
Medium-Term Scheduler as a Solution

for the Thrashing Effect†

Moses Reuven
1
and Yair Wiseman

1,2,�

1Computer Science Department, Bar-Ilan University, Ramat-Gan, Israel
2School of Computer Science & Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel

�Corresponding author: wiseman@cs.huji.ac.il

We suggest a method for minimizing the paging on a system with a very heavy memory usage.

Sometimes there are processes with active memory allocations that should be in the physical

memory, but their total size exceeds the physical memory range. In such cases, the operating system

starts swapping pages in and out of the memory on every context switch. We minimize this thrashing

by splitting the processes into a number of bins, using Bin Packing approximation algorithms. We

modify the scheduler to have two levels of scheduling—medium-term scheduling and short-term

scheduling. The medium-term scheduler switches the bins in a Round-Robin manner, whereas the

short-term scheduler runs the standard Linux scheduler among the processes in each bin. We show

that this feature does not impose modifications on the shared memory maintenance. In addition, we

show how to adjust the new scheduler to fit some elements of the original scheduler like priority and

real-time privileges. Experimental results show significant improvement on heavily loaded memor-

ies. The code of this project is free and can be found in http://www.cs.biu.ac.il/~reubenm.

Keywords: Scheduling, allocation/deallocation strategies, swapping, virtual memory,

process management

Received 27 October 2005; revised 16 January 2006

1. INTRODUCTION

One of the most important computer resources is the internal

memory. A multitasking system executes multiple processes

simultaneously. Each one of the processes uses part of the

memory. The relationship between the memory and the

scheduling strategy is an old issue for research [1].

Usually, most of the processes do not use the whole memory

which is allocated to them. This leads to the idea of virtual

memory [2]: many processes are stored in the virtual memory,

but only the pages which are currently needed will be stored in

the physical memory; hence many more processes can be

executed concurrently, while using less physical memory.

Many operating systems implement the virtual memory

scheme using the paging concept, i.e. the operating system

loads a memory page into the physical memory only when a

process demands it. If no free memory frame is available, the

operating system swaps a page from the physical memory to

the secondary memory (hard disk). Different methods for

deciding which pages the operating system should swap out

to the disk have been proposed over the years [3].

When too much memory space is needed, the CPU spends a

large portion of its time swapping pages in and out of the

memory. This effect is called thrashing [4]. Thrashing’s

result is a severe overhead time and as a result a significant

slowdown of the system. Some studies for reducing the

undesirable effects of the thrashing have been conducted

over the years [5].

In [6, 7] the authors suggest giving one of the interactive

processes the privilege of not swapping its page out.

Consequently, the privileged process will succeed to be

executed faster and will free its memory allocation earlier.

This can help the operating system to clear out the memory

and to return to a normal behaviour. However, such an

approach will be beneficial only if the memory allocations

slightly exceed the physical memory. This approach will

act like a first-in-first-out (FIFO) scheduler when many pro-

cesses generate a large memory excess. While this FIFO con-

tinues, the system will keep on thrashing. Linux 2.6 version

has a similar mechanism and it is described in Section 2.

In [8] the authors suggest not to admit jobs which do not fit

into the current available memory. Instead, the system waits

for one or more processes to finish their execution. Only when

enough memory is freed, a new job will be admitted.

†A preliminary version appeared in The Modelling, Simulation, and
Optimization Conference, MSO-2005, Oranjestad, Aruba, August 2005

The Computer Journal Vol. 49 No. 3, 2006

� The Author 2006. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org

Advance Access published on February 15, 2006 doi:10.1093/comjnl/bxl001

http://www.cs.biu.ac.il/~reubenm


The authors also discuss how the memory size needed by a

new job can be assessed. This is actually very similar to

the technique of VMS that uses the ‘Balance Sets’ method.

However, the authors of this paper take the same ‘Balance

Sets’ concept for distributed systems.

In [9] the author suggests to tackle the thrashing effect

by adjusting the memory needs of a process to the current

available memory. This solution is quite different from the

others, because it modifies the processes instead of modifying

the operating system.

There are also some hardware solutions for thrashing

which are implemented in the cache [10, 11]. Usually LRU

is the basic scheme behind both hardware and software

victim selection algorithms. However, the LRU algorithm is

manipulated differently by hardware and software solutions.

Obviously, hardware solutions must be much simpler for

implementation. On the other hand, hardware solutions can

use data that the operating system does not have, e.g. the

cache can distinguish between an instructions block and a

data block and this parameter might be useful for victim

selection algorithms.

This paper suggests a technique that modifies the traditional

process-scheduling procedure. This modification helps the

operating system to swap in and out fewer pages; thus

minimizing the slowdown stemming from thrashing. The solu-

tion suggested in this paper is not restricted to a specific

operating system; hence, any multitasking paging system

can implement it. The figures and the results given in this

paper were achieved using the Linux operating system [12].

However, as we have noted, Linux is just a platform to show

the feasibility of the concept.

The rest of the paper is organized as follows. Section 2

describes the Linux scheduling algorithms. Section 3 intro-

duces the Bin Packing problem. Section 4 presents the

reduced paging algorithm. Finally, Section 5 gives the results

and evaluates them.

2. LINUX THRASHING HANDLING

The old UNIX scheduler is priority based [13]. The Linux

process-scheduling algorithm is based on the old UNIX sched-

uler. More details about the Linux scheduler can be found for

example in [14, 15] and in many other books and websites.

The virtual memory capabilities along with the paging

mechanism give Linux the ability to handle many processes,

even when the real memory needs are larger than those of the

available physical memory. However, the virtual memory

mechanism cannot handle every situation. If the memory

pages demand is too high over a short period, the swapping

mechanism cannot satisfy the memory needs reasonably.

Pages are frequently swapped in and out and a little progress

is made.

Linux only kills processes when thrashing occurs and the

system is out of swap space. In some sense there is nothing else

that the kernel could do in this case, since memory is needed

but there is no more physical or swap memory to allocate

[16, 17]. When such a case occurs, Linux kernel kills the

most memory-consuming processes. This feature is very

drastic; hence its implications might be severe. For example,

if a server runs several applications with mutual depend-

encies, killing one of the applications may yield unexpected

results.

The recent Linux 2.6 version has adopted the token-

ordered LRU policy [18]. The basic concept of this policy

is eliminating page swapping at some cases called by the

authors ‘false LRU pages’. Occasionally, a page of a

sleeping process is swapped out, although it would have

not been swapped out if the process were not sleeping.

The idea of the token-ordered LRU policy is setting one or

multiple tokens in the system. The token is taken by one

process when a page fault occurs. The system eliminates

the false LRU pages for the process holding the token and

allows the process a quick establishing of its working set. By

giving this privilege to a process, the total number of false

LRU pages is reduced and an order is put in the pool of the

competing pages. However, this policy can be helpful only

if the memory needs slightly exceed those of the physical

memory. A large memory excess by many processes will

be treated by this method as FIFO, while the other processes

still vie for memory allocations and thrash; hence, the authors

of [18] suggest to keep the traditional killing approach of

Linux for severe cases. We suggest another approach that

can also handle these severe cases.

In addition, the process selection algorithm of Linux

can mistakenly select a process that executes an endless

loop. Such a selection will worsen the thrashing. Even

selecting a very long process that is executed for some

hours will be harmful. The selection algorithm can just

guess which the shortest process is, but this guess may be

wrong.

3. BIN PACKING

The suggested technique needs a set of all the processes that

are currently in the virtual memory. This set is split into

several groups, such that the total memory size of each

group is as close as possible to the size of the available

real memory.

How can we build these groups of processes? We have a set

of processes Pi, each with a memory allocation. Let Mi denote

the maximal working set size that might be needed by process

Pi. We need an algorithm which splits these Mis into as few

groups as possible, with the sum of the Mis in each group not

exceeding the size of the real memory. Practically, the

kernel and some other daemons occupy part of the memory,

so the sum should not exceed a smaller memory size. This

splitting problem is well known and is called the Bin Packing

problem [19].

298 M. Reuven and Y. Wiseman

The Computer Journal Vol. 49 No. 3, 2006



The Bin Packing problem is defined as a set of numbers

X1, X2, . . . ,Xn, with Xi 2 [0, 1] for each i. The problem is

finding the smallest natural number m for which

� X1, X2, . . . ,Xn can be partitioned into m sets.

� The sum of the members of each set is not higher than 1.

The Bin Packing problem is NP-hard [20]. However, some

polynomial time approximations have been introduced over

the years, such as those in [21, 22, 23, 24]. The approximation

algorithms use no more than (1 + E)�OPT(I) number of bins,

where OPT(I) is the number of bins in the optimal solution for

case I. If E is smaller, the result will be closer to the optimal

solution, but unfortunately good approximations are usually

time-consuming [25]. We would like to choose one of the

approximation algorithms which is not time-consuming, yet

tries minimizing (1 + E)�OPT(I).

A simple idea of an approximation algorithm for the Bin

Packing problem is the greedy approach [26], also known as

the First-Fit approach. This algorithm is defined as follows:

� Sort the vector X1, X2, . . . ,Xn by the allocated memory

size.

� Open a new bin and put the highest number in it.

� While there are more numbers
* if adding the current number to one of the existing bins

exceeds the size of the bin
& open a new bin and put the current number in it.

* Else
& put the current number in the current bin.

In our tests, we used a version of this approximation algorithm

with a slight modification. We usually achieved the minimal

number of bins and the cost of execution time was usually low.

The version we used is described below.

4. BIN PACKING-BASED PAGING

It is well known that increasing the level of multitasking in any

operating system may sometimes cause thrashing. In order to

avoid thrashing, we would like to suggest a new approach: all

the processes will be split into several groups such that the sum

of physical memory demands within each group will not be

higher than the amount of physical memory available on the

machine. In [27] the authors give some ideas to use a Bin

Packing approximation (First-Fit) to improve the Backfilling

scheduling of a specific operating system (Tera). We would

like to use the Bin Packing algorithms to improve the Linux

scheduling using more approximations.

4.1. The medium-term scheduler

A new scheduler procedure will be added to the Linux oper-

ating system. The new scheduler will operate in the manner of

the medium-term scheduler, which was part of some operating

systems [28]. The medium-term scheduler will load the groups

into the Ready queue of the Linux scheduler in a Round-Robin

manner. The traditional Linux scheduler will do the schedul-

ing within the current group in the same way the scheduling is

originally done on Linux machines. The time slice of each

group in the medium-term scheduler will be significantly

higher than the average time allocated to the processes by

the original Linux scheduler. The processes in the real mem-

ory will not be able to cause thrashing during the execution of

the group, because their total size is not higher than the size

of the available physical memory, i.e. the size of each bin.

Only at the beginning of each group execution there will be

an intensive swapping, because the new group’s pages are

swapped into the memory. This approach can improve the

system ability to support memory-consuming processes in a

more tolerant way than killing them.

There are some methods to calculate the working set

size needed by each process. One of these methods can be

found in [29]. In this paper, the authors suggest a way that adds

7–10% overhead. Obviously, such an overhead is time-

consuming and not suitable for the concept of the Bin Packing

approach. The scheduler needs to know the working set size on

every context switch and calculating this working set often is

costly. We use another simple approach. The resident size of

each process was taken from /proc/PROCESS_NO/status file.

This size is the process’ last pages total size. This size is not

accurate and if the system is not busy, the resident size may

include large portions of stale pages that are not currently

essential. However, when the system is not busy, there will

be no thrashing and this overestimation will make not be

harmful.

In our implementation, the group time slice was half-

a-second or one second, whereas the Linux scheduler gives

time slices of some dozen milliseconds. When Linux thrashes,

any context switch causes many page faults, whereas with the

medium-term scheduler, intensive swapping will occur only

when switching between groups. This allows the operating

system in our implementation to swap a significant number

of pages in only a few percent of cases, in contrast to

conventional Linux during thrashing conditions.

The processes which are not in the current group should be

kept on a different queue, so that Linux scheduler will not be

able to see them. In order to implement this feature, we added

a new record to Linux kernel code. This record has the same

structure as the ‘active’ and ‘expired’ records described in [14]

and it holds the hidden processes.

When the last group finishes its execution, the medium-term

scheduler is invoked, and rebuilds the process groups, taking

into account any changes to the old processes (e.g. exited or

stopped) and adding any new processes to the groups.

Sometimes the current group finishes executing all the pro-

cesses within the time slice awarded to it by the medium-term

scheduler. Even if there are still some processes in the group,

these processes might be sleeping. If not all the processes in

the group are ready to be executed, the Linux scheduler has

Medium-Term Scheduler-Solution for Thrashing Effects 299

The Computer Journal Vol. 49 No. 3, 2006



been modified to invoke the medium-term scheduler, which

promptly switches to the next waiting group.

The medium-term scheduler takes the sum of the memory

sizes that are currently needed by the processes and divides

this sum by the available physical memory size. The quotient

is taken to be the number of bins. After that, the medium-term

scheduler scatters the processes between these bins. The

medium-term scheduler uses the greedy algorithm until the

medium-term scheduler is unable to fit another process into

the bins. Next, the medium-term scheduler tries to find room

for all the remaining processes in the existing bins. If it fails to

find room in one of the existing bins, it exceeds the size of the

smallest bin by adding the unfitting process to it. The original

Bin Packing problem does not allow such an excess, but in this

case it might be preferable to have a few page faults within a

group than adding an additional bin.

One of our assumptions for a working solution is that

there exist a considerable number of processes for a good

bin packing, and some small memory demand processes are

even better. However, if one process demand is larger than the

available memory size, the solution will not be effective and

the process will thrash within itself. In fact, most of the thrash-

ing cases are not caused by one process. However, if such a

case does occur, none of the solutions that has been presented

in Section 1 can be useful. In such a case, only the original

Linux solution that kills such a process will be beneficial, but it

can be harmful if the process is essential.

4.2. Swapping management

When the time slice of a group ends, a context switch of

groups will be performed. This context switch will probably

cause many page faults: the kernel uses its swap management

to make room for the processes of the new group and this pro-

cedure might be long and fatiguing. The previous group of

processes has most probably used up most of the available

physical memory, and when the swap thread executes the LRU

function to find the best pages to swap out to the disk, it will

probably find pages of the old group. This procedure is wasteful

because the paging function is performed separately for every

new required page. Linux kernel does not know at the context

switch time that the recently used pages of the previous group

will not be needed for a long time, and can be swapped out.

In order to overcome this Linux kernel management, we

modified Linux kernel as follows: when the medium-term

scheduler is invoked, it calls the Linux swap management func-

tions to swap out all of the pages that belong to the processes of

the previous group. This gives Linux a significant amount of

empty frames for the new group. This swapping management

approach is much quicker than incrementally loading the pages

of the new process group, and for each page fault searching

for the oldest page in the physical memory to swap out. When a

round of the medium-term scheduler is completed, the medium-

term scheduler will rebuild the process groups and some

processes may migrate from one group to another; hence the

medium-term scheduler does not call the Linux swap manage-

ment at this point, because it might swap out pages that may be

needed again for the next group.

4.3. Shared memory

Often, two or more processes share some memory. Shared

memory widely exists in most of the operating systems

and Linux has some tools to handle it too.

When using the medium-term scheduler, it will be ineffi-

cient to put two processes that share a large piece of memory

into two different groups of processes. For example, consider

the following scenario:

Suppose processes A and B share a piece of memory, pro-

cess A is of group #1 and process B is of group #3. After group

#1 completes its execution, the pages of group #1 are swapped

out and the pages of group #2 are loaded and placed in the

physical memory instead, as we explained in the previous

section. The same swapping happens when the operating sys-

tem replaces group #2 by group #3. The pages of process B are

loaded by demand, so the same pages, albeit not all of them,

are loaded and swapped twice, once for process A and once

again for process B.

This situation is illogical and inefficient; hence, the

medium-term scheduler must put processes with a large

shared memory in the same group.

In order to tackle this situation we must know which pro-

cesses share pages, and which pages they share. Each process

that uses a page increments the ‘count’ field of the page [30],

so reading this field can easily let the Linux know which pages

are shared. However, the medium-term scheduler must still

know which processes use the page. A naive approach would

be searching the page table of all the processes, in order

to extract the addresses of the given pages. Obviously, this

will be very time-consuming and will probably impair the

medium-term scheduler efficiency.

It frequently happens that applications which share a piece

of memory will have an almost equal size of shared memory. If

the shared memory stems from a ‘fork’ system call, the child

process will be created from its parent; hence the size of the

shared memory in the parent process and the child process will

be almost equal, unless the child or the parents allocate a large

piece of new shared memory. The same will be correct, if

processes share an IPC or a common text segment. If there is

no other shared memory obtained by just one of the processes,

the shared memory size will be almost equal.

Figure 1 shows the shared memory size in some common

cases. The data was obtained from a running Linux machine

that serves the computer science department in Bar-Ilan Uni-

versity. Many processes do not have shared memory and they

have been omitted from the figure. However, when processes

do share memory, it can be seen that they usually have the

same size of shared memory.

300 M. Reuven and Y. Wiseman

The Computer Journal Vol. 49 No. 3, 2006



Linux calculates the shared memory size of each process.

Based on the shared size characteristic, we would like to

suggest a simple solution for the issue of large shared memory.

When the medium-term scheduler recalculates the bins of the

processes, it will first sort the vector of the processes by the

shared memory size. Then, using the greedy approximation,

the processes with almost equal shared memory size will

usually be in the same bin or in adjacent bins; hence no

swapping will be needed when replacing the pages of two

processes with shared memory.

We have chosen to use insertion sort for this. Since we use

the old sorted list of processes, insertion sort is executed in the

shortest time [31].

4.4. Group time slice

Sometimes we can be lucky and the sizes of the total memory

needs in all the different groups are almost equal. This is the

best situation, because a fixed time slice that will be given to

the groups is usually quite fair. However, when the sizes of

the total memory allocations are significantly different,

some processes might get an implicit high priority. When

the medium-term scheduler uses the greedy approximation,

such a situation usually occurs when the last processes are

assigned to a bin. The last bin is sometimes almost empty;

hence the processes in this bin gain precedence, because in the

time slice of this bin, there are less processes vying for CPU

cycles. It should be noted that when the size of the last bin is

not small, this solution will function efficiently.

One possible solution is breaking up small groups and

scattering processes that belong to the small groups in other

groups. This solution can be good if the size of the small group

is not big and when there is just one small group. If the size of

the small group is big, scattering it might cause thrashing in the

other groups.

A better solution can be a dynamic group time slices,

instead of a constant time slice. For example if the size vector

is [1,1,0.5] and the default group time slice is one second, the

medium-term scheduler should assign each of the first two

groups one second, whereas the last group will get only 0.5 s.

(The vector represents the group’s memory size as the total

memory allocations divided by the total memory available for

user application). This solution gave us the best results; there-

fore it has been implemented.

4.5. Interactive processes

The interactive processes should be dealt with differently. If

we treat them the same way as the non-interactive processes,

they will not be able to be executed as long as their group is not

current. Interactive processes need fast response time and a

few seconds delay can be a major drawback.

To remedy this drawback, the scheduler allows an inter-

active process which can be identified by directly quantifying

the I/O between an application and the user (keyboard, mouse

and screen activity) [32] to run in each of the process groups.

So, actually the process will belong to all the groups, but with a

smaller time slice in each group:

p! time_slice ¼ time_sliceðpÞ
num_of_groups

:

This feature can assure us a short response time for interactive

processes while keeping fairness towards other processes. The

resident pages of interactive processes will be marked as low

priority swappable, so the kernel will not swap out interactive

processes when a group context switch is done. However, the

scheduler has to calculate the memory needs of interactive

processes in every group.

When a new process is admitted, it will be handled as an

interactive process. The operating system cannot know

whether the new process is interactive and if the execution

of this process is delayed, it will be irritating for interactive

processes. After one round of the bins, the scheduler can assess

the nature of the process and treat it accordingly.

0

1

2

3

4

5

6

7

8

9

Kde
ini

t

Kde
ini

t

Kde
ini

t

Kde
init

Kde
ini

t

Em
ac

s

Em
ac

s

Em
ac

s
Bas

h
Bas

h
Bas

h

Sen
dm

ail

se
ndm

ail

Ben
ch

8

Ben
ch

8

Ben
ch

8

process name

M
b

yt
es

o
f

sh
ar

ed
m

em
o

ry

FIGURE 1. Shared memory size of common processes.

Medium-Term Scheduler-Solution for Thrashing Effects 301

The Computer Journal Vol. 49 No. 3, 2006



4.6. Real-time processes

The handling of real-time processes is somewhat similar

to interactive processes. Real-time processes must get the

CPU as fast as possible. The management of these processes

will be the same as interactive processes, but with a slight

difference. Real-time processes will belong to all the groups,

as the interactive processes do, but they will not have a

shrunken time slice.

The kernel will not swap out real-time processes, because

they belong to all the groups. In addition, real-time processes

will have the same privilege Linux traditionally gives them.

It should be noted that the scheduler has to calculate their

memory needs in every group as the scheduler did for the

interactive processes. This handling is identical for FIFO

real-time processes and for RR real-time processes. This treat-

ment has also been applied to the ‘init’ process and the ‘Idle

and Swapper’ process of Linux, which cannot be suspended.

4.7. Priority

Another important issue of the Bin Packing scheduling dis-

cussion is the priority management. Hypothetically, it might

happen that the highest priority processes belong to one group,

whereas the lowest priority processes belong to another. Then,

when Linux switches between the processes within the groups,

the priority is not taken into account.

One solution can be finding out how many bins there

should be, by calculating the total size of the memory

needs and dividing by the size of the available physical

memory (the size of the bin), just as the medium-term sched-

uler always does, then sorting the process list by priority, and

finally taking the processes from the sorted list and filling

the bins in a Round-Robin manner. This solution cannot be

implemented together with the shared pages solution, because

the shared pages solution requires sorting by the number of

the shared pages, rather than by the priority.

Another solution is assigning a different time slice to

each group, according to the average priority of the processes

inside the group. For each group the average priority is

calculated. A group having a high average priority will be

awarded a longer time slice. This solution was chosen

based on the results that are shown in Section 5.4.

5. EVALUATION AND RESULTS

5.1. Testbed

We tested the performance of the kernel with the new

scheduling approach using five different benchmarks to get

the widest view we could

(i) SPEC—cpu2000 [33]. The SPEC manual explicitly

notes that attempting to run the suite with less than

256 MB of memory will cause a measuring of the

paging system speed instead of the CPU speed. This

suits us well, because our aim is precisely to measure

the paging system speed; hence, we used a machine

with just 128 MB of RAM. Using machine with a

larger RAM would have forced us not to use SPEC.

(ii) A synthetic benchmark that forks processes which

demand a constant number of pages—8 MB. The pro-

cesses use the memory in a random access; therefore

they cause thrashing. This benchmark was tested

within the range of 16–136 MB. The parent process

forks processes whose total size is the required one and

collects the information from the children. Let us

denote this test by SYN8.

(iii) Matlab formal benchmark. This benchmark executes

six different Matlab tasks described in [34].

(iv) Another synthetic benchmark using massive shared

memory allocations. The test has two processes that

share 16 MB and has 2 more MB for each one of the

processes. The processes copy parts of their private

memory into the shared memory and parts of the

shared memory into their private memory in a random

access. The benchmark consists of a number of such

tests according to the desired size. Let us denote this

test as SYNSHARED.

(v) For interactive and real-time processes, we used the

Xine MPEG viewer. It was used to show a short video

clip in a loop.

The benchmarks were executed on a Pentium 2.4 GHz with

128 MB RAM and a cache of 1 MB running Linux kernel

2.6.9 with Fedora core 2 distribution. The size of the page was

4 KB. It should be noted that even though the platform

machine had 128 MB of physical memory, we should

take into the bin size considerations that a certain portion

of this memory is occupied by the daemons of Linux/RedHat

and the X-windows, plus the kernel itself along with its

threads. After an evaluation of the extra size, we used bins

of 96 MB.

5.2. Execution time

Figure 2a and b show the performance of the synthetic bench-

mark SYN8. Figure 2a shows the number of swaps that were

performed in both the schedulers as a function of the total size

of the processes, whereas Figure 2b shows the execution time

of SYN8 as a function of the same processes’ total size. In

these figures, the medium-term scheduler time slice was one

second.

It can be seen that when the size of the processes is too large,

Linux starts swapping in and out many more pages. From

roughly 64 MB Linux swaps more pages, but there is no

noteworthy influence on the I/O time, because Linux lets

other processes run while the I/O is performed. Roughly,

from 128 MB the I/O buffer is incapable of responding to

all the paging requests, and the thrashing becomes acute.

302 M. Reuven and Y. Wiseman

The Computer Journal Vol. 49 No. 3, 2006



The medium-term scheduler dramatically reduces the number

of page faults; thus, fewer swaps are performed and the

execution time remains reasonable. Processes that require

144 MB or more were sustainable for the medium-term sched-

uler, but not for the Linux scheduler.

We also employed Matlab formal benchmark. Matlab

benchmark is a very memory-consuming process. It takes

�290 MB with Matlab 7.0.0.19901 (R14) running on our

Linux 2.6.9 machine, but when memory pressure becomes

high, Matlab will be able to continue working when just

28 MB are resident in the physical memory, whereas

14 MB of them are shared memory with other possible

Matlab processes. When we executed several Matlab pro-

cesses in parallel, the results were very similar to the synthetic

benchmark. However, a significantly larger portion of the

swap area was necessary, because just 14 MB out of each

Matlab process was physically in the internal memory and

the other memory allocations (except of the shared allocation)

of the Matlab processes were in the swap area. We preferred

not to reshow the results that are almost the same as those in

Figure 2a and b and instead preferred to show in the following

figures different benchmark results.

Figure 3a and b show the performance of the medium-term

scheduler versus the Linux kernel using the tests of SPEC

cpu2000 benchmarks. The prefix 3 (or 2) before the test

name indicates that we iterated the test 3 (or 2) times.

Sometimes we divided the numbers by some constants

in order to fit the data to the scale of the diagram. These

constants are denoted as Test/Constant. When we used

more than one test, we added a ‘+’ sign between the names

of the tests.

When each group contains just a few memory-consuming

processes, the idle task might be invoked too often, even

though there are other processes in other groups that can be

executed. This can reduce the time saved by eliminating the

thrashing effect. When a test has large memory allocations

and is executed in a different group, the results will not be as

good as when executing several smaller SPEC tests concur-

rently in one group. A higher idle time will emerge when the

content of each group is just one process; thus the results of

0

1

2

3

4(a)

(b)

16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136

Processes' total size

sw
ap

s
(m

ill
io

n
s)

Strict Linux Medium-Term Scheduler

0

2

4

6

8

10

16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136

Processes' total size

T
im

e
(h

o
u

rs
)

Strict Linux Medium-Term Scheduler

FIGURE 2. (a) SYN8’s number of swaps. (b) SYN8’s execution time.

Medium-Term Scheduler-Solution for Thrashing Effects 303

The Computer Journal Vol. 49 No. 3, 2006



Figure 3a and b are not as good as the results of Figures 2a

and b. However, the elimination of the thrashing saved more

time than was wasted idling, and the medium-term scheduler

still outperforms the traditional Linux scheduler.

Figure 4a and b show the effect of the medium-term sched-

uler time slice on the process’ execution time. The tests were

conducted using SPEC. It can be seen that when the time slice

exceeds a certain limit, the execution time might suffer. This

damage is caused by the higher average idle time. When the

number of processes per group is too small, it may happen that

none of the processes in the current group is on the Ready

queue. Such a case may happen due to many I/O operations.

Clearly, this might turn out with a lower group time slice as

well, but it will not happen as often as with a higher time slice,

because at the beginning of the time slice all the processes are

usually ready to run and not waiting for an I/O.

When the time slice is higher, the cycle will be longer. An

extremely high time slice will actually make the medium-term

scheduler behave like an FIFO scheduler. On the other hand,

the page faults rate is lower for the one second scheduler,

because of the longer time slice. Pages are usually swapped

out when the group context is switched, so if all the pages are

replaced on context switch, the half-a-second scheduler should

have double the number of page faults compared with that of

the one second scheduler. However, sometimes the bins are

not full, and some shared memory can be present, so the ratio

between the number of page faults is actually less than 2.

Figure 5 shows the same time slices but with more pro-

cesses. This test was conducted using the synthetic benchmark

SYN8. It can be clearly seen that the effect of increasing time

slice damages the execution time when processes for more

than one bin are present.

5.3. The Bin Packing approximations

There are more than a few approximations for the Bin Packing

optimal solution. Some of them have been mentioned in

Section 3. Figure 6a and b compare two of these approxima-

tions. The First-Fit approximation (also known as the greedy

approximation) is described in Section 4.1. The Best-Fit

Approximation finds for each process the most unfilled bin

and put the process in it.

When there is almost no shared memory, the performance of

both methods will be almost the same. However, when a

0
1
2
3
4
5
6
7(a)

(b)

3b
zip

2
3g

zip

3g
ap

/10

(g
zip

+3v
pr

)/2

(g
ap+

5p
erlb

m
k+

3m
cf)

/30

bz
ip2

+p
ar

se
r+

vo
rte

x

gc
c+

gzip
+vp

r

2c
ra

fty
+2p

er
lbm

k

Test name

sw
ap

s
(m

ill
io

n
s)

Linux Scheduler

Medium-Term Scheduler

0

0.5

1

1.5

3b
zip

2
3g

zip

3g
ap/1

0

(g
zip

+3v
pr

)/2

(g
ap

+5p
er

lbm
k+

3m
cf

)/3
0

bzip
2+

pa
rs

er+
vo

rte
x

gc
c+

gz
ip+

vp
r

2c
ra

fty
+2p

er
lbm

k

Test name

T
im

e
(h

o
u

rs
)

Linux Scheduler

Medium-Term Scheduler

FIGURE 3. (a) SPEC’s number of swaps. (b) SPEC’s execution time.

304 M. Reuven and Y. Wiseman

The Computer Journal Vol. 49 No. 3, 2006



significant amount of shared memory is allocated, the First-Fit

approach outperforms the Best-Fit approach. The benchmark

that was used in Figure 6a and b is SYNSHARED. Figure 6a

compares the number of swaps using each of the methods.

First-Fit sorts the processes according to their shared size;

hence usually processes that share a portion of memory

will be in the same group. As was explained in Section 4.3

processes that share memory typically have the same number

0
1
2
3
4
5
6
7
8(a)

(b)

3b
zip

2
3g

zip

3g
ap

/10

(g
zip

+3v
pr

)/2

(g
ap

+5
pe

rlb
m

k+
3m

cf
)/3

0

bz
ip2

+par
se

r+
vo

rte
x

gc
c+

gz
ip+

vp
r

2c
ra

fty
+2p

erlb
m

k

Test name

sw
ap

s
(m

ill
io

n
s)

1/2 second

1 second

0

0.25

0.5

0.75

1

3b
zip

2
3g

zip

3g
ap

/10

(g
zip

+3v
pr

)/2

(g
ap

+5
per

lbm
k+

3m
cf)

/3
0

bz
ip2

+pa
rs

er
+vo

rte
x

gc
c+

gzip
+vp

r

2c
ra

fty
+2p

erlb
m

k

Test name

T
im

e
(h

o
u

rs
)

1/2 second

1 second

FIGURE 4. (a) Time slice’s effect on number of swaps. (b) Time slice’s effect on execution time.

0

0.5

1

1.5

16 32 48 64 80 96 112 128

processes' total size

T
im

e
(h

o
u

rs
)

2 seconds

1second

FIGURE 5. Execution time as a function of processes’ total size.

Medium-Term Scheduler-Solution for Thrashing Effects 305

The Computer Journal Vol. 49 No. 3, 2006



of shared pages. As a result, they will be in adjacent positions

in the sorted list and probably will be put in the same group.

Therefore, less page faults will occur. Best-Fit cannot guar-

antee this quality; hence, the performance will not be as good

as that of First-Fit. The higher number of page faults causes a

longer execution time as can be seen in Figure 6b.

5.4. Evaluation of the priority implementations

The priority can be implemented by another approximation

which first determines how many bins there should be. Next,

it sorts the processes by their priority and finally, it fills the

bins in a Round-Robin manner. This method can scatter the

higher priority processes (and the lower priority processes)

among the bins, more or less equally. However, the shared

memory handling requires a sorting by the shared size; hence,

if there are many processes with shared memory allocations,

this approach can lengthen the execution time.

Another approach implements the priority by dynamically

changing the time slice according to the average priority of the

processes in the group. This approach sorts the processes by

their shared memory sizes and builds bins using a First-Fit

version that has been introduced above. Actually, this

approach performs the same procedure of building the bins,

but each group gets a dynamically different time slice, accord-

ing to the average priority of the group. The medium-term

scheduler calculates the global average priority of all the pro-

cesses currently run and the average priority of the processes

in each group. Next, it calculates the difference between the

average of each group and the global average. Let us denote

this vector of differences as D and the global average priorities

of all the processes as P. Then, the medium-term scheduler

gives each group (D[i] + P)/P�TS, where TS is the default

group time slice and i is the index the group.

Figure 7 shows the differences between the approaches. We

used the SPEC benchmark. We took in each test one process

and we awarded it the highest priority: �20. We always took

another process and demoted its priority to the lowest one: 19.

The tests are written on the x-axis. The promoted test is written

below. We did not change any other process’ priority. The

default group slice time was one second.

The differences between the two strategies can be clearly

shown when using the SYNSHARED benchmark. Because of

the massive use of shared memory, the sorting by shared

memory strategy will dramatically outperform the sorting

by priority strategy. The results of the SYNSHARED are

shown in Figure 8a and b. Figure 8a shows the influence of

the strategies on the number of swaps. This is quite a dramatic

0

250

500

750

1000

125(a)

(b)

0

16 32 48 64 80 96 112 128 144 160

20 40 60 80 100 120 140 160 180 200

Processes' total size

sw
ap

s
(t

h
o

u
sa

n
d

s)

First Fit

Best Fit

0

1

2

3

4

5

16 32 48 64 80 96 112 128 144 160

20 40 60 80 100 120 140 160 180 200

Processes' total size

T
im

e
(h

o
u

rs
)

First Fit

Best Fit

FIGURE 6. (a) Number of swaps using Best-Fit or First-Fit. (b) Execution time using Best-Fit or First-Fit.

306 M. Reuven and Y. Wiseman

The Computer Journal Vol. 49 No. 3, 2006



difference. The difference of the execution time is notable

as well.

5.5. Interactive and real-time processes

The interactive and real-time processes were checked using

the Xine movie player. It is a well-known MPEG player on

Linux machines. We configured Xine to play a short video clip

in a loop. The memory needs of Xine are much lower than

those of the physical RAM we had in our machine. In order to

check that Xine will continue to respond even when the mem-

ory is overloaded, we deliberately overfilled the memory by

executing many copies of SYN8. The results of this test can be

found in Figure 9. When the movie player process is not

0

0.5

1

1.5

2

gz
ip+

vp
r+

gc
c

2c
ra

fty
+2

pe
rlb

mk

2b
zip

2+
pa

rse
r+

2v
or

tex

gz
ip+

3v
pr

gcc 2perbmk 2bzip2 gzip

Test name

T
im

e
(h

o
u

rs
)

Sort by shared mem

Sort by priority

FIGURE 7. Different sorting strategies of the medium-term scheduler.

0

200

400

600

800

1000

120(a)

(b)

0

48 64 80 96 112 128 144 160

60 80 100 120 140 160 180 200

Processes' total size

sw
ap

s
(t

h
o

u
sa

n
d

s)

Sort by shared mem

Sort by priority

0

1

2

3

4

5

48 64 80 96 112 128 144 160

60 80 100 120 140 160 180 200

Processes' total size

T
im

e
(h

o
u

rs
)

Sort by shared mem

Sort by priority

FIGURE 8. (a) SYNSHARED’s number of swaps with different sorting methods. (b) SYNSHARED’s execution time with different sorting

methods.

Medium-Term Scheduler-Solution for Thrashing Effects 307

The Computer Journal Vol. 49 No. 3, 2006



handled as an interactive process, many frames are lost. When

Xine’s bin is not active, no CPU time is given and no frames

can be displayed. Even when a CPU time is given, if the slice

is reduced because of the overall load, sometimes the given

slice is not enough and just when the process is handled as a

real-time process, a good result can be achieved. We also

reniced Xine by �20. This yielded interesting results. The

results were better than those of the interactive mode, because

interactive processes’ time slice is reduced when there are too

many bins, whereas the reductions of the time slice of bins

include a high priority process which is smaller. On the other

hand, a high priority process does not have the privileges

Linux gives to real-time processes, so the results are worse

than those of the real-time mode.

6. CONCLUSIONS AND FUTURE WORK

The results of the experiments are promising. Given a high

memory load used by some processes, the medium-term

scheduler can drastically reduce the thrashing overhead. In

addition, no decline in the performance is observed when

the load is low and no swapping is needed. The medium-

term scheduler has been written as a patch to the kernel

and can be easily installed on any Linux machine. Such an

installation can help the machine to handle the massive paging

in a more tolerant way than to kill processes. Moreover, the

responsiveness keeps being reasonable for heavier load. The

medium-term scheduler does not require special resources or

extensive needs; hence, it can be easily adapted by many

Linux machines. Furthermore, there is no obstruction to

implement the medium-term scheduler on a cluster; hence,

heavy load projects like the Human Genome project can bene-

fit from such a kernel.

In the future, we would like to check the performance of

other approximations for the Bin Packing problem and even to

adaptively change the approximation according to the current

conditions in the system. In addition, we would like to

dynamically change the group time slice of the medium-

term scheduler. This feature can improve the performance

when there are too few processes and the idle process is

invoked too often.

REFERENCES

[1] Zahorjan, J., Lazowsk, E. and Eager, D. (1991) The effect of

scheduling discipline on spin overhead in shared memory mul-

tiprocessors. IEEE Trans. Parall. Distr. Syst., 2(2), pp.180–198.

[2] Denning, P. (1970) Virtual memory. ACM Comput. Surv., 2(3),
153–189.

[3] Belady, L. A. (1966) A study of replacement algorithms for

virtual storage computers. IBM Syst. J., 5(2), 78–101.

[4] Abrossimov, V., Rozier, M. and Shapiro, M. (1989) Virtual

memory management for operating system kernels. In Proc.

12th ACM Symp. Operating Systems Principles, Litchfield

Park, AZ, December 3–6, pp. 123–126. ACM SIGOPS,

New York.

[5] Galvin, P. B. and Silberschatz, A. (1998) Operating System
Concepts (6th edn). Addison Wesley Longman, Harlow, MA.

[6] Jiang, S. and Zhang, X. (2001) Adaptive page replacement to

protect thrashing in Linux. Proc. 5th USENIX Annual Linux

Showcase and Conf., (ALS’01), Oakland, CA, November

5–10, pp. 143–151. USENIX, Berkeley.

[7] Jiang, S. and Zhang, X. (2002) TPF: a system thrashing pro-

tection facility. Softw. Pract. Exp., 32(3), 295–318.

[8] Batat, A. and Feitelson, D. G. (2000) Gang scheduling with

memory considerations. In Proc. 14th Int. Parallel and

Distributed Processing Symp. (IPDPS’2000), Cancun, Mexico,

May 1–5, pp. 109–114. IEEE, Los Alamitos.

[9] Nikolopoulos, D. S. (2003) Malleable memory mapping: user-

level control of memory bounds for effective program adapta-

tion. Proc. 17th Int. Parallel and Distributed Processing Symp.

(IPDPS’2003), Nice, France, April 22–26, volume published in

CD-ROM. IEEE, Los Alamitos.

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5

no. of bins

fr
am

e
lo

ss
(%

)

regular

interactive

reniced

real-time

FIGURE 9. Frame loss as function of the number of bins.

308 M. Reuven and Y. Wiseman

The Computer Journal Vol. 49 No. 3, 2006



[10] Gonzalez, A., Valero, M., Topham, N. and Parcerisa, J. M.

(1997) Eliminating cache conflict misses through XOR-based

placement functions. In Proc. Int. Conf. Supercomputing,

Vienna, Austria, July 7–11, pp. 76–83. ACM, New York.

[11] Chu, Y. and Ito, M. R. (2000) The 2-way thrashing-avoidance

cache (TAC): an efficient instruction cache scheme for object-

oriented languages. In Proc. 17th IEEE Int. Conf. Computer

Design (ICCD2000), Austin, TX, September 17–20, pp. 93–98.

IEEE, Los Alamitos.

[12] Card, R., Dumas, E. and Mevel, F. (1998) The Linux Kernel
Book. John Wiley & Sons, New York.

[13] Vahalia, U. (1996) UNIX Internals: The New Frontiers. Prentice
Hall, New Jersey, pp. 112–148.

[14] Beck, M., Bohme, H., Dziadzka, M., Kunitz, U., Magnus, R. and

Verworner, D. (1998) Linux Kernel Internals. (2nd edn).

Addison Wesley, Longman, Harlow, MA.

[15] Komarinski, M. F. and Collett, C. (1998) Linux System
Administration Handbook. Prentice Hall, New Jersey.

[16] Gorman, M. (2004) Understanding The Linux Virtual Memory
Management. Chapter 13. Bruce Peren’s Open Book Series,

New Jersey, pp. 117–122.

[17] Marti, D. (2002) System development jump start class.

Linux J., 7.

[18] Jiang, S. and Zhang, X. (2005) Token-ordered LRU: an effect-

ive page replacement policy and implementation in Linux

systems. Perform. Evaluat., 60(1–4), 5–29.

[19] Scholl, A., Klein, R. and Jurgens, C. (1997) BISON: a fast

hybrid procedure for exactly solving the one-dimensional bin

packing problem. Comput. Oper. Res., 24, 627–645.

[20] Karp, R. M. (1972) Reducibility among combinatorial prob-

lems. In Miller, R. E. and Thatcher, J. M. (eds), Complexity
of Computer Computations. pp. 85–103. Plenum Press,

New York.

[21] Fekete, S. P. and Schepers, J. (2001) New classes of fast lower

bounds for bin packing problems. Math. Program., 91(1), 11–31.

[22] Fleszar, K. and Hindi, K. (2002) New heuristics for one-

dimensional bin packing. Comput. Oper. Res., 29(7), 821–839.

[23] Gent, I. (1998) Heuristic solution of open bin packing problems.

J. Heuristics, 3, 299–304.

[24] Martello, S. and Toth, P. (1990) Lower bounds and reduction

procedures for the bin packing problem. Discrete Appl. Math.,
28, 59–70.

[25] Coffman, E. G. Jr, Garey, M. R. and Johnson, D. S. Approx-

imation algorithms for bin packing: a survey. In Hochbaum, D.

(ed.), Approximation Algorithms for NP-Hard Problems,
pp. 46–93. PWS Publishing, Boston.

[26] Albers, S. and Mitzenmacher, M. (2000) Average-case analyses

of first fit and random fit bin packing. Random Struct. Algor., 16,
240–259.

[27] Alverson, G., Kahan, S., Korry, R., McCann, C. and Smith, B.

(1995) Scheduling on the Tera MTA. Proc. 1st Workshop

on Job Scheduling Strategies for Parallel Processing, in

conjunction with IPPS ’95 Fess Parker’s Red Lion Resort,

Santa Barbara, CA, April 25, pp. 19–44. Springer-Verlag,

Berlin.

[28] Stallings, W. (1998) Operating Systems Internals and Design
Principles (3rd edn), p. 383. Prentice-Hall, New-Jersey.

[29] Zhou, P., Pandey, V., Sundaresan, J., Raghuraman, A., Zhou, Y.

and Kumar, S. (2004) Dynamically tracking miss-ratio-

curve for memory management. Proc. Eleventh Int.

Conf. Architectural Support for Programming Languages

and Operating Systems (ASPLOS’04), Boston, MA, October

7–13, pp. 177–188.

[30] Bovet, D. and Cesati, M. (2003) Undersatnding the Linux
Kernel (2nd edn), Chapter 7. O’Reilly Press, Sebastopol, CA,

pp. 216–232.

[31] Manber, U. (1989) Introduction to Algorithms—A Creative
Approach, pp. 130–131. Addison-Wesley, Harlow, MA.

[32] Etsion, Y., Tsafrir, D. and Feitelson, D. G. (2004) Desktop

scheduling: how can we know what the user wants? Proc.

14th ACM Int. Workshop on Network & Operating Systems

Support for Digital Audio & Video (NOSSDAV’2004), Cork,

Ireland, June 16–18, pp. 110–115. ACM, New York.

[33] SPEC (2000), CPU-2000. Standard Performance Evaluation

Corporation, Warrenton, VA. Available at http://www.spec.org/.

[34] BENCH—MATLAB Benchmark (2004) Matlab Performance
Tests. The MathWorks, Inc., Natick, MA, Available at http://

www.mathworks.com/.

Medium-Term Scheduler-Solution for Thrashing Effects 309

The Computer Journal Vol. 49 No. 3, 2006

http://www.spec.org/
http://

