From mboxrd@z Thu Jan 1 00:00:00 1970 From: Lina Iyer Subject: [PATCH v15 03/11] ARM: cpuidle: qcom: Add documentation for qcom cpuidle states. Date: Mon, 9 Mar 2015 09:16:38 -0600 Message-ID: <1425914206-22295-4-git-send-email-lina.iyer@linaro.org> References: <1425914206-22295-1-git-send-email-lina.iyer@linaro.org> Return-path: In-Reply-To: <1425914206-22295-1-git-send-email-lina.iyer-QSEj5FYQhm4dnm+yROfE0A@public.gmane.org> Sender: devicetree-owner-u79uwXL29TY76Z2rM5mHXA@public.gmane.org To: daniel.lezcano-QSEj5FYQhm4dnm+yROfE0A@public.gmane.org, khilman-QSEj5FYQhm4dnm+yROfE0A@public.gmane.org, sboyd-sgV2jX0FEOL9JmXXK+q4OQ@public.gmane.org, galak-sgV2jX0FEOL9JmXXK+q4OQ@public.gmane.org, linux-arm-msm-u79uwXL29TY76Z2rM5mHXA@public.gmane.org, linux-pm-u79uwXL29TY76Z2rM5mHXA@public.gmane.org, linux-arm-kernel-IAPFreCvJWM7uuMidbF8XUB+6BGkLq7r@public.gmane.org Cc: lorenzo.pieralisi-5wv7dgnIgG8@public.gmane.org, msivasub-sgV2jX0FEOL9JmXXK+q4OQ@public.gmane.org, devicetree-u79uwXL29TY76Z2rM5mHXA@public.gmane.org, Lina Iyer List-Id: linux-arm-msm@vger.kernel.org Add documentation for cpuidle states of QCOM cpus. In addition to arm-idle-state compatible string, the ARM idle state definition must define one of the following compatible strings - "qcom,idle-state-stby", "qcom,idle-state-ret", "qcom,idle-state-spc", "qcom,idle-state-pc", The compatibles helps the SPM platform driver to use the correct idle function when the index to the idle state is passed to the platform driver. Signed-off-by: Lina Iyer --- .../bindings/arm/msm/qcom,idle-state.txt | 81 ++++++++++++++++++++++ 1 file changed, 81 insertions(+) create mode 100644 Documentation/devicetree/bindings/arm/msm/qcom,idle-state.txt diff --git a/Documentation/devicetree/bindings/arm/msm/qcom,idle-state.txt b/Documentation/devicetree/bindings/arm/msm/qcom,idle-state.txt new file mode 100644 index 0000000..ae1b07f --- /dev/null +++ b/Documentation/devicetree/bindings/arm/msm/qcom,idle-state.txt @@ -0,0 +1,81 @@ +QCOM Idle States for cpuidle driver + +ARM provides idle-state node to define the cpuidle states, as defined in [1]. +cpuidle-qcom is the cpuidle driver for Qualcomm SoCs and uses these idle +states. Idle states have different enter/exit latency and residency values. +The idle states supported by the QCOM SoC are defined as - + + * Standby + * Retention + * Standalone Power Collapse (Standalone PC or SPC) + * Power Collapse (PC) + +Standby: Standby does a little more in addition to architectural clock gating. +When the WFI instruction is executed the ARM core would gate its internal +clocks. In addition to gating the clocks, QCOM cpus use this instruction as a +trigger to execute the SPM state machine. The SPM state machine waits for the +interrupt to trigger the core back in to active. This triggers the cache +hierarchy to enter standby states, when all cpus are idle. An interrupt brings +the SPM state machine out of its wait, the next step is to ensure that the +cache hierarchy is also out of standby, and then the cpu is allowed to resume +execution. + +Retention: Retention is a low power state where the core is clock gated and +the memory and the registers associated with the core are retained. The +voltage may be reduced to the minimum value needed to keep the processor +registers active. The SPM should be configured to execute the retention +sequence and would wait for interrupt, before restoring the cpu to execution +state. Retention may have a slightly higher latency than Standby. + +Standalone PC: A cpu can power down and warmboot if there is a sufficient time +between the time it enters idle and the next known wake up. SPC mode is used +to indicate a core entering a power down state without consulting any other +cpu or the system resources. This helps save power only on that core. The SPM +sequence for this idle state is programmed to power down the supply to the +core, wait for the interrupt, restore power to the core, and ensure the +system state including cache hierarchy is ready before allowing core to +resume. Applying power and resetting the core causes the core to warmboot +back into Elevation Level (EL) which trampolines the control back to the +kernel. Entering a power down state for the cpu, needs to be done by trapping +into a EL. Failing to do so, would result in a crash enforced by the warm boot +code in the EL for the SoC. On SoCs with write-back L1 cache, the cache has to +be flushed in s/w, before powering down the core. + +Power Collapse: This state is similar to the SPC mode, but distinguishes +itself in that the cpu acknowledges and permits the SoC to enter deeper sleep +modes. In a hierarchical power domain SoC, this means L2 and other caches can +be flushed, system bus, clocks - lowered, and SoC main XO clock gated and +voltages reduced, provided all cpus enter this state. Since the span of low +power modes possible at this state is vast, the exit latency and the residency +of this low power mode would be considered high even though at a cpu level, +this essentially is cpu power down. The SPM in this state also may handshake +with the Resource power manager processor in the SoC to indicate a complete +application processor subsystem shut down. + +The idle-state for QCOM SoCs are distinguished by the compatible property of +the idle-states device node. +The devicetree representation of the idle state should be - + +Required properties: + +- compatible: Must be one of - + "qcom,idle-state-stby", + "qcom,idle-state-ret", + "qcom,idle-state-spc", + "qcom,idle-state-pc", + and "arm,idle-state". + +Other required and optional properties are specified in [1]. + +Example: + + idle-states { + CPU_SPC: spc { + compatible = "qcom,idle-state-spc", "arm,idle-state"; + entry-latency-us = <150>; + exit-latency-us = <200>; + min-residency-us = <2000>; + }; + }; + +[1]. Documentation/devicetree/bindings/arm/idle-states.txt -- 2.1.0 -- To unsubscribe from this list: send the line "unsubscribe devicetree" in the body of a message to majordomo-u79uwXL29TY76Z2rM5mHXA@public.gmane.org More majordomo info at http://vger.kernel.org/majordomo-info.html From mboxrd@z Thu Jan 1 00:00:00 1970 From: lina.iyer@linaro.org (Lina Iyer) Date: Mon, 9 Mar 2015 09:16:38 -0600 Subject: [PATCH v15 03/11] ARM: cpuidle: qcom: Add documentation for qcom cpuidle states. In-Reply-To: <1425914206-22295-1-git-send-email-lina.iyer@linaro.org> References: <1425914206-22295-1-git-send-email-lina.iyer@linaro.org> Message-ID: <1425914206-22295-4-git-send-email-lina.iyer@linaro.org> To: linux-arm-kernel@lists.infradead.org List-Id: linux-arm-kernel.lists.infradead.org Add documentation for cpuidle states of QCOM cpus. In addition to arm-idle-state compatible string, the ARM idle state definition must define one of the following compatible strings - "qcom,idle-state-stby", "qcom,idle-state-ret", "qcom,idle-state-spc", "qcom,idle-state-pc", The compatibles helps the SPM platform driver to use the correct idle function when the index to the idle state is passed to the platform driver. Signed-off-by: Lina Iyer --- .../bindings/arm/msm/qcom,idle-state.txt | 81 ++++++++++++++++++++++ 1 file changed, 81 insertions(+) create mode 100644 Documentation/devicetree/bindings/arm/msm/qcom,idle-state.txt diff --git a/Documentation/devicetree/bindings/arm/msm/qcom,idle-state.txt b/Documentation/devicetree/bindings/arm/msm/qcom,idle-state.txt new file mode 100644 index 0000000..ae1b07f --- /dev/null +++ b/Documentation/devicetree/bindings/arm/msm/qcom,idle-state.txt @@ -0,0 +1,81 @@ +QCOM Idle States for cpuidle driver + +ARM provides idle-state node to define the cpuidle states, as defined in [1]. +cpuidle-qcom is the cpuidle driver for Qualcomm SoCs and uses these idle +states. Idle states have different enter/exit latency and residency values. +The idle states supported by the QCOM SoC are defined as - + + * Standby + * Retention + * Standalone Power Collapse (Standalone PC or SPC) + * Power Collapse (PC) + +Standby: Standby does a little more in addition to architectural clock gating. +When the WFI instruction is executed the ARM core would gate its internal +clocks. In addition to gating the clocks, QCOM cpus use this instruction as a +trigger to execute the SPM state machine. The SPM state machine waits for the +interrupt to trigger the core back in to active. This triggers the cache +hierarchy to enter standby states, when all cpus are idle. An interrupt brings +the SPM state machine out of its wait, the next step is to ensure that the +cache hierarchy is also out of standby, and then the cpu is allowed to resume +execution. + +Retention: Retention is a low power state where the core is clock gated and +the memory and the registers associated with the core are retained. The +voltage may be reduced to the minimum value needed to keep the processor +registers active. The SPM should be configured to execute the retention +sequence and would wait for interrupt, before restoring the cpu to execution +state. Retention may have a slightly higher latency than Standby. + +Standalone PC: A cpu can power down and warmboot if there is a sufficient time +between the time it enters idle and the next known wake up. SPC mode is used +to indicate a core entering a power down state without consulting any other +cpu or the system resources. This helps save power only on that core. The SPM +sequence for this idle state is programmed to power down the supply to the +core, wait for the interrupt, restore power to the core, and ensure the +system state including cache hierarchy is ready before allowing core to +resume. Applying power and resetting the core causes the core to warmboot +back into Elevation Level (EL) which trampolines the control back to the +kernel. Entering a power down state for the cpu, needs to be done by trapping +into a EL. Failing to do so, would result in a crash enforced by the warm boot +code in the EL for the SoC. On SoCs with write-back L1 cache, the cache has to +be flushed in s/w, before powering down the core. + +Power Collapse: This state is similar to the SPC mode, but distinguishes +itself in that the cpu acknowledges and permits the SoC to enter deeper sleep +modes. In a hierarchical power domain SoC, this means L2 and other caches can +be flushed, system bus, clocks - lowered, and SoC main XO clock gated and +voltages reduced, provided all cpus enter this state. Since the span of low +power modes possible at this state is vast, the exit latency and the residency +of this low power mode would be considered high even though at a cpu level, +this essentially is cpu power down. The SPM in this state also may handshake +with the Resource power manager processor in the SoC to indicate a complete +application processor subsystem shut down. + +The idle-state for QCOM SoCs are distinguished by the compatible property of +the idle-states device node. +The devicetree representation of the idle state should be - + +Required properties: + +- compatible: Must be one of - + "qcom,idle-state-stby", + "qcom,idle-state-ret", + "qcom,idle-state-spc", + "qcom,idle-state-pc", + and "arm,idle-state". + +Other required and optional properties are specified in [1]. + +Example: + + idle-states { + CPU_SPC: spc { + compatible = "qcom,idle-state-spc", "arm,idle-state"; + entry-latency-us = <150>; + exit-latency-us = <200>; + min-residency-us = <2000>; + }; + }; + +[1]. Documentation/devicetree/bindings/arm/idle-states.txt -- 2.1.0