All of lore.kernel.org
 help / color / mirror / Atom feed
From: Boris Brezillon <boris.brezillon@free-electrons.com>
To: Mauro Carvalho Chehab <mchehab@s-opensource.com>
Cc: Linux Doc Mailing List <linux-doc@vger.kernel.org>,
	Jonathan Corbet <corbet@lwn.net>,
	Jani Nikula <jani.nikula@intel.com>,
	Richard Weinberger <richard@nod.at>,
	"Herton R. Krzesinski" <herton@redhat.com>,
	linux-kernel@vger.kernel.org,
	Mauro Carvalho Chehab <mchehab@infradead.org>,
	Marek Vasut <marek.vasut@gmail.com>,
	Markus Heiser <markus.heiser@darmarit.de>,
	linux-mtd@lists.infradead.org,
	Greg Kroah-Hartman <gregkh@linuxfoundation.org>,
	Cyrille Pitchen <cyrille.pitchen@atmel.com>,
	Brian Norris <computersforpeace@gmail.com>,
	David Woodhouse <dwmw2@infradead.org>
Subject: Re: [PATCH v2 37/53] docs-rst: convert mtdnand book to ReST
Date: Tue, 16 May 2017 15:11:41 +0200	[thread overview]
Message-ID: <20170516151141.647f89cc@bbrezillon> (raw)
In-Reply-To: <609f212f6a12e005d2395edd7b4192d2b051ae67.1494935649.git.mchehab@s-opensource.com>

On Tue, 16 May 2017 09:16:29 -0300
Mauro Carvalho Chehab <mchehab@s-opensource.com> wrote:

> Use pandoc to convert documentation to ReST by calling
> Documentation/sphinx/tmplcvt script.
> 
> The tables were manually adjusted to fit into 80 columns.
> 
> Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>

Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>

> ---
>  Documentation/DocBook/Makefile       |    1 -
>  Documentation/DocBook/mtdnand.tmpl   | 1291 ----------------------------------
>  Documentation/driver-api/index.rst   |    1 +
>  Documentation/driver-api/mtdnand.rst | 1020 +++++++++++++++++++++++++++
>  4 files changed, 1021 insertions(+), 1292 deletions(-)
>  delete mode 100644 Documentation/DocBook/mtdnand.tmpl
>  create mode 100644 Documentation/driver-api/mtdnand.rst
> 
> diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile
> index 0a82f6253682..226e5e9fc801 100644
> --- a/Documentation/DocBook/Makefile
> +++ b/Documentation/DocBook/Makefile
> @@ -8,7 +8,6 @@
>  
>  DOCBOOKS := \
>  	    lsm.xml \
> -	    mtdnand.xml \
>  	    sh.xml
>  
>  ifeq ($(DOCBOOKS),)
> diff --git a/Documentation/DocBook/mtdnand.tmpl b/Documentation/DocBook/mtdnand.tmpl
> deleted file mode 100644
> index b442921bca54..000000000000
> --- a/Documentation/DocBook/mtdnand.tmpl
> +++ /dev/null
> @@ -1,1291 +0,0 @@
> -<?xml version="1.0" encoding="UTF-8"?>
> -<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
> -	"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
> -
> -<book id="MTD-NAND-Guide">
> - <bookinfo>
> -  <title>MTD NAND Driver Programming Interface</title>
> -  
> -  <authorgroup>
> -   <author>
> -    <firstname>Thomas</firstname>
> -    <surname>Gleixner</surname>
> -    <affiliation>
> -     <address>
> -      <email>tglx@linutronix.de</email>
> -     </address>
> -    </affiliation>
> -   </author>
> -  </authorgroup>
> -
> -  <copyright>
> -   <year>2004</year>
> -   <holder>Thomas Gleixner</holder>
> -  </copyright>
> -
> -  <legalnotice>
> -   <para>
> -     This documentation is free software; you can redistribute
> -     it and/or modify it under the terms of the GNU General Public
> -     License version 2 as published by the Free Software Foundation.
> -   </para>
> -      
> -   <para>
> -     This program is distributed in the hope that it will be
> -     useful, but WITHOUT ANY WARRANTY; without even the implied
> -     warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
> -     See the GNU General Public License for more details.
> -   </para>
> -      
> -   <para>
> -     You should have received a copy of the GNU General Public
> -     License along with this program; if not, write to the Free
> -     Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
> -     MA 02111-1307 USA
> -   </para>
> -      
> -   <para>
> -     For more details see the file COPYING in the source
> -     distribution of Linux.
> -   </para>
> -  </legalnotice>
> - </bookinfo>
> -
> -<toc></toc>
> -
> -  <chapter id="intro">
> -      <title>Introduction</title>
> -  <para>
> -  	The generic NAND driver supports almost all NAND and AG-AND based
> -	chips and connects them to the Memory Technology Devices (MTD)
> -	subsystem of the Linux Kernel.
> -  </para>
> -  <para>
> -  	This documentation is provided for developers who want to implement
> -	board drivers or filesystem drivers suitable for NAND devices.
> -  </para>
> -  </chapter>
> -  
> -  <chapter id="bugs">
> -     <title>Known Bugs And Assumptions</title>
> -  <para>
> -	None.	
> -  </para>
> -  </chapter>
> -
> -  <chapter id="dochints">
> -     <title>Documentation hints</title>
> -     <para>
> -     The function and structure docs are autogenerated. Each function and 
> -     struct member has a short description which is marked with an [XXX] identifier.
> -     The following chapters explain the meaning of those identifiers.
> -     </para>
> -     <sect1 id="Function_identifiers_XXX">
> -	<title>Function identifiers [XXX]</title>
> -     	<para>
> -	The functions are marked with [XXX] identifiers in the short
> -	comment. The identifiers explain the usage and scope of the
> -	functions. Following identifiers are used:
> -     	</para>
> -	<itemizedlist>
> -		<listitem><para>
> -	  	[MTD Interface]</para><para>
> -		These functions provide the interface to the MTD kernel API. 
> -		They are not replaceable and provide functionality
> -		which is complete hardware independent.
> -		</para></listitem>
> -		<listitem><para>
> -	  	[NAND Interface]</para><para>
> -		These functions are exported and provide the interface to the NAND kernel API. 
> -		</para></listitem>
> -		<listitem><para>
> -	  	[GENERIC]</para><para>
> -		Generic functions are not replaceable and provide functionality
> -		which is complete hardware independent.
> -		</para></listitem>
> -		<listitem><para>
> -	  	[DEFAULT]</para><para>
> -		Default functions provide hardware related functionality which is suitable
> -		for most of the implementations. These functions can be replaced by the
> -		board driver if necessary. Those functions are called via pointers in the
> -		NAND chip description structure. The board driver can set the functions which
> -		should be replaced by board dependent functions before calling nand_scan().
> -		If the function pointer is NULL on entry to nand_scan() then the pointer
> -		is set to the default function which is suitable for the detected chip type.
> -		</para></listitem>
> -	</itemizedlist>
> -     </sect1>
> -     <sect1 id="Struct_member_identifiers_XXX">
> -	<title>Struct member identifiers [XXX]</title>
> -     	<para>
> -	The struct members are marked with [XXX] identifiers in the 
> -	comment. The identifiers explain the usage and scope of the
> -	members. Following identifiers are used:
> -     	</para>
> -	<itemizedlist>
> -		<listitem><para>
> -	  	[INTERN]</para><para>
> -		These members are for NAND driver internal use only and must not be
> -		modified. Most of these values are calculated from the chip geometry
> -		information which is evaluated during nand_scan().
> -		</para></listitem>
> -		<listitem><para>
> -	  	[REPLACEABLE]</para><para>
> -		Replaceable members hold hardware related functions which can be 
> -		provided by the board driver. The board driver can set the functions which
> -		should be replaced by board dependent functions before calling nand_scan().
> -		If the function pointer is NULL on entry to nand_scan() then the pointer
> -		is set to the default function which is suitable for the detected chip type.
> -		</para></listitem>
> -		<listitem><para>
> -	  	[BOARDSPECIFIC]</para><para>
> -		Board specific members hold hardware related information which must
> -		be provided by the board driver. The board driver must set the function
> -		pointers and datafields before calling nand_scan().
> -		</para></listitem>
> -		<listitem><para>
> -	  	[OPTIONAL]</para><para>
> -		Optional members can hold information relevant for the board driver. The
> -		generic NAND driver code does not use this information.
> -		</para></listitem>
> -	</itemizedlist>
> -     </sect1>
> -  </chapter>   
> -
> -  <chapter id="basicboarddriver">
> -     	<title>Basic board driver</title>
> -	<para>
> -		For most boards it will be sufficient to provide just the
> -		basic functions and fill out some really board dependent
> -		members in the nand chip description structure.
> -	</para>
> -	<sect1 id="Basic_defines">
> -		<title>Basic defines</title>
> -		<para>
> -			At least you have to provide a nand_chip structure
> -			and a storage for the ioremap'ed chip address.
> -			You can allocate the nand_chip structure using
> -			kmalloc or you can allocate it statically.
> -			The NAND chip structure embeds an mtd structure
> -			which will be registered to the MTD subsystem.
> -			You can extract a pointer to the mtd structure
> -			from a nand_chip pointer using the nand_to_mtd()
> -			helper.
> -		</para>
> -		<para>
> -			Kmalloc based example
> -		</para>
> -		<programlisting>
> -static struct mtd_info *board_mtd;
> -static void __iomem *baseaddr;
> -		</programlisting>
> -		<para>
> -			Static example
> -		</para>
> -		<programlisting>
> -static struct nand_chip board_chip;
> -static void __iomem *baseaddr;
> -		</programlisting>
> -	</sect1>
> -	<sect1 id="Partition_defines">
> -		<title>Partition defines</title>
> -		<para>
> -			If you want to divide your device into partitions, then
> -			define a partitioning scheme suitable to your board.
> -		</para>
> -		<programlisting>
> -#define NUM_PARTITIONS 2
> -static struct mtd_partition partition_info[] = {
> -	{ .name = "Flash partition 1",
> -	  .offset =  0,
> -	  .size =    8 * 1024 * 1024 },
> -	{ .name = "Flash partition 2",
> -	  .offset =  MTDPART_OFS_NEXT,
> -	  .size =    MTDPART_SIZ_FULL },
> -};
> -		</programlisting>
> -	</sect1>
> -	<sect1 id="Hardware_control_functions">
> -		<title>Hardware control function</title>
> -		<para>
> -			The hardware control function provides access to the 
> -			control pins of the NAND chip(s). 
> -			The access can be done by GPIO pins or by address lines.
> -			If you use address lines, make sure that the timing
> -			requirements are met.
> -		</para>
> -		<para>
> -			<emphasis>GPIO based example</emphasis>
> -		</para>
> -		<programlisting>
> -static void board_hwcontrol(struct mtd_info *mtd, int cmd)
> -{
> -	switch(cmd){
> -		case NAND_CTL_SETCLE: /* Set CLE pin high */ break;
> -		case NAND_CTL_CLRCLE: /* Set CLE pin low */ break;
> -		case NAND_CTL_SETALE: /* Set ALE pin high */ break;
> -		case NAND_CTL_CLRALE: /* Set ALE pin low */ break;
> -		case NAND_CTL_SETNCE: /* Set nCE pin low */ break;
> -		case NAND_CTL_CLRNCE: /* Set nCE pin high */ break;
> -	}
> -}
> -		</programlisting>
> -		<para>
> -			<emphasis>Address lines based example.</emphasis> It's assumed that the
> -			nCE pin is driven by a chip select decoder.
> -		</para>
> -		<programlisting>
> -static void board_hwcontrol(struct mtd_info *mtd, int cmd)
> -{
> -	struct nand_chip *this = mtd_to_nand(mtd);
> -	switch(cmd){
> -		case NAND_CTL_SETCLE: this->IO_ADDR_W |= CLE_ADRR_BIT;  break;
> -		case NAND_CTL_CLRCLE: this->IO_ADDR_W &amp;= ~CLE_ADRR_BIT; break;
> -		case NAND_CTL_SETALE: this->IO_ADDR_W |= ALE_ADRR_BIT;  break;
> -		case NAND_CTL_CLRALE: this->IO_ADDR_W &amp;= ~ALE_ADRR_BIT; break;
> -	}
> -}
> -		</programlisting>
> -	</sect1>
> -	<sect1 id="Device_ready_function">
> -		<title>Device ready function</title>
> -		<para>
> -			If the hardware interface has the ready busy pin of the NAND chip connected to a
> -			GPIO or other accessible I/O pin, this function is used to read back the state of the
> -			pin. The function has no arguments and should return 0, if the device is busy (R/B pin 
> -			is low) and 1, if the device is ready (R/B pin is high).
> -			If the hardware interface does not give access to the ready busy pin, then
> -			the function must not be defined and the function pointer this->dev_ready is set to NULL.		
> -		</para>
> -	</sect1>
> -	<sect1 id="Init_function">
> -		<title>Init function</title>
> -		<para>
> -			The init function allocates memory and sets up all the board
> -			specific parameters and function pointers. When everything
> -			is set up nand_scan() is called. This function tries to
> -			detect and identify then chip. If a chip is found all the
> -			internal data fields are initialized accordingly.
> -			The structure(s) have to be zeroed out first and then filled with the necessary
> -			information about the device.
> -		</para>
> -		<programlisting>
> -static int __init board_init (void)
> -{
> -	struct nand_chip *this;
> -	int err = 0;
> -
> -	/* Allocate memory for MTD device structure and private data */
> -	this = kzalloc(sizeof(struct nand_chip), GFP_KERNEL);
> -	if (!this) {
> -		printk ("Unable to allocate NAND MTD device structure.\n");
> -		err = -ENOMEM;
> -		goto out;
> -	}
> -
> -	board_mtd = nand_to_mtd(this);
> -
> -	/* map physical address */
> -	baseaddr = ioremap(CHIP_PHYSICAL_ADDRESS, 1024);
> -	if (!baseaddr) {
> -		printk("Ioremap to access NAND chip failed\n");
> -		err = -EIO;
> -		goto out_mtd;
> -	}
> -
> -	/* Set address of NAND IO lines */
> -	this->IO_ADDR_R = baseaddr;
> -	this->IO_ADDR_W = baseaddr;
> -	/* Reference hardware control function */
> -	this->hwcontrol = board_hwcontrol;
> -	/* Set command delay time, see datasheet for correct value */
> -	this->chip_delay = CHIP_DEPENDEND_COMMAND_DELAY;
> -	/* Assign the device ready function, if available */
> -	this->dev_ready = board_dev_ready;
> -	this->eccmode = NAND_ECC_SOFT;
> -
> -	/* Scan to find existence of the device */
> -	if (nand_scan (board_mtd, 1)) {
> -		err = -ENXIO;
> -		goto out_ior;
> -	}
> -	
> -	add_mtd_partitions(board_mtd, partition_info, NUM_PARTITIONS);
> -	goto out;
> -
> -out_ior:
> -	iounmap(baseaddr);
> -out_mtd:
> -	kfree (this);
> -out:
> -	return err;
> -}
> -module_init(board_init);
> -		</programlisting>
> -	</sect1>
> -	<sect1 id="Exit_function">
> -		<title>Exit function</title>
> -		<para>
> -			The exit function is only necessary if the driver is
> -			compiled as a module. It releases all resources which
> -			are held by the chip driver and unregisters the partitions
> -			in the MTD layer.
> -		</para>
> -		<programlisting>
> -#ifdef MODULE
> -static void __exit board_cleanup (void)
> -{
> -	/* Release resources, unregister device */
> -	nand_release (board_mtd);
> -
> -	/* unmap physical address */
> -	iounmap(baseaddr);
> -	
> -	/* Free the MTD device structure */
> -	kfree (mtd_to_nand(board_mtd));
> -}
> -module_exit(board_cleanup);
> -#endif
> -		</programlisting>
> -	</sect1>
> -  </chapter>
> -
> -  <chapter id="boarddriversadvanced">
> -     	<title>Advanced board driver functions</title>
> -	<para>
> -		This chapter describes the advanced functionality of the NAND
> -		driver. For a list of functions which can be overridden by the board
> -		driver see the documentation of the nand_chip structure.
> -	</para>
> -	<sect1 id="Multiple_chip_control">
> -		<title>Multiple chip control</title>
> -		<para>
> -			The nand driver can control chip arrays. Therefore the
> -			board driver must provide an own select_chip function. This
> -			function must (de)select the requested chip.
> -			The function pointer in the nand_chip structure must
> -			be set before calling nand_scan(). The maxchip parameter
> -			of nand_scan() defines the maximum number of chips to
> -			scan for. Make sure that the select_chip function can
> -			handle the requested number of chips.
> -		</para>
> -		<para>
> -			The nand driver concatenates the chips to one virtual
> -			chip and provides this virtual chip to the MTD layer.
> -		</para>
> -		<para>
> -			<emphasis>Note: The driver can only handle linear chip arrays
> -			of equally sized chips. There is no support for
> -			parallel arrays which extend the buswidth.</emphasis>
> -		</para>
> -		<para>
> -			<emphasis>GPIO based example</emphasis>
> -		</para>
> -		<programlisting>
> -static void board_select_chip (struct mtd_info *mtd, int chip)
> -{
> -	/* Deselect all chips, set all nCE pins high */
> -	GPIO(BOARD_NAND_NCE) |= 0xff;	
> -	if (chip >= 0)
> -		GPIO(BOARD_NAND_NCE) &amp;= ~ (1 &lt;&lt; chip);
> -}
> -		</programlisting>
> -		<para>
> -			<emphasis>Address lines based example.</emphasis>
> -			Its assumed that the nCE pins are connected to an
> -			address decoder.
> -		</para>
> -		<programlisting>
> -static void board_select_chip (struct mtd_info *mtd, int chip)
> -{
> -	struct nand_chip *this = mtd_to_nand(mtd);
> -	
> -	/* Deselect all chips */
> -	this->IO_ADDR_R &amp;= ~BOARD_NAND_ADDR_MASK;
> -	this->IO_ADDR_W &amp;= ~BOARD_NAND_ADDR_MASK;
> -	switch (chip) {
> -	case 0:
> -		this->IO_ADDR_R |= BOARD_NAND_ADDR_CHIP0;
> -		this->IO_ADDR_W |= BOARD_NAND_ADDR_CHIP0;
> -		break;
> -	....	
> -	case n:
> -		this->IO_ADDR_R |= BOARD_NAND_ADDR_CHIPn;
> -		this->IO_ADDR_W |= BOARD_NAND_ADDR_CHIPn;
> -		break;
> -	}	
> -}
> -		</programlisting>
> -	</sect1>
> -	<sect1 id="Hardware_ECC_support">
> -		<title>Hardware ECC support</title>
> -		<sect2 id="Functions_and_constants">
> -			<title>Functions and constants</title>
> -			<para>
> -				The nand driver supports three different types of
> -				hardware ECC.
> -				<itemizedlist>
> -				<listitem><para>NAND_ECC_HW3_256</para><para>
> -				Hardware ECC generator providing 3 bytes ECC per
> -				256 byte.
> -				</para>	</listitem>
> -				<listitem><para>NAND_ECC_HW3_512</para><para>
> -				Hardware ECC generator providing 3 bytes ECC per
> -				512 byte.
> -				</para>	</listitem>
> -				<listitem><para>NAND_ECC_HW6_512</para><para>
> -				Hardware ECC generator providing 6 bytes ECC per
> -				512 byte.
> -				</para>	</listitem>
> -				<listitem><para>NAND_ECC_HW8_512</para><para>
> -				Hardware ECC generator providing 6 bytes ECC per
> -				512 byte.
> -				</para>	</listitem>
> -				</itemizedlist>
> -				If your hardware generator has a different functionality
> -				add it at the appropriate place in nand_base.c
> -			</para>
> -			<para>
> -				The board driver must provide following functions:
> -				<itemizedlist>
> -				<listitem><para>enable_hwecc</para><para>
> -				This function is called before reading / writing to
> -				the chip. Reset or initialize the hardware generator
> -				in this function. The function is called with an
> -				argument which let you distinguish between read 
> -				and write operations.
> -				</para>	</listitem>
> -				<listitem><para>calculate_ecc</para><para>
> -				This function is called after read / write from / to
> -				the chip. Transfer the ECC from the hardware to
> -				the buffer. If the option NAND_HWECC_SYNDROME is set
> -				then the function is only called on write. See below.
> -				</para>	</listitem>
> -				<listitem><para>correct_data</para><para>
> -				In case of an ECC error this function is called for
> -				error detection and correction. Return 1 respectively 2
> -				in case the error can be corrected. If the error is
> -				not correctable return -1. If your hardware generator
> -				matches the default algorithm of the nand_ecc software
> -				generator then use the correction function provided
> -				by nand_ecc instead of implementing duplicated code.
> -				</para>	</listitem>
> -				</itemizedlist>
> -			</para>
> -		</sect2>
> -		<sect2 id="Hardware_ECC_with_syndrome_calculation">
> -		<title>Hardware ECC with syndrome calculation</title>
> -			<para>
> -				Many hardware ECC implementations provide Reed-Solomon
> -				codes and calculate an error syndrome on read. The syndrome
> -				must be converted to a standard Reed-Solomon syndrome
> -				before calling the error correction code in the generic
> -				Reed-Solomon library.
> -			</para>
> -			<para>
> -				The ECC bytes must be placed immediately after the data
> -				bytes in order to make the syndrome generator work. This
> -				is contrary to the usual layout used by software ECC. The
> -				separation of data and out of band area is not longer
> -				possible. The nand driver code handles this layout and
> -				the remaining free bytes in the oob area are managed by 
> -				the autoplacement code. Provide a matching oob-layout
> -				in this case. See rts_from4.c and diskonchip.c for 
> -				implementation reference. In those cases we must also
> -				use bad block tables on FLASH, because the ECC layout is
> -				interfering with the bad block marker positions.
> -				See bad block table support for details.
> -			</para>
> -		</sect2>
> -	</sect1>
> -	<sect1 id="Bad_Block_table_support">
> -		<title>Bad block table support</title>
> -		<para>
> -			Most NAND chips mark the bad blocks at a defined
> -			position in the spare area. Those blocks must 
> -			not be erased under any circumstances as the bad 
> -			block information would be lost.
> -			It is possible to check the bad block mark each
> -			time when the blocks are accessed by reading the
> -			spare area of the first page in the block. This
> -			is time consuming so a bad block table is used.
> -		</para>
> -		<para>
> -			The nand driver supports various types of bad block
> -			tables.
> -			<itemizedlist>
> -			<listitem><para>Per device</para><para>
> -			The bad block table contains all bad block information
> -			of the device which can consist of multiple chips.
> -			</para>	</listitem>
> -			<listitem><para>Per chip</para><para>
> -			A bad block table is used per chip and contains the
> -			bad block information for this particular chip.
> -			</para>	</listitem>
> -			<listitem><para>Fixed offset</para><para>
> -			The bad block table is located at a fixed offset
> -			in the chip (device). This applies to various
> -			DiskOnChip devices.
> -			</para>	</listitem>
> -			<listitem><para>Automatic placed</para><para>
> -			The bad block table is automatically placed and
> -			detected either at the end or at the beginning
> -			of a chip (device)
> -			</para>	</listitem>
> -			<listitem><para>Mirrored tables</para><para>
> -			The bad block table is mirrored on the chip (device) to
> -			allow updates of the bad block table without data loss.
> -			</para>	</listitem>
> -			</itemizedlist>
> -		</para>
> -		<para>	
> -			nand_scan() calls the function nand_default_bbt(). 
> -			nand_default_bbt() selects appropriate default
> -			bad block table descriptors depending on the chip information
> -			which was retrieved by nand_scan().
> -		</para>
> -		<para>
> -			The standard policy is scanning the device for bad 
> -			blocks and build a ram based bad block table which
> -			allows faster access than always checking the
> -			bad block information on the flash chip itself.
> -		</para>
> -		<sect2 id="Flash_based_tables">
> -			<title>Flash based tables</title>
> -			<para>
> -				It may be desired or necessary to keep a bad block table in FLASH.
> -				For AG-AND chips this is mandatory, as they have no factory marked
> -				bad blocks. They have factory marked good blocks. The marker pattern
> -				is erased when the block is erased to be reused. So in case of
> -				powerloss before writing the pattern back to the chip this block 
> -				would be lost and added to the bad blocks. Therefore we scan the 
> -				chip(s) when we detect them the first time for good blocks and 
> -				store this information in a bad block table before erasing any 
> -				of the blocks.
> -			</para>
> -			<para>
> -				The blocks in which the tables are stored are protected against
> -				accidental access by marking them bad in the memory bad block
> -				table. The bad block table management functions are allowed
> -				to circumvent this protection.
> -			</para>
> -			<para>
> -				The simplest way to activate the FLASH based bad block table support 
> -				is to set the option NAND_BBT_USE_FLASH in the bbt_option field of
> -				the nand chip structure before calling nand_scan(). For AG-AND
> -				chips is this done by default.
> -				This activates the default FLASH based bad block table functionality 
> -				of the NAND driver. The default bad block table options are
> -				<itemizedlist>
> -				<listitem><para>Store bad block table per chip</para></listitem>
> -				<listitem><para>Use 2 bits per block</para></listitem>
> -				<listitem><para>Automatic placement at the end of the chip</para></listitem>
> -				<listitem><para>Use mirrored tables with version numbers</para></listitem>
> -				<listitem><para>Reserve 4 blocks at the end of the chip</para></listitem>
> -				</itemizedlist>
> -			</para>
> -		</sect2>
> -		<sect2 id="User_defined_tables">
> -			<title>User defined tables</title>
> -			<para>
> -				User defined tables are created by filling out a 
> -				nand_bbt_descr structure and storing the pointer in the
> -				nand_chip structure member bbt_td before calling nand_scan(). 
> -				If a mirror table is necessary a second structure must be
> -				created and a pointer to this structure must be stored
> -				in bbt_md inside the nand_chip structure. If the bbt_md 
> -				member is set to NULL then only the main table is used
> -				and no scan for the mirrored table is performed.
> -			</para>
> -			<para>
> -				The most important field in the nand_bbt_descr structure
> -				is the options field. The options define most of the 
> -				table properties. Use the predefined constants from
> -				nand.h to define the options.
> -				<itemizedlist>
> -				<listitem><para>Number of bits per block</para>
> -				<para>The supported number of bits is 1, 2, 4, 8.</para></listitem>
> -				<listitem><para>Table per chip</para>
> -				<para>Setting the constant NAND_BBT_PERCHIP selects that
> -				a bad block table is managed for each chip in a chip array.
> -				If this option is not set then a per device bad block table
> -				is used.</para></listitem>
> -				<listitem><para>Table location is absolute</para>
> -				<para>Use the option constant NAND_BBT_ABSPAGE and
> -				define the absolute page number where the bad block
> -				table starts in the field pages. If you have selected bad block
> -				tables per chip and you have a multi chip array then the start page
> -				must be given for each chip in the chip array. Note: there is no scan
> -				for a table ident pattern performed, so the fields 
> -				pattern, veroffs, offs, len can be left uninitialized</para></listitem>
> -				<listitem><para>Table location is automatically detected</para>
> -				<para>The table can either be located in the first or the last good
> -				blocks of the chip (device). Set NAND_BBT_LASTBLOCK to place
> -				the bad block table at the end of the chip (device). The
> -				bad block tables are marked and identified by a pattern which
> -				is stored in the spare area of the first page in the block which
> -				holds the bad block table. Store a pointer to the pattern  
> -				in the pattern field. Further the length of the pattern has to be 
> -				stored in len and the offset in the spare area must be given
> -				in the offs member of the nand_bbt_descr structure. For mirrored
> -				bad block tables different patterns are mandatory.</para></listitem>
> -				<listitem><para>Table creation</para>
> -				<para>Set the option NAND_BBT_CREATE to enable the table creation
> -				if no table can be found during the scan. Usually this is done only 
> -				once if a new chip is found. </para></listitem>
> -				<listitem><para>Table write support</para>
> -				<para>Set the option NAND_BBT_WRITE to enable the table write support.
> -				This allows the update of the bad block table(s) in case a block has
> -				to be marked bad due to wear. The MTD interface function block_markbad
> -				is calling the update function of the bad block table. If the write
> -				support is enabled then the table is updated on FLASH.</para>
> -				<para>
> -				Note: Write support should only be enabled for mirrored tables with
> -				version control.
> -				</para></listitem>
> -				<listitem><para>Table version control</para>
> -				<para>Set the option NAND_BBT_VERSION to enable the table version control.
> -				It's highly recommended to enable this for mirrored tables with write
> -				support. It makes sure that the risk of losing the bad block
> -				table information is reduced to the loss of the information about the
> -				one worn out block which should be marked bad. The version is stored in
> -				4 consecutive bytes in the spare area of the device. The position of
> -				the version number is defined by the member veroffs in the bad block table
> -				descriptor.</para></listitem>
> -				<listitem><para>Save block contents on write</para>
> -				<para>
> -				In case that the block which holds the bad block table does contain
> -				other useful information, set the option NAND_BBT_SAVECONTENT. When
> -				the bad block table is written then the whole block is read the bad
> -				block table is updated and the block is erased and everything is 
> -				written back. If this option is not set only the bad block table
> -				is written and everything else in the block is ignored and erased.
> -				</para></listitem>
> -				<listitem><para>Number of reserved blocks</para>
> -				<para>
> -				For automatic placement some blocks must be reserved for
> -				bad block table storage. The number of reserved blocks is defined 
> -				in the maxblocks member of the bad block table description structure.
> -				Reserving 4 blocks for mirrored tables should be a reasonable number. 
> -				This also limits the number of blocks which are scanned for the bad
> -				block table ident pattern.
> -				</para></listitem>
> -				</itemizedlist>
> -			</para>
> -		</sect2>
> -	</sect1>
> -	<sect1 id="Spare_area_placement">
> -		<title>Spare area (auto)placement</title>
> -		<para>
> -			The nand driver implements different possibilities for
> -			placement of filesystem data in the spare area, 
> -			<itemizedlist>
> -			<listitem><para>Placement defined by fs driver</para></listitem>
> -			<listitem><para>Automatic placement</para></listitem>
> -			</itemizedlist>
> -			The default placement function is automatic placement. The
> -			nand driver has built in default placement schemes for the
> -			various chiptypes. If due to hardware ECC functionality the
> -			default placement does not fit then the board driver can
> -			provide a own placement scheme.
> -		</para>
> -		<para>
> -			File system drivers can provide a own placement scheme which
> -			is used instead of the default placement scheme.
> -		</para>
> -		<para>
> -			Placement schemes are defined by a nand_oobinfo structure
> -	     		<programlisting>
> -struct nand_oobinfo {
> -	int	useecc;
> -	int	eccbytes;
> -	int	eccpos[24];
> -	int	oobfree[8][2];
> -};
> -	     		</programlisting>
> -			<itemizedlist>
> -			<listitem><para>useecc</para><para>
> -				The useecc member controls the ecc and placement function. The header
> -				file include/mtd/mtd-abi.h contains constants to select ecc and
> -				placement. MTD_NANDECC_OFF switches off the ecc complete. This is
> -				not recommended and available for testing and diagnosis only.
> -				MTD_NANDECC_PLACE selects caller defined placement, MTD_NANDECC_AUTOPLACE
> -				selects automatic placement.
> -			</para></listitem>
> -			<listitem><para>eccbytes</para><para>
> -				The eccbytes member defines the number of ecc bytes per page.
> -			</para></listitem>
> -			<listitem><para>eccpos</para><para>
> -				The eccpos array holds the byte offsets in the spare area where
> -				the ecc codes are placed.
> -			</para></listitem>
> -			<listitem><para>oobfree</para><para>
> -				The oobfree array defines the areas in the spare area which can be
> -				used for automatic placement. The information is given in the format
> -				{offset, size}. offset defines the start of the usable area, size the
> -				length in bytes. More than one area can be defined. The list is terminated
> -				by an {0, 0} entry.
> -			</para></listitem>
> -			</itemizedlist>
> -		</para>
> -		<sect2 id="Placement_defined_by_fs_driver">
> -			<title>Placement defined by fs driver</title>
> -			<para>
> -				The calling function provides a pointer to a nand_oobinfo
> -				structure which defines the ecc placement. For writes the
> -				caller must provide a spare area buffer along with the
> -				data buffer. The spare area buffer size is (number of pages) *
> -				(size of spare area). For reads the buffer size is
> -				(number of pages) * ((size of spare area) + (number of ecc
> -				steps per page) * sizeof (int)). The driver stores the
> -				result of the ecc check for each tuple in the spare buffer.
> -				The storage sequence is 
> -			</para>
> -			<para>
> -				&lt;spare data page 0&gt;&lt;ecc result 0&gt;...&lt;ecc result n&gt;
> -			</para>
> -			<para>
> -				...
> -			</para>
> -			<para>
> -				&lt;spare data page n&gt;&lt;ecc result 0&gt;...&lt;ecc result n&gt;
> -			</para>
> -			<para>
> -				This is a legacy mode used by YAFFS1.
> -			</para>
> -			<para>
> -				If the spare area buffer is NULL then only the ECC placement is
> -				done according to the given scheme in the nand_oobinfo structure.
> -			</para>
> -		</sect2>
> -		<sect2 id="Automatic_placement">
> -			<title>Automatic placement</title>
> -			<para>
> -				Automatic placement uses the built in defaults to place the
> -				ecc bytes in the spare area. If filesystem data have to be stored /
> -				read into the spare area then the calling function must provide a
> -				buffer. The buffer size per page is determined by the oobfree array in
> -				the nand_oobinfo structure.
> -			</para>
> -			<para>
> -				If the spare area buffer is NULL then only the ECC placement is
> -				done according to the default builtin scheme.
> -			</para>
> -		</sect2>
> -	</sect1>	
> -	<sect1 id="Spare_area_autoplacement_default">
> -		<title>Spare area autoplacement default schemes</title>
> -		<sect2 id="pagesize_256">
> -			<title>256 byte pagesize</title>
> -<informaltable><tgroup cols="3"><tbody>
> -<row>
> -<entry>Offset</entry>
> -<entry>Content</entry>
> -<entry>Comment</entry>
> -</row>
> -<row>
> -<entry>0x00</entry>
> -<entry>ECC byte 0</entry>
> -<entry>Error correction code byte 0</entry>
> -</row>
> -<row>
> -<entry>0x01</entry>
> -<entry>ECC byte 1</entry>
> -<entry>Error correction code byte 1</entry>
> -</row>
> -<row>
> -<entry>0x02</entry>
> -<entry>ECC byte 2</entry>
> -<entry>Error correction code byte 2</entry>
> -</row>
> -<row>
> -<entry>0x03</entry>
> -<entry>Autoplace 0</entry>
> -<entry></entry>
> -</row>
> -<row>
> -<entry>0x04</entry>
> -<entry>Autoplace 1</entry>
> -<entry></entry>
> -</row>
> -<row>
> -<entry>0x05</entry>
> -<entry>Bad block marker</entry>
> -<entry>If any bit in this byte is zero, then this block is bad.
> -This applies only to the first page in a block. In the remaining
> -pages this byte is reserved</entry>
> -</row>
> -<row>
> -<entry>0x06</entry>
> -<entry>Autoplace 2</entry>
> -<entry></entry>
> -</row>
> -<row>
> -<entry>0x07</entry>
> -<entry>Autoplace 3</entry>
> -<entry></entry>
> -</row>
> -</tbody></tgroup></informaltable>
> -		</sect2>
> -		<sect2 id="pagesize_512">
> -			<title>512 byte pagesize</title>
> -<informaltable><tgroup cols="3"><tbody>
> -<row>
> -<entry>Offset</entry>
> -<entry>Content</entry>
> -<entry>Comment</entry>
> -</row>
> -<row>
> -<entry>0x00</entry>
> -<entry>ECC byte 0</entry>
> -<entry>Error correction code byte 0 of the lower 256 Byte data in
> -this page</entry>
> -</row>
> -<row>
> -<entry>0x01</entry>
> -<entry>ECC byte 1</entry>
> -<entry>Error correction code byte 1 of the lower 256 Bytes of data
> -in this page</entry>
> -</row>
> -<row>
> -<entry>0x02</entry>
> -<entry>ECC byte 2</entry>
> -<entry>Error correction code byte 2 of the lower 256 Bytes of data
> -in this page</entry>
> -</row>
> -<row>
> -<entry>0x03</entry>
> -<entry>ECC byte 3</entry>
> -<entry>Error correction code byte 0 of the upper 256 Bytes of data
> -in this page</entry>
> -</row>
> -<row>
> -<entry>0x04</entry>
> -<entry>reserved</entry>
> -<entry>reserved</entry>
> -</row>
> -<row>
> -<entry>0x05</entry>
> -<entry>Bad block marker</entry>
> -<entry>If any bit in this byte is zero, then this block is bad.
> -This applies only to the first page in a block. In the remaining
> -pages this byte is reserved</entry>
> -</row>
> -<row>
> -<entry>0x06</entry>
> -<entry>ECC byte 4</entry>
> -<entry>Error correction code byte 1 of the upper 256 Bytes of data
> -in this page</entry>
> -</row>
> -<row>
> -<entry>0x07</entry>
> -<entry>ECC byte 5</entry>
> -<entry>Error correction code byte 2 of the upper 256 Bytes of data
> -in this page</entry>
> -</row>
> -<row>
> -<entry>0x08 - 0x0F</entry>
> -<entry>Autoplace 0 - 7</entry>
> -<entry></entry>
> -</row>
> -</tbody></tgroup></informaltable>
> -		</sect2>
> -		<sect2 id="pagesize_2048">
> -			<title>2048 byte pagesize</title>
> -<informaltable><tgroup cols="3"><tbody>
> -<row>
> -<entry>Offset</entry>
> -<entry>Content</entry>
> -<entry>Comment</entry>
> -</row>
> -<row>
> -<entry>0x00</entry>
> -<entry>Bad block marker</entry>
> -<entry>If any bit in this byte is zero, then this block is bad.
> -This applies only to the first page in a block. In the remaining
> -pages this byte is reserved</entry>
> -</row>
> -<row>
> -<entry>0x01</entry>
> -<entry>Reserved</entry>
> -<entry>Reserved</entry>
> -</row>
> -<row>
> -<entry>0x02-0x27</entry>
> -<entry>Autoplace 0 - 37</entry>
> -<entry></entry>
> -</row>
> -<row>
> -<entry>0x28</entry>
> -<entry>ECC byte 0</entry>
> -<entry>Error correction code byte 0 of the first 256 Byte data in
> -this page</entry>
> -</row>
> -<row>
> -<entry>0x29</entry>
> -<entry>ECC byte 1</entry>
> -<entry>Error correction code byte 1 of the first 256 Bytes of data
> -in this page</entry>
> -</row>
> -<row>
> -<entry>0x2A</entry>
> -<entry>ECC byte 2</entry>
> -<entry>Error correction code byte 2 of the first 256 Bytes data in
> -this page</entry>
> -</row>
> -<row>
> -<entry>0x2B</entry>
> -<entry>ECC byte 3</entry>
> -<entry>Error correction code byte 0 of the second 256 Bytes of data
> -in this page</entry>
> -</row>
> -<row>
> -<entry>0x2C</entry>
> -<entry>ECC byte 4</entry>
> -<entry>Error correction code byte 1 of the second 256 Bytes of data
> -in this page</entry>
> -</row>
> -<row>
> -<entry>0x2D</entry>
> -<entry>ECC byte 5</entry>
> -<entry>Error correction code byte 2 of the second 256 Bytes of data
> -in this page</entry>
> -</row>
> -<row>
> -<entry>0x2E</entry>
> -<entry>ECC byte 6</entry>
> -<entry>Error correction code byte 0 of the third 256 Bytes of data
> -in this page</entry>
> -</row>
> -<row>
> -<entry>0x2F</entry>
> -<entry>ECC byte 7</entry>
> -<entry>Error correction code byte 1 of the third 256 Bytes of data
> -in this page</entry>
> -</row>
> -<row>
> -<entry>0x30</entry>
> -<entry>ECC byte 8</entry>
> -<entry>Error correction code byte 2 of the third 256 Bytes of data
> -in this page</entry>
> -</row>
> -<row>
> -<entry>0x31</entry>
> -<entry>ECC byte 9</entry>
> -<entry>Error correction code byte 0 of the fourth 256 Bytes of data
> -in this page</entry>
> -</row>
> -<row>
> -<entry>0x32</entry>
> -<entry>ECC byte 10</entry>
> -<entry>Error correction code byte 1 of the fourth 256 Bytes of data
> -in this page</entry>
> -</row>
> -<row>
> -<entry>0x33</entry>
> -<entry>ECC byte 11</entry>
> -<entry>Error correction code byte 2 of the fourth 256 Bytes of data
> -in this page</entry>
> -</row>
> -<row>
> -<entry>0x34</entry>
> -<entry>ECC byte 12</entry>
> -<entry>Error correction code byte 0 of the fifth 256 Bytes of data
> -in this page</entry>
> -</row>
> -<row>
> -<entry>0x35</entry>
> -<entry>ECC byte 13</entry>
> -<entry>Error correction code byte 1 of the fifth 256 Bytes of data
> -in this page</entry>
> -</row>
> -<row>
> -<entry>0x36</entry>
> -<entry>ECC byte 14</entry>
> -<entry>Error correction code byte 2 of the fifth 256 Bytes of data
> -in this page</entry>
> -</row>
> -<row>
> -<entry>0x37</entry>
> -<entry>ECC byte 15</entry>
> -<entry>Error correction code byte 0 of the sixt 256 Bytes of data
> -in this page</entry>
> -</row>
> -<row>
> -<entry>0x38</entry>
> -<entry>ECC byte 16</entry>
> -<entry>Error correction code byte 1 of the sixt 256 Bytes of data
> -in this page</entry>
> -</row>
> -<row>
> -<entry>0x39</entry>
> -<entry>ECC byte 17</entry>
> -<entry>Error correction code byte 2 of the sixt 256 Bytes of data
> -in this page</entry>
> -</row>
> -<row>
> -<entry>0x3A</entry>
> -<entry>ECC byte 18</entry>
> -<entry>Error correction code byte 0 of the seventh 256 Bytes of
> -data in this page</entry>
> -</row>
> -<row>
> -<entry>0x3B</entry>
> -<entry>ECC byte 19</entry>
> -<entry>Error correction code byte 1 of the seventh 256 Bytes of
> -data in this page</entry>
> -</row>
> -<row>
> -<entry>0x3C</entry>
> -<entry>ECC byte 20</entry>
> -<entry>Error correction code byte 2 of the seventh 256 Bytes of
> -data in this page</entry>
> -</row>
> -<row>
> -<entry>0x3D</entry>
> -<entry>ECC byte 21</entry>
> -<entry>Error correction code byte 0 of the eighth 256 Bytes of data
> -in this page</entry>
> -</row>
> -<row>
> -<entry>0x3E</entry>
> -<entry>ECC byte 22</entry>
> -<entry>Error correction code byte 1 of the eighth 256 Bytes of data
> -in this page</entry>
> -</row>
> -<row>
> -<entry>0x3F</entry>
> -<entry>ECC byte 23</entry>
> -<entry>Error correction code byte 2 of the eighth 256 Bytes of data
> -in this page</entry>
> -</row>
> -</tbody></tgroup></informaltable>
> -		</sect2>
> -     	</sect1>
> -  </chapter>
> -
> -  <chapter id="filesystems">
> -     	<title>Filesystem support</title>
> -	<para>
> -		The NAND driver provides all necessary functions for a
> -		filesystem via the MTD interface.
> -	</para>
> -	<para>
> -		Filesystems must be aware of the NAND peculiarities and
> -		restrictions. One major restrictions of NAND Flash is, that you cannot 
> -		write as often as you want to a page. The consecutive writes to a page, 
> -		before erasing it again, are restricted to 1-3 writes, depending on the 
> -		manufacturers specifications. This applies similar to the spare area. 
> -	</para>
> -	<para>
> -		Therefore NAND aware filesystems must either write in page size chunks
> -		or hold a writebuffer to collect smaller writes until they sum up to 
> -		pagesize. Available NAND aware filesystems: JFFS2, YAFFS. 		
> -	</para>
> -	<para>
> -		The spare area usage to store filesystem data is controlled by
> -		the spare area placement functionality which is described in one
> -		of the earlier chapters.
> -	</para>
> -  </chapter>	
> -  <chapter id="tools">
> -     	<title>Tools</title>
> -	<para>
> -		The MTD project provides a couple of helpful tools to handle NAND Flash.
> -		<itemizedlist>
> -		<listitem><para>flasherase, flasheraseall: Erase and format FLASH partitions</para></listitem>
> -		<listitem><para>nandwrite: write filesystem images to NAND FLASH</para></listitem>
> -		<listitem><para>nanddump: dump the contents of a NAND FLASH partitions</para></listitem>
> -		</itemizedlist>
> -	</para>
> -	<para>
> -		These tools are aware of the NAND restrictions. Please use those tools
> -		instead of complaining about errors which are caused by non NAND aware
> -		access methods.
> -	</para>
> -  </chapter>	
> -
> -  <chapter id="defines">
> -     <title>Constants</title>
> -     <para>
> -     This chapter describes the constants which might be relevant for a driver developer.
> -     </para>
> -     <sect1 id="Chip_option_constants">
> -	<title>Chip option constants</title>
> -     	<sect2 id="Constants_for_chip_id_table">
> -		<title>Constants for chip id table</title>
> -     		<para>
> -		These constants are defined in nand.h. They are ored together to describe
> -		the chip functionality.
> -     		<programlisting>
> -/* Buswitdh is 16 bit */
> -#define NAND_BUSWIDTH_16	0x00000002
> -/* Device supports partial programming without padding */
> -#define NAND_NO_PADDING		0x00000004
> -/* Chip has cache program function */
> -#define NAND_CACHEPRG		0x00000008
> -/* Chip has copy back function */
> -#define NAND_COPYBACK		0x00000010
> -/* AND Chip which has 4 banks and a confusing page / block 
> - * assignment. See Renesas datasheet for further information */
> -#define NAND_IS_AND		0x00000020
> -/* Chip has a array of 4 pages which can be read without
> - * additional ready /busy waits */
> -#define NAND_4PAGE_ARRAY	0x00000040 
> -		</programlisting>
> -     		</para>
> -     	</sect2>
> -     	<sect2 id="Constants_for_runtime_options">
> -		<title>Constants for runtime options</title>
> -     		<para>
> -		These constants are defined in nand.h. They are ored together to describe
> -		the functionality.
> -     		<programlisting>
> -/* The hw ecc generator provides a syndrome instead a ecc value on read 
> - * This can only work if we have the ecc bytes directly behind the 
> - * data bytes. Applies for DOC and AG-AND Renesas HW Reed Solomon generators */
> -#define NAND_HWECC_SYNDROME	0x00020000
> -		</programlisting>
> -     		</para>
> -     	</sect2>
> -     </sect1>	
> -
> -     <sect1 id="EEC_selection_constants">
> -	<title>ECC selection constants</title>
> -	<para>
> -	Use these constants to select the ECC algorithm.
> -  	<programlisting>
> -/* No ECC. Usage is not recommended ! */
> -#define NAND_ECC_NONE		0
> -/* Software ECC 3 byte ECC per 256 Byte data */
> -#define NAND_ECC_SOFT		1
> -/* Hardware ECC 3 byte ECC per 256 Byte data */
> -#define NAND_ECC_HW3_256	2
> -/* Hardware ECC 3 byte ECC per 512 Byte data */
> -#define NAND_ECC_HW3_512	3
> -/* Hardware ECC 6 byte ECC per 512 Byte data */
> -#define NAND_ECC_HW6_512	4
> -/* Hardware ECC 6 byte ECC per 512 Byte data */
> -#define NAND_ECC_HW8_512	6
> -	</programlisting>
> -	</para>
> -     </sect1>	
> -
> -     <sect1 id="Hardware_control_related_constants">
> -	<title>Hardware control related constants</title>
> -	<para>
> -	These constants describe the requested hardware access function when
> -	the boardspecific hardware control function is called
> -  	<programlisting>
> -/* Select the chip by setting nCE to low */
> -#define NAND_CTL_SETNCE 	1
> -/* Deselect the chip by setting nCE to high */
> -#define NAND_CTL_CLRNCE		2
> -/* Select the command latch by setting CLE to high */
> -#define NAND_CTL_SETCLE		3
> -/* Deselect the command latch by setting CLE to low */
> -#define NAND_CTL_CLRCLE		4
> -/* Select the address latch by setting ALE to high */
> -#define NAND_CTL_SETALE		5
> -/* Deselect the address latch by setting ALE to low */
> -#define NAND_CTL_CLRALE		6
> -/* Set write protection by setting WP to high. Not used! */
> -#define NAND_CTL_SETWP		7
> -/* Clear write protection by setting WP to low. Not used! */
> -#define NAND_CTL_CLRWP		8
> -	</programlisting>
> -	</para>
> -     </sect1>	
> -
> -     <sect1 id="Bad_block_table_constants">
> -	<title>Bad block table related constants</title>
> -	<para>
> -	These constants describe the options used for bad block
> -	table descriptors.
> -  	<programlisting>
> -/* Options for the bad block table descriptors */
> -
> -/* The number of bits used per block in the bbt on the device */
> -#define NAND_BBT_NRBITS_MSK	0x0000000F
> -#define NAND_BBT_1BIT		0x00000001
> -#define NAND_BBT_2BIT		0x00000002
> -#define NAND_BBT_4BIT		0x00000004
> -#define NAND_BBT_8BIT		0x00000008
> -/* The bad block table is in the last good block of the device */
> -#define	NAND_BBT_LASTBLOCK	0x00000010
> -/* The bbt is at the given page, else we must scan for the bbt */
> -#define NAND_BBT_ABSPAGE	0x00000020
> -/* bbt is stored per chip on multichip devices */
> -#define NAND_BBT_PERCHIP	0x00000080
> -/* bbt has a version counter at offset veroffs */
> -#define NAND_BBT_VERSION	0x00000100
> -/* Create a bbt if none axists */
> -#define NAND_BBT_CREATE		0x00000200
> -/* Write bbt if necessary */
> -#define NAND_BBT_WRITE		0x00001000
> -/* Read and write back block contents when writing bbt */
> -#define NAND_BBT_SAVECONTENT	0x00002000
> -	</programlisting>
> -	</para>
> -     </sect1>	
> -
> -  </chapter>
> -  	
> -  <chapter id="structs">
> -     <title>Structures</title>
> -     <para>
> -     This chapter contains the autogenerated documentation of the structures which are
> -     used in the NAND driver and might be relevant for a driver developer. Each  
> -     struct member has a short description which is marked with an [XXX] identifier.
> -     See the chapter "Documentation hints" for an explanation.
> -     </para>
> -!Iinclude/linux/mtd/nand.h
> -  </chapter>
> -
> -  <chapter id="pubfunctions">
> -     <title>Public Functions Provided</title>
> -     <para>
> -     This chapter contains the autogenerated documentation of the NAND kernel API functions
> -      which are exported. Each function has a short description which is marked with an [XXX] identifier.
> -     See the chapter "Documentation hints" for an explanation.
> -     </para>
> -!Edrivers/mtd/nand/nand_base.c
> -!Edrivers/mtd/nand/nand_bbt.c
> -!Edrivers/mtd/nand/nand_ecc.c
> -  </chapter>
> -  
> -  <chapter id="intfunctions">
> -     <title>Internal Functions Provided</title>
> -     <para>
> -     This chapter contains the autogenerated documentation of the NAND driver internal functions.
> -     Each function has a short description which is marked with an [XXX] identifier.
> -     See the chapter "Documentation hints" for an explanation.
> -     The functions marked with [DEFAULT] might be relevant for a board driver developer.
> -     </para>
> -!Idrivers/mtd/nand/nand_base.c
> -!Idrivers/mtd/nand/nand_bbt.c
> -<!-- No internal functions for kernel-doc:
> -X!Idrivers/mtd/nand/nand_ecc.c
> --->  
> -  </chapter>
> -
> -  <chapter id="credits">
> -     <title>Credits</title>
> -	<para>
> -		The following people have contributed to the NAND driver:
> -		<orderedlist>
> -			<listitem><para>Steven J. Hill<email>sjhill@realitydiluted.com</email></para></listitem>
> -			<listitem><para>David Woodhouse<email>dwmw2@infradead.org</email></para></listitem>
> -			<listitem><para>Thomas Gleixner<email>tglx@linutronix.de</email></para></listitem>
> -		</orderedlist>
> -		A lot of users have provided bugfixes, improvements and helping hands for testing.
> -		Thanks a lot.
> -	</para>
> -	<para>
> -		The following people have contributed to this document:
> -		<orderedlist>
> -			<listitem><para>Thomas Gleixner<email>tglx@linutronix.de</email></para></listitem>
> -		</orderedlist>
> -	</para>
> -  </chapter>
> -</book>
> diff --git a/Documentation/driver-api/index.rst b/Documentation/driver-api/index.rst
> index 1f8517db39c7..3cf1acebc4ee 100644
> --- a/Documentation/driver-api/index.rst
> +++ b/Documentation/driver-api/index.rst
> @@ -34,6 +34,7 @@ available subsections can be seen below.
>     edac
>     scsi
>     libata
> +   mtdnand
>     miscellaneous
>     w1
>     rapidio
> diff --git a/Documentation/driver-api/mtdnand.rst b/Documentation/driver-api/mtdnand.rst
> new file mode 100644
> index 000000000000..8723175f955e
> --- /dev/null
> +++ b/Documentation/driver-api/mtdnand.rst
> @@ -0,0 +1,1020 @@
> +=====================================
> +MTD NAND Driver Programming Interface
> +=====================================
> +
> +:Author: Thomas Gleixner
> +
> +Introduction
> +============
> +
> +The generic NAND driver supports almost all NAND and AG-AND based chips
> +and connects them to the Memory Technology Devices (MTD) subsystem of
> +the Linux Kernel.
> +
> +This documentation is provided for developers who want to implement
> +board drivers or filesystem drivers suitable for NAND devices.
> +
> +Known Bugs And Assumptions
> +==========================
> +
> +None.
> +
> +Documentation hints
> +===================
> +
> +The function and structure docs are autogenerated. Each function and
> +struct member has a short description which is marked with an [XXX]
> +identifier. The following chapters explain the meaning of those
> +identifiers.
> +
> +Function identifiers [XXX]
> +--------------------------
> +
> +The functions are marked with [XXX] identifiers in the short comment.
> +The identifiers explain the usage and scope of the functions. Following
> +identifiers are used:
> +
> +-  [MTD Interface]
> +
> +   These functions provide the interface to the MTD kernel API. They are
> +   not replaceable and provide functionality which is complete hardware
> +   independent.
> +
> +-  [NAND Interface]
> +
> +   These functions are exported and provide the interface to the NAND
> +   kernel API.
> +
> +-  [GENERIC]
> +
> +   Generic functions are not replaceable and provide functionality which
> +   is complete hardware independent.
> +
> +-  [DEFAULT]
> +
> +   Default functions provide hardware related functionality which is
> +   suitable for most of the implementations. These functions can be
> +   replaced by the board driver if necessary. Those functions are called
> +   via pointers in the NAND chip description structure. The board driver
> +   can set the functions which should be replaced by board dependent
> +   functions before calling nand_scan(). If the function pointer is
> +   NULL on entry to nand_scan() then the pointer is set to the default
> +   function which is suitable for the detected chip type.
> +
> +Struct member identifiers [XXX]
> +-------------------------------
> +
> +The struct members are marked with [XXX] identifiers in the comment. The
> +identifiers explain the usage and scope of the members. Following
> +identifiers are used:
> +
> +-  [INTERN]
> +
> +   These members are for NAND driver internal use only and must not be
> +   modified. Most of these values are calculated from the chip geometry
> +   information which is evaluated during nand_scan().
> +
> +-  [REPLACEABLE]
> +
> +   Replaceable members hold hardware related functions which can be
> +   provided by the board driver. The board driver can set the functions
> +   which should be replaced by board dependent functions before calling
> +   nand_scan(). If the function pointer is NULL on entry to
> +   nand_scan() then the pointer is set to the default function which is
> +   suitable for the detected chip type.
> +
> +-  [BOARDSPECIFIC]
> +
> +   Board specific members hold hardware related information which must
> +   be provided by the board driver. The board driver must set the
> +   function pointers and datafields before calling nand_scan().
> +
> +-  [OPTIONAL]
> +
> +   Optional members can hold information relevant for the board driver.
> +   The generic NAND driver code does not use this information.
> +
> +Basic board driver
> +==================
> +
> +For most boards it will be sufficient to provide just the basic
> +functions and fill out some really board dependent members in the nand
> +chip description structure.
> +
> +Basic defines
> +-------------
> +
> +At least you have to provide a nand_chip structure and a storage for
> +the ioremap'ed chip address. You can allocate the nand_chip structure
> +using kmalloc or you can allocate it statically. The NAND chip structure
> +embeds an mtd structure which will be registered to the MTD subsystem.
> +You can extract a pointer to the mtd structure from a nand_chip pointer
> +using the nand_to_mtd() helper.
> +
> +Kmalloc based example
> +
> +::
> +
> +    static struct mtd_info *board_mtd;
> +    static void __iomem *baseaddr;
> +
> +
> +Static example
> +
> +::
> +
> +    static struct nand_chip board_chip;
> +    static void __iomem *baseaddr;
> +
> +
> +Partition defines
> +-----------------
> +
> +If you want to divide your device into partitions, then define a
> +partitioning scheme suitable to your board.
> +
> +::
> +
> +    #define NUM_PARTITIONS 2
> +    static struct mtd_partition partition_info[] = {
> +        { .name = "Flash partition 1",
> +          .offset =  0,
> +          .size =    8 * 1024 * 1024 },
> +        { .name = "Flash partition 2",
> +          .offset =  MTDPART_OFS_NEXT,
> +          .size =    MTDPART_SIZ_FULL },
> +    };
> +
> +
> +Hardware control function
> +-------------------------
> +
> +The hardware control function provides access to the control pins of the
> +NAND chip(s). The access can be done by GPIO pins or by address lines.
> +If you use address lines, make sure that the timing requirements are
> +met.
> +
> +*GPIO based example*
> +
> +::
> +
> +    static void board_hwcontrol(struct mtd_info *mtd, int cmd)
> +    {
> +        switch(cmd){
> +            case NAND_CTL_SETCLE: /* Set CLE pin high */ break;
> +            case NAND_CTL_CLRCLE: /* Set CLE pin low */ break;
> +            case NAND_CTL_SETALE: /* Set ALE pin high */ break;
> +            case NAND_CTL_CLRALE: /* Set ALE pin low */ break;
> +            case NAND_CTL_SETNCE: /* Set nCE pin low */ break;
> +            case NAND_CTL_CLRNCE: /* Set nCE pin high */ break;
> +        }
> +    }
> +
> +
> +*Address lines based example.* It's assumed that the nCE pin is driven
> +by a chip select decoder.
> +
> +::
> +
> +    static void board_hwcontrol(struct mtd_info *mtd, int cmd)
> +    {
> +        struct nand_chip *this = mtd_to_nand(mtd);
> +        switch(cmd){
> +            case NAND_CTL_SETCLE: this->IO_ADDR_W |= CLE_ADRR_BIT;  break;
> +            case NAND_CTL_CLRCLE: this->IO_ADDR_W &= ~CLE_ADRR_BIT; break;
> +            case NAND_CTL_SETALE: this->IO_ADDR_W |= ALE_ADRR_BIT;  break;
> +            case NAND_CTL_CLRALE: this->IO_ADDR_W &= ~ALE_ADRR_BIT; break;
> +        }
> +    }
> +
> +
> +Device ready function
> +---------------------
> +
> +If the hardware interface has the ready busy pin of the NAND chip
> +connected to a GPIO or other accessible I/O pin, this function is used
> +to read back the state of the pin. The function has no arguments and
> +should return 0, if the device is busy (R/B pin is low) and 1, if the
> +device is ready (R/B pin is high). If the hardware interface does not
> +give access to the ready busy pin, then the function must not be defined
> +and the function pointer this->dev_ready is set to NULL.
> +
> +Init function
> +-------------
> +
> +The init function allocates memory and sets up all the board specific
> +parameters and function pointers. When everything is set up nand_scan()
> +is called. This function tries to detect and identify then chip. If a
> +chip is found all the internal data fields are initialized accordingly.
> +The structure(s) have to be zeroed out first and then filled with the
> +necessary information about the device.
> +
> +::
> +
> +    static int __init board_init (void)
> +    {
> +        struct nand_chip *this;
> +        int err = 0;
> +
> +        /* Allocate memory for MTD device structure and private data */
> +        this = kzalloc(sizeof(struct nand_chip), GFP_KERNEL);
> +        if (!this) {
> +            printk ("Unable to allocate NAND MTD device structure.\n");
> +            err = -ENOMEM;
> +            goto out;
> +        }
> +
> +        board_mtd = nand_to_mtd(this);
> +
> +        /* map physical address */
> +        baseaddr = ioremap(CHIP_PHYSICAL_ADDRESS, 1024);
> +        if (!baseaddr) {
> +            printk("Ioremap to access NAND chip failed\n");
> +            err = -EIO;
> +            goto out_mtd;
> +        }
> +
> +        /* Set address of NAND IO lines */
> +        this->IO_ADDR_R = baseaddr;
> +        this->IO_ADDR_W = baseaddr;
> +        /* Reference hardware control function */
> +        this->hwcontrol = board_hwcontrol;
> +        /* Set command delay time, see datasheet for correct value */
> +        this->chip_delay = CHIP_DEPENDEND_COMMAND_DELAY;
> +        /* Assign the device ready function, if available */
> +        this->dev_ready = board_dev_ready;
> +        this->eccmode = NAND_ECC_SOFT;
> +
> +        /* Scan to find existence of the device */
> +        if (nand_scan (board_mtd, 1)) {
> +            err = -ENXIO;
> +            goto out_ior;
> +        }
> +
> +        add_mtd_partitions(board_mtd, partition_info, NUM_PARTITIONS);
> +        goto out;
> +
> +    out_ior:
> +        iounmap(baseaddr);
> +    out_mtd:
> +        kfree (this);
> +    out:
> +        return err;
> +    }
> +    module_init(board_init);
> +
> +
> +Exit function
> +-------------
> +
> +The exit function is only necessary if the driver is compiled as a
> +module. It releases all resources which are held by the chip driver and
> +unregisters the partitions in the MTD layer.
> +
> +::
> +
> +    #ifdef MODULE
> +    static void __exit board_cleanup (void)
> +    {
> +        /* Release resources, unregister device */
> +        nand_release (board_mtd);
> +
> +        /* unmap physical address */
> +        iounmap(baseaddr);
> +
> +        /* Free the MTD device structure */
> +        kfree (mtd_to_nand(board_mtd));
> +    }
> +    module_exit(board_cleanup);
> +    #endif
> +
> +
> +Advanced board driver functions
> +===============================
> +
> +This chapter describes the advanced functionality of the NAND driver.
> +For a list of functions which can be overridden by the board driver see
> +the documentation of the nand_chip structure.
> +
> +Multiple chip control
> +---------------------
> +
> +The nand driver can control chip arrays. Therefore the board driver must
> +provide an own select_chip function. This function must (de)select the
> +requested chip. The function pointer in the nand_chip structure must be
> +set before calling nand_scan(). The maxchip parameter of nand_scan()
> +defines the maximum number of chips to scan for. Make sure that the
> +select_chip function can handle the requested number of chips.
> +
> +The nand driver concatenates the chips to one virtual chip and provides
> +this virtual chip to the MTD layer.
> +
> +*Note: The driver can only handle linear chip arrays of equally sized
> +chips. There is no support for parallel arrays which extend the
> +buswidth.*
> +
> +*GPIO based example*
> +
> +::
> +
> +    static void board_select_chip (struct mtd_info *mtd, int chip)
> +    {
> +        /* Deselect all chips, set all nCE pins high */
> +        GPIO(BOARD_NAND_NCE) |= 0xff;
> +        if (chip >= 0)
> +            GPIO(BOARD_NAND_NCE) &= ~ (1 << chip);
> +    }
> +
> +
> +*Address lines based example.* Its assumed that the nCE pins are
> +connected to an address decoder.
> +
> +::
> +
> +    static void board_select_chip (struct mtd_info *mtd, int chip)
> +    {
> +        struct nand_chip *this = mtd_to_nand(mtd);
> +
> +        /* Deselect all chips */
> +        this->IO_ADDR_R &= ~BOARD_NAND_ADDR_MASK;
> +        this->IO_ADDR_W &= ~BOARD_NAND_ADDR_MASK;
> +        switch (chip) {
> +        case 0:
> +            this->IO_ADDR_R |= BOARD_NAND_ADDR_CHIP0;
> +            this->IO_ADDR_W |= BOARD_NAND_ADDR_CHIP0;
> +            break;
> +        ....
> +        case n:
> +            this->IO_ADDR_R |= BOARD_NAND_ADDR_CHIPn;
> +            this->IO_ADDR_W |= BOARD_NAND_ADDR_CHIPn;
> +            break;
> +        }
> +    }
> +
> +
> +Hardware ECC support
> +--------------------
> +
> +Functions and constants
> +~~~~~~~~~~~~~~~~~~~~~~~
> +
> +The nand driver supports three different types of hardware ECC.
> +
> +-  NAND_ECC_HW3_256
> +
> +   Hardware ECC generator providing 3 bytes ECC per 256 byte.
> +
> +-  NAND_ECC_HW3_512
> +
> +   Hardware ECC generator providing 3 bytes ECC per 512 byte.
> +
> +-  NAND_ECC_HW6_512
> +
> +   Hardware ECC generator providing 6 bytes ECC per 512 byte.
> +
> +-  NAND_ECC_HW8_512
> +
> +   Hardware ECC generator providing 6 bytes ECC per 512 byte.
> +
> +If your hardware generator has a different functionality add it at the
> +appropriate place in nand_base.c
> +
> +The board driver must provide following functions:
> +
> +-  enable_hwecc
> +
> +   This function is called before reading / writing to the chip. Reset
> +   or initialize the hardware generator in this function. The function
> +   is called with an argument which let you distinguish between read and
> +   write operations.
> +
> +-  calculate_ecc
> +
> +   This function is called after read / write from / to the chip.
> +   Transfer the ECC from the hardware to the buffer. If the option
> +   NAND_HWECC_SYNDROME is set then the function is only called on
> +   write. See below.
> +
> +-  correct_data
> +
> +   In case of an ECC error this function is called for error detection
> +   and correction. Return 1 respectively 2 in case the error can be
> +   corrected. If the error is not correctable return -1. If your
> +   hardware generator matches the default algorithm of the nand_ecc
> +   software generator then use the correction function provided by
> +   nand_ecc instead of implementing duplicated code.
> +
> +Hardware ECC with syndrome calculation
> +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> +
> +Many hardware ECC implementations provide Reed-Solomon codes and
> +calculate an error syndrome on read. The syndrome must be converted to a
> +standard Reed-Solomon syndrome before calling the error correction code
> +in the generic Reed-Solomon library.
> +
> +The ECC bytes must be placed immediately after the data bytes in order
> +to make the syndrome generator work. This is contrary to the usual
> +layout used by software ECC. The separation of data and out of band area
> +is not longer possible. The nand driver code handles this layout and the
> +remaining free bytes in the oob area are managed by the autoplacement
> +code. Provide a matching oob-layout in this case. See rts_from4.c and
> +diskonchip.c for implementation reference. In those cases we must also
> +use bad block tables on FLASH, because the ECC layout is interfering
> +with the bad block marker positions. See bad block table support for
> +details.
> +
> +Bad block table support
> +-----------------------
> +
> +Most NAND chips mark the bad blocks at a defined position in the spare
> +area. Those blocks must not be erased under any circumstances as the bad
> +block information would be lost. It is possible to check the bad block
> +mark each time when the blocks are accessed by reading the spare area of
> +the first page in the block. This is time consuming so a bad block table
> +is used.
> +
> +The nand driver supports various types of bad block tables.
> +
> +-  Per device
> +
> +   The bad block table contains all bad block information of the device
> +   which can consist of multiple chips.
> +
> +-  Per chip
> +
> +   A bad block table is used per chip and contains the bad block
> +   information for this particular chip.
> +
> +-  Fixed offset
> +
> +   The bad block table is located at a fixed offset in the chip
> +   (device). This applies to various DiskOnChip devices.
> +
> +-  Automatic placed
> +
> +   The bad block table is automatically placed and detected either at
> +   the end or at the beginning of a chip (device)
> +
> +-  Mirrored tables
> +
> +   The bad block table is mirrored on the chip (device) to allow updates
> +   of the bad block table without data loss.
> +
> +nand_scan() calls the function nand_default_bbt().
> +nand_default_bbt() selects appropriate default bad block table
> +descriptors depending on the chip information which was retrieved by
> +nand_scan().
> +
> +The standard policy is scanning the device for bad blocks and build a
> +ram based bad block table which allows faster access than always
> +checking the bad block information on the flash chip itself.
> +
> +Flash based tables
> +~~~~~~~~~~~~~~~~~~
> +
> +It may be desired or necessary to keep a bad block table in FLASH. For
> +AG-AND chips this is mandatory, as they have no factory marked bad
> +blocks. They have factory marked good blocks. The marker pattern is
> +erased when the block is erased to be reused. So in case of powerloss
> +before writing the pattern back to the chip this block would be lost and
> +added to the bad blocks. Therefore we scan the chip(s) when we detect
> +them the first time for good blocks and store this information in a bad
> +block table before erasing any of the blocks.
> +
> +The blocks in which the tables are stored are protected against
> +accidental access by marking them bad in the memory bad block table. The
> +bad block table management functions are allowed to circumvent this
> +protection.
> +
> +The simplest way to activate the FLASH based bad block table support is
> +to set the option NAND_BBT_USE_FLASH in the bbt_option field of the
> +nand chip structure before calling nand_scan(). For AG-AND chips is
> +this done by default. This activates the default FLASH based bad block
> +table functionality of the NAND driver. The default bad block table
> +options are
> +
> +-  Store bad block table per chip
> +
> +-  Use 2 bits per block
> +
> +-  Automatic placement at the end of the chip
> +
> +-  Use mirrored tables with version numbers
> +
> +-  Reserve 4 blocks at the end of the chip
> +
> +User defined tables
> +~~~~~~~~~~~~~~~~~~~
> +
> +User defined tables are created by filling out a nand_bbt_descr
> +structure and storing the pointer in the nand_chip structure member
> +bbt_td before calling nand_scan(). If a mirror table is necessary a
> +second structure must be created and a pointer to this structure must be
> +stored in bbt_md inside the nand_chip structure. If the bbt_md member
> +is set to NULL then only the main table is used and no scan for the
> +mirrored table is performed.
> +
> +The most important field in the nand_bbt_descr structure is the
> +options field. The options define most of the table properties. Use the
> +predefined constants from nand.h to define the options.
> +
> +-  Number of bits per block
> +
> +   The supported number of bits is 1, 2, 4, 8.
> +
> +-  Table per chip
> +
> +   Setting the constant NAND_BBT_PERCHIP selects that a bad block
> +   table is managed for each chip in a chip array. If this option is not
> +   set then a per device bad block table is used.
> +
> +-  Table location is absolute
> +
> +   Use the option constant NAND_BBT_ABSPAGE and define the absolute
> +   page number where the bad block table starts in the field pages. If
> +   you have selected bad block tables per chip and you have a multi chip
> +   array then the start page must be given for each chip in the chip
> +   array. Note: there is no scan for a table ident pattern performed, so
> +   the fields pattern, veroffs, offs, len can be left uninitialized
> +
> +-  Table location is automatically detected
> +
> +   The table can either be located in the first or the last good blocks
> +   of the chip (device). Set NAND_BBT_LASTBLOCK to place the bad block
> +   table at the end of the chip (device). The bad block tables are
> +   marked and identified by a pattern which is stored in the spare area
> +   of the first page in the block which holds the bad block table. Store
> +   a pointer to the pattern in the pattern field. Further the length of
> +   the pattern has to be stored in len and the offset in the spare area
> +   must be given in the offs member of the nand_bbt_descr structure.
> +   For mirrored bad block tables different patterns are mandatory.
> +
> +-  Table creation
> +
> +   Set the option NAND_BBT_CREATE to enable the table creation if no
> +   table can be found during the scan. Usually this is done only once if
> +   a new chip is found.
> +
> +-  Table write support
> +
> +   Set the option NAND_BBT_WRITE to enable the table write support.
> +   This allows the update of the bad block table(s) in case a block has
> +   to be marked bad due to wear. The MTD interface function
> +   block_markbad is calling the update function of the bad block table.
> +   If the write support is enabled then the table is updated on FLASH.
> +
> +   Note: Write support should only be enabled for mirrored tables with
> +   version control.
> +
> +-  Table version control
> +
> +   Set the option NAND_BBT_VERSION to enable the table version
> +   control. It's highly recommended to enable this for mirrored tables
> +   with write support. It makes sure that the risk of losing the bad
> +   block table information is reduced to the loss of the information
> +   about the one worn out block which should be marked bad. The version
> +   is stored in 4 consecutive bytes in the spare area of the device. The
> +   position of the version number is defined by the member veroffs in
> +   the bad block table descriptor.
> +
> +-  Save block contents on write
> +
> +   In case that the block which holds the bad block table does contain
> +   other useful information, set the option NAND_BBT_SAVECONTENT. When
> +   the bad block table is written then the whole block is read the bad
> +   block table is updated and the block is erased and everything is
> +   written back. If this option is not set only the bad block table is
> +   written and everything else in the block is ignored and erased.
> +
> +-  Number of reserved blocks
> +
> +   For automatic placement some blocks must be reserved for bad block
> +   table storage. The number of reserved blocks is defined in the
> +   maxblocks member of the bad block table description structure.
> +   Reserving 4 blocks for mirrored tables should be a reasonable number.
> +   This also limits the number of blocks which are scanned for the bad
> +   block table ident pattern.
> +
> +Spare area (auto)placement
> +--------------------------
> +
> +The nand driver implements different possibilities for placement of
> +filesystem data in the spare area,
> +
> +-  Placement defined by fs driver
> +
> +-  Automatic placement
> +
> +The default placement function is automatic placement. The nand driver
> +has built in default placement schemes for the various chiptypes. If due
> +to hardware ECC functionality the default placement does not fit then
> +the board driver can provide a own placement scheme.
> +
> +File system drivers can provide a own placement scheme which is used
> +instead of the default placement scheme.
> +
> +Placement schemes are defined by a nand_oobinfo structure
> +
> +::
> +
> +    struct nand_oobinfo {
> +        int useecc;
> +        int eccbytes;
> +        int eccpos[24];
> +        int oobfree[8][2];
> +    };
> +
> +
> +-  useecc
> +
> +   The useecc member controls the ecc and placement function. The header
> +   file include/mtd/mtd-abi.h contains constants to select ecc and
> +   placement. MTD_NANDECC_OFF switches off the ecc complete. This is
> +   not recommended and available for testing and diagnosis only.
> +   MTD_NANDECC_PLACE selects caller defined placement,
> +   MTD_NANDECC_AUTOPLACE selects automatic placement.
> +
> +-  eccbytes
> +
> +   The eccbytes member defines the number of ecc bytes per page.
> +
> +-  eccpos
> +
> +   The eccpos array holds the byte offsets in the spare area where the
> +   ecc codes are placed.
> +
> +-  oobfree
> +
> +   The oobfree array defines the areas in the spare area which can be
> +   used for automatic placement. The information is given in the format
> +   {offset, size}. offset defines the start of the usable area, size the
> +   length in bytes. More than one area can be defined. The list is
> +   terminated by an {0, 0} entry.
> +
> +Placement defined by fs driver
> +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> +
> +The calling function provides a pointer to a nand_oobinfo structure
> +which defines the ecc placement. For writes the caller must provide a
> +spare area buffer along with the data buffer. The spare area buffer size
> +is (number of pages) \* (size of spare area). For reads the buffer size
> +is (number of pages) \* ((size of spare area) + (number of ecc steps per
> +page) \* sizeof (int)). The driver stores the result of the ecc check
> +for each tuple in the spare buffer. The storage sequence is::
> +
> +	<spare data page 0><ecc result 0>...<ecc result n>
> +
> +	...
> +
> +	<spare data page n><ecc result 0>...<ecc result n>
> +
> +This is a legacy mode used by YAFFS1.
> +
> +If the spare area buffer is NULL then only the ECC placement is done
> +according to the given scheme in the nand_oobinfo structure.
> +
> +Automatic placement
> +~~~~~~~~~~~~~~~~~~~
> +
> +Automatic placement uses the built in defaults to place the ecc bytes in
> +the spare area. If filesystem data have to be stored / read into the
> +spare area then the calling function must provide a buffer. The buffer
> +size per page is determined by the oobfree array in the nand_oobinfo
> +structure.
> +
> +If the spare area buffer is NULL then only the ECC placement is done
> +according to the default builtin scheme.
> +
> +Spare area autoplacement default schemes
> +----------------------------------------
> +
> +256 byte pagesize
> +~~~~~~~~~~~~~~~~~
> +
> +======== ================== ===================================================
> +Offset   Content            Comment
> +======== ================== ===================================================
> +0x00     ECC byte 0         Error correction code byte 0
> +0x01     ECC byte 1         Error correction code byte 1
> +0x02     ECC byte 2         Error correction code byte 2
> +0x03     Autoplace 0
> +0x04     Autoplace 1
> +0x05     Bad block marker   If any bit in this byte is zero, then this
> +			    block is bad. This applies only to the first
> +			    page in a block. In the remaining pages this
> +			    byte is reserved
> +0x06     Autoplace 2
> +0x07     Autoplace 3
> +======== ================== ===================================================
> +
> +512 byte pagesize
> +~~~~~~~~~~~~~~~~~
> +
> +
> +============= ================== ==============================================
> +Offset        Content            Comment
> +============= ================== ==============================================
> +0x00          ECC byte 0         Error correction code byte 0 of the lower
> +				 256 Byte data in this page
> +0x01          ECC byte 1         Error correction code byte 1 of the lower
> +				 256 Bytes of data in this page
> +0x02          ECC byte 2         Error correction code byte 2 of the lower
> +				 256 Bytes of data in this page
> +0x03          ECC byte 3         Error correction code byte 0 of the upper
> +				 256 Bytes of data in this page
> +0x04          reserved           reserved
> +0x05          Bad block marker   If any bit in this byte is zero, then this
> +				 block is bad. This applies only to the first
> +				 page in a block. In the remaining pages this
> +				 byte is reserved
> +0x06          ECC byte 4         Error correction code byte 1 of the upper
> +				 256 Bytes of data in this page
> +0x07          ECC byte 5         Error correction code byte 2 of the upper
> +				 256 Bytes of data in this page
> +0x08 - 0x0F   Autoplace 0 - 7
> +============= ================== ==============================================
> +
> +2048 byte pagesize
> +~~~~~~~~~~~~~~~~~~
> +
> +=========== ================== ================================================
> +Offset      Content            Comment
> +=========== ================== ================================================
> +0x00        Bad block marker   If any bit in this byte is zero, then this block
> +			       is bad. This applies only to the first page in a
> +			       block. In the remaining pages this byte is
> +			       reserved
> +0x01        Reserved           Reserved
> +0x02-0x27   Autoplace 0 - 37
> +0x28        ECC byte 0         Error correction code byte 0 of the first
> +			       256 Byte data in this page
> +0x29        ECC byte 1         Error correction code byte 1 of the first
> +			       256 Bytes of data in this page
> +0x2A        ECC byte 2         Error correction code byte 2 of the first
> +			       256 Bytes data in this page
> +0x2B        ECC byte 3         Error correction code byte 0 of the second
> +			       256 Bytes of data in this page
> +0x2C        ECC byte 4         Error correction code byte 1 of the second
> +			       256 Bytes of data in this page
> +0x2D        ECC byte 5         Error correction code byte 2 of the second
> +			       256 Bytes of data in this page
> +0x2E        ECC byte 6         Error correction code byte 0 of the third
> +			       256 Bytes of data in this page
> +0x2F        ECC byte 7         Error correction code byte 1 of the third
> +			       256 Bytes of data in this page
> +0x30        ECC byte 8         Error correction code byte 2 of the third
> +			       256 Bytes of data in this page
> +0x31        ECC byte 9         Error correction code byte 0 of the fourth
> +			       256 Bytes of data in this page
> +0x32        ECC byte 10        Error correction code byte 1 of the fourth
> +			       256 Bytes of data in this page
> +0x33        ECC byte 11        Error correction code byte 2 of the fourth
> +			       256 Bytes of data in this page
> +0x34        ECC byte 12        Error correction code byte 0 of the fifth
> +			       256 Bytes of data in this page
> +0x35        ECC byte 13        Error correction code byte 1 of the fifth
> +			       256 Bytes of data in this page
> +0x36        ECC byte 14        Error correction code byte 2 of the fifth
> +			       256 Bytes of data in this page
> +0x37        ECC byte 15        Error correction code byte 0 of the sixth
> +			       256 Bytes of data in this page
> +0x38        ECC byte 16        Error correction code byte 1 of the sixth
> +			       256 Bytes of data in this page
> +0x39        ECC byte 17        Error correction code byte 2 of the sixth
> +			       256 Bytes of data in this page
> +0x3A        ECC byte 18        Error correction code byte 0 of the seventh
> +			       256 Bytes of data in this page
> +0x3B        ECC byte 19        Error correction code byte 1 of the seventh
> +			       256 Bytes of data in this page
> +0x3C        ECC byte 20        Error correction code byte 2 of the seventh
> +			       256 Bytes of data in this page
> +0x3D        ECC byte 21        Error correction code byte 0 of the eighth
> +			       256 Bytes of data in this page
> +0x3E        ECC byte 22        Error correction code byte 1 of the eighth
> +			       256 Bytes of data in this page
> +0x3F        ECC byte 23        Error correction code byte 2 of the eighth
> +			       256 Bytes of data in this page
> +=========== ================== ================================================
> +
> +Filesystem support
> +==================
> +
> +The NAND driver provides all necessary functions for a filesystem via
> +the MTD interface.
> +
> +Filesystems must be aware of the NAND peculiarities and restrictions.
> +One major restrictions of NAND Flash is, that you cannot write as often
> +as you want to a page. The consecutive writes to a page, before erasing
> +it again, are restricted to 1-3 writes, depending on the manufacturers
> +specifications. This applies similar to the spare area.
> +
> +Therefore NAND aware filesystems must either write in page size chunks
> +or hold a writebuffer to collect smaller writes until they sum up to
> +pagesize. Available NAND aware filesystems: JFFS2, YAFFS.
> +
> +The spare area usage to store filesystem data is controlled by the spare
> +area placement functionality which is described in one of the earlier
> +chapters.
> +
> +Tools
> +=====
> +
> +The MTD project provides a couple of helpful tools to handle NAND Flash.
> +
> +-  flasherase, flasheraseall: Erase and format FLASH partitions
> +
> +-  nandwrite: write filesystem images to NAND FLASH
> +
> +-  nanddump: dump the contents of a NAND FLASH partitions
> +
> +These tools are aware of the NAND restrictions. Please use those tools
> +instead of complaining about errors which are caused by non NAND aware
> +access methods.
> +
> +Constants
> +=========
> +
> +This chapter describes the constants which might be relevant for a
> +driver developer.
> +
> +Chip option constants
> +---------------------
> +
> +Constants for chip id table
> +~~~~~~~~~~~~~~~~~~~~~~~~~~~
> +
> +These constants are defined in nand.h. They are ored together to
> +describe the chip functionality.
> +
> +::
> +
> +    /* Buswitdh is 16 bit */
> +    #define NAND_BUSWIDTH_16    0x00000002
> +    /* Device supports partial programming without padding */
> +    #define NAND_NO_PADDING     0x00000004
> +    /* Chip has cache program function */
> +    #define NAND_CACHEPRG       0x00000008
> +    /* Chip has copy back function */
> +    #define NAND_COPYBACK       0x00000010
> +    /* AND Chip which has 4 banks and a confusing page / block
> +     * assignment. See Renesas datasheet for further information */
> +    #define NAND_IS_AND     0x00000020
> +    /* Chip has a array of 4 pages which can be read without
> +     * additional ready /busy waits */
> +    #define NAND_4PAGE_ARRAY    0x00000040
> +
> +
> +Constants for runtime options
> +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> +
> +These constants are defined in nand.h. They are ored together to
> +describe the functionality.
> +
> +::
> +
> +    /* The hw ecc generator provides a syndrome instead a ecc value on read
> +     * This can only work if we have the ecc bytes directly behind the
> +     * data bytes. Applies for DOC and AG-AND Renesas HW Reed Solomon generators */
> +    #define NAND_HWECC_SYNDROME 0x00020000
> +
> +
> +ECC selection constants
> +-----------------------
> +
> +Use these constants to select the ECC algorithm.
> +
> +::
> +
> +    /* No ECC. Usage is not recommended ! */
> +    #define NAND_ECC_NONE       0
> +    /* Software ECC 3 byte ECC per 256 Byte data */
> +    #define NAND_ECC_SOFT       1
> +    /* Hardware ECC 3 byte ECC per 256 Byte data */
> +    #define NAND_ECC_HW3_256    2
> +    /* Hardware ECC 3 byte ECC per 512 Byte data */
> +    #define NAND_ECC_HW3_512    3
> +    /* Hardware ECC 6 byte ECC per 512 Byte data */
> +    #define NAND_ECC_HW6_512    4
> +    /* Hardware ECC 6 byte ECC per 512 Byte data */
> +    #define NAND_ECC_HW8_512    6
> +
> +
> +Hardware control related constants
> +----------------------------------
> +
> +These constants describe the requested hardware access function when the
> +boardspecific hardware control function is called
> +
> +::
> +
> +    /* Select the chip by setting nCE to low */
> +    #define NAND_CTL_SETNCE     1
> +    /* Deselect the chip by setting nCE to high */
> +    #define NAND_CTL_CLRNCE     2
> +    /* Select the command latch by setting CLE to high */
> +    #define NAND_CTL_SETCLE     3
> +    /* Deselect the command latch by setting CLE to low */
> +    #define NAND_CTL_CLRCLE     4
> +    /* Select the address latch by setting ALE to high */
> +    #define NAND_CTL_SETALE     5
> +    /* Deselect the address latch by setting ALE to low */
> +    #define NAND_CTL_CLRALE     6
> +    /* Set write protection by setting WP to high. Not used! */
> +    #define NAND_CTL_SETWP      7
> +    /* Clear write protection by setting WP to low. Not used! */
> +    #define NAND_CTL_CLRWP      8
> +
> +
> +Bad block table related constants
> +---------------------------------
> +
> +These constants describe the options used for bad block table
> +descriptors.
> +
> +::
> +
> +    /* Options for the bad block table descriptors */
> +
> +    /* The number of bits used per block in the bbt on the device */
> +    #define NAND_BBT_NRBITS_MSK 0x0000000F
> +    #define NAND_BBT_1BIT       0x00000001
> +    #define NAND_BBT_2BIT       0x00000002
> +    #define NAND_BBT_4BIT       0x00000004
> +    #define NAND_BBT_8BIT       0x00000008
> +    /* The bad block table is in the last good block of the device */
> +    #define NAND_BBT_LASTBLOCK  0x00000010
> +    /* The bbt is at the given page, else we must scan for the bbt */
> +    #define NAND_BBT_ABSPAGE    0x00000020
> +    /* bbt is stored per chip on multichip devices */
> +    #define NAND_BBT_PERCHIP    0x00000080
> +    /* bbt has a version counter at offset veroffs */
> +    #define NAND_BBT_VERSION    0x00000100
> +    /* Create a bbt if none axists */
> +    #define NAND_BBT_CREATE     0x00000200
> +    /* Write bbt if necessary */
> +    #define NAND_BBT_WRITE      0x00001000
> +    /* Read and write back block contents when writing bbt */
> +    #define NAND_BBT_SAVECONTENT    0x00002000
> +
> +
> +Structures
> +==========
> +
> +This chapter contains the autogenerated documentation of the structures
> +which are used in the NAND driver and might be relevant for a driver
> +developer. Each struct member has a short description which is marked
> +with an [XXX] identifier. See the chapter "Documentation hints" for an
> +explanation.
> +
> +.. kernel-doc:: include/linux/mtd/nand.h
> +   :internal:
> +
> +Public Functions Provided
> +=========================
> +
> +This chapter contains the autogenerated documentation of the NAND kernel
> +API functions which are exported. Each function has a short description
> +which is marked with an [XXX] identifier. See the chapter "Documentation
> +hints" for an explanation.
> +
> +.. kernel-doc:: drivers/mtd/nand/nand_base.c
> +   :export:
> +
> +.. kernel-doc:: drivers/mtd/nand/nand_bbt.c
> +   :export:
> +
> +.. kernel-doc:: drivers/mtd/nand/nand_ecc.c
> +   :export:
> +
> +Internal Functions Provided
> +===========================
> +
> +This chapter contains the autogenerated documentation of the NAND driver
> +internal functions. Each function has a short description which is
> +marked with an [XXX] identifier. See the chapter "Documentation hints"
> +for an explanation. The functions marked with [DEFAULT] might be
> +relevant for a board driver developer.
> +
> +.. kernel-doc:: drivers/mtd/nand/nand_base.c
> +   :internal:
> +
> +.. kernel-doc:: drivers/mtd/nand/nand_bbt.c
> +   :internal:
> +
> +Credits
> +=======
> +
> +The following people have contributed to the NAND driver:
> +
> +1. Steven J. Hill\ sjhill@realitydiluted.com
> +
> +2. David Woodhouse\ dwmw2@infradead.org
> +
> +3. Thomas Gleixner\ tglx@linutronix.de
> +
> +A lot of users have provided bugfixes, improvements and helping hands
> +for testing. Thanks a lot.
> +
> +The following people have contributed to this document:
> +
> +1. Thomas Gleixner\ tglx@linutronix.de

  reply	other threads:[~2017-05-16 13:11 UTC|newest]

Thread overview: 105+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2017-05-16 12:15 [PATCH v2 00/53] Get rid of Docbook Mauro Carvalho Chehab
2017-05-16 12:15 ` [PATCH v2 01/53] docs-rst: convert kernel-hacking to ReST Mauro Carvalho Chehab
2017-05-16 12:15 ` [PATCH v2 02/53] kernel-hacking: update document Mauro Carvalho Chehab
2017-05-16 12:15 ` [PATCH v2 03/53] docs-rst: convert kernel-locking to ReST Mauro Carvalho Chehab
2017-05-16 12:15 ` [PATCH v2 04/53] mutex, futex: adjust kernel-doc markups to generate ReST Mauro Carvalho Chehab
2017-05-16 17:35   ` Darren Hart
2017-05-16 18:24     ` Mauro Carvalho Chehab
2017-05-16 18:24       ` Mauro Carvalho Chehab
2017-05-16 19:00       ` Darren Hart
2017-05-16 12:15 ` [PATCH v2 05/53] locking.rst: reformat locking table Mauro Carvalho Chehab
2017-05-16 12:15 ` [PATCH v2 06/53] locking.rst: add captions to two tables Mauro Carvalho Chehab
2017-05-16 12:15 ` [PATCH v2 07/53] locking.rst: Update some ReST markups Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 08/53] docs-rst: convert kgdb DocBook to ReST Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 09/53] kgdb.rst: Adjust ReST markups Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 10/53] conf.py: define a color for important markup on PDF output Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 11/53] docs-rst: conf.py: sort LaTeX documents in alphabetical order Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 12/53] docs-rst: conf.py: remove kernel-documentation from LaTeX Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 13/53] docs-rst: add crypto API book to pdf output Mauro Carvalho Chehab
2017-05-16 12:16   ` Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 14/53] docs-rst: add dev-tools " Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 15/53] docs-rst: add sound " Mauro Carvalho Chehab
2017-05-16 12:16   ` Mauro Carvalho Chehab
2017-05-16 19:02   ` Takashi Iwai
2017-05-16 19:02     ` Takashi Iwai
2017-05-16 12:16 ` [PATCH v2 16/53] docs-rst: add userspace API " Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 17/53] docs-rst: convert filesystems book to ReST Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 18/53] docs-rst: filesystems: use c domain references where needed Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 19/53] fs: jbd2: make jbd2_journal_start() kernel-doc parseable Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 20/53] docs-rst: don't ignore internal functions for jbd2 docs Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 21/53] fs: add a blank lines on some kernel-doc comments Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 22/53] fs: eventfd: fix identation on kernel-doc Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 23/53] fs: jbd2: escape a string with special chars on a kernel-doc Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 24/53] docs-rst: convert libata book to ReST Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 25/53] libata.rst: add c function and struct cross-references Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 26/53] libata: fix identation on a kernel-doc markup Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 27/53] docs-rst: convert s390-drivers DocBook to ReST Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 28/53] docs-rst: convert networking book " Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 29/53] net: skbuff.h: properly escape a macro name on kernel-doc Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 30/53] net: fix some identation issues at kernel-doc markups Mauro Carvalho Chehab
2017-05-16 12:16   ` Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 31/53] docs-rst: convert z8530book DocBook to ReST Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 32/53] docs-rst: convert scsi " Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 33/53] scsi: fix some kernel-doc markups Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 34/53] docs-rst: convert w1 book to ReST Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 35/53] docs-rst: convert rapidio " Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 36/53] docs-rst: convert librs " Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 37/53] docs-rst: convert mtdnand " Mauro Carvalho Chehab
2017-05-16 13:11   ` Boris Brezillon [this message]
2017-05-16 12:16 ` [PATCH v2 38/53] mtdnand.rst: group the "::" with previous line Mauro Carvalho Chehab
2017-05-16 13:12   ` Boris Brezillon
2017-05-16 12:16 ` [PATCH v2 39/53] mtd: adjust kernel-docs to avoid Sphinx/kerneldoc warnings Mauro Carvalho Chehab
2017-05-16 13:13   ` Boris Brezillon
2017-05-16 12:16 ` [PATCH v2 40/53] docs-rst: convert sh book to ReST Mauro Carvalho Chehab
2017-05-16 12:16   ` Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 41/53] docs-rst: convert lsm from DocBook " Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 42/53] docs: remove DocBook from the building system Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 43/53] docs: update old references for DocBook from the documentation Mauro Carvalho Chehab
2017-05-16 12:16   ` Mauro Carvalho Chehab
2017-05-16 12:16   ` Mauro Carvalho Chehab
2017-05-16 12:47   ` Bartlomiej Zolnierkiewicz
2017-05-16 12:47     ` Bartlomiej Zolnierkiewicz
2017-05-16 12:47     ` Bartlomiej Zolnierkiewicz
2017-05-17 16:51   ` Bjorn Helgaas
2017-05-17 16:51     ` Bjorn Helgaas
2017-05-17 16:51     ` Bjorn Helgaas
2017-05-16 12:16 ` [PATCH v2 44/53] MAINTAINERS: update old references for DocBook directory Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 45/53] ata: update references for libata documentation Mauro Carvalho Chehab
2017-05-16 12:47   ` Bartlomiej Zolnierkiewicz
2017-05-16 12:16 ` [PATCH v2 46/53] ia64, scsi: update references for the device-io book Mauro Carvalho Chehab
2017-05-16 12:16   ` Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 47/53] irq: update genericirq book location Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 48/53] fs: update location of filesystems documentation Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 49/53] lib: update location of kgdb documentation Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 50/53] fs: fix the location of the kernel-api book Mauro Carvalho Chehab
2017-05-16 12:16   ` Mauro Carvalho Chehab
2017-05-16 18:11     ` Mauro Carvalho Chehab
2017-05-16 12:16     ` Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 51/53] usb: fix the comment with regards to DocBook Mauro Carvalho Chehab
2017-05-16 12:16   ` Mauro Carvalho Chehab
2017-05-16 18:11     ` Mauro Carvalho Chehab
2017-05-16 12:16     ` [v2,51/53] " Mauro Carvalho Chehab
2017-05-16 12:16     ` [PATCH v2 51/53] " Mauro Carvalho Chehab
2017-05-17 11:13     ` Felipe Balbi
2017-05-16 12:16 ` [PATCH v2 52/53] docs-rst: get rid of Documentation/sphinx/tmplcvt script Mauro Carvalho Chehab
2017-05-16 12:16   ` Mauro Carvalho Chehab
2017-05-16 18:11     ` Mauro Carvalho Chehab
2017-05-16 12:16     ` Mauro Carvalho Chehab
2017-05-16 12:16 ` [PATCH v2 53/53] kernel-doc: describe the ``literal`` syntax Mauro Carvalho Chehab
2017-05-16 12:16   ` Mauro Carvalho Chehab
2017-05-16 18:12     ` Mauro Carvalho Chehab
2017-05-16 12:16     ` Mauro Carvalho Chehab
2018-06-06 16:31     ` Markus Heiser
2018-06-06 16:31       ` Markus Heiser
2017-05-16 12:38 ` [PATCH v2 30/53] net: fix some identation issues at kernel-doc markups David Howells
2017-05-16 12:38   ` David Howells
2017-05-18 17:26 ` [PATCH v2 00/53] Get rid of Docbook Jonathan Corbet
2017-05-18 23:01   ` Mauro Carvalho Chehab
2017-06-16 14:03     ` Markus Heiser
2017-06-16 14:03       ` Markus Heiser
2017-06-23 20:26       ` Jonathan Corbet
2017-06-23 20:26         ` Jonathan Corbet
2017-07-05 21:45       ` Jim Davis
2017-07-05 21:45         ` Jim Davis
2017-07-06  8:54         ` Markus Heiser
2017-07-06  8:54           ` Markus Heiser
2017-07-14 23:15           ` Jim Davis
2017-07-14 23:15             ` Jim Davis
2017-07-15  1:52             ` Mauro Carvalho Chehab
2017-07-15  1:52               ` Mauro Carvalho Chehab

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=20170516151141.647f89cc@bbrezillon \
    --to=boris.brezillon@free-electrons.com \
    --cc=computersforpeace@gmail.com \
    --cc=corbet@lwn.net \
    --cc=cyrille.pitchen@atmel.com \
    --cc=dwmw2@infradead.org \
    --cc=gregkh@linuxfoundation.org \
    --cc=herton@redhat.com \
    --cc=jani.nikula@intel.com \
    --cc=linux-doc@vger.kernel.org \
    --cc=linux-kernel@vger.kernel.org \
    --cc=linux-mtd@lists.infradead.org \
    --cc=marek.vasut@gmail.com \
    --cc=markus.heiser@darmarit.de \
    --cc=mchehab@infradead.org \
    --cc=mchehab@s-opensource.com \
    --cc=richard@nod.at \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.