All of lore.kernel.org
 help / color / mirror / Atom feed
From: Claudio Fontana <cfontana@suse.de>
To: "Peter Maydell" <peter.maydell@linaro.org>,
	"Philippe Mathieu-Daudé" <philmd@redhat.com>,
	"Richard Henderson" <richard.henderson@linaro.org>,
	"Alex Bennée" <alex.bennee@linaro.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>,
	Roman Bolshakov <r.bolshakov@yadro.com>,
	Claudio Fontana <cfontana@suse.de>,
	Eduardo Habkost <ehabkost@redhat.com>,
	qemu-devel@nongnu.org
Subject: [RFC v13 13/80] target/arm: fix style in preparation of new cpregs module
Date: Wed, 14 Apr 2021 13:25:43 +0200	[thread overview]
Message-ID: <20210414112650.18003-14-cfontana@suse.de> (raw)
In-Reply-To: <20210414112650.18003-1-cfontana@suse.de>

in preparation of the creation of a new cpregs module,
fix the style for the to-be-exported code.

Signed-off-by: Claudio Fontana <cfontana@suse.de>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
---
 target/arm/cpu.h        |  54 ++++---
 target/arm/tcg/helper.c | 310 ++++++++++++++++++++++++++--------------
 2 files changed, 239 insertions(+), 125 deletions(-)

diff --git a/target/arm/cpu.h b/target/arm/cpu.h
index 7877d5417f..6454cb575e 100644
--- a/target/arm/cpu.h
+++ b/target/arm/cpu.h
@@ -2693,14 +2693,16 @@ typedef struct ARMCPRegInfo ARMCPRegInfo;
 typedef enum CPAccessResult {
     /* Access is permitted */
     CP_ACCESS_OK = 0,
-    /* Access fails due to a configurable trap or enable which would
+    /*
+     * Access fails due to a configurable trap or enable which would
      * result in a categorized exception syndrome giving information about
      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
      * PL1 if in EL0, otherwise to the current EL).
      */
     CP_ACCESS_TRAP = 1,
-    /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
+    /*
+     * Access fails and results in an exception syndrome 0x0 ("uncategorized").
      * Note that this is not a catch-all case -- the set of cases which may
      * result in this failure is specifically defined by the architecture.
      */
@@ -2711,14 +2713,16 @@ typedef enum CPAccessResult {
     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
-    /* Access fails and results in an exception syndrome for an FP access,
+    /*
+     * Access fails and results in an exception syndrome for an FP access,
      * trapped directly to EL2 or EL3
      */
     CP_ACCESS_TRAP_FP_EL2 = 7,
     CP_ACCESS_TRAP_FP_EL3 = 8,
 } CPAccessResult;
 
-/* Access functions for coprocessor registers. These cannot fail and
+/*
+ * Access functions for coprocessor registers. These cannot fail and
  * may not raise exceptions.
  */
 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
@@ -2737,7 +2741,8 @@ typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
 struct ARMCPRegInfo {
     /* Name of register (useful mainly for debugging, need not be unique) */
     const char *name;
-    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
+    /*
+     * Location of register: coprocessor number and (crn,crm,opc1,opc2)
      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
      * 'wildcard' field -- any value of that field in the MRC/MCR insn
      * will be decoded to this register. The register read and write
@@ -2768,16 +2773,19 @@ struct ARMCPRegInfo {
     int access;
     /* Security state: ARM_CP_SECSTATE_* bits/values */
     int secure;
-    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
+    /*
+     * The opaque pointer passed to define_arm_cp_regs_with_opaque() when
      * this register was defined: can be used to hand data through to the
      * register read/write functions, since they are passed the ARMCPRegInfo*.
      */
     void *opaque;
-    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
+    /*
+     * Value of this register, if it is ARM_CP_CONST. Otherwise, if
      * fieldoffset is non-zero, the reset value of the register.
      */
     uint64_t resetvalue;
-    /* Offset of the field in CPUARMState for this register.
+    /*
+     * Offset of the field in CPUARMState for this register.
      *
      * This is not needed if either:
      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
@@ -2785,7 +2793,8 @@ struct ARMCPRegInfo {
      */
     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
 
-    /* Offsets of the secure and non-secure fields in CPUARMState for the
+    /*
+     * Offsets of the secure and non-secure fields in CPUARMState for the
      * register if it is banked.  These fields are only used during the static
      * registration of a register.  During hashing the bank associated
      * with a given security state is copied to fieldoffset which is used from
@@ -2798,36 +2807,42 @@ struct ARMCPRegInfo {
      */
     ptrdiff_t bank_fieldoffsets[2];
 
-    /* Function for making any access checks for this register in addition to
+    /*
+     * Function for making any access checks for this register in addition to
      * those specified by the 'access' permissions bits. If NULL, no extra
      * checks required. The access check is performed at runtime, not at
      * translate time.
      */
     CPAccessFn *accessfn;
-    /* Function for handling reads of this register. If NULL, then reads
+    /*
+     * Function for handling reads of this register. If NULL, then reads
      * will be done by loading from the offset into CPUARMState specified
      * by fieldoffset.
      */
     CPReadFn *readfn;
-    /* Function for handling writes of this register. If NULL, then writes
+    /*
+     * Function for handling writes of this register. If NULL, then writes
      * will be done by writing to the offset into CPUARMState specified
      * by fieldoffset.
      */
     CPWriteFn *writefn;
-    /* Function for doing a "raw" read; used when we need to copy
+    /*
+     * Function for doing a "raw" read; used when we need to copy
      * coprocessor state to the kernel for KVM or out for
      * migration. This only needs to be provided if there is also a
      * readfn and it has side effects (for instance clear-on-read bits).
      */
     CPReadFn *raw_readfn;
-    /* Function for doing a "raw" write; used when we need to copy KVM
+    /*
+     * Function for doing a "raw" write; used when we need to copy KVM
      * kernel coprocessor state into userspace, or for inbound
      * migration. This only needs to be provided if there is also a
      * writefn and it masks out "unwritable" bits or has write-one-to-clear
      * or similar behaviour.
      */
     CPWriteFn *raw_writefn;
-    /* Function for resetting the register. If NULL, then reset will be done
+    /*
+     * Function for resetting the register. If NULL, then reset will be done
      * by writing resetvalue to the field specified in fieldoffset. If
      * fieldoffset is 0 then no reset will be done.
      */
@@ -2847,7 +2862,8 @@ struct ARMCPRegInfo {
     CPWriteFn *orig_writefn;
 };
 
-/* Macros which are lvalues for the field in CPUARMState for the
+/*
+ * Macros which are lvalues for the field in CPUARMState for the
  * ARMCPRegInfo *ri.
  */
 #define CPREG_FIELD32(env, ri) \
@@ -2901,12 +2917,14 @@ void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
 /* CPReadFn that can be used for read-as-zero behaviour */
 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
 
-/* CPResetFn that does nothing, for use if no reset is required even
+/*
+ * CPResetFn that does nothing, for use if no reset is required even
  * if fieldoffset is non zero.
  */
 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
 
-/* Return true if this reginfo struct's field in the cpu state struct
+/*
+ * Return true if this reginfo struct's field in the cpu state struct
  * is 64 bits wide.
  */
 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
diff --git a/target/arm/tcg/helper.c b/target/arm/tcg/helper.c
index 7345e090fa..4934a5dc67 100644
--- a/target/arm/tcg/helper.c
+++ b/target/arm/tcg/helper.c
@@ -327,7 +327,8 @@ static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg)
 
 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
 {
-   /* Return true if the regdef would cause an assertion if you called
+   /*
+    * Return true if the regdef would cause an assertion if you called
     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
     * program bug for it not to have the NO_RAW flag).
     * NB that returning false here doesn't necessarily mean that calling
@@ -431,7 +432,7 @@ static void add_cpreg_to_list(gpointer key, gpointer opaque)
     regidx = *(uint32_t *)key;
     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 
-    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
+    if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
         /* The value array need not be initialized at this point */
         cpu->cpreg_array_len++;
@@ -447,7 +448,7 @@ static void count_cpreg(gpointer key, gpointer opaque)
     regidx = *(uint32_t *)key;
     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 
-    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
+    if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
         cpu->cpreg_array_len++;
     }
 }
@@ -468,7 +469,8 @@ static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
 
 void init_cpreg_list(ARMCPU *cpu)
 {
-    /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
+    /*
+     * Initialise the cpreg_tuples[] array based on the cp_regs hash.
      * Note that we require cpreg_tuples[] to be sorted by key ID.
      */
     GList *keys;
@@ -510,7 +512,8 @@ static CPAccessResult access_el3_aa32ns(CPUARMState *env,
     return CP_ACCESS_OK;
 }
 
-/* Some secure-only AArch32 registers trap to EL3 if used from
+/*
+ * Some secure-only AArch32 registers trap to EL3 if used from
  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
  * We assume that the .access field is set to PL1_RW.
@@ -537,7 +540,8 @@ static uint64_t arm_mdcr_el2_eff(CPUARMState *env)
     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
 }
 
-/* Check for traps to "powerdown debug" registers, which are controlled
+/*
+ * Check for traps to "powerdown debug" registers, which are controlled
  * by MDCR.TDOSA
  */
 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
@@ -557,7 +561,8 @@ static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
     return CP_ACCESS_OK;
 }
 
-/* Check for traps to "debug ROM" registers, which are controlled
+/*
+ * Check for traps to "debug ROM" registers, which are controlled
  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
  */
 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
@@ -577,7 +582,8 @@ static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
     return CP_ACCESS_OK;
 }
 
-/* Check for traps to general debug registers, which are controlled
+/*
+ * Check for traps to general debug registers, which are controlled
  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
  */
 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
@@ -597,7 +603,8 @@ static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
     return CP_ACCESS_OK;
 }
 
-/* Check for traps to performance monitor registers, which are controlled
+/*
+ * Check for traps to performance monitor registers, which are controlled
  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
  */
 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
@@ -671,7 +678,8 @@ static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
     ARMCPU *cpu = env_archcpu(env);
 
     if (raw_read(env, ri) != value) {
-        /* Unlike real hardware the qemu TLB uses virtual addresses,
+        /*
+         * Unlike real hardware the qemu TLB uses virtual addresses,
          * not modified virtual addresses, so this causes a TLB flush.
          */
         tlb_flush(CPU(cpu));
@@ -686,7 +694,8 @@ static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 
     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
         && !extended_addresses_enabled(env)) {
-        /* For VMSA (when not using the LPAE long descriptor page table
+        /*
+         * For VMSA (when not using the LPAE long descriptor page table
          * format) this register includes the ASID, so do a TLB flush.
          * For PMSA it is purely a process ID and no action is needed.
          */
@@ -851,7 +860,8 @@ static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 }
 
 static const ARMCPRegInfo cp_reginfo[] = {
-    /* Define the secure and non-secure FCSE identifier CP registers
+    /*
+     * Define the secure and non-secure FCSE identifier CP registers
      * separately because there is no secure bank in V8 (no _EL3).  This allows
      * the secure register to be properly reset and migrated. There is also no
      * v8 EL1 version of the register so the non-secure instance stands alone.
@@ -866,7 +876,8 @@ static const ARMCPRegInfo cp_reginfo[] = {
       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
-    /* Define the secure and non-secure context identifier CP registers
+    /*
+     * Define the secure and non-secure context identifier CP registers
      * separately because there is no secure bank in V8 (no _EL3).  This allows
      * the secure register to be properly reset and migrated.  In the
      * non-secure case, the 32-bit register will have reset and migration
@@ -888,7 +899,8 @@ static const ARMCPRegInfo cp_reginfo[] = {
 };
 
 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
-    /* NB: Some of these registers exist in v8 but with more precise
+    /*
+     * NB: Some of these registers exist in v8 but with more precise
      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
      */
     /* MMU Domain access control / MPU write buffer control */
@@ -898,7 +910,8 @@ static const ARMCPRegInfo not_v8_cp_reginfo[] = {
       .writefn = dacr_write, .raw_writefn = raw_write,
       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
-    /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
+    /*
+     * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
      * For v6 and v5, these mappings are overly broad.
      */
     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
@@ -917,7 +930,8 @@ static const ARMCPRegInfo not_v8_cp_reginfo[] = {
 };
 
 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
-    /* Not all pre-v6 cores implemented this WFI, so this is slightly
+    /*
+     * Not all pre-v6 cores implemented this WFI, so this is slightly
      * over-broad.
      */
     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
@@ -926,12 +940,14 @@ static const ARMCPRegInfo not_v6_cp_reginfo[] = {
 };
 
 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
-    /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
+    /*
+     * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
      * is UNPREDICTABLE; we choose to NOP as most implementations do).
      */
     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
       .access = PL1_W, .type = ARM_CP_WFI },
-    /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
+    /*
+     * L1 cache lockdown. Not architectural in v6 and earlier but in practice
      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
      * OMAPCP will override this space.
      */
@@ -945,14 +961,16 @@ static const ARMCPRegInfo not_v7_cp_reginfo[] = {
     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
       .resetvalue = 0 },
-    /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
+    /*
+     * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
      * implementing it as RAZ means the "debug architecture version" bits
      * will read as a reserved value, which should cause Linux to not try
      * to use the debug hardware.
      */
     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
-    /* MMU TLB control. Note that the wildcarding means we cover not just
+    /*
+     * MMU TLB control. Note that the wildcarding means we cover not just
      * the unified TLB ops but also the dside/iside/inner-shareable variants.
      */
     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
@@ -981,7 +999,8 @@ static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 
     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
     if (!arm_feature(env, ARM_FEATURE_V8)) {
-        /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
+        /*
+         * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
          */
@@ -994,7 +1013,8 @@ static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                 value |= (1 << 31);
             }
 
-            /* VFPv3 and upwards with NEON implement 32 double precision
+            /*
+             * VFPv3 and upwards with NEON implement 32 double precision
              * registers (D0-D31).
              */
             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
@@ -1036,7 +1056,8 @@ static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 
 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 {
-    /* Call cpacr_write() so that we reset with the correct RAO bits set
+    /*
+     * Call cpacr_write() so that we reset with the correct RAO bits set
      * for our CPU features.
      */
     cpacr_write(env, ri, 0);
@@ -1076,7 +1097,8 @@ static const ARMCPRegInfo v6_cp_reginfo[] = {
     { .name = "MVA_prefetch",
       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
       .access = PL1_W, .type = ARM_CP_NOP },
-    /* We need to break the TB after ISB to execute self-modifying code
+    /*
+     * We need to break the TB after ISB to execute self-modifying code
      * correctly and also to take any pending interrupts immediately.
      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
      */
@@ -1091,7 +1113,8 @@ static const ARMCPRegInfo v6_cp_reginfo[] = {
       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
                              offsetof(CPUARMState, cp15.ifar_ns) },
       .resetvalue = 0, },
-    /* Watchpoint Fault Address Register : should actually only be present
+    /*
+     * Watchpoint Fault Address Register : should actually only be present
      * for 1136, 1176, 11MPCore.
      */
     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
@@ -2492,7 +2515,8 @@ static const ARMCPRegInfo v6k_cp_reginfo[] = {
 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                        bool isread)
 {
-    /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
+    /*
+     * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
      * Writable only at the highest implemented exception level.
      */
     int el = arm_current_el(env);
@@ -2651,7 +2675,8 @@ static CPAccessResult gt_stimer_access(CPUARMState *env,
                                        const ARMCPRegInfo *ri,
                                        bool isread)
 {
-    /* The AArch64 register view of the secure physical timer is
+    /*
+     * The AArch64 register view of the secure physical timer is
      * always accessible from EL3, and configurably accessible from
      * Secure EL1.
      */
@@ -2686,7 +2711,8 @@ static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
 
     if (gt->ctl & 1) {
-        /* Timer enabled: calculate and set current ISTATUS, irq, and
+        /*
+         * Timer enabled: calculate and set current ISTATUS, irq, and
          * reset timer to when ISTATUS next has to change
          */
         uint64_t offset = timeridx == GTIMER_VIRT ?
@@ -2709,7 +2735,8 @@ static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
             /* Next transition is when we hit cval */
             nexttick = gt->cval + offset;
         }
-        /* Note that the desired next expiry time might be beyond the
+        /*
+         * Note that the desired next expiry time might be beyond the
          * signed-64-bit range of a QEMUTimer -- in this case we just
          * set the timer for as far in the future as possible. When the
          * timer expires we will reset the timer for any remaining period.
@@ -2826,7 +2853,8 @@ static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
         /* Enable toggled */
         gt_recalc_timer(cpu, timeridx);
     } else if ((oldval ^ value) & 2) {
-        /* IMASK toggled: don't need to recalculate,
+        /*
+         * IMASK toggled: don't need to recalculate,
          * just set the interrupt line based on ISTATUS
          */
         int irqstate = (oldval & 4) && !(value & 2);
@@ -3143,7 +3171,8 @@ static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
 }
 
 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
-    /* Note that CNTFRQ is purely reads-as-written for the benefit
+    /*
+     * Note that CNTFRQ is purely reads-as-written for the benefit
      * of software; writing it doesn't actually change the timer frequency.
      * Our reset value matches the fixed frequency we implement the timer at.
      */
@@ -3306,7 +3335,8 @@ static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
     },
-    /* Secure timer -- this is actually restricted to only EL3
+    /*
+     * Secure timer -- this is actually restricted to only EL3
      * and configurably Secure-EL1 via the accessfn.
      */
     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
@@ -3346,7 +3376,8 @@ static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
 
 #else
 
-/* In user-mode most of the generic timer registers are inaccessible
+/*
+ * In user-mode most of the generic timer registers are inaccessible
  * however modern kernels (4.12+) allow access to cntvct_el0
  */
 
@@ -3354,7 +3385,8 @@ static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
 {
     ARMCPU *cpu = env_archcpu(env);
 
-    /* Currently we have no support for QEMUTimer in linux-user so we
+    /*
+     * Currently we have no support for QEMUTimer in linux-user so we
      * can't call gt_get_countervalue(env), instead we directly
      * call the lower level functions.
      */
@@ -3396,7 +3428,8 @@ static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                  bool isread)
 {
     if (ri->opc2 & 4) {
-        /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
+        /*
+         * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
          * Secure EL1 (which can only happen if EL3 is AArch64).
          * They are simply UNDEF if executed from NS EL1.
          * They function normally from EL2 or EL3.
@@ -3554,7 +3587,8 @@ static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
             }
         }
     } else {
-        /* fsr is a DFSR/IFSR value for the short descriptor
+        /*
+         * fsr is a DFSR/IFSR value for the short descriptor
          * translation table format (with WnR always clear).
          * Convert it to a 32-bit PAR.
          */
@@ -3836,7 +3870,8 @@ static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 }
 
 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
-    /* Reset for all these registers is handled in arm_cpu_reset(),
+    /*
+     * Reset for all these registers is handled in arm_cpu_reset(),
      * because the PMSAv7 is also used by M-profile CPUs, which do
      * not register cpregs but still need the state to be reset.
      */
@@ -3922,11 +3957,14 @@ static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
 
     if (!arm_feature(env, ARM_FEATURE_V8)) {
         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
-            /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
-             * using Long-desciptor translation table format */
+            /*
+             * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
+             * using Long-desciptor translation table format
+             */
             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
-            /* In an implementation that includes the Security Extensions
+            /*
+             * In an implementation that includes the Security Extensions
              * TTBCR has additional fields PD0 [4] and PD1 [5] for
              * Short-descriptor translation table format.
              */
@@ -3936,7 +3974,8 @@ static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
         }
     }
 
-    /* Update the masks corresponding to the TCR bank being written
+    /*
+     * Update the masks corresponding to the TCR bank being written
      * Note that we always calculate mask and base_mask, but
      * they are only used for short-descriptor tables (ie if EAE is 0);
      * for long-descriptor tables the TCR fields are used differently
@@ -3954,7 +3993,8 @@ static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
     TCR *tcr = raw_ptr(env, ri);
 
     if (arm_feature(env, ARM_FEATURE_LPAE)) {
-        /* With LPAE the TTBCR could result in a change of ASID
+        /*
+         * With LPAE the TTBCR could result in a change of ASID
          * via the TTBCR.A1 bit, so do a TLB flush.
          */
         tlb_flush(CPU(cpu));
@@ -3968,7 +4008,8 @@ static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 {
     TCR *tcr = raw_ptr(env, ri);
 
-    /* Reset both the TCR as well as the masks corresponding to the bank of
+    /*
+     * Reset both the TCR as well as the masks corresponding to the bank of
      * the TCR being reset.
      */
     tcr->raw_tcr = 0;
@@ -4100,7 +4141,8 @@ static const ARMCPRegInfo vmsa_cp_reginfo[] = {
     REGINFO_SENTINEL
 };
 
-/* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
+/*
+ * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
  * qemu tlbs nor adjusting cached masks.
  */
 static const ARMCPRegInfo ttbcr2_reginfo = {
@@ -4136,7 +4178,8 @@ static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                   uint64_t value)
 {
-    /* On OMAP there are registers indicating the max/min index of dcache lines
+    /*
+     * On OMAP there are registers indicating the max/min index of dcache lines
      * containing a dirty line; cache flush operations have to reset these.
      */
     env->cp15.c15_i_max = 0x000;
@@ -4168,7 +4211,8 @@ static const ARMCPRegInfo omap_cp_reginfo[] = {
       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
       .type = ARM_CP_NO_RAW,
       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
-    /* TODO: Peripheral port remap register:
+    /*
+     * TODO: Peripheral port remap register:
      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
      * when MMU is off.
@@ -4198,7 +4242,8 @@ static const ARMCPRegInfo xscale_cp_reginfo[] = {
       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
       .resetvalue = 0, },
-    /* XScale specific cache-lockdown: since we have no cache we NOP these
+    /*
+     * XScale specific cache-lockdown: since we have no cache we NOP these
      * and hope the guest does not really rely on cache behaviour.
      */
     { .name = "XSCALE_LOCK_ICACHE_LINE",
@@ -4217,7 +4262,8 @@ static const ARMCPRegInfo xscale_cp_reginfo[] = {
 };
 
 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
-    /* RAZ/WI the whole crn=15 space, when we don't have a more specific
+    /*
+     * RAZ/WI the whole crn=15 space, when we don't have a more specific
      * implementation of this implementation-defined space.
      * Ideally this should eventually disappear in favour of actually
      * implementing the correct behaviour for all cores.
@@ -4260,7 +4306,8 @@ static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
 };
 
 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
-    /* The cache test-and-clean instructions always return (1 << 30)
+    /*
+     * The cache test-and-clean instructions always return (1 << 30)
      * to indicate that there are no dirty cache lines.
      */
     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
@@ -4298,7 +4345,8 @@ static uint64_t mpidr_read_val(CPUARMState *env)
 
     if (arm_feature(env, ARM_FEATURE_V7MP)) {
         mpidr |= (1U << 31);
-        /* Cores which are uniprocessor (non-coherent)
+        /*
+         * Cores which are uniprocessor (non-coherent)
          * but still implement the MP extensions set
          * bit 30. (For instance, Cortex-R5).
          */
@@ -4501,7 +4549,8 @@ static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
     return CP_ACCESS_OK;
 }
 
-/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
+/*
+ * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
  * Page D4-1736 (DDI0487A.b)
  */
 
@@ -4668,7 +4717,8 @@ static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
 {
-    /* Invalidate by VA, EL2
+    /*
+     * Invalidate by VA, EL2
      * Currently handles both VAE2 and VALE2, since we don't support
      * flush-last-level-only.
      */
@@ -4682,7 +4732,8 @@ static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
 {
-    /* Invalidate by VA, EL3
+    /*
+     * Invalidate by VA, EL3
      * Currently handles both VAE3 and VALE3, since we don't support
      * flush-last-level-only.
      */
@@ -4707,7 +4758,8 @@ static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
 {
-    /* Invalidate by VA, EL1&0 (AArch64 version).
+    /*
+     * Invalidate by VA, EL1&0 (AArch64 version).
      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
      * since we don't support flush-for-specific-ASID-only or
      * flush-last-level-only.
@@ -4792,7 +4844,8 @@ static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                     bool isread)
 {
     if (!(env->pstate & PSTATE_SP)) {
-        /* Access to SP_EL0 is undefined if it's being used as
+        /*
+         * Access to SP_EL0 is undefined if it's being used as
          * the stack pointer.
          */
         return CP_ACCESS_TRAP_UNCATEGORIZED;
@@ -4832,7 +4885,8 @@ static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
     }
 
     if (raw_read(env, ri) == value) {
-        /* Skip the TLB flush if nothing actually changed; Linux likes
+        /*
+         * Skip the TLB flush if nothing actually changed; Linux likes
          * to do a lot of pointless SCTLR writes.
          */
         return;
@@ -4873,7 +4927,8 @@ static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 }
 
 static const ARMCPRegInfo v8_cp_reginfo[] = {
-    /* Minimal set of EL0-visible registers. This will need to be expanded
+    /*
+     * Minimal set of EL0-visible registers. This will need to be expanded
      * significantly for system emulation of AArch64 CPUs.
      */
     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
@@ -5148,7 +5203,8 @@ static const ARMCPRegInfo v8_cp_reginfo[] = {
       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
       .access = PL1_RW,
       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
-    /* We rely on the access checks not allowing the guest to write to the
+    /*
+     * We rely on the access checks not allowing the guest to write to the
      * state field when SPSel indicates that it's being used as the stack
      * pointer.
      */
@@ -5344,7 +5400,8 @@ static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
     if (arm_feature(env, ARM_FEATURE_EL3)) {
         valid_mask &= ~HCR_HCD;
     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
-        /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
+        /*
+         * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
          * However, if we're using the SMC PSCI conduit then QEMU is
          * effectively acting like EL3 firmware and so the guest at
          * EL2 should retain the ability to prevent EL1 from being
@@ -5606,7 +5663,8 @@ static const ARMCPRegInfo el2_cp_reginfo[] = {
     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
       .access = PL2_RW,
-      /* no .writefn needed as this can't cause an ASID change;
+      /*
+       * no .writefn needed as this can't cause an ASID change;
        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
        */
       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
@@ -5680,7 +5738,8 @@ static const ARMCPRegInfo el2_cp_reginfo[] = {
       .access = PL2_W, .type = ARM_CP_NO_RAW,
       .writefn = tlbi_aa64_vae2is_write },
 #ifndef CONFIG_USER_ONLY
-    /* Unlike the other EL2-related AT operations, these must
+    /*
+     * Unlike the other EL2-related AT operations, these must
      * UNDEF from EL3 if EL2 is not implemented, which is why we
      * define them here rather than with the rest of the AT ops.
      */
@@ -5692,7 +5751,8 @@ static const ARMCPRegInfo el2_cp_reginfo[] = {
       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
       .access = PL2_W, .accessfn = at_s1e2_access,
       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
-    /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
+    /*
+     * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
      * to behave as if SCR.NS was 1.
@@ -5705,7 +5765,8 @@ static const ARMCPRegInfo el2_cp_reginfo[] = {
       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
-      /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
+      /*
+       * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
        * reset values as IMPDEF. We choose to reset to 3 to comply with
        * both ARMv7 and ARMv8.
        */
@@ -5798,7 +5859,8 @@ static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                    bool isread)
 {
-    /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
+    /*
+     * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
      * At Secure EL1 it traps to EL3 or EL2.
      */
     if (arm_current_el(env) == 3) {
@@ -5846,7 +5908,8 @@ static const ARMCPRegInfo el3_cp_reginfo[] = {
     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
       .access = PL3_RW,
-      /* no .writefn needed as this can't cause an ASID change;
+      /*
+       * no .writefn needed as this can't cause an ASID change;
        * we must provide a .raw_writefn and .resetfn because we handle
        * reset and migration for the AArch32 TTBCR(S), which might be
        * using mask and base_mask.
@@ -6112,7 +6175,8 @@ static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
 {
-    /* Writes to OSLAR_EL1 may update the OS lock status, which can be
+    /*
+     * Writes to OSLAR_EL1 may update the OS lock status, which can be
      * read via a bit in OSLSR_EL1.
      */
     int oslock;
@@ -6127,7 +6191,8 @@ static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
 }
 
 static const ARMCPRegInfo debug_cp_reginfo[] = {
-    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
+    /*
+     * DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
      * unlike DBGDRAR it is never accessible from EL0.
      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
@@ -6149,7 +6214,8 @@ static const ARMCPRegInfo debug_cp_reginfo[] = {
       .access = PL1_RW, .accessfn = access_tda,
       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
       .resetvalue = 0 },
-    /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
+    /*
+     * MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
      * We don't implement the configurable EL0 access.
      */
     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
@@ -6172,21 +6238,24 @@ static const ARMCPRegInfo debug_cp_reginfo[] = {
       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
       .access = PL1_RW, .accessfn = access_tdosa,
       .type = ARM_CP_NOP },
-    /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
+    /*
+     * Dummy DBGVCR: Linux wants to clear this on startup, but we don't
      * implement vector catch debug events yet.
      */
     { .name = "DBGVCR",
       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
       .access = PL1_RW, .accessfn = access_tda,
       .type = ARM_CP_NOP },
-    /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
+    /*
+     * Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
      * to save and restore a 32-bit guest's DBGVCR)
      */
     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
       .access = PL2_RW, .accessfn = access_tda,
       .type = ARM_CP_NOP },
-    /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
+    /*
+     * Dummy MDCCINT_EL1, since we don't implement the Debug Communications
      * Channel but Linux may try to access this register. The 32-bit
      * alias is DBGDCCINT.
      */
@@ -6458,7 +6527,8 @@ static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
     ARMCPU *cpu = env_archcpu(env);
     int i = ri->crm;
 
-    /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
+    /*
+     * Bits [63:49] are hardwired to the value of bit [48]; that is, the
      * register reads and behaves as if values written are sign extended.
      * Bits [1:0] are RES0.
      */
@@ -6586,7 +6656,8 @@ static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
     ARMCPU *cpu = env_archcpu(env);
     int i = ri->crm;
 
-    /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
+    /*
+     * BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
      * copy of BAS[0].
      */
     value = deposit64(value, 6, 1, extract64(value, 5, 1));
@@ -6598,7 +6669,8 @@ static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 
 static void define_debug_regs(ARMCPU *cpu)
 {
-    /* Define v7 and v8 architectural debug registers.
+    /*
+     * Define v7 and v8 architectural debug registers.
      * These are just dummy implementations for now.
      */
     int i;
@@ -6761,7 +6833,8 @@ static void define_pmu_regs(ARMCPU *cpu)
     }
 }
 
-/* We don't know until after realize whether there's a GICv3
+/*
+ * We don't know until after realize whether there's a GICv3
  * attached, and that is what registers the gicv3 sysregs.
  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
  * at runtime.
@@ -6790,7 +6863,8 @@ static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
 }
 #endif
 
-/* Shared logic between LORID and the rest of the LOR* registers.
+/*
+ * Shared logic between LORID and the rest of the LOR* registers.
  * Secure state exclusion has already been dealt with.
  */
 static CPAccessResult access_lor_ns(CPUARMState *env,
@@ -7381,7 +7455,8 @@ void register_cp_regs_for_features(ARMCPU *cpu)
 
     define_arm_cp_regs(cpu, cp_reginfo);
     if (!arm_feature(env, ARM_FEATURE_V8)) {
-        /* Must go early as it is full of wildcards that may be
+        /*
+         * Must go early as it is full of wildcards that may be
          * overridden by later definitions.
          */
         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
@@ -7395,7 +7470,8 @@ void register_cp_regs_for_features(ARMCPU *cpu)
               .access = PL1_R, .type = ARM_CP_CONST,
               .accessfn = access_aa32_tid3,
               .resetvalue = cpu->isar.id_pfr0 },
-            /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
+            /*
+             * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
              * the value of the GIC field until after we define these regs.
              */
             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
@@ -7507,7 +7583,8 @@ void register_cp_regs_for_features(ARMCPU *cpu)
         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
     }
     if (arm_feature(env, ARM_FEATURE_V8)) {
-        /* AArch64 ID registers, which all have impdef reset values.
+        /*
+         * AArch64 ID registers, which all have impdef reset values.
          * Note that within the ID register ranges the unused slots
          * must all RAZ, not UNDEF; future architecture versions may
          * define new registers here.
@@ -7832,11 +7909,13 @@ void register_cp_regs_for_features(ARMCPU *cpu)
             define_one_arm_cp_reg(cpu, &rvbar);
         }
     } else {
-        /* If EL2 is missing but higher ELs are enabled, we need to
+        /*
+         * If EL2 is missing but higher ELs are enabled, we need to
          * register the no_el2 reginfos.
          */
         if (arm_feature(env, ARM_FEATURE_EL3)) {
-            /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
+            /*
+             * When EL3 exists but not EL2, VPIDR and VMPIDR take the value
              * of MIDR_EL1 and MPIDR_EL1.
              */
             ARMCPRegInfo vpidr_regs[] = {
@@ -7876,7 +7955,8 @@ void register_cp_regs_for_features(ARMCPU *cpu)
 
         define_arm_cp_regs(cpu, el3_regs);
     }
-    /* The behaviour of NSACR is sufficiently various that we don't
+    /*
+     * The behaviour of NSACR is sufficiently various that we don't
      * try to describe it in a single reginfo:
      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
      *     reads as constant 0xc00 from NS EL1 and NS EL2
@@ -7968,13 +8048,15 @@ void register_cp_regs_for_features(ARMCPU *cpu)
     if (cpu_isar_feature(aa32_jazelle, cpu)) {
         define_arm_cp_regs(cpu, jazelle_regs);
     }
-    /* Slightly awkwardly, the OMAP and StrongARM cores need all of
+    /*
+     * Slightly awkwardly, the OMAP and StrongARM cores need all of
      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
      * be read-only (ie write causes UNDEF exception).
      */
     {
         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
-            /* Pre-v8 MIDR space.
+            /*
+             * Pre-v8 MIDR space.
              * Note that the MIDR isn't a simple constant register because
              * of the TI925 behaviour where writes to another register can
              * cause the MIDR value to change.
@@ -8078,7 +8160,8 @@ void register_cp_regs_for_features(ARMCPU *cpu)
         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
             arm_feature(env, ARM_FEATURE_STRONGARM)) {
             ARMCPRegInfo *r;
-            /* Register the blanket "writes ignored" value first to cover the
+            /*
+             * Register the blanket "writes ignored" value first to cover the
              * whole space. Then update the specific ID registers to allow write
              * access, so that they ignore writes rather than causing them to
              * UNDEF.
@@ -8434,7 +8517,8 @@ static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
                                    int crm, int opc1, int opc2,
                                    const char *name)
 {
-    /* Private utility function for define_one_arm_cp_reg_with_opaque():
+    /*
+     * Private utility function for define_one_arm_cp_reg_with_opaque():
      * add a single reginfo struct to the hash table.
      */
     uint32_t *key = g_new(uint32_t, 1);
@@ -8443,13 +8527,15 @@ static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
 
     r2->name = g_strdup(name);
-    /* Reset the secure state to the specific incoming state.  This is
+    /*
+     * Reset the secure state to the specific incoming state.  This is
      * necessary as the register may have been defined with both states.
      */
     r2->secure = secstate;
 
     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
-        /* Register is banked (using both entries in array).
+        /*
+         * Register is banked (using both entries in array).
          * Overwriting fieldoffset as the array is only used to define
          * banked registers but later only fieldoffset is used.
          */
@@ -8458,7 +8544,8 @@ static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
 
     if (state == ARM_CP_STATE_AA32) {
         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
-            /* If the register is banked then we don't need to migrate or
+            /*
+             * If the register is banked then we don't need to migrate or
              * reset the 32-bit instance in certain cases:
              *
              * 1) If the register has both 32-bit and 64-bit instances then we
@@ -8473,15 +8560,15 @@ static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
                 r2->type |= ARM_CP_ALIAS;
             }
         } else if ((secstate != r->secure) && !ns) {
-            /* The register is not banked so we only want to allow migration of
+            /*
+             * The register is not banked so we only want to allow migration of
              * the non-secure instance.
              */
             r2->type |= ARM_CP_ALIAS;
         }
 
         if (r->state == ARM_CP_STATE_BOTH) {
-            /* We assume it is a cp15 register if the .cp field is left unset.
-             */
+            /* We assume it is a cp15 register if the .cp field is left unset */
             if (r2->cp == 0) {
                 r2->cp = 15;
             }
@@ -8494,7 +8581,8 @@ static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
         }
     }
     if (state == ARM_CP_STATE_AA64) {
-        /* To allow abbreviation of ARMCPRegInfo
+        /*
+         * To allow abbreviation of ARMCPRegInfo
          * definitions, we treat cp == 0 as equivalent to
          * the value for "standard guest-visible sysreg".
          * STATE_BOTH definitions are also always "standard
@@ -8512,17 +8600,20 @@ static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
     if (opaque) {
         r2->opaque = opaque;
     }
-    /* reginfo passed to helpers is correct for the actual access,
+    /*
+     * reginfo passed to helpers is correct for the actual access,
      * and is never ARM_CP_STATE_BOTH:
      */
     r2->state = state;
-    /* Make sure reginfo passed to helpers for wildcarded regs
+    /*
+     * Make sure reginfo passed to helpers for wildcarded regs
      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
      */
     r2->crm = crm;
     r2->opc1 = opc1;
     r2->opc2 = opc2;
-    /* By convention, for wildcarded registers only the first
+    /*
+     * By convention, for wildcarded registers only the first
      * entry is used for migration; the others are marked as
      * ALIAS so we don't try to transfer the register
      * multiple times. Special registers (ie NOP/WFI) are
@@ -8537,7 +8628,8 @@ static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
     }
 
-    /* Check that raw accesses are either forbidden or handled. Note that
+    /*
+     * Check that raw accesses are either forbidden or handled. Note that
      * we can't assert this earlier because the setup of fieldoffset for
      * banked registers has to be done first.
      */
@@ -8545,9 +8637,7 @@ static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
         assert(!raw_accessors_invalid(r2));
     }
 
-    /* Overriding of an existing definition must be explicitly
-     * requested.
-     */
+    /* Overriding of an existing definition must be explicitly requested. */
     if (!(r->type & ARM_CP_OVERRIDE)) {
         ARMCPRegInfo *oldreg;
         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
@@ -8567,7 +8657,8 @@ static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
                                        const ARMCPRegInfo *r, void *opaque)
 {
-    /* Define implementations of coprocessor registers.
+    /*
+     * Define implementations of coprocessor registers.
      * We store these in a hashtable because typically
      * there are less than 150 registers in a space which
      * is 16*16*16*8*8 = 262144 in size.
@@ -8632,7 +8723,8 @@ void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
     default:
         g_assert_not_reached();
     }
-    /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
+    /*
+     * The AArch64 pseudocode CheckSystemAccess() specifies that op1
      * encodes a minimum access level for the register. We roll this
      * runtime check into our general permission check code, so check
      * here that the reginfo's specified permissions are strict enough
@@ -8675,10 +8767,11 @@ void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
         assert((r->access & ~mask) == 0);
     }
 
-    /* Check that the register definition has enough info to handle
+    /*
+     * Check that the register definition has enough info to handle
      * reads and writes if they are permitted.
      */
-    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
+    if (!(r->type & (ARM_CP_SPECIAL | ARM_CP_CONST))) {
         if (r->access & PL3_R) {
             assert((r->fieldoffset ||
                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
@@ -8701,7 +8794,8 @@ void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
                         continue;
                     }
                     if (state == ARM_CP_STATE_AA32) {
-                        /* Under AArch32 CP registers can be common
+                        /*
+                         * Under AArch32 CP registers can be common
                          * (same for secure and non-secure world) or banked.
                          */
                         char *name;
@@ -8725,8 +8819,10 @@ void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
                             break;
                         }
                     } else {
-                        /* AArch64 registers get mapped to non-secure instance
-                         * of AArch32 */
+                        /*
+                         * AArch64 registers get mapped to non-secure
+                         * instance of AArch32
+                         */
                         add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                ARM_CP_SECSTATE_NS,
                                                crm, opc1, opc2, r->name);
-- 
2.26.2



  parent reply	other threads:[~2021-04-14 11:34 UTC|newest]

Thread overview: 81+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2021-04-14 11:25 [RFC v13 00/80] arm cleanup experiment for kvm-only build Claudio Fontana
2021-04-14 11:25 ` [RFC v13 01/80] target/arm: move translate modules to tcg/ Claudio Fontana
2021-04-14 11:25 ` [RFC v13 02/80] target/arm: move helpers " Claudio Fontana
2021-04-14 11:25 ` [RFC v13 03/80] arm: tcg: only build under CONFIG_TCG Claudio Fontana
2021-04-14 11:25 ` [RFC v13 04/80] target/arm: tcg: add sysemu and user subdirs Claudio Fontana
2021-04-14 11:25 ` [RFC v13 05/80] target/arm: tcg: split mte_helper user-only and sysemu code Claudio Fontana
2021-04-14 11:25 ` [RFC v13 06/80] target/arm: tcg: move sysemu-only parts of debug_helper Claudio Fontana
2021-04-14 11:25 ` [RFC v13 07/80] target/arm: tcg: split tlb_helper user-only and sysemu-only parts Claudio Fontana
2021-04-14 11:25 ` [RFC v13 08/80] target/arm: tcg: split m_helper " Claudio Fontana
2021-04-14 11:25 ` [RFC v13 09/80] target/arm: only build psci for TCG Claudio Fontana
2021-04-14 11:25 ` [RFC v13 10/80] target/arm: split off cpu-sysemu.c Claudio Fontana
2021-04-14 11:25 ` [RFC v13 11/80] target/arm: tcg: fix comment style before move to cpu-mmu Claudio Fontana
2021-04-14 11:25 ` [RFC v13 12/80] target/arm: move physical address translation " Claudio Fontana
2021-04-14 11:25 ` Claudio Fontana [this message]
2021-04-14 11:25 ` [RFC v13 14/80] target/arm: split cpregs from tcg/helper.c Claudio Fontana
2021-04-14 11:25 ` [RFC v13 15/80] target/arm: move cpu definitions to common cpu module Claudio Fontana
2021-04-14 11:25 ` [RFC v13 16/80] target/arm: only perform TCG cpu and machine inits if TCG enabled Claudio Fontana
2021-04-14 11:25 ` [RFC v13 17/80] target/arm: tcg: add stubs for some helpers for non-tcg builds Claudio Fontana
2021-04-14 11:25 ` [RFC v13 18/80] target/arm: move cpsr_read, cpsr_write to cpu_common Claudio Fontana
2021-04-14 11:25 ` [RFC v13 19/80] target/arm: add temporary stub for arm_rebuild_hflags Claudio Fontana
2021-04-14 11:25 ` [RFC v13 20/80] target/arm: move arm_hcr_el2_eff from tcg/ to common_cpu Claudio Fontana
2021-04-14 11:25 ` [RFC v13 21/80] target/arm: split vfp state setting from tcg helpers Claudio Fontana
2021-04-14 11:25 ` [RFC v13 22/80] target/arm: move arm_mmu_idx* to cpu-mmu Claudio Fontana
2021-04-14 11:25 ` [RFC v13 23/80] target/arm: move sve_zcr_len_for_el to common_cpu Claudio Fontana
2021-04-14 11:25 ` [RFC v13 24/80] target/arm: move arm_sctlr away from tcg helpers Claudio Fontana
2021-04-14 11:25 ` [RFC v13 25/80] target/arm: move arm_cpu_list to common_cpu Claudio Fontana
2021-04-14 11:25 ` [RFC v13 26/80] target/arm: move aarch64_sync_32_to_64 (and vv) to cpu code Claudio Fontana
2021-04-14 11:25 ` [RFC v13 27/80] target/arm: new cpu32 ARM 32 bit CPU Class Claudio Fontana
2021-04-14 11:25 ` [RFC v13 28/80] target/arm: split 32bit and 64bit arm dump state Claudio Fontana
2021-04-14 11:25 ` [RFC v13 29/80] target/arm: move a15 cpu model away from the TCG-only models Claudio Fontana
2021-04-14 11:26 ` [RFC v13 30/80] target/arm: fixup sve_exception_el code style before move Claudio Fontana
2021-04-14 11:26 ` [RFC v13 31/80] target/arm: move sve_exception_el out of TCG helpers Claudio Fontana
2021-04-14 11:26 ` [RFC v13 32/80] target/arm: fix comments style of fp_exception_el before moving it Claudio Fontana
2021-04-14 11:26 ` [RFC v13 33/80] target/arm: move fp_exception_el out of TCG helpers Claudio Fontana
2021-04-14 11:26 ` [RFC v13 34/80] target/arm: remove now useless ifndef from fp_exception_el Claudio Fontana
2021-04-14 11:26 ` [RFC v13 35/80] target/arm: make further preparation for the exception code to move Claudio Fontana
2021-04-14 11:26 ` [RFC v13 36/80] target/arm: fix style of arm_cpu_do_interrupt functions before move Claudio Fontana
2021-04-14 11:26 ` [RFC v13 37/80] target/arm: move exception code out of tcg/helper.c Claudio Fontana
2021-04-14 11:26 ` [RFC v13 38/80] target/arm: rename handle_semihosting to tcg_handle_semihosting Claudio Fontana
2021-04-14 11:26 ` [RFC v13 39/80] target/arm: replace CONFIG_TCG with tcg_enabled Claudio Fontana
2021-04-14 11:26 ` [RFC v13 40/80] target/arm: move TCGCPUOps to tcg/tcg-cpu.c Claudio Fontana
2021-04-14 11:26 ` [RFC v13 41/80] target/arm: move cpu_tcg to tcg/tcg-cpu-models.c Claudio Fontana
2021-04-14 11:26 ` [RFC v13 42/80] target/arm: wrap call to aarch64_sve_change_el in tcg_enabled() Claudio Fontana
2021-04-14 11:26 ` [RFC v13 43/80] target/arm: remove kvm include file for PSCI and arm-powerctl Claudio Fontana
2021-04-14 11:26 ` [RFC v13 44/80] target/arm: move kvm-const.h, kvm.c, kvm64.c, kvm_arm.h to kvm/ Claudio Fontana
2021-04-14 11:26 ` [RFC v13 45/80] MAINTAINERS: update arm kvm maintained files to all in target/arm/kvm/ Claudio Fontana
2021-04-14 11:26 ` [RFC v13 46/80] target/arm: cleanup cpu includes Claudio Fontana
2021-04-14 11:26 ` [RFC v13 47/80] target/arm: remove broad "else" statements when checking accels Claudio Fontana
2021-04-14 11:26 ` [RFC v13 48/80] target/arm: remove kvm-stub.c Claudio Fontana
2021-04-14 11:26 ` [RFC v13 49/80] tests/qtest: skip bios-tables-test test_acpi_oem_fields_virt for KVM Claudio Fontana
2021-04-14 11:26 ` [RFC v13 50/80] tests: restrict TCG-only arm-cpu-features tests to TCG builds Claudio Fontana
2021-04-14 11:26 ` [RFC v13 51/80] tests: do not run test-hmp on all machines for ARM KVM-only Claudio Fontana
2021-04-14 11:26 ` [RFC v13 52/80] tests: device-introspect-test: cope with ARM TCG-only devices Claudio Fontana
2021-04-14 11:26 ` [RFC v13 53/80] tests: do not run qom-test on all machines for ARM KVM-only Claudio Fontana
2021-04-14 11:26 ` [RFC v13 54/80] Revert "target/arm: Restrict v8M IDAU to TCG" Claudio Fontana
2021-04-14 11:26 ` [RFC v13 55/80] target/arm: create kvm cpu accel class Claudio Fontana
2021-04-14 11:26 ` [RFC v13 56/80] target/arm: move kvm post init initialization to kvm cpu accel Claudio Fontana
2021-04-14 11:26 ` [RFC v13 57/80] target/arm: add tcg cpu accel class Claudio Fontana
2021-04-14 11:26 ` [RFC v13 58/80] target/arm: move TCG gt timer creation code in tcg/ Claudio Fontana
2021-04-14 11:26 ` [RFC v13 59/80] target/arm: cpu-sve: new module Claudio Fontana
2021-04-14 11:26 ` [RFC v13 60/80] target/arm: cpu-sve: rename functions according to module prefix Claudio Fontana
2021-04-14 11:26 ` [RFC v13 61/80] target/arm: cpu-sve: split TCG and KVM functionality Claudio Fontana
2021-04-14 11:26 ` [RFC v13 62/80] target/arm: cpu-sve: make cpu_sve_finalize_features return bool Claudio Fontana
2021-04-14 11:26 ` [RFC v13 63/80] target/arm: make is_aa64 and arm_el_is_aa64 a macro for !TARGET_AARCH64 Claudio Fontana
2021-04-14 11:26 ` [RFC v13 64/80] target/arm: restrict rebuild_hflags_a64 to TARGET_AARCH64 Claudio Fontana
2021-04-14 11:26 ` [RFC v13 65/80] target/arm: arch_dump: restrict ELFCLASS64 to AArch64 Claudio Fontana
2021-04-14 11:26 ` [RFC v13 66/80] target/arm: cpu-exceptions, cpu-exceptions-aa64: new modules Claudio Fontana
2021-04-14 11:26 ` [RFC v13 67/80] target/arm: tcg: restrict ZCR cpregs to TARGET_AARCH64 Claudio Fontana
2021-04-14 11:26 ` [RFC v13 68/80] target/arm: tcg-sve: import narrow_vq and change_el functions Claudio Fontana
2021-04-14 11:26 ` [RFC v13 69/80] target/arm: tcg-sve: rename the " Claudio Fontana
2021-04-14 11:26 ` [RFC v13 70/80] target/arm: move sve_zcr_len_for_el to TARGET_AARCH64-only cpu-sve Claudio Fontana
2021-04-14 11:26 ` [RFC v13 71/80] cpu-sve: rename sve_zcr_len_for_el to cpu_sve_get_zcr_len_for_el Claudio Fontana
2021-04-14 11:26 ` [RFC v13 72/80] target/arm: cpu-common: wrap a64-only check with is_a64 Claudio Fontana
2021-04-14 11:26 ` [RFC v13 73/80] target/arm: cpu-pauth: new module for ARMv8.3 Pointer Authentication Claudio Fontana
2021-04-14 11:26 ` [RFC v13 74/80] target/arm: cpu-pauth: change arm_cpu_pauth_finalize name and sig Claudio Fontana
2021-04-14 11:26 ` [RFC v13 75/80] target/arm: move arm_cpu_finalize_features into cpu64 Claudio Fontana
2021-04-14 11:26 ` [RFC v13 76/80] target/arm: cpu64: rename arm_cpu_finalize_features Claudio Fontana
2021-04-14 11:26 ` [RFC v13 77/80] target/arm: cpu64: some final cleanup on aarch64_cpu_finalize_features Claudio Fontana
2021-04-14 11:26 ` [RFC v13 78/80] XXX target/arm: experiment refactoring cpu "max" Claudio Fontana
2021-04-14 11:26 ` [RFC v13 79/80] target/arm: tcg: remove superfluous CONFIG_TCG check Claudio Fontana
2021-04-14 11:26 ` [RFC v13 80/80] target/arm: remove v7m stub function for !CONFIG_TCG Claudio Fontana

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=20210414112650.18003-14-cfontana@suse.de \
    --to=cfontana@suse.de \
    --cc=alex.bennee@linaro.org \
    --cc=ehabkost@redhat.com \
    --cc=pbonzini@redhat.com \
    --cc=peter.maydell@linaro.org \
    --cc=philmd@redhat.com \
    --cc=qemu-devel@nongnu.org \
    --cc=r.bolshakov@yadro.com \
    --cc=richard.henderson@linaro.org \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.