> register >>> + * pair. The source register pair Rr+1:Rr is left unchanged, while the >>> + * destination register pair Rd+1:Rd is loaded with a copy of Rr + >>> 1:Rr. This >>> + * instruction is not available in all devices. Refer to the device >>> specific >>> + * instruction set summary. >>> + */ >>> +static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a) >>> +{ >>> + if (!avr_have_feature(ctx, AVR_FEATURE_MOVW)) { >>> + return true; >>> + } >>> + >>> + TCGv RdL = cpu_r[a->rd]; >>> + TCGv RdH = cpu_r[a->rd + 1]; >>> + TCGv RrL = cpu_r[a->rr]; >>> + TCGv RrH = cpu_r[a->rr + 1]; >>> + >>> + tcg_gen_mov_tl(RdH, RrH); >>> + tcg_gen_mov_tl(RdL, RrL); >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * Loads an 8 bit constant directly to register 16 to 31. >>> + */ >>> +static bool trans_LDI(DisasContext *ctx, arg_LDI *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + int imm = a->imm; >>> + >>> + tcg_gen_movi_tl(Rd, imm); >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * Loads one byte from the data space to a register. For parts with >>> SRAM, >>> + * the data space consists of the Register File, I/O memory and >>> internal SRAM >>> + * (and external SRAM if applicable). For parts without SRAM, the data >>> space >>> + * consists of the register file only. The EEPROM has a separate >>> address space. >>> + * A 16-bit address must be supplied. Memory access is limited to the >>> current >>> + * data segment of 64KB. The LDS instruction uses the RAMPD Register >>> to access >>> + * memory above 64KB. To access another data segment in devices with >>> more than >>> + * 64KB data space, the RAMPD in register in the I/O area has to be >>> changed. >>> + * This instruction is not available in all devices. Refer to the >>> device >>> + * specific instruction set summary. >>> + */ >>> +static bool trans_LDS(DisasContext *ctx, arg_LDS *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv addr = tcg_temp_new_i32(); >>> + TCGv H = cpu_rampD; >>> + a->imm = next_word(ctx); >>> + >>> + tcg_gen_mov_tl(addr, H); /* addr = H:M:L */ >>> + tcg_gen_shli_tl(addr, addr, 16); >>> + tcg_gen_ori_tl(addr, addr, a->imm); >>> + >>> + gen_data_load(ctx, Rd, addr); >>> + >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * Loads one byte indirect from the data space to a register. For parts >>> + * with SRAM, the data space consists of the Register File, I/O memory >>> and >>> + * internal SRAM (and external SRAM if applicable). For parts without >>> SRAM, the >>> + * data space consists of the Register File only. In some parts the >>> Flash >>> + * Memory has been mapped to the data space and can be read using this >>> command. >>> + * The EEPROM has a separate address space. The data location is >>> pointed to by >>> + * the X (16 bits) Pointer Register in the Register File. Memory >>> access is >>> + * limited to the current data segment of 64KB. To access another data >>> segment >>> + * in devices with more than 64KB data space, the RAMPX in register in >>> the I/O >>> + * area has to be changed. The X-pointer Register can either be left >>> unchanged >>> + * by the operation, or it can be post-incremented or predecremented. >>> These >>> + * features are especially suited for accessing arrays, tables, and >>> Stack >>> + * Pointer usage of the X-pointer Register. Note that only the low >>> byte of the >>> + * X-pointer is updated in devices with no more than 256 bytes data >>> space. For >>> + * such devices, the high byte of the pointer is not used by this >>> instruction >>> + * and can be used for other purposes. The RAMPX Register in the I/O >>> area is >>> + * updated in parts with more than 64KB data space or more than 64KB >>> Program >>> + * memory, and the increment/decrement is added to the entire 24-bit >>> address on >>> + * such devices. Not all variants of this instruction is available in >>> all >>> + * devices. Refer to the device specific instruction set summary. In >>> the >>> + * Reduced Core tinyAVR the LD instruction can be used to achieve the >>> same >>> + * operation as LPM since the program memory is mapped to the data >>> memory >>> + * space. >>> + */ >>> +static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv addr = gen_get_xaddr(); >>> + >>> + gen_data_load(ctx, Rd, addr); >>> + >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv addr = gen_get_xaddr(); >>> + >>> + gen_data_load(ctx, Rd, addr); >>> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ >>> + >>> + gen_set_xaddr(addr); >>> + >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv addr = gen_get_xaddr(); >>> + >>> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ >>> + gen_data_load(ctx, Rd, addr); >>> + gen_set_xaddr(addr); >>> + >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +static bool trans_STX1(DisasContext *ctx, arg_STX1 *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rr]; >>> + TCGv addr = gen_get_xaddr(); >>> + >>> + gen_data_store(ctx, Rd, addr); >>> + >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> +static bool trans_STX2(DisasContext *ctx, arg_STX2 *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rr]; >>> + TCGv addr = gen_get_xaddr(); >>> + >>> + gen_data_store(ctx, Rd, addr); >>> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ >>> + gen_set_xaddr(addr); >>> + >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> +static bool trans_STX3(DisasContext *ctx, arg_STX3 *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rr]; >>> + TCGv addr = gen_get_xaddr(); >>> + >>> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ >>> + gen_data_store(ctx, Rd, addr); >>> + gen_set_xaddr(addr); >>> + >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * Loads one byte indirect with or without displacement from the data >>> space >>> + * to a register. For parts with SRAM, the data space consists of the >>> Register >>> + * File, I/O memory and internal SRAM (and external SRAM if >>> applicable). For >>> + * parts without SRAM, the data space consists of the Register File >>> only. In >>> + * some parts the Flash Memory has been mapped to the data space and >>> can be >>> + * read using this command. The EEPROM has a separate address space. >>> The data >>> + * location is pointed to by the Y (16 bits) Pointer Register in the >>> Register >>> + * File. Memory access is limited to the current data segment of 64KB. >>> To >>> + * access another data segment in devices with more than 64KB data >>> space, the >>> + * RAMPY in register in the I/O area has to be changed. The Y-pointer >>> Register >>> + * can either be left unchanged by the operation, or it can be >>> post-incremented >>> + * or predecremented. These features are especially suited for >>> accessing >>> + * arrays, tables, and Stack Pointer usage of the Y-pointer Register. >>> Note that >>> + * only the low byte of the Y-pointer is updated in devices with no >>> more than >>> + * 256 bytes data space. For such devices, the high byte of the >>> pointer is not >>> + * used by this instruction and can be used for other purposes. The >>> RAMPY >>> + * Register in the I/O area is updated in parts with more than 64KB >>> data space >>> + * or more than 64KB Program memory, and the >>> increment/decrement/displacement >>> + * is added to the entire 24-bit address on such devices. Not all >>> variants of >>> + * this instruction is available in all devices. Refer to the device >>> specific >>> + * instruction set summary. In the Reduced Core tinyAVR the LD >>> instruction can >>> + * be used to achieve the same operation as LPM since the program >>> memory is >>> + * mapped to the data memory space. >>> + */ >>> +static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv addr = gen_get_yaddr(); >>> + >>> + gen_data_load(ctx, Rd, addr); >>> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ >>> + >>> + gen_set_yaddr(addr); >>> + >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv addr = gen_get_yaddr(); >>> + >>> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ >>> + gen_data_load(ctx, Rd, addr); >>> + gen_set_yaddr(addr); >>> + >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv addr = gen_get_yaddr(); >>> + >>> + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ >>> + gen_data_load(ctx, Rd, addr); >>> + >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +static bool trans_STY2(DisasContext *ctx, arg_STY2 *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv addr = gen_get_yaddr(); >>> + >>> + gen_data_store(ctx, Rd, addr); >>> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ >>> + gen_set_yaddr(addr); >>> + >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +static bool trans_STY3(DisasContext *ctx, arg_STY3 *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv addr = gen_get_yaddr(); >>> + >>> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ >>> + gen_data_store(ctx, Rd, addr); >>> + gen_set_yaddr(addr); >>> + >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +static bool trans_STDY(DisasContext *ctx, arg_STDY *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv addr = gen_get_yaddr(); >>> + >>> + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ >>> + gen_data_store(ctx, Rd, addr); >>> + >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * Loads one byte indirect with or without displacement from the data >>> space >>> + * to a register. For parts with SRAM, the data space consists of the >>> Register >>> + * File, I/O memory and internal SRAM (and external SRAM if >>> applicable). For >>> + * parts without SRAM, the data space consists of the Register File >>> only. In >>> + * some parts the Flash Memory has been mapped to the data space and >>> can be >>> + * read using this command. The EEPROM has a separate address space. >>> The data >>> + * location is pointed to by the Z (16 bits) Pointer Register in the >>> Register >>> + * File. Memory access is limited to the current data segment of 64KB. >>> To >>> + * access another data segment in devices with more than 64KB data >>> space, the >>> + * RAMPZ in register in the I/O area has to be changed. The Z-pointer >>> Register >>> + * can either be left unchanged by the operation, or it can be >>> post-incremented >>> + * or predecremented. These features are especially suited for Stack >>> Pointer >>> + * usage of the Z-pointer Register, however because the Z-pointer >>> Register can >>> + * be used for indirect subroutine calls, indirect jumps and table >>> lookup, it >>> + * is often more convenient to use the X or Y-pointer as a dedicated >>> Stack >>> + * Pointer. Note that only the low byte of the Z-pointer is updated in >>> devices >>> + * with no more than 256 bytes data space. For such devices, the high >>> byte of >>> + * the pointer is not used by this instruction and can be used for >>> other >>> + * purposes. The RAMPZ Register in the I/O area is updated in parts >>> with more >>> + * than 64KB data space or more than 64KB Program memory, and the >>> + * increment/decrement/displacement is added to the entire 24-bit >>> address on >>> + * such devices. Not all variants of this instruction is available in >>> all >>> + * devices. Refer to the device specific instruction set summary. In >>> the >>> + * Reduced Core tinyAVR the LD instruction can be used to achieve the >>> same >>> + * operation as LPM since the program memory is mapped to the data >>> memory >>> + * space. For using the Z-pointer for table lookup in Program memory >>> see the >>> + * LPM and ELPM instructions. >>> + */ >>> +static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv addr = gen_get_zaddr(); >>> + >>> + gen_data_load(ctx, Rd, addr); >>> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ >>> + >>> + gen_set_zaddr(addr); >>> + >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv addr = gen_get_zaddr(); >>> + >>> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ >>> + gen_data_load(ctx, Rd, addr); >>> + >>> + gen_set_zaddr(addr); >>> + >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv addr = gen_get_zaddr(); >>> + >>> + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ >>> + gen_data_load(ctx, Rd, addr); >>> + >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +static bool trans_STZ2(DisasContext *ctx, arg_STZ2 *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv addr = gen_get_zaddr(); >>> + >>> + gen_data_store(ctx, Rd, addr); >>> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ >>> + >>> + gen_set_zaddr(addr); >>> + >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +static bool trans_STZ3(DisasContext *ctx, arg_STZ3 *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv addr = gen_get_zaddr(); >>> + >>> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ >>> + gen_data_store(ctx, Rd, addr); >>> + >>> + gen_set_zaddr(addr); >>> + >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +static bool trans_STDZ(DisasContext *ctx, arg_STDZ *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv addr = gen_get_zaddr(); >>> + >>> + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ >>> + gen_data_store(ctx, Rd, addr); >>> + >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> + >>> +/* >>> + * Stores one byte from a Register to the data space. For parts with >>> SRAM, >>> + * the data space consists of the Register File, I/O memory and >>> internal SRAM >>> + * (and external SRAM if applicable). For parts without SRAM, the data >>> space >>> + * consists of the Register File only. The EEPROM has a separate >>> address space. >>> + * A 16-bit address must be supplied. Memory access is limited to the >>> current >>> + * data segment of 64KB. The STS instruction uses the RAMPD Register >>> to access >>> + * memory above 64KB. To access another data segment in devices with >>> more than >>> + * 64KB data space, the RAMPD in register in the I/O area has to be >>> changed. >>> + * This instruction is not available in all devices. Refer to the >>> device >>> + * specific instruction set summary. >>> + */ >>> +static bool trans_STS(DisasContext *ctx, arg_STS *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv addr = tcg_temp_new_i32(); >>> + TCGv H = cpu_rampD; >>> + a->imm = next_word(ctx); >>> + >>> + tcg_gen_mov_tl(addr, H); /* addr = H:M:L */ >>> + tcg_gen_shli_tl(addr, addr, 16); >>> + tcg_gen_ori_tl(addr, addr, a->imm); >>> + >>> + gen_data_store(ctx, Rd, addr); >>> + >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * Loads one byte pointed to by the Z-register into the destination >>> + * register Rd. This instruction features a 100% space effective >>> constant >>> + * initialization or constant data fetch. The Program memory is >>> organized in >>> + * 16-bit words while the Z-pointer is a byte address. Thus, the least >>> + * significant bit of the Z-pointer selects either low byte (ZLSB = 0) >>> or high >>> + * byte (ZLSB = 1). This instruction can address the first 64KB (32K >>> words) of >>> + * Program memory. The Zpointer Register can either be left unchanged >>> by the >>> + * operation, or it can be incremented. The incrementation does not >>> apply to >>> + * the RAMPZ Register. Devices with Self-Programming capability can >>> use the >>> + * LPM instruction to read the Fuse and Lock bit values. Refer to the >>> device >>> + * documentation for a detailed description. The LPM instruction is >>> not >>> + * available in all devices. Refer to the device specific instruction >>> set >>> + * summary >>> + */ >>> +static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a) >>> +{ >>> + if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) { >>> + return true; >>> + } >>> + >>> + TCGv Rd = cpu_r[0]; >>> + TCGv addr = tcg_temp_new_i32(); >>> + TCGv H = cpu_r[31]; >>> + TCGv L = cpu_r[30]; >>> + >>> + tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ >>> + tcg_gen_or_tl(addr, addr, L); >>> + >>> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ >>> + >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a) >>> +{ >>> + if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) { >>> + return true; >>> + } >>> + >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv addr = tcg_temp_new_i32(); >>> + TCGv H = cpu_r[31]; >>> + TCGv L = cpu_r[30]; >>> + >>> + tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ >>> + tcg_gen_or_tl(addr, addr, L); >>> + >>> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ >>> + >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a) >>> +{ >>> + if (!avr_have_feature(ctx, AVR_FEATURE_LPMX)) { >>> + return true; >>> + } >>> + >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv addr = tcg_temp_new_i32(); >>> + TCGv H = cpu_r[31]; >>> + TCGv L = cpu_r[30]; >>> + >>> + tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ >>> + tcg_gen_or_tl(addr, addr, L); >>> + >>> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ >>> + >>> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ >>> + >>> + tcg_gen_andi_tl(L, addr, 0xff); >>> + >>> + tcg_gen_shri_tl(addr, addr, 8); >>> + tcg_gen_andi_tl(H, addr, 0xff); >>> + >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * Loads one byte pointed to by the Z-register and the RAMPZ Register >>> in >>> + * the I/O space, and places this byte in the destination register Rd. >>> This >>> + * instruction features a 100% space effective constant initialization >>> or >>> + * constant data fetch. The Program memory is organized in 16-bit >>> words while >>> + * the Z-pointer is a byte address. Thus, the least significant bit of >>> the >>> + * Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = >>> 1). This >>> + * instruction can address the entire Program memory space. The >>> Z-pointer >>> + * Register can either be left unchanged by the operation, or it can be >>> + * incremented. The incrementation applies to the entire 24-bit >>> concatenation >>> + * of the RAMPZ and Z-pointer Registers. Devices with Self-Programming >>> + * capability can use the ELPM instruction to read the Fuse and Lock >>> bit value. >>> + * Refer to the device documentation for a detailed description. This >>> + * instruction is not available in all devices. Refer to the device >>> specific >>> + * instruction set summary. >>> + */ >>> +static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a) >>> +{ >>> + if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) { >>> + return true; >>> + } >>> + >>> + TCGv Rd = cpu_r[0]; >>> + TCGv addr = gen_get_zaddr(); >>> + >>> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ >>> + >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a) >>> +{ >>> + if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) { >>> + return true; >>> + } >>> + >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv addr = gen_get_zaddr(); >>> + >>> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ >>> + >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a) >>> +{ >>> + if (!avr_have_feature(ctx, AVR_FEATURE_ELPMX)) { >>> + return true; >>> + } >>> + >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv addr = gen_get_zaddr(); >>> + >>> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ >>> + >>> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ >>> + >>> + gen_set_zaddr(addr); >>> + >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * SPM can be used to erase a page in the Program memory, to write a >>> page >>> + * in the Program memory (that is already erased), and to set Boot >>> Loader Lock >>> + * bits. In some devices, the Program memory can be written one word >>> at a time, >>> + * in other devices an entire page can be programmed simultaneously >>> after first >>> + * filling a temporary page buffer. In all cases, the Program memory >>> must be >>> + * erased one page at a time. When erasing the Program memory, the >>> RAMPZ and >>> + * Z-register are used as page address. When writing the Program >>> memory, the >>> + * RAMPZ and Z-register are used as page or word address, and the R1:R0 >>> + * register pair is used as data(1). When setting the Boot Loader Lock >>> bits, >>> + * the R1:R0 register pair is used as data. Refer to the device >>> documentation >>> + * for detailed description of SPM usage. This instruction can address >>> the >>> + * entire Program memory. The SPM instruction is not available in all >>> devices. >>> + * Refer to the device specific instruction set summary. Note: 1. R1 >>> + * determines the instruction high byte, and R0 determines the >>> instruction low >>> + * byte. >>> + */ >>> +static bool trans_SPM(DisasContext *ctx, arg_SPM *a) >>> +{ >>> + /* TODO */ >>> + if (!avr_have_feature(ctx, AVR_FEATURE_SPM)) { >>> + return true; >>> + } >>> + >>> + return true; >>> +} >>> + >>> + >>> +static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a) >>> +{ >>> + /* TODO */ >>> + if (!avr_have_feature(ctx, AVR_FEATURE_SPMX)) { >>> + return true; >>> + } >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * Loads data from the I/O Space (Ports, Timers, Configuration >>> Registers, >>> + * etc.) into register Rd in the Register File. >>> + */ >>> +static bool trans_IN(DisasContext *ctx, arg_IN *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv port = tcg_const_i32(a->imm); >>> + >>> + gen_helper_inb(Rd, cpu_env, port); >>> + >>> + tcg_temp_free_i32(port); >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * Stores data from register Rr in the Register File to I/O Space >>> (Ports, >>> + * Timers, Configuration Registers, etc.). >>> + */ >>> +static bool trans_OUT(DisasContext *ctx, arg_OUT *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv port = tcg_const_i32(a->imm); >>> + >>> + gen_helper_outb(cpu_env, port, Rd); >>> + >>> + tcg_temp_free_i32(port); >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * This instruction stores the contents of register Rr on the STACK. >>> The >>> + * Stack Pointer is post-decremented by 1 after the PUSH. This >>> instruction is >>> + * not available in all devices. Refer to the device specific >>> instruction set >>> + * summary. >>> + */ >>> +static bool trans_PUSH(DisasContext *ctx, arg_PUSH *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + >>> + gen_data_store(ctx, Rd, cpu_sp); >>> + tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * This instruction loads register Rd with a byte from the STACK. The >>> Stack >>> + * Pointer is pre-incremented by 1 before the POP. This instruction >>> is not >>> + * available in all devices. Refer to the device specific instruction >>> set >>> + * summary. >>> + */ >>> +static bool trans_POP(DisasContext *ctx, arg_POP *a) >>> +{ >>> + /* >>> + * Using a temp to work around some strange behaviour: >>> + * tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); >>> + * gen_data_load(ctx, Rd, cpu_sp); >>> + * seems to cause the add to happen twice. >>> + * This doesn't happen if either the add or the load is removed. >>> + */ >>> + TCGv t1 = tcg_temp_new_i32(); >>> + TCGv Rd = cpu_r[a->rd]; >>> + >>> + tcg_gen_addi_tl(t1, cpu_sp, 1); >>> + gen_data_load(ctx, Rd, t1); >>> + tcg_gen_mov_tl(cpu_sp, t1); >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * Exchanges one byte indirect between register and data space. The >>> data >>> + * location is pointed to by the Z (16 bits) Pointer Register in the >>> Register >>> + * File. Memory access is limited to the current data segment of 64KB. >>> To >>> + * access another data segment in devices with more than 64KB data >>> space, the >>> + * RAMPZ in register in the I/O area has to be changed. The Z-pointer >>> Register >>> + * is left unchanged by the operation. This instruction is especially >>> suited >>> + * for writing/reading status bits stored in SRAM. >>> + */ >>> +static bool trans_XCH(DisasContext *ctx, arg_XCH *a) >>> +{ >>> + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { >>> + return true; >>> + } >>> + >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv t0 = tcg_temp_new_i32(); >>> + TCGv addr = gen_get_zaddr(); >>> + >>> + gen_data_load(ctx, t0, addr); >>> + gen_data_store(ctx, Rd, addr); >>> + tcg_gen_mov_tl(Rd, t0); >>> + >>> + tcg_temp_free_i32(t0); >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * Load one byte indirect from data space to register and set bits in >>> data >>> + * space specified by the register. The instruction can only be used >>> towards >>> + * internal SRAM. The data location is pointed to by the Z (16 bits) >>> Pointer >>> + * Register in the Register File. Memory access is limited to the >>> current data >>> + * segment of 64KB. To access another data segment in devices with >>> more than >>> + * 64KB data space, the RAMPZ in register in the I/O area has to be >>> changed. >>> + * The Z-pointer Register is left unchanged by the operation. This >>> instruction >>> + * is especially suited for setting status bits stored in SRAM. >>> + */ >>> +static bool trans_LAS(DisasContext *ctx, arg_LAS *a) >>> +{ >>> + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { >>> + return true; >>> + } >>> + >>> + TCGv Rr = cpu_r[a->rd]; >>> + TCGv addr = gen_get_zaddr(); >>> + TCGv t0 = tcg_temp_new_i32(); >>> + TCGv t1 = tcg_temp_new_i32(); >>> + >>> + gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ >>> + tcg_gen_or_tl(t1, t0, Rr); >>> + >>> + tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */ >>> + gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ >>> + >>> + tcg_temp_free_i32(t1); >>> + tcg_temp_free_i32(t0); >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * Load one byte indirect from data space to register and stores and >>> clear >>> + * the bits in data space specified by the register. The instruction >>> can >>> + * only be used towards internal SRAM. The data location is pointed >>> to by >>> + * the Z (16 bits) Pointer Register in the Register File. Memory >>> access is >>> + * limited to the current data segment of 64KB. To access another data >>> + * segment in devices with more than 64KB data space, the RAMPZ in >>> register >>> + * in the I/O area has to be changed. The Z-pointer Register is left >>> + * unchanged by the operation. This instruction is especially suited >>> for >>> + * clearing status bits stored in SRAM. >>> + */ >>> +static bool trans_LAC(DisasContext *ctx, arg_LAC *a) >>> +{ >>> + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { >>> + return true; >>> + } >>> + >>> + TCGv Rr = cpu_r[a->rd]; >>> + TCGv addr = gen_get_zaddr(); >>> + TCGv t0 = tcg_temp_new_i32(); >>> + TCGv t1 = tcg_temp_new_i32(); >>> + >>> + gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ >>> + /* t1 = t0 & (0xff - Rr) = t0 and ~Rr */ >>> + tcg_gen_andc_tl(t1, t0, Rr); >>> + >>> + tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */ >>> + gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ >>> + >>> + tcg_temp_free_i32(t1); >>> + tcg_temp_free_i32(t0); >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * Load one byte indirect from data space to register and toggles bits >>> in >>> + * the data space specified by the register. The instruction can only >>> be used >>> + * towards SRAM. The data location is pointed to by the Z (16 bits) >>> Pointer >>> + * Register in the Register File. Memory access is limited to the >>> current data >>> + * segment of 64KB. To access another data segment in devices with >>> more than >>> + * 64KB data space, the RAMPZ in register in the I/O area has to be >>> changed. >>> + * The Z-pointer Register is left unchanged by the operation. This >>> instruction >>> + * is especially suited for changing status bits stored in SRAM. >>> + */ >>> +static bool trans_LAT(DisasContext *ctx, arg_LAT *a) >>> +{ >>> + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { >>> + return true; >>> + } >>> + >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv addr = gen_get_zaddr(); >>> + TCGv t0 = tcg_temp_new_i32(); >>> + TCGv t1 = tcg_temp_new_i32(); >>> + >>> + gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ >>> + tcg_gen_xor_tl(t1, t0, Rd); >>> + >>> + tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */ >>> + gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ >>> + >>> + tcg_temp_free_i32(t1); >>> + tcg_temp_free_i32(t0); >>> + tcg_temp_free_i32(addr); >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit >>> 0 is >>> + * loaded into the C Flag of the SREG. This operation effectively >>> divides an >>> + * unsigned value by two. The C Flag can be used to round the result. >>> + */ >>> +static bool trans_LSR(DisasContext *ctx, arg_LSR *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + >>> + tcg_gen_andi_tl(cpu_Cf, Rd, 1); >>> + >>> + tcg_gen_shri_tl(Rd, Rd, 1); >>> + >>> + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, Rd, 0); /* Zf = Rd == 0 */ >>> + tcg_gen_movi_tl(cpu_Nf, 0); >>> + tcg_gen_mov_tl(cpu_Vf, cpu_Cf); >>> + tcg_gen_mov_tl(cpu_Sf, cpu_Vf); >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * Shifts all bits in Rd one place to the right. The C Flag is shifted >>> into >>> + * bit 7 of Rd. Bit 0 is shifted into the C Flag. This operation, >>> combined >>> + * with ASR, effectively divides multi-byte signed values by two. >>> Combined with >>> + * LSR it effectively divides multi-byte unsigned values by two. The >>> Carry Flag >>> + * can be used to round the result. >>> + */ >>> +static bool trans_ROR(DisasContext *ctx, arg_ROR *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv t0 = tcg_temp_new_i32(); >>> + >>> + tcg_gen_shli_tl(t0, cpu_Cf, 7); >>> + tcg_gen_andi_tl(cpu_Cf, Rd, 1); >>> + tcg_gen_shri_tl(Rd, Rd, 1); >>> + tcg_gen_or_tl(Rd, Rd, t0); >>> + >>> + gen_rshift_ZNVSf(Rd); >>> + >>> + tcg_temp_free_i32(t0); >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * Shifts all bits in Rd one place to the right. Bit 7 is held >>> constant. Bit 0 >>> + * is loaded into the C Flag of the SREG. This operation effectively >>> divides a >>> + * signed value by two without changing its sign. The Carry Flag can >>> be used to >>> + * round the result. >>> + */ >>> +static bool trans_ASR(DisasContext *ctx, arg_ASR *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv t0 = tcg_temp_new_i32(); >>> + >>> + /* Cf */ >>> + tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */ >>> + >>> + /* op */ >>> + tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */ >>> + tcg_gen_shri_tl(Rd, Rd, 1); >>> + tcg_gen_or_tl(Rd, Rd, t0); >>> + >>> + gen_rshift_ZNVSf(Rd); >>> + >>> + tcg_temp_free_i32(t0); >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * Swaps high and low nibbles in a register. >>> + */ >>> +static bool trans_SWAP(DisasContext *ctx, arg_SWAP *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv t0 = tcg_temp_new_i32(); >>> + TCGv t1 = tcg_temp_new_i32(); >>> + >>> + tcg_gen_andi_tl(t0, Rd, 0x0f); >>> + tcg_gen_shli_tl(t0, t0, 4); >>> + tcg_gen_andi_tl(t1, Rd, 0xf0); >>> + tcg_gen_shri_tl(t1, t1, 4); >>> + tcg_gen_or_tl(Rd, t0, t1); >>> + >>> + tcg_temp_free_i32(t1); >>> + tcg_temp_free_i32(t0); >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * Sets a specified bit in an I/O Register. This instruction operates >>> on >>> + * the lower 32 I/O Registers -- addresses 0-31. >>> + */ >>> +static bool trans_SBI(DisasContext *ctx, arg_SBI *a) >>> +{ >>> + TCGv data = tcg_temp_new_i32(); >>> + TCGv port = tcg_const_i32(a->reg); >>> + >>> + gen_helper_inb(data, cpu_env, port); >>> + tcg_gen_ori_tl(data, data, 1 << a->bit); >>> + gen_helper_outb(cpu_env, port, data); >>> + >>> + tcg_temp_free_i32(port); >>> + tcg_temp_free_i32(data); >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * Clears a specified bit in an I/O Register. This instruction >>> operates on >>> + * the lower 32 I/O Registers -- addresses 0-31. >>> + */ >>> +static bool trans_CBI(DisasContext *ctx, arg_CBI *a) >>> +{ >>> + TCGv data = tcg_temp_new_i32(); >>> + TCGv port = tcg_const_i32(a->reg); >>> + >>> + gen_helper_inb(data, cpu_env, port); >>> + tcg_gen_andi_tl(data, data, ~(1 << a->bit)); >>> + gen_helper_outb(cpu_env, port, data); >>> + >>> + tcg_temp_free_i32(data); >>> + tcg_temp_free_i32(port); >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * Stores bit b from Rd to the T Flag in SREG (Status Register). >>> + */ >>> +static bool trans_BST(DisasContext *ctx, arg_BST *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + >>> + tcg_gen_andi_tl(cpu_Tf, Rd, 1 << a->bit); >>> + tcg_gen_shri_tl(cpu_Tf, cpu_Tf, a->bit); >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * Copies the T Flag in the SREG (Status Register) to bit b in >>> register Rd. >>> + */ >>> +static bool trans_BLD(DisasContext *ctx, arg_BLD *a) >>> +{ >>> + TCGv Rd = cpu_r[a->rd]; >>> + TCGv t1 = tcg_temp_new_i32(); >>> + >>> + tcg_gen_andi_tl(Rd, Rd, ~(1u << a->bit)); /* clear bit */ >>> + tcg_gen_shli_tl(t1, cpu_Tf, a->bit); /* create mask */ >>> + tcg_gen_or_tl(Rd, Rd, t1); >>> + >>> + tcg_temp_free_i32(t1); >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * Sets a single Flag or bit in SREG. >>> + */ >>> +static bool trans_BSET(DisasContext *ctx, arg_BSET *a) >>> +{ >>> + switch (a->bit) { >>> + case 0x00: >>> + tcg_gen_movi_tl(cpu_Cf, 0x01); >>> + break; >>> + case 0x01: >>> + tcg_gen_movi_tl(cpu_Zf, 0x01); >>> + break; >>> + case 0x02: >>> + tcg_gen_movi_tl(cpu_Nf, 0x01); >>> + break; >>> + case 0x03: >>> + tcg_gen_movi_tl(cpu_Vf, 0x01); >>> + break; >>> + case 0x04: >>> + tcg_gen_movi_tl(cpu_Sf, 0x01); >>> + break; >>> + case 0x05: >>> + tcg_gen_movi_tl(cpu_Hf, 0x01); >>> + break; >>> + case 0x06: >>> + tcg_gen_movi_tl(cpu_Tf, 0x01); >>> + break; >>> + case 0x07: >>> + tcg_gen_movi_tl(cpu_If, 0x01); >>> + break; >>> + } >>> + >>> + return true; >>> +} >>> + >>> + >>> +/* >>> + * Clears a single Flag in SREG. >>> + */ >>> +static bool trans_BCLR(DisasContext *ctx, arg_BCLR *a) >>> +{ >>> + switch (a->bit) { >>> + case 0x00: >>> + tcg_gen_movi_tl(cpu_Cf, 0x00); >>> + break; >>> + case 0x01: >>> + tcg_gen_movi_tl(cpu_Zf, 0x00); >>> + break; >>> + case 0x02: >>> + tcg_gen_movi_tl(cpu_Nf, 0x00); >>> + break; >>> + case 0x03: >>> + tcg_gen_movi_tl(cpu_Vf, 0x00); >>> + break; >>> + case 0x04: >>> + tcg_gen_movi_tl(cpu_Sf, 0x00); >>> + break; >>> + case 0x05: >>> + tcg_gen_movi_tl(cpu_Hf, 0x00); >>> + break; >>> + case 0x06: >>> + tcg_gen_movi_tl(cpu_Tf, 0x00); >>> + break; >>> + case 0x07: >>> + tcg_gen_movi_tl(cpu_If, 0x00); >>> + break; >>> + } >>> + >>> + return true; >>> +} >>> -- >>> 2.17.2 (Apple Git-113) >>> >>> > > -- > Best Regards, > Michael Rolnik > -- Best Regards, Michael Rolnik