All of lore.kernel.org
 help / color / mirror / Atom feed
From: Michael Rolnik <mrolnik@gmail.com>
To: qemu-devel@nongnu.org
Cc: rth@twiddle.net, peter.maydell@linaro.org,
	Michael Rolnik <mrolnik@gmail.com>
Subject: [Qemu-devel] [PATCH v9 08/10] target-avr: adding instruction translation
Date: Fri,  1 Jul 2016 17:47:28 +0300	[thread overview]
Message-ID: <1467384450-7267-9-git-send-email-mrolnik@gmail.com> (raw)
In-Reply-To: <1467384450-7267-1-git-send-email-mrolnik@gmail.com>

Signed-off-by: Michael Rolnik <mrolnik@gmail.com>
---
 target-avr/translate-inst.c | 2636 +++++++++++++++++++++++++++++++++++++++++++
 target-avr/translate.h      |  119 ++
 2 files changed, 2755 insertions(+)
 create mode 100644 target-avr/translate-inst.c
 create mode 100644 target-avr/translate.h

diff --git a/target-avr/translate-inst.c b/target-avr/translate-inst.c
new file mode 100644
index 0000000..60fb8fe
--- /dev/null
+++ b/target-avr/translate-inst.c
@@ -0,0 +1,2636 @@
+/*
+ *  QEMU AVR CPU
+ *
+ *  Copyright (c) 2016 Michael Rolnik
+ *
+ *  This library is free software; you can redistribute it and/or
+ *  modify it under the terms of the GNU Lesser General Public
+ *  License as published by the Free Software Foundation; either
+ *  version 2.1 of the License, or (at your option) any later version.
+ *
+ *  This library is distributed in the hope that it will be useful,
+ *  but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ *  Lesser General Public License for more details.
+ *
+ *  You should have received a copy of the GNU Lesser General Public
+ *  License along with this library; if not, see
+ *  <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+#include "translate.h"
+#include "translate-inst.h"
+#include "qemu/bitops.h"
+
+static void gen_add_CHf(TCGv R, TCGv Rd, TCGv Rr);
+static void gen_add_Vf(TCGv R, TCGv Rd, TCGv Rr);
+static void gen_sub_CHf(TCGv R, TCGv Rd, TCGv Rr);
+static void gen_sub_Vf(TCGv R, TCGv Rd, TCGv Rr);
+static void gen_NSf(TCGv R);
+static void gen_ZNSf(TCGv R);
+static void gen_push_ret(CPUAVRState *env, int ret);
+static void gen_pop_ret(CPUAVRState *env, TCGv ret);
+static void gen_jmp_ez(void);
+static void gen_jmp_z(void);
+static void gen_data_store(CPUAVRState *env, TCGv data, TCGv addr);
+
+/*
+    in the following 2 functions
+    H assumed to be in 0x00ff0000 format
+    M assumed to be in 0x000000ff format
+    L assumed to be in 0x000000ff format
+*/
+static void gen_set_addr(TCGv addr, TCGv H, TCGv M, TCGv l); /* H:M:L = addr */
+static TCGv gen_get_addr(TCGv H, TCGv M, TCGv L);            /* addr = H:M:L */
+
+static void gen_set_xaddr(TCGv addr);
+static void gen_set_yaddr(TCGv addr);
+static void gen_set_zaddr(TCGv addr);
+
+static TCGv gen_get_xaddr(void);
+static TCGv gen_get_yaddr(void);
+static TCGv gen_get_zaddr(void);
+
+void gen_add_CHf(TCGv R, TCGv Rd, TCGv Rr)
+{
+    TCGv t1 = tcg_temp_new_i32();
+    TCGv t2 = tcg_temp_new_i32();
+    TCGv t3 = tcg_temp_new_i32();
+
+    tcg_gen_and_tl(t1, Rd, Rr);         /*  t1 = Rd & Rr  */
+    tcg_gen_andc_tl(t2, Rd, R);         /*  t2 = Rd & ~R  */
+    tcg_gen_andc_tl(t3, Rr, R);         /*  t3 = Rr & ~R  */
+    tcg_gen_or_tl(t1, t1, t2);          /*  t1 = t1 | t2 | t3  */
+    tcg_gen_or_tl(t1, t1, t3);
+
+    tcg_gen_shri_tl(cpu_Cf, t1, 7);     /*  Cf = t1(7)  */
+    tcg_gen_shri_tl(cpu_Hf, t1, 3);     /*  Hf = t1(3)  */
+    tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
+
+    tcg_temp_free_i32(t3);
+    tcg_temp_free_i32(t2);
+    tcg_temp_free_i32(t1);
+}
+
+void gen_add_Vf(TCGv R, TCGv Rd, TCGv Rr)
+{
+    TCGv t1 = tcg_temp_new_i32();
+    TCGv t2 = tcg_temp_new_i32();
+
+        /*  t1 = Rd & Rr & ~R | ~Rd & ~Rr & R = (Rd ^ R) & ~(Rd ^ Rr)   */
+    tcg_gen_xor_tl(t1, Rd, R);
+    tcg_gen_xor_tl(t2, Rd, Rr);
+    tcg_gen_andc_tl(t1, t1, t2);
+
+    tcg_gen_shri_tl(cpu_Vf, t1, 7);     /*  Vf = t1(7)  */
+
+    tcg_temp_free_i32(t2);
+    tcg_temp_free_i32(t1);
+}
+
+void gen_sub_CHf(TCGv R, TCGv Rd, TCGv Rr)
+{
+    TCGv t1 = tcg_temp_new_i32();
+    TCGv t2 = tcg_temp_new_i32();
+    TCGv t3 = tcg_temp_new_i32();
+
+    /*  Cf & Hf  */
+    tcg_gen_not_tl(t1, Rd);             /*  t1 = ~Rd  */
+    tcg_gen_and_tl(t2, t1, Rr);         /*  t2 = ~Rd & Rr  */
+    tcg_gen_or_tl(t3, t1, Rr);          /*  t3 = (~Rd | Rr) & R  */
+    tcg_gen_and_tl(t3, t3, R);
+    tcg_gen_or_tl(t2, t2, t3);          /*  t2 = ~Rd & Rr | ~Rd & R | R & Rr  */
+    tcg_gen_shri_tl(cpu_Cf, t2, 7);     /*  Cf = t2(7)  */
+    tcg_gen_shri_tl(cpu_Hf, t2, 3);     /*  Hf = t2(3)  */
+    tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
+
+    tcg_temp_free_i32(t3);
+    tcg_temp_free_i32(t2);
+    tcg_temp_free_i32(t1);
+}
+
+void gen_sub_Vf(TCGv R, TCGv Rd, TCGv Rr)
+{
+    TCGv t1 = tcg_temp_new_i32();
+    TCGv t2 = tcg_temp_new_i32();
+
+    /*  Vf  */
+        /*  t1 = Rd & ~Rr & ~R | ~Rd & Rr & R  = (Rd ^ R) & (Rd ^ R)*/
+    tcg_gen_xor_tl(t1, Rd, R);
+    tcg_gen_xor_tl(t2, Rd, Rr);
+    tcg_gen_and_tl(t1, t1, t2);
+    tcg_gen_shri_tl(cpu_Vf, t1, 7);     /*  Vf = t1(7)  */
+
+    tcg_temp_free_i32(t2);
+    tcg_temp_free_i32(t1);
+}
+
+void gen_NSf(TCGv R)
+{
+    tcg_gen_shri_tl(cpu_Nf, R, 7);          /*  Nf = R(7)  */
+    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /*  Sf = Nf ^ Vf  */
+}
+void gen_ZNSf(TCGv R)
+{
+    tcg_gen_mov_tl(cpu_Zf, R);              /*  Zf = R  */
+    tcg_gen_shri_tl(cpu_Nf, R, 7);          /*  Nf = R(7)  */
+    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /*  Sf = Nf ^ Vf  */
+}
+
+void gen_push_ret(CPUAVRState *env, int ret)
+{
+    if (avr_feature(env, AVR_FEATURE_1_BYTE_PC)) {
+
+        TCGv t0 = tcg_const_i32((ret & 0x0000ff));
+
+        tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_UB);
+        tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+
+        tcg_temp_free_i32(t0);
+    } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
+
+        TCGv t0 = tcg_const_i32((ret & 0x00ffff));
+
+        tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+        tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_BEUW);
+        tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+
+        tcg_temp_free_i32(t0);
+
+    } else if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
+
+        TCGv lo = tcg_const_i32((ret & 0x0000ff));
+        TCGv hi = tcg_const_i32((ret & 0xffff00) >> 8);
+
+        tcg_gen_qemu_st_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB);
+        tcg_gen_subi_tl(cpu_sp, cpu_sp, 2);
+        tcg_gen_qemu_st_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW);
+        tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+
+        tcg_temp_free_i32(lo);
+        tcg_temp_free_i32(hi);
+    }
+}
+
+void gen_pop_ret(CPUAVRState *env, TCGv ret)
+{
+    if (avr_feature(env, AVR_FEATURE_1_BYTE_PC)) {
+
+        tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+        tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_UB);
+
+    } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
+
+        tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+        tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_BEUW);
+        tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+
+    } else if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
+
+        TCGv lo = tcg_temp_new_i32();
+        TCGv hi = tcg_temp_new_i32();
+
+        tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+        tcg_gen_qemu_ld_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW);
+
+        tcg_gen_addi_tl(cpu_sp, cpu_sp, 2);
+        tcg_gen_qemu_ld_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB);
+
+        tcg_gen_deposit_tl(ret, lo, hi, 8, 16);
+
+        tcg_temp_free_i32(lo);
+        tcg_temp_free_i32(hi);
+    }
+}
+
+void gen_jmp_ez(void)
+{
+    tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8);
+    tcg_gen_or_tl(cpu_pc, cpu_pc, cpu_eind);
+    tcg_gen_exit_tb(0);
+}
+
+void gen_jmp_z(void)
+{
+    tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8);
+    tcg_gen_exit_tb(0);
+}
+
+void gen_set_addr(TCGv addr, TCGv H, TCGv M, TCGv L)
+{
+
+    tcg_gen_andi_tl(L, addr, 0x000000ff);
+
+    tcg_gen_andi_tl(M, addr, 0x0000ff00);
+    tcg_gen_shri_tl(M, M, 8);
+
+    tcg_gen_andi_tl(H, addr, 0x00ff0000);
+}
+
+void gen_set_xaddr(TCGv addr)
+{
+    gen_set_addr(addr, cpu_rampX, cpu_r[27], cpu_r[26]);
+}
+
+void gen_set_yaddr(TCGv addr)
+{
+    gen_set_addr(addr, cpu_rampY, cpu_r[29], cpu_r[28]);
+}
+
+void gen_set_zaddr(TCGv addr)
+{
+    gen_set_addr(addr, cpu_rampZ, cpu_r[31], cpu_r[30]);
+}
+
+TCGv gen_get_addr(TCGv H, TCGv M, TCGv L)
+{
+    TCGv addr = tcg_temp_new_i32();
+
+    tcg_gen_deposit_tl(addr, M, H, 8, 8);
+    tcg_gen_deposit_tl(addr, L, addr, 8, 16);
+
+    return  addr;
+}
+
+TCGv gen_get_xaddr(void)
+{
+    return  gen_get_addr(cpu_rampX, cpu_r[27], cpu_r[26]);
+}
+
+TCGv gen_get_yaddr(void)
+{
+    return  gen_get_addr(cpu_rampY, cpu_r[29], cpu_r[28]);
+}
+
+TCGv gen_get_zaddr(void)
+{
+    return  gen_get_addr(cpu_rampZ, cpu_r[31], cpu_r[30]);
+}
+
+/*
+    Adds two registers and the contents of the C Flag and places the result in
+    the destination register Rd.
+*/
+int avr_translate_ADC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[ADC_Rd(opcode)];
+    TCGv Rr = cpu_r[ADC_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /*  op  */
+    tcg_gen_add_tl(R, Rd, Rr);             /*  R = Rd + Rr + Cf  */
+    tcg_gen_add_tl(R, R, cpu_Cf);
+    tcg_gen_andi_tl(R, R, 0xff);            /*  make it 8 bits  */
+
+    gen_add_CHf(R, Rd, Rr);
+    gen_add_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    /*  R  */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return  BS_NONE;
+}
+
+/*
+    Adds two registers without the C Flag and places the result in the
+    destination register Rd.
+*/
+int avr_translate_ADD(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[ADD_Rd(opcode)];
+    TCGv Rr = cpu_r[ADD_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /*  op  */
+    tcg_gen_add_tl(R, Rd, Rr);             /*  Rd = Rd + Rr  */
+    tcg_gen_andi_tl(R, R, 0xff);            /*  make it 8 bits  */
+
+    gen_add_CHf(R, Rd, Rr);
+    gen_add_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    /*  R  */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return  BS_NONE;
+}
+
+/*
+    Adds an immediate value (0 - 63) to a register pair and places the result
+    in the register pair. This instruction operates on the upper four register
+    pairs, and is well suited for operations on the pointer registers.  This
+    instruction is not available in all devices. Refer to the device specific
+    instruction set summary.
+*/
+int avr_translate_ADIW(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_ADIW_SBIW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv RdL = cpu_r[24 + 2 * ADIW_Rd(opcode)];
+    TCGv RdH = cpu_r[25 + 2 * ADIW_Rd(opcode)];
+    int Imm = (ADIW_Imm(opcode));
+    TCGv R = tcg_temp_new_i32();
+    TCGv Rd = tcg_temp_new_i32();
+
+    /*  op  */
+    tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /*  Rd  = RdH:RdL   */
+    tcg_gen_addi_tl(R, Rd, Imm);            /*  R   = Rd + Imm  */
+    tcg_gen_andi_tl(R, R, 0xffff);          /*  make it 16 bits */
+
+    /*  Cf  */
+    tcg_gen_andc_tl(cpu_Cf, Rd, R);         /*  Cf  = Rd & ~R   */
+    tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15);
+
+    /*  Vf  */
+    tcg_gen_andc_tl(cpu_Vf, R, Rd);         /*  Vf  = R & ~Rd   */
+    tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15);
+
+    /*  Zf  */
+    tcg_gen_mov_tl(cpu_Zf, R);              /*  Zf = R          */
+
+    /*  Nf  */
+    tcg_gen_shri_tl(cpu_Nf, R, 15);         /*  Nf = R(15)      */
+
+    /*  Sf  */
+    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf);/*  Sf = Nf ^ Vf     */
+
+    /*  R  */
+    tcg_gen_andi_tl(RdL, R, 0xff);
+    tcg_gen_shri_tl(RdH, R, 8);
+
+    tcg_temp_free_i32(Rd);
+    tcg_temp_free_i32(R);
+
+    return  BS_NONE;
+}
+
+/*
+    Performs the logical AND between the contents of register Rd and register
+    Rr and places the result in the destination register Rd.
+*/
+int avr_translate_AND(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[AND_Rd(opcode)];
+    TCGv Rr = cpu_r[AND_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /*  op  */
+    tcg_gen_and_tl(R, Rd, Rr);             /*  Rd = Rd and Rr  */
+
+    /*  Vf  */
+    tcg_gen_movi_tl(cpu_Vf, 0x00);          /*  Vf = 0  */
+
+    /*  Zf  */
+    tcg_gen_mov_tl(cpu_Zf, R);             /*  Zf = R  */
+
+    gen_ZNSf(R);
+
+    /*  R  */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return  BS_NONE;
+}
+
+/*
+    Performs the logical AND between the contents of register Rd and a constant
+    and places the result in the destination register Rd.
+*/
+int avr_translate_ANDI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[ANDI_Rd(opcode) + 16];
+    int Imm = (ANDI_Imm(opcode));
+
+    /*  op  */
+    tcg_gen_andi_tl(Rd, Rd, Imm);   /*  Rd = Rd & Imm  */
+
+    tcg_gen_movi_tl(cpu_Vf, 0x00);          /*  Vf = 0  */
+    gen_ZNSf(Rd);
+
+    return  BS_NONE;
+}
+
+/*
+    Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit 0
+    is loaded into the C Flag of the SREG. This operation effectively divides a
+    signed value by two without changing its sign. The Carry Flag can be used to
+    round the result.
+*/
+int avr_translate_ASR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[ASR_Rd(opcode)];
+    TCGv t1 = tcg_temp_new_i32();
+    TCGv t2 = tcg_temp_new_i32();
+
+    /*  op  */
+    tcg_gen_andi_tl(t1, Rd, 0x80);      /*  t1 = (Rd & 0x80) | (Rd >> 1)  */
+    tcg_gen_shri_tl(t2, Rd, 1);
+    tcg_gen_or_tl(t1, t1, t2);
+
+    /*  Cf  */
+    tcg_gen_andi_tl(cpu_Cf, Rd, 1);         /*  Cf = Rd(0)  */
+
+    /*  Vf  */
+    tcg_gen_and_tl(cpu_Vf, cpu_Nf, cpu_Cf);/*  Vf = Nf & Cf  */
+
+    gen_ZNSf(t1);
+
+    /*  op  */
+    tcg_gen_mov_tl(Rd, t1);
+
+    tcg_temp_free_i32(t2);
+    tcg_temp_free_i32(t1);
+
+    return  BS_NONE;
+}
+
+/*
+    Clears a single Flag in SREG.
+*/
+int avr_translate_BCLR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    switch (BCLR_Bit(opcode)) {
+        case    0x00: {
+            tcg_gen_movi_tl(cpu_Cf, 0x00);
+            break;
+        }
+        case    0x01: {
+            tcg_gen_movi_tl(cpu_Zf, 0x01);
+            break;
+        }
+        case    0x02: {
+            tcg_gen_movi_tl(cpu_Nf, 0x00);
+            break;
+        }
+        case    0x03: {
+            tcg_gen_movi_tl(cpu_Vf, 0x00);
+            break;
+        }
+        case    0x04: {
+            tcg_gen_movi_tl(cpu_Sf, 0x00);
+            break;
+        }
+        case    0x05: {
+            tcg_gen_movi_tl(cpu_Hf, 0x00);
+            break;
+        }
+        case    0x06: {
+            tcg_gen_movi_tl(cpu_Tf, 0x00);
+            break;
+        }
+        case    0x07: {
+            tcg_gen_movi_tl(cpu_If, 0x00);
+            break;
+        }
+    }
+
+    return  BS_NONE;
+}
+
+/*
+    Copies the T Flag in the SREG (Status Register) to bit b in register Rd.
+*/
+int avr_translate_BLD(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[BLD_Rd(opcode)];
+    TCGv t1 = tcg_temp_new_i32();
+
+    tcg_gen_andi_tl(Rd, Rd, ~(1u << BLD_Bit(opcode)));  /*  clear bit   */
+    tcg_gen_shli_tl(t1, cpu_Tf, BLD_Bit(opcode));       /*  create mask */
+    tcg_gen_or_tl(Rd, Rd, t1);
+
+    tcg_temp_free_i32(t1);
+
+    return  BS_NONE;
+}
+
+/*
+    Conditional relative branch. Tests a single bit in SREG and branches
+    relatively to PC if the bit is cleared. This instruction branches relatively
+    to PC in either direction (PC - 63 < = destination <= PC + 64). The
+    parameter k is the offset from PC and is represented in two’s complement
+    form.
+*/
+int avr_translate_BRBC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGLabel   *taken = gen_new_label();
+    int Imm = sextract32(BRBC_Imm(opcode), 0, 7);
+
+    switch (BRBC_Bit(opcode)) {
+        case    0x00: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Cf, 0, taken);
+            break;
+        }
+        case    0x01: {
+            tcg_gen_brcondi_i32(TCG_COND_NE, cpu_Zf, 0, taken);
+            break;
+        }
+        case    0x02: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Nf, 0, taken);
+            break;
+        }
+        case    0x03: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Vf, 0, taken);
+            break;
+        }
+        case    0x04: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Sf, 0, taken);
+            break;
+        }
+        case    0x05: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Hf, 0, taken);
+            break;
+        }
+        case    0x06: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Tf, 0, taken);
+            break;
+        }
+        case    0x07: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_If, 0, taken);
+            break;
+        }
+    }
+
+    gen_goto_tb(env, ctx, 1, ctx->inst[0].npc);
+    gen_set_label(taken);
+    gen_goto_tb(env, ctx, 0, ctx->inst[0].npc + Imm);
+
+    return BS_BRANCH;
+}
+
+/*
+    Conditional relative branch. Tests a single bit in SREG and branches
+    relatively to PC if the bit is set. This instruction branches relatively to
+    PC in either direction (PC - 63 < = destination <= PC + 64). The parameter k
+    is the offset from PC and is represented in two’s complement form.
+*/
+int avr_translate_BRBS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGLabel   *taken = gen_new_label();
+    int Imm = sextract32(BRBS_Imm(opcode), 0, 7);
+
+    switch (BRBS_Bit(opcode)) {
+        case    0x00: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Cf, 1, taken);
+            break;
+        }
+        case    0x01: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Zf, 0, taken);
+            break;
+        }
+        case    0x02: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Nf, 1, taken);
+            break;
+        }
+        case    0x03: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Vf, 1, taken);
+            break;
+        }
+        case    0x04: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Sf, 1, taken);
+            break;
+        }
+        case    0x05: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Hf, 1, taken);
+            break;
+        }
+        case    0x06: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Tf, 1, taken);
+            break;
+        }
+        case    0x07: {
+            tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_If, 1, taken);
+            break;
+        }
+    }
+
+    gen_goto_tb(env, ctx, 1, ctx->inst[0].npc);
+    gen_set_label(taken);
+    gen_goto_tb(env, ctx, 0, ctx->inst[0].npc + Imm);
+
+    return BS_BRANCH;
+}
+
+/*
+    Sets a single Flag or bit in SREG.
+*/
+int avr_translate_BSET(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    switch (BSET_Bit(opcode)) {
+        case    0x00: {
+            tcg_gen_movi_tl(cpu_Cf, 0x01);
+            break;
+        }
+        case    0x01: {
+            tcg_gen_movi_tl(cpu_Zf, 0x00);
+            break;
+        }
+        case    0x02: {
+            tcg_gen_movi_tl(cpu_Nf, 0x01);
+            break;
+        }
+        case    0x03: {
+            tcg_gen_movi_tl(cpu_Vf, 0x01);
+            break;
+        }
+        case    0x04: {
+            tcg_gen_movi_tl(cpu_Sf, 0x01);
+            break;
+        }
+        case    0x05: {
+            tcg_gen_movi_tl(cpu_Hf, 0x01);
+            break;
+        }
+        case    0x06: {
+            tcg_gen_movi_tl(cpu_Tf, 0x01);
+            break;
+        }
+        case    0x07: {
+            tcg_gen_movi_tl(cpu_If, 0x01);
+            break;
+        }
+    }
+
+    return  BS_NONE;
+}
+
+/*
+    The BREAK instruction is used by the On-chip Debug system, and is
+    normally not used in the application software. When the BREAK instruction is
+    executed, the AVR CPU is set in the Stopped Mode. This gives the On-chip
+    Debugger access to internal resources.  If any Lock bits are set, or either
+    the JTAGEN or OCDEN Fuses are unprogrammed, the CPU will treat the BREAK
+    instruction as a NOP and will not enter the Stopped mode.  This instruction
+    is not available in all devices. Refer to the device specific instruction
+    set summary.
+*/
+int avr_translate_BREAK(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_BREAK) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    /*  TODO:   ???  */
+    return  BS_NONE;
+}
+
+/*
+    Stores bit b from Rd to the T Flag in SREG (Status Register).
+*/
+int avr_translate_BST(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[BST_Rd(opcode)];
+
+    tcg_gen_andi_tl(cpu_Tf, Rd, 1 << BST_Bit(opcode));
+    tcg_gen_shri_tl(cpu_Tf, cpu_Tf, BST_Bit(opcode));
+
+    return  BS_NONE;
+}
+
+/*
+    Calls to a subroutine within the entire Program memory. The return
+    address (to the instruction after the CALL) will be stored onto the Stack.
+    (See also RCALL). The Stack Pointer uses a post-decrement scheme during
+    CALL.  This instruction is not available in all devices. Refer to the device
+    specific instruction set summary.
+*/
+int avr_translate_CALL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_JMP_CALL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    int Imm = CALL_Imm(opcode);
+    int ret = ctx->inst[0].npc;
+
+    gen_push_ret(env, ret);
+
+    gen_goto_tb(env, ctx, 0, Imm);
+
+    return  BS_BRANCH;
+}
+
+/*
+    Clears a specified bit in an I/O Register. This instruction operates on
+    the lower 32 I/O Registers – addresses 0-31.  */
+int avr_translate_CBI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv data = cpu_io[CBI_Imm(opcode)];
+    TCGv port = tcg_const_i32(CBI_Imm(opcode));
+
+    tcg_gen_andi_tl(data, data, ~(1 << CBI_Bit(opcode)));
+    gen_helper_outb(cpu_env, port, data);
+
+    return  BS_NONE;
+}
+
+/*
+    Clears the specified bits in register Rd. Performs the logical AND
+    between the contents of register Rd and the complement of the constant mask
+    K. The result will be placed in register Rd.
+*/
+int avr_translate_COM(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[COM_Rd(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    tcg_gen_xori_tl(Rd, Rd, 0xff);
+
+    tcg_gen_movi_tl(cpu_Cf, 1);         /*  Cf = 1  */
+    tcg_gen_movi_tl(cpu_Vf, 0);         /*  Vf = 0  */
+    gen_ZNSf(Rd);
+
+    tcg_temp_free_i32(R);
+
+    return  BS_NONE;
+}
+
+/*
+    This instruction performs a compare between two registers Rd and Rr.
+    None of the registers are changed. All conditional branches can be used
+    after this instruction.
+*/
+int avr_translate_CP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[CP_Rd(opcode)];
+    TCGv Rr = cpu_r[CP_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /*  op  */
+    tcg_gen_sub_tl(R, Rd, Rr);    /*  R = Rd - Rr  */
+    tcg_gen_andi_tl(R, R, 0xff);  /*  make it 8 bits  */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    tcg_temp_free_i32(R);
+
+    return  BS_NONE;
+}
+
+/*
+    This instruction performs a compare between two registers Rd and Rr and
+    also takes into account the previous carry. None of the registers are
+    changed. All conditional branches can be used after this instruction.
+*/
+int avr_translate_CPC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[CPC_Rd(opcode)];
+    TCGv Rr = cpu_r[CPC_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /*  op  */
+    tcg_gen_sub_tl(R, Rd, Rr);      /*  R = Rd - Rr - Cf    */
+    tcg_gen_sub_tl(R, R, cpu_Cf);
+    tcg_gen_andi_tl(R, R, 0xff);    /*  make it 8 bits      */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_NSf(R);
+
+    /*  Previous value remains unchanged when the result is zero;
+        cleared otherwise.
+    */
+    tcg_gen_or_tl(cpu_Zf, cpu_Zf, R);
+
+
+    tcg_temp_free_i32(R);
+
+    return  BS_NONE;
+}
+
+/*
+    This instruction performs a compare between register Rd and a constant.
+    The register is not changed. All conditional branches can be used after this
+    instruction.
+*/
+int avr_translate_CPI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[16 + CPI_Rd(opcode)];
+    int Imm = CPI_Imm(opcode);
+    TCGv Rr = tcg_const_i32(Imm);
+    TCGv R = tcg_temp_new_i32();
+
+    /*  op  */
+    tcg_gen_sub_tl(R, Rd, Rr);    /*  R = Rd - Rr  */
+    tcg_gen_andi_tl(R, R, 0xff);  /*  make it 8 bits  */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    tcg_temp_free_i32(R);
+
+    return  BS_NONE;
+}
+
+/*
+    This instruction performs a compare between two registers Rd and Rr, and
+    skips the next instruction if Rd = Rr.
+*/
+int avr_translate_CPSE(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[CPSE_Rd(opcode)];
+    TCGv Rr = cpu_r[CPSE_Rr(opcode)];
+    TCGLabel *skip = gen_new_label();
+
+        /*  PC if next inst is skipped  */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[1].npc);
+    tcg_gen_brcond_i32(TCG_COND_EQ, Rd, Rr, skip);
+        /*  PC if next inst is not skipped  */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[0].npc);
+    gen_set_label(skip);
+
+    return  BS_BRANCH;
+}
+
+/*
+    Subtracts one -1- from the contents of register Rd and places the result
+    in the destination register Rd.  The C Flag in SREG is not affected by the
+    operation, thus allowing the DEC instruction to be used on a loop counter in
+    multiple-precision computations.  When operating on unsigned values, only
+    BREQ and BRNE branches can be expected to perform consistently.  When
+    operating on two’s complement values, all signed branches are available.
+*/
+int avr_translate_DEC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[DEC_Rd(opcode)];
+
+    tcg_gen_subi_tl(Rd, Rd, 1);     /*  Rd = Rd - 1  */
+    tcg_gen_andi_tl(Rd, Rd, 0xff);  /*  make it 8 bits  */
+
+        /* cpu_Vf = Rd == 0x7f  */
+    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x7f);
+    gen_ZNSf(Rd);
+
+    return  BS_NONE;
+}
+
+/*
+
+    The module is an instruction set extension to the AVR CPU, performing
+    DES iterations. The 64-bit data block (plaintext or ciphertext) is placed in
+    the CPU register file, registers R0-R7, where LSB of data is placed in LSB
+    of R0 and MSB of data is placed in MSB of R7. The full 64-bit key (including
+    parity bits) is placed in registers R8- R15, organized in the register file
+    with LSB of key in LSB of R8 and MSB of key in MSB of R15. Executing one DES
+    instruction performs one round in the DES algorithm. Sixteen rounds must be
+    executed in increasing order to form the correct DES ciphertext or
+    plaintext. Intermediate results are stored in the register file (R0-R15)
+    after each DES instruction. The instruction's operand (K) determines which
+    round is executed, and the half carry flag (H) determines whether encryption
+    or decryption is performed.  The DES algorithm is described in
+    “Specifications for the Data Encryption Standard” (Federal Information
+    Processing Standards Publication 46). Intermediate results in this
+    implementation differ from the standard because the initial permutation and
+    the inverse initial permutation are performed each iteration. This does not
+    affect the result in the final ciphertext or plaintext, but reduces
+    execution time.
+*/
+int avr_translate_DES(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    /*  TODO:  */
+    if (avr_feature(env, AVR_FEATURE_DES) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    return  BS_NONE;
+}
+
+/*
+    Indirect call of a subroutine pointed to by the Z (16 bits) Pointer
+    Register in the Register File and the EIND Register in the I/O space. This
+    instruction allows for indirect calls to the entire 4M (words) Program
+    memory space. See also ICALL. The Stack Pointer uses a post-decrement scheme
+    during EICALL.  This instruction is not available in all devices. Refer to
+    the device specific instruction set summary.
+*/
+int avr_translate_EICALL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_EIJMP_EICALL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    int ret = ctx->inst[0].npc;
+
+    gen_push_ret(env, ret);
+
+    gen_jmp_ez();
+
+    return BS_BRANCH;
+}
+
+/*
+    Indirect jump to the address pointed to by the Z (16 bits) Pointer
+    Register in the Register File and the EIND Register in the I/O space. This
+    instruction allows for indirect jumps to the entire 4M (words) Program
+    memory space. See also IJMP.  This instruction is not available in all
+    devices. Refer to the device specific instruction set summary.
+*/
+int avr_translate_EIJMP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_EIJMP_EICALL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    gen_jmp_ez();
+
+    return BS_BRANCH;
+}
+
+/*
+    Loads one byte pointed to by the Z-register and the RAMPZ Register in
+    the I/O space, and places this byte in the destination register Rd. This
+    instruction features a 100% space effective constant initialization or
+    constant data fetch. The Program memory is organized in 16-bit words while
+    the Z-pointer is a byte address. Thus, the least significant bit of the
+    Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1). This
+    instruction can address the entire Program memory space. The Z-pointer
+    Register can either be left unchanged by the operation, or it can be
+    incremented. The incrementation applies to the entire 24-bit concatenation
+    of the RAMPZ and Z-pointer Registers.  Devices with Self-Programming
+    capability can use the ELPM instruction to read the Fuse and Lock bit value.
+    Refer to the device documentation for a detailed description.  This
+    instruction is not available in all devices. Refer to the device specific
+    instruction set summary.
+*/
+int avr_translate_ELPM1(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_ELPM) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[0];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX);    /*  Rd = mem[addr]  */
+
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+int avr_translate_ELPM2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_ELPM) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[ELPM2_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX);    /*  Rd = mem[addr]  */
+
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+int avr_translate_ELPMX(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_ELPMX) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[ELPMX_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX);    /*  Rd = mem[addr]  */
+
+    tcg_gen_addi_tl(addr, addr, 1);             /*  addr = addr + 1  */
+
+    gen_set_zaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+/*
+    Performs the logical EOR between the contents of register Rd and
+    register Rr and places the result in the destination register Rd.
+*/
+int avr_translate_EOR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[EOR_Rd(opcode)];
+    TCGv Rr = cpu_r[EOR_Rr(opcode)];
+
+    tcg_gen_xor_tl(Rd, Rd, Rr);
+
+    tcg_gen_movi_tl(cpu_Vf, 0);
+    gen_ZNSf(Rd);
+
+    return  BS_NONE;
+}
+
+/*
+    This instruction performs 8-bit x 8-bit -> 16-bit unsigned
+    multiplication and shifts the result one bit left.
+*/
+int avr_translate_FMUL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_MUL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[16 + FMUL_Rd(opcode)];
+    TCGv Rr = cpu_r[16 + FMUL_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    tcg_gen_mul_tl(R, Rd, Rr);    /*  R = Rd  *Rr  */
+    tcg_gen_shli_tl(R, R, 1);
+
+    tcg_gen_andi_tl(R0, R, 0xff);
+    tcg_gen_shri_tl(R, R, 8);
+    tcg_gen_andi_tl(R1, R, 0xff);
+
+    tcg_gen_shri_tl(cpu_Cf, R, 16);    /*  Cf = R(16)  */
+    tcg_gen_andi_tl(cpu_Zf, R, 0x0000ffff);
+
+    tcg_temp_free_i32(R);
+
+    return  BS_NONE;
+}
+
+/*
+    This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication
+    and shifts the result one bit left.
+*/
+int avr_translate_FMULS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_MUL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[16 + FMULS_Rd(opcode)];
+    TCGv Rr = cpu_r[16 + FMULS_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    tcg_gen_ext8s_tl(t0, Rd);           /*  make Rd full 32 bit signed  */
+    tcg_gen_ext8s_tl(t1, Rr);           /*  make Rr full 32 bit signed  */
+    tcg_gen_mul_tl(R, t0, t1);          /*  R = Rd  *Rr  */
+    tcg_gen_shli_tl(R, R, 1);
+
+    tcg_gen_andi_tl(R0, R, 0xff);
+    tcg_gen_shri_tl(R, R, 8);
+    tcg_gen_andi_tl(R1, R, 0xff);
+
+    tcg_gen_shri_tl(cpu_Cf, R, 16);    /*  Cf = R(16)  */
+    tcg_gen_andi_tl(cpu_Zf, R, 0x0000ffff);
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(R);
+
+    return  BS_NONE;
+}
+
+/*
+    This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication
+    and shifts the result one bit left.
+*/
+int avr_translate_FMULSU(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_MUL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[16 + FMULSU_Rd(opcode)];
+    TCGv Rr = cpu_r[16 + FMULSU_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+    TCGv t0 = tcg_temp_new_i32();
+
+    tcg_gen_ext8s_tl(t0, Rd);           /*  make Rd full 32 bit signed  */
+    tcg_gen_mul_tl(R, t0, Rr);          /*  R = Rd  *Rr  */
+    tcg_gen_shli_tl(R, R, 1);
+
+    tcg_gen_andi_tl(R0, R, 0xff);
+    tcg_gen_shri_tl(R, R, 8);
+    tcg_gen_andi_tl(R1, R, 0xff);
+
+    tcg_gen_shri_tl(cpu_Cf, R, 16);     /*  Cf = R(16)  */
+    tcg_gen_andi_tl(cpu_Zf, R, 0x0000ffff);
+
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(R);
+
+    return  BS_NONE;
+}
+
+/*
+    Calls to a subroutine within the entire 4M (words) Program memory. The
+    return address (to the instruction after the CALL) will be stored onto the
+    Stack. See also RCALL. The Stack Pointer uses a post-decrement scheme during
+    CALL.  This instruction is not available in all devices. Refer to the device
+    specific instruction set summary.
+*/
+int avr_translate_ICALL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_IJMP_ICALL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    int ret = ctx->inst[0].npc;
+
+    gen_push_ret(env, ret);
+    gen_jmp_z();
+
+    return BS_BRANCH;
+}
+
+/*
+    Indirect jump to the address pointed to by the Z (16 bits) Pointer
+    Register in the Register File. The Z-pointer Register is 16 bits wide and
+    allows jump within the lowest 64K words (128KB) section of Program memory.
+    This instruction is not available in all devices. Refer to the device
+    specific instruction set summary.
+*/
+int avr_translate_IJMP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_IJMP_ICALL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    gen_jmp_z();
+
+    return BS_BRANCH;
+}
+
+/*
+    Loads data from the I/O Space (Ports, Timers, Configuration Registers,
+    etc.) into register Rd in the Register File.
+*/
+int avr_translate_IN(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[IN_Rd(opcode)];
+    int Imm = IN_Imm(opcode);
+    TCGv port = tcg_const_i32(Imm);
+    TCGv data = cpu_io[Imm];
+
+    gen_helper_inb(data, cpu_env, port);
+    tcg_gen_mov_tl(Rd, data);
+
+    return  BS_NONE;
+}
+
+/*
+    Adds one -1- to the contents of register Rd and places the result in the
+    destination register Rd.  The C Flag in SREG is not affected by the
+    operation, thus allowing the INC instruction to be used on a loop counter in
+    multiple-precision computations.  When operating on unsigned numbers, only
+    BREQ and BRNE branches can be expected to perform consistently. When
+    operating on two’s complement values, all signed branches are available.
+*/
+int avr_translate_INC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[INC_Rd(opcode)];
+
+    tcg_gen_addi_tl(Rd, Rd, 1);
+    tcg_gen_andi_tl(Rd, Rd, 0xff);
+
+        /* cpu_Vf = Rd == 0x80  */
+    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x80);
+    gen_ZNSf(Rd);
+    return  BS_NONE;
+}
+
+/*
+    Jump to an address within the entire 4M (words) Program memory. See also
+    RJMP.  This instruction is not available in all devices. Refer to the device
+    specific instruction set summary.0
+*/
+int avr_translate_JMP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_JMP_CALL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    gen_goto_tb(env, ctx, 0, JMP_Imm(opcode));
+    return  BS_BRANCH;
+}
+
+/*
+    Load one byte indirect from data space to register and stores an clear
+    the bits in data space specified by the register. The instruction can only
+    be used towards internal SRAM.  The data location is pointed to by the Z (16
+    bits) Pointer Register in the Register File. Memory access is limited to the
+    current data segment of 64KB. To access another data segment in devices with
+    more than 64KB data space, the RAMPZ in register in the I/O area has to be
+    changed.  The Z-pointer Register is left unchanged by the operation. This
+    instruction is especially suited for clearing status bits stored in SRAM.
+*/
+void gen_data_store(CPUAVRState *env, TCGv data, TCGv addr)
+{
+    if (env->fullwr) {
+        gen_helper_fullwr(cpu_env, data, addr);
+    } else {
+        tcg_gen_qemu_st8(data, addr, MMU_DATA_IDX);     /*  mem[addr] = t1  */
+    }
+}
+
+int avr_translate_LAC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_RMW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rr = cpu_r[LAC_Rr(opcode)];
+    TCGv addr = gen_get_zaddr();
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    tcg_gen_qemu_ld8u(t0, addr, MMU_DATA_IDX);    /*  t0 = mem[addr]  */
+        /*  t1 = t0 & (0xff - Rr) = t0 and ~Rr */
+    tcg_gen_andc_tl(t1, t0, Rr);
+
+    tcg_gen_mov_tl(Rr, t0);                     /*  Rr = t0  */
+    gen_data_store(env, t1, addr);     /*  mem[addr] = t1  */
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+/*
+    Load one byte indirect from data space to register and set bits in data
+    space specified by the register. The instruction can only be used towards
+    internal SRAM.  The data location is pointed to by the Z (16 bits) Pointer
+    Register in the Register File. Memory access is limited to the current data
+    segment of 64KB. To access another data segment in devices with more than
+    64KB data space, the RAMPZ in register in the I/O area has to be changed.
+    The Z-pointer Register is left unchanged by the operation. This instruction
+    is especially suited for setting status bits stored in SRAM.
+*/
+int avr_translate_LAS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_RMW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rr = cpu_r[LAS_Rr(opcode)];
+    TCGv addr = gen_get_zaddr();
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    tcg_gen_qemu_ld8u(t0, addr, MMU_DATA_IDX);    /*  t0 = mem[addr]  */
+    tcg_gen_or_tl(t1, t0, Rr);
+
+    tcg_gen_mov_tl(Rr, t0);                    /*  Rr = t0  */
+    gen_data_store(env, t1, addr);    /*  mem[addr] = t1  */
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+/*
+    Load one byte indirect from data space to register and toggles bits in
+    the data space specified by the register.  The instruction can only be used
+    towards SRAM.  The data location is pointed to by the Z (16 bits) Pointer
+    Register in the Register File. Memory access is limited to the current data
+    segment of 64KB. To access another data segment in devices with more than
+    64KB data space, the RAMPZ in register in the I/O area has to be changed.
+    The Z-pointer Register is left unchanged by the operation. This instruction
+    is especially suited for changing status bits stored in SRAM.
+*/
+int avr_translate_LAT(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_RMW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rr = cpu_r[LAT_Rr(opcode)];
+    TCGv addr = gen_get_zaddr();
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    tcg_gen_qemu_ld8u(t0, addr, MMU_DATA_IDX);    /*  t0 = mem[addr]  */
+    tcg_gen_xor_tl(t1, t0, Rr);
+
+    tcg_gen_mov_tl(Rr, t0);                    /*  Rr = t0  */
+    gen_data_store(env, t1, addr);    /*  mem[addr] = t1  */
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+/*
+    Loads one byte indirect from the data space to a register. For parts
+    with SRAM, the data space consists of the Register File, I/O memory and
+    internal SRAM (and external SRAM if applicable). For parts without SRAM, the
+    data space consists of the Register File only. In some parts the Flash
+    Memory has been mapped to the data space and can be read using this command.
+    The EEPROM has a separate address space.  The data location is pointed to by
+    the X (16 bits) Pointer Register in the Register File. Memory access is
+    limited to the current data segment of 64KB. To access another data segment
+    in devices with more than 64KB data space, the RAMPX in register in the I/O
+    area has to be changed.  The X-pointer Register can either be left unchanged
+    by the operation, or it can be post-incremented or predecremented.  These
+    features are especially suited for accessing arrays, tables, and Stack
+    Pointer usage of the X-pointer Register. Note that only the low byte of the
+    X-pointer is updated in devices with no more than 256 bytes data space. For
+    such devices, the high byte of the pointer is not used by this instruction
+    and can be used for other purposes. The RAMPX Register in the I/O area is
+    updated in parts with more than 64KB data space or more than 64KB Program
+    memory, and the increment/decrement is added to the entire 24-bit address on
+    such devices.  Not all variants of this instruction is available in all
+    devices. Refer to the device specific instruction set summary.  In the
+    Reduced Core tinyAVR the LD instruction can be used to achieve the same
+    operation as LPM since the program memory is mapped to the data memory
+    space.
+*/
+int avr_translate_LDX1(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDX1_Rd(opcode)];
+    TCGv addr = gen_get_xaddr();
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_DATA_IDX);
+
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+int avr_translate_LDX2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDX2_Rd(opcode)];
+    TCGv addr = gen_get_xaddr();
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_DATA_IDX);
+    tcg_gen_addi_tl(addr, addr, 1);             /*  addr = addr + 1  */
+
+    gen_set_xaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+int avr_translate_LDX3(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDX3_Rd(opcode)];
+    TCGv addr = gen_get_xaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1);             /*  addr = addr - 1  */
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_DATA_IDX);
+    gen_set_xaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+/*
+    Loads one byte indirect with or without displacement from the data space
+    to a register. For parts with SRAM, the data space consists of the Register
+    File, I/O memory and internal SRAM (and external SRAM if applicable). For
+    parts without SRAM, the data space consists of the Register File only. In
+    some parts the Flash Memory has been mapped to the data space and can be
+    read using this command. The EEPROM has a separate address space.  The data
+    location is pointed to by the Y (16 bits) Pointer Register in the Register
+    File. Memory access is limited to the current data segment of 64KB. To
+    access another data segment in devices with more than 64KB data space, the
+    RAMPY in register in the I/O area has to be changed.  The Y-pointer Register
+    can either be left unchanged by the operation, or it can be post-incremented
+    or predecremented.  These features are especially suited for accessing
+    arrays, tables, and Stack Pointer usage of the Y-pointer Register. Note that
+    only the low byte of the Y-pointer is updated in devices with no more than
+    256 bytes data space. For such devices, the high byte of the pointer is not
+    used by this instruction and can be used for other purposes. The RAMPY
+    Register in the I/O area is updated in parts with more than 64KB data space
+    or more than 64KB Program memory, and the increment/decrement/displacement
+    is added to the entire 24-bit address on such devices.  Not all variants of
+    this instruction is available in all devices. Refer to the device specific
+    instruction set summary.  In the Reduced Core tinyAVR the LD instruction can
+    be used to achieve the same operation as LPM since the program memory is
+    mapped to the data memory space.
+*/
+int avr_translate_LDY2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDY2_Rd(opcode)];
+    TCGv addr = gen_get_yaddr();
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_DATA_IDX);
+    tcg_gen_addi_tl(addr, addr, 1);             /*  addr = addr + 1  */
+
+    gen_set_yaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+int avr_translate_LDY3(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDY3_Rd(opcode)];
+    TCGv addr = gen_get_yaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1);             /*  addr = addr - 1  */
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_DATA_IDX);
+    gen_set_yaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+int avr_translate_LDDY(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDDY_Rd(opcode)];
+    TCGv addr = gen_get_yaddr();
+
+    tcg_gen_addi_tl(addr, addr, LDDY_Imm(opcode));
+                                                    /*  addr = addr + q  */
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_DATA_IDX);
+
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+/*
+    Loads one byte indirect with or without displacement from the data space
+    to a register. For parts with SRAM, the data space consists of the Register
+    File, I/O memory and internal SRAM (and external SRAM if applicable). For
+    parts without SRAM, the data space consists of the Register File only. In
+    some parts the Flash Memory has been mapped to the data space and can be
+    read using this command. The EEPROM has a separate address space.  The data
+    location is pointed to by the Z (16 bits) Pointer Register in the Register
+    File. Memory access is limited to the current data segment of 64KB. To
+    access another data segment in devices with more than 64KB data space, the
+    RAMPZ in register in the I/O area has to be changed.  The Z-pointer Register
+    can either be left unchanged by the operation, or it can be post-incremented
+    or predecremented.  These features are especially suited for Stack Pointer
+    usage of the Z-pointer Register, however because the Z-pointer Register can
+    be used for indirect subroutine calls, indirect jumps and table lookup, it
+    is often more convenient to use the X or Y-pointer as a dedicated Stack
+    Pointer. Note that only the low byte of the Z-pointer is updated in devices
+    with no more than 256 bytes data space. For such devices, the high byte of
+    the pointer is not used by this instruction and can be used for other
+    purposes. The RAMPZ Register in the I/O area is updated in parts with more
+    than 64KB data space or more than 64KB Program memory, and the
+    increment/decrement/displacement is added to the entire 24-bit address on
+    such devices.  Not all variants of this instruction is available in all
+    devices. Refer to the device specific instruction set summary.  In the
+    Reduced Core tinyAVR the LD instruction can be used to achieve the same
+    operation as LPM since the program memory is mapped to the data memory
+    space.  For using the Z-pointer for table lookup in Program memory see the
+    LPM and ELPM instructions.
+*/
+int avr_translate_LDZ2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDZ2_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_DATA_IDX);
+    tcg_gen_addi_tl(addr, addr, 1);             /*  addr = addr + 1  */
+
+    gen_set_zaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+int avr_translate_LDZ3(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDZ3_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1);             /*  addr = addr - 1  */
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_DATA_IDX);
+
+    gen_set_zaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+int avr_translate_LDDZ(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDDZ_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_addi_tl(addr, addr, LDDZ_Imm(opcode));
+                                                    /*  addr = addr + q  */
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_DATA_IDX);
+
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+/*
+    Loads an 8 bit constant directly to register 16 to 31.
+*/
+int avr_translate_LDI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[16 + LDI_Rd(opcode)];
+    int imm = LDI_Imm(opcode);
+
+    tcg_gen_movi_tl(Rd, imm);
+
+    return  BS_NONE;
+}
+
+/*
+    Loads one byte from the data space to a register. For parts with SRAM,
+    the data space consists of the Register File, I/O memory and internal SRAM
+    (and external SRAM if applicable). For parts without SRAM, the data space
+    consists of the register file only. The EEPROM has a separate address space.
+    A 16-bit address must be supplied. Memory access is limited to the current
+    data segment of 64KB. The LDS instruction uses the RAMPD Register to access
+    memory above 64KB. To access another data segment in devices with more than
+    64KB data space, the RAMPD in register in the I/O area has to be changed.
+    This instruction is not available in all devices. Refer to the device
+    specific instruction set summary.
+*/
+int avr_translate_LDS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[16 + LDS_Rd(opcode)];
+    TCGv addr = tcg_temp_new_i32();
+    TCGv H = cpu_rampD;
+
+    tcg_gen_mov_tl(addr, H);                     /*  addr = H:M:L  */
+    tcg_gen_shli_tl(addr, addr, 16);
+    tcg_gen_ori_tl(addr, addr, LDS_Imm(opcode));
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_DATA_IDX);
+
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+/*
+    Loads one byte pointed to by the Z-register into the destination
+    register Rd. This instruction features a 100% space effective constant
+    initialization or constant data fetch. The Program memory is organized in
+    16-bit words while the Z-pointer is a byte address. Thus, the least
+    significant bit of the Z-pointer selects either low byte (ZLSB = 0) or high
+    byte (ZLSB = 1). This instruction can address the first 64KB (32K words) of
+    Program memory. The Zpointer Register can either be left unchanged by the
+    operation, or it can be incremented. The incrementation does not apply to
+    the RAMPZ Register.  Devices with Self-Programming capability can use the
+    LPM instruction to read the Fuse and Lock bit values.  Refer to the device
+    documentation for a detailed description.  The LPM instruction is not
+    available in all devices. Refer to the device specific instruction set
+    summary
+*/
+int avr_translate_LPM1(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_LPM) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[0];
+    TCGv addr = tcg_temp_new_i32();
+    TCGv H = cpu_r[31];
+    TCGv L = cpu_r[30];
+
+    tcg_gen_shli_tl(addr, H, 8);             /*  addr = H:L  */
+    tcg_gen_or_tl(addr, addr, L);
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX);    /*  Rd = mem[addr]  */
+
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+int avr_translate_LPM2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_LPM) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[LPM2_Rd(opcode)];
+    TCGv addr = tcg_temp_new_i32();
+    TCGv H = cpu_r[31];
+    TCGv L = cpu_r[30];
+
+    tcg_gen_shli_tl(addr, H, 8);             /*  addr = H:L  */
+    tcg_gen_or_tl(addr, addr, L);
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX);    /*  Rd = mem[addr]  */
+
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+int avr_translate_LPMX(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_LPMX) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[LPMX_Rd(opcode)];
+    TCGv addr = tcg_temp_new_i32();
+    TCGv H = cpu_r[31];
+    TCGv L = cpu_r[30];
+
+    tcg_gen_shli_tl(addr, H, 8);             /*  addr = H:L  */
+    tcg_gen_or_tl(addr, addr, L);
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX);    /*  Rd = mem[addr]  */
+
+    tcg_gen_addi_tl(addr, addr, 1);             /*  addr = addr + 1  */
+
+    tcg_gen_andi_tl(L, addr, 0xff);
+
+    tcg_gen_shri_tl(addr, addr, 8);
+    tcg_gen_andi_tl(H, addr, 0xff);
+
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+/*
+    Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is
+    loaded into the C Flag of the SREG. This operation effectively divides an
+    unsigned value by two. The C Flag can be used to round the result.
+*/
+int avr_translate_LSR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LSR_Rd(opcode)];
+
+    tcg_gen_andi_tl(cpu_Cf, Rd, 1);
+
+    tcg_gen_shri_tl(Rd, Rd, 1);
+
+    gen_ZNSf(Rd);
+    tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf);
+    return  BS_NONE;
+}
+
+/*
+    This instruction makes a copy of one register into another. The source
+    register Rr is left unchanged, while the destination register Rd is loaded
+    with a copy of Rr.
+*/
+int avr_translate_MOV(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[MOV_Rd(opcode)];
+    TCGv Rr = cpu_r[MOV_Rr(opcode)];
+
+    tcg_gen_mov_tl(Rd, Rr);
+
+    return  BS_NONE;
+}
+
+/*
+    This instruction makes a copy of one register pair into another register
+    pair. The source register pair Rr+1:Rr is left unchanged, while the
+    destination register pair Rd+1:Rd is loaded with a copy of Rr + 1:Rr.  This
+    instruction is not available in all devices. Refer to the device specific
+    instruction set summary.
+*/
+int avr_translate_MOVW(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_MOVW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv RdL = cpu_r[MOVW_Rd(opcode) * 2 + 0];
+    TCGv RdH = cpu_r[MOVW_Rd(opcode) * 2 + 1];
+    TCGv RrL = cpu_r[MOVW_Rr(opcode) * 2 + 0];
+    TCGv RrH = cpu_r[MOVW_Rr(opcode) * 2 + 1];
+
+    tcg_gen_mov_tl(RdH, RrH);
+    tcg_gen_mov_tl(RdL, RrL);
+
+    return  BS_NONE;
+}
+
+/*
+    This instruction performs 8-bit x 8-bit -> 16-bit unsigned multiplication.
+*/
+int avr_translate_MUL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_MUL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[MUL_Rd(opcode)];
+    TCGv Rr = cpu_r[MUL_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    tcg_gen_mul_tl(R, Rd, Rr);    /*  R = Rd  *Rr  */
+
+    tcg_gen_mov_tl(R0, R);
+    tcg_gen_andi_tl(R0, R0, 0xff);
+    tcg_gen_shri_tl(R, R, 8);
+    tcg_gen_mov_tl(R1, R);
+
+    tcg_gen_shri_tl(cpu_Cf, R, 15);    /*  Cf = R(16)  */
+    tcg_gen_mov_tl(cpu_Zf, R);
+
+    tcg_temp_free_i32(R);
+
+    return  BS_NONE;
+}
+
+/*
+    This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication.
+*/
+int avr_translate_MULS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_MUL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[16 + MULS_Rd(opcode)];
+    TCGv Rr = cpu_r[16 + MULS_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    tcg_gen_ext8s_tl(t0, Rd);           /*  make Rd full 32 bit signed  */
+    tcg_gen_ext8s_tl(t1, Rr);           /*  make Rr full 32 bit signed  */
+    tcg_gen_mul_tl(R, t0, t1);          /*  R = Rd * Rr  */
+
+    tcg_gen_mov_tl(R0, R);
+    tcg_gen_andi_tl(R0, R0, 0xff);
+    tcg_gen_shri_tl(R, R, 8);
+    tcg_gen_mov_tl(R1, R);
+    tcg_gen_andi_tl(R1, R0, 0xff);
+
+    tcg_gen_shri_tl(cpu_Cf, R, 15);     /*  Cf = R(16)  */
+    tcg_gen_mov_tl(cpu_Zf, R);
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(R);
+
+    return  BS_NONE;
+}
+
+/*
+    This instruction performs 8-bit x 8-bit -> 16-bit multiplication of a
+    signed and an unsigned number.
+*/
+int avr_translate_MULSU(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_MUL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[16 + MULSU_Rd(opcode)];
+    TCGv Rr = cpu_r[16 + MULSU_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+    TCGv t0 = tcg_temp_new_i32();
+
+    tcg_gen_ext8s_tl(t0, Rd);           /*  make Rd full 32 bit signed  */
+    tcg_gen_mul_tl(R, t0, Rr);          /*  R = Rd  *Rr  */
+
+    tcg_gen_mov_tl(R0, R);
+    tcg_gen_andi_tl(R0, R0, 0xff);
+    tcg_gen_shri_tl(R, R, 8);
+    tcg_gen_mov_tl(R1, R);
+    tcg_gen_andi_tl(R1, R0, 0xff);
+
+    tcg_gen_shri_tl(cpu_Cf, R, 16);     /*  Cf = R(16)  */
+    tcg_gen_mov_tl(cpu_Zf, R);
+
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(R);
+
+    return  BS_NONE;
+}
+
+/*
+    Replaces the contents of register Rd with its two’s complement; the
+    value $80 is left unchanged.
+*/
+int avr_translate_NEG(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[SUB_Rd(opcode)];
+    TCGv t0 = tcg_const_i32(0);
+    TCGv R = tcg_temp_new_i32();
+
+    /*  op  */
+    tcg_gen_sub_tl(R, t0, Rd);               /*  R = 0 - Rd      */
+    tcg_gen_andi_tl(R, R, 0xff);            /*  make it 8 bits  */
+
+    gen_sub_CHf(R, t0, Rd);
+    gen_sub_Vf(R, t0, Rd);
+    gen_ZNSf(R);
+
+    /*  R  */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(R);
+
+    return  BS_NONE;
+}
+
+/*
+    This instruction performs a single cycle No Operation.
+*/
+int avr_translate_NOP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+
+    /*  NOP  */
+
+    return  BS_NONE;
+}
+
+/*
+    Performs the logical OR between the contents of register Rd and register
+    Rr and places the result in the destination register Rd.
+*/
+int avr_translate_OR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[OR_Rd(opcode)];
+    TCGv Rr = cpu_r[OR_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    tcg_gen_or_tl(R, Rd, Rr);
+
+    tcg_gen_movi_tl(cpu_Vf, 0);
+    gen_ZNSf(R);
+
+    tcg_temp_free_i32(R);
+
+    return  BS_NONE;
+}
+
+/*
+    Performs the logical OR between the contents of register Rd and a
+    constant and places the result in the destination register Rd.
+*/
+int avr_translate_ORI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[16 + ORI_Rd(opcode)];
+    int Imm = (ORI_Imm(opcode));
+
+    tcg_gen_ori_tl(Rd, Rd, Imm);   /*  Rd = Rd | Imm  */
+
+    tcg_gen_movi_tl(cpu_Vf, 0x00);          /*  Vf = 0  */
+    gen_ZNSf(Rd);
+
+    return  BS_NONE;
+}
+
+/*
+    Stores data from register Rr in the Register File to I/O Space (Ports,
+    Timers, Configuration Registers, etc.).  */
+int avr_translate_OUT(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[OUT_Rd(opcode)];
+    int Imm = OUT_Imm(opcode);
+    TCGv port = tcg_const_i32(Imm);
+    TCGv data = cpu_io[Imm];
+
+    tcg_gen_mov_tl(data, Rd);
+    gen_helper_outb(cpu_env, port, data);
+
+    return  BS_NONE;
+}
+
+/*
+    This instruction loads register Rd with a byte from the STACK. The Stack
+    Pointer is pre-incremented by 1 before the POP.  This instruction is not
+    available in all devices. Refer to the device specific instruction set
+    summary.
+*/
+int avr_translate_POP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[POP_Rd(opcode)];
+
+    tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+    tcg_gen_qemu_ld8u(Rd, cpu_sp, MMU_DATA_IDX);
+
+    return  BS_NONE;
+}
+
+/*
+    This instruction stores the contents of register Rr on the STACK. The
+    Stack Pointer is post-decremented by 1 after the PUSH.  This instruction is
+    not available in all devices. Refer to the device specific instruction set
+    summary.
+*/
+int avr_translate_PUSH(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[PUSH_Rd(opcode)];
+
+    gen_data_store(env, Rd, cpu_sp);
+    tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+
+    return  BS_NONE;
+}
+
+/*
+    Relative call to an address within PC - 2K + 1 and PC + 2K (words). The
+    return address (the instruction after the RCALL) is stored onto the Stack.
+    See also CALL. For AVR microcontrollers with Program memory not exceeding 4K
+    words (8KB) this instruction can address the entire memory from every
+    address location. The Stack Pointer uses a post-decrement scheme during
+    RCALL.
+*/
+int avr_translate_RCALL(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    int ret = ctx->inst[0].npc;
+    int dst = ctx->inst[0].npc + sextract32(RCALL_Imm(opcode), 0, 12);
+
+    gen_push_ret(env, ret);
+
+    gen_goto_tb(env, ctx, 0, dst);
+
+    return  BS_BRANCH;
+}
+
+/*
+    Returns from subroutine. The return address is loaded from the STACK.
+    The Stack Pointer uses a preincrement scheme during RET.
+*/
+int avr_translate_RET(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    gen_pop_ret(env, cpu_pc);
+
+    tcg_gen_exit_tb(0);
+
+    return  BS_BRANCH;
+}
+
+/*
+    Returns from interrupt. The return address is loaded from the STACK and
+    the Global Interrupt Flag is set.  Note that the Status Register is not
+    automatically stored when entering an interrupt routine, and it is not
+    restored when returning from an interrupt routine. This must be handled by
+    the application program. The Stack Pointer uses a pre-increment scheme
+    during RETI.
+*/
+int avr_translate_RETI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    gen_pop_ret(env, cpu_pc);
+
+    tcg_gen_movi_tl(cpu_If, 1);
+
+    tcg_gen_exit_tb(0);
+
+    return  BS_BRANCH;
+}
+
+/*
+    Relative jump to an address within PC - 2K +1 and PC + 2K (words). For
+    AVR microcontrollers with Program memory not exceeding 4K words (8KB) this
+    instruction can address the entire memory from every address location. See
+    also JMP.
+*/
+int avr_translate_RJMP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    int dst = ctx->inst[0].npc + sextract32(RJMP_Imm(opcode), 0, 12);
+
+    gen_goto_tb(env, ctx, 0, dst);
+
+    return  BS_BRANCH;
+}
+
+/*
+    Shifts all bits in Rd one place to the right. The C Flag is shifted into
+    bit 7 of Rd. Bit 0 is shifted into the C Flag.  This operation, combined
+    with ASR, effectively divides multi-byte signed values by two. Combined with
+    LSR it effectively divides multi-byte unsigned values by two. The Carry Flag
+    can be used to round the result.
+*/
+int avr_translate_ROR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[ROR_Rd(opcode)];
+    TCGv t0 = tcg_temp_new_i32();
+
+    tcg_gen_shli_tl(t0, cpu_Cf, 7);
+    tcg_gen_andi_tl(cpu_Cf, Rd, 0);
+    tcg_gen_shri_tl(Rd, Rd, 1);
+    tcg_gen_or_tl(Rd, Rd, t0);
+
+    gen_ZNSf(Rd);
+    tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf);
+
+    tcg_temp_free_i32(t0);
+
+    return  BS_NONE;
+}
+
+/*
+    Subtracts two registers and subtracts with the C Flag and places the
+    result in the destination register Rd.
+*/
+int avr_translate_SBC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[SBC_Rd(opcode)];
+    TCGv Rr = cpu_r[SBC_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /*  op  */
+    tcg_gen_sub_tl(R, Rd, Rr);             /*  R = Rd - Rr - Cf  */
+    tcg_gen_sub_tl(R, R, cpu_Cf);
+    tcg_gen_andi_tl(R, R, 0xff);            /*  make it 8 bits  */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    /*  R  */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return  BS_NONE;
+}
+
+/*
+    SBCI – Subtract Immediate with Carry
+*/
+int avr_translate_SBCI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[16 + SBCI_Rd(opcode)];
+    TCGv Rr = tcg_const_i32(SBCI_Imm(opcode));
+    TCGv R = tcg_temp_new_i32();
+
+    /*  op  */
+    tcg_gen_sub_tl(R, Rd, Rr);             /*  R = Rd - Rr - Cf  */
+    tcg_gen_sub_tl(R, R, cpu_Cf);
+    tcg_gen_andi_tl(R, R, 0xff);            /*  make it 8 bits  */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    /*  R  */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return  BS_NONE;
+}
+
+/*
+    Sets a specified bit in an I/O Register. This instruction operates on
+    the lower 32 I/O Registers – addresses 0-31.  */
+int avr_translate_SBI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv data = cpu_io[SBI_Imm(opcode)];
+    TCGv port = tcg_const_i32(SBI_Imm(opcode));
+
+    tcg_gen_ori_tl(data, data, 1 << SBI_Bit(opcode));
+    gen_helper_outb(cpu_env, port, data);
+
+    return  BS_NONE;
+}
+
+/*
+    This instruction tests a single bit in an I/O Register and skips the
+    next instruction if the bit is cleared. This instruction operates on the
+    lower 32 I/O Registers – addresses 0-31.  */
+int avr_translate_SBIC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv io = cpu_io[SBIC_Imm(opcode)];
+    TCGv t0 = tcg_temp_new_i32();
+    TCGLabel   *skip = gen_new_label();
+
+        /*  PC if next inst is skipped  */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[1].npc);
+    tcg_gen_andi_tl(t0, io, 1 << SBIC_Bit(opcode));
+    tcg_gen_brcondi_i32(TCG_COND_EQ, t0, 0, skip);
+        /*  PC if next inst is not skipped  */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[0].npc);
+    gen_set_label(skip);
+
+    tcg_temp_free_i32(t0);
+
+    return  BS_BRANCH;
+}
+
+/*
+    This instruction tests a single bit in an I/O Register and skips the
+    next instruction if the bit is set. This instruction operates on the lower
+    32 I/O Registers – addresses 0-31.  */
+int avr_translate_SBIS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv io = cpu_io[SBIS_Imm(opcode)];
+    TCGv t0 = tcg_temp_new_i32();
+    TCGLabel   *skip = gen_new_label();
+
+        /*  PC if next inst is skipped  */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[1].npc);
+    tcg_gen_andi_tl(t0, io, 1 << SBIS_Bit(opcode));
+    tcg_gen_brcondi_i32(TCG_COND_NE, t0, 0, skip);
+        /*  PC if next inst is not skipped  */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[0].npc);
+    gen_set_label(skip);
+
+    tcg_temp_free_i32(t0);
+
+    return  BS_BRANCH;
+}
+
+/*
+    Subtracts an immediate value (0-63) from a register pair and places the
+    result in the register pair. This instruction operates on the upper four
+    register pairs, and is well suited for operations on the Pointer Registers.
+    This instruction is not available in all devices. Refer to the device
+    specific instruction set summary.
+*/
+int avr_translate_SBIW(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_ADIW_SBIW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv RdL = cpu_r[24 + 2 * SBIW_Rd(opcode)];
+    TCGv RdH = cpu_r[25 + 2 * SBIW_Rd(opcode)];
+    int Imm = (SBIW_Imm(opcode));
+    TCGv R = tcg_temp_new_i32();
+    TCGv Rd = tcg_temp_new_i32();
+
+    /*  op  */
+    tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8);     /*  Rd  = RdH:RdL   */
+    tcg_gen_subi_tl(R, Rd, Imm);                /*  R   = Rd - Imm  */
+    tcg_gen_andi_tl(R, R, 0xffff);              /*  make it 16 bits */
+
+    /*  Cf  */
+    tcg_gen_andc_tl(cpu_Cf, R, Rd);
+    tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15);        /*  Cf = R & ~Rd    */
+
+    /*  Vf  */
+    tcg_gen_andc_tl(cpu_Vf, Rd, R);
+    tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15);        /*  Vf = Rd & ~R    */
+
+    /*  Zf  */
+    tcg_gen_mov_tl(cpu_Zf, R);                  /*  Zf = R          */
+
+    /*  Nf  */
+    tcg_gen_shri_tl(cpu_Nf, R, 15);             /*  Nf = R(15)      */
+
+    /*  Sf  */
+    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf);     /*  Sf = Nf ^ Vf    */
+
+    /*  R  */
+    tcg_gen_andi_tl(RdL, R, 0xff);
+    tcg_gen_shri_tl(RdH, R, 8);
+
+    tcg_temp_free_i32(Rd);
+    tcg_temp_free_i32(R);
+
+    return  BS_NONE;
+}
+
+/*
+    This instruction tests a single bit in a register and skips the next
+    instruction if the bit is cleared.
+*/
+int avr_translate_SBRC(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rr = cpu_r[16 + SBRC_Rr(opcode)];
+    TCGv t0 = tcg_temp_new_i32();
+    TCGLabel   *skip = gen_new_label();
+
+        /*  PC if next inst is skipped  */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[1].npc);
+    tcg_gen_andi_tl(t0, Rr, 1 << SBRC_Bit(opcode));
+    tcg_gen_brcondi_i32(TCG_COND_EQ, t0, 0, skip);
+        /*  PC if next inst is not skipped  */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[0].npc);
+    gen_set_label(skip);
+
+    tcg_temp_free_i32(t0);
+
+    return  BS_BRANCH;
+}
+
+/*
+    This instruction tests a single bit in a register and skips the next
+    instruction if the bit is set.
+*/
+int avr_translate_SBRS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rr = cpu_r[SBRS_Rr(opcode)];
+    TCGv t0 = tcg_temp_new_i32();
+    TCGLabel   *skip = gen_new_label();
+
+        /*  PC if next inst is skipped  */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[1].npc);
+    tcg_gen_andi_tl(t0, Rr, 1 << SBRS_Bit(opcode));
+    tcg_gen_brcondi_i32(TCG_COND_NE, t0, 0, skip);
+        /*  PC if next inst is not skipped  */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[0].npc);
+    gen_set_label(skip);
+
+    tcg_temp_free_i32(t0);
+
+    return  BS_BRANCH;
+}
+
+/*
+    This instruction sets the circuit in sleep mode defined by the MCU
+    Control Register.
+*/
+int avr_translate_SLEEP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    gen_helper_sleep(cpu_env);
+
+    return  BS_EXCP;
+}
+
+/*
+    SPM can be used to erase a page in the Program memory, to write a page
+    in the Program memory (that is already erased), and to set Boot Loader Lock
+    bits. In some devices, the Program memory can be written one word at a time,
+    in other devices an entire page can be programmed simultaneously after first
+    filling a temporary page buffer. In all cases, the Program memory must be
+    erased one page at a time. When erasing the Program memory, the RAMPZ and
+    Z-register are used as page address. When writing the Program memory, the
+    RAMPZ and Z-register are used as page or word address, and the R1:R0
+    register pair is used as data(1). When setting the Boot Loader Lock bits,
+    the R1:R0 register pair is used as data. Refer to the device documentation
+    for detailed description of SPM usage. This instruction can address the
+    entire Program memory.  The SPM instruction is not available in all devices.
+    Refer to the device specific instruction set summary.  Note: 1. R1
+    determines the instruction high byte, and R0 determines the instruction low
+    byte.
+*/
+int avr_translate_SPM(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_SPM) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    /*  TODO:   ???  */
+    return  BS_NONE;
+}
+
+int avr_translate_SPMX(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_SPMX) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    /*  TODO:   ???  */
+    return  BS_NONE;
+}
+
+int avr_translate_STX1(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STX1_Rr(opcode)];
+    TCGv addr = gen_get_xaddr();
+
+    gen_data_store(env, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+int avr_translate_STX2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STX2_Rr(opcode)];
+    TCGv addr = gen_get_xaddr();
+
+    gen_data_store(env, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1);             /*  addr = addr + 1  */
+    gen_set_xaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+int avr_translate_STX3(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STX3_Rr(opcode)];
+    TCGv addr = gen_get_xaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1);             /*  addr = addr - 1  */
+    gen_data_store(env, Rd, addr);
+    gen_set_xaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+int avr_translate_STY2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STY2_Rd(opcode)];
+    TCGv addr = gen_get_yaddr();
+
+    gen_data_store(env, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1);             /*  addr = addr + 1  */
+    gen_set_yaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+int avr_translate_STY3(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STY3_Rd(opcode)];
+    TCGv addr = gen_get_yaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1);             /*  addr = addr - 1  */
+    gen_data_store(env, Rd, addr);
+    gen_set_yaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+int avr_translate_STDY(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STDY_Rd(opcode)];
+    TCGv addr = gen_get_yaddr();
+
+    tcg_gen_addi_tl(addr, addr, STDY_Imm(opcode));
+                                                /*  addr = addr + q  */
+    gen_data_store(env, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+int avr_translate_STZ2(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STZ2_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    gen_data_store(env, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1);             /*  addr = addr + 1  */
+
+    gen_set_zaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+int avr_translate_STZ3(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STZ3_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1);             /*  addr = addr - 1  */
+    gen_data_store(env, Rd, addr);
+
+    gen_set_zaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+int avr_translate_STDZ(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STDZ_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_addi_tl(addr, addr, STDZ_Imm(opcode));
+                                                    /*  addr = addr + q  */
+    gen_data_store(env, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+/*
+    Stores one byte from a Register to the data space. For parts with SRAM,
+    the data space consists of the Register File, I/O memory and internal SRAM
+    (and external SRAM if applicable). For parts without SRAM, the data space
+    consists of the Register File only. The EEPROM has a separate address space.
+    A 16-bit address must be supplied. Memory access is limited to the current
+    data segment of 64KB. The STS instruction uses the RAMPD Register to access
+    memory above 64KB. To access another data segment in devices with more than
+    64KB data space, the RAMPD in register in the I/O area has to be changed.
+    This instruction is not available in all devices. Refer to the device
+    specific instruction set summary.
+*/
+int avr_translate_STS(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STS_Rd(opcode)];
+    TCGv addr = tcg_temp_new_i32();
+    TCGv H = cpu_rampD;
+
+    tcg_gen_mov_tl(addr, H);                     /*  addr = H:M:L  */
+    tcg_gen_shli_tl(addr, addr, 16);
+    tcg_gen_ori_tl(addr, addr, STS_Imm(opcode));
+
+    gen_data_store(env, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
+/*
+    Subtracts two registers and places the result in the destination
+    register Rd.
+*/
+int avr_translate_SUB(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[SUB_Rd(opcode)];
+    TCGv Rr = cpu_r[SUB_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /*  op  */
+    tcg_gen_sub_tl(R, Rd, Rr);            /*  R = Rd - Rr  */
+    tcg_gen_andi_tl(R, R, 0xff);          /*  make it 8 bits  */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    /*  R  */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return  BS_NONE;
+}
+
+/*
+    Subtracts a register and a constant and places the result in the
+    destination register Rd. This instruction is working on Register R16 to R31
+    and is very well suited for operations on the X, Y, and Z-pointers.
+*/
+int avr_translate_SUBI(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[16 + SUBI_Rd(opcode)];
+    TCGv Rr = tcg_const_i32(SUBI_Imm(opcode));
+    TCGv R = tcg_temp_new_i32();
+
+    /*  op  */
+    tcg_gen_sub_tl(R, Rd, Rr);
+                                                    /*  R = Rd - Imm  */
+    tcg_gen_andi_tl(R, R, 0xff);          /*  make it 8 bits  */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    /*  R  */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+    tcg_temp_free_i32(Rr);
+
+    return  BS_NONE;
+}
+
+/*
+    Swaps high and low nibbles in a register.
+*/
+int avr_translate_SWAP(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[SWAP_Rd(opcode)];
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    tcg_gen_andi_tl(t0, Rd, 0x0f);
+    tcg_gen_shli_tl(t0, t0, 4);
+    tcg_gen_andi_tl(t1, Rd, 0xf0);
+    tcg_gen_shri_tl(t1, t1, 4);
+    tcg_gen_or_tl(Rd, t0, t1);
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+
+    return  BS_NONE;
+}
+
+/*
+    This instruction resets the Watchdog Timer. This instruction must be
+    executed within a limited time given by the WD prescaler. See the Watchdog
+    Timer hardware specification.
+*/
+int avr_translate_WDR(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    gen_helper_wdr(cpu_env);
+
+    return  BS_NONE;
+}
+
+/*
+    Exchanges one byte indirect between register and data space.  The data
+    location is pointed to by the Z (16 bits) Pointer Register in the Register
+    File. Memory access is limited to the current data segment of 64KB. To
+    access another data segment in devices with more than 64KB data space, the
+    RAMPZ in register in the I/O area has to be changed.  The Z-pointer Register
+    is left unchanged by the operation. This instruction is especially suited
+    for writing/reading status bits stored in SRAM.
+*/
+int avr_translate_XCH(CPUAVRState *env, DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(env, AVR_FEATURE_RMW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[XCH_Rd(opcode)];
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_qemu_ld8u(t0, addr, MMU_DATA_IDX);
+    gen_data_store(env, Rd, addr);
+    tcg_gen_mov_tl(Rd, t0);
+
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(addr);
+
+    return  BS_NONE;
+}
+
diff --git a/target-avr/translate.h b/target-avr/translate.h
new file mode 100644
index 0000000..125aae4
--- /dev/null
+++ b/target-avr/translate.h
@@ -0,0 +1,119 @@
+/*
+ *  QEMU AVR CPU
+ *
+ *  Copyright (c) 2016 Michael Rolnik
+ *
+ *  This library is free software; you can redistribute it and/or
+ *  modify it under the terms of the GNU Lesser General Public
+ *  License as published by the Free Software Foundation; either
+ *  version 2.1 of the License, or (at your option) any later version.
+ *
+ *  This library is distributed in the hope that it will be useful,
+ *  but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ *  Lesser General Public License for more details.
+ *
+ *  You should have received a copy of the GNU Lesser General Public
+ *  License along with this library; if not, see
+ *  <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+#ifndef AVR_TRANSLATE_H_
+#define AVR_TRANSLATE_H_
+
+
+#include "qemu/osdep.h"
+
+#include "tcg/tcg.h"
+#include "cpu.h"
+#include "exec/exec-all.h"
+#include "disas/disas.h"
+#include "tcg-op.h"
+#include "exec/cpu_ldst.h"
+
+#include "exec/helper-proto.h"
+#include "exec/helper-gen.h"
+#include "exec/log.h"
+#include "translate-inst.h"
+
+extern TCGv_env cpu_env;
+
+extern TCGv     cpu_pc;
+
+extern TCGv     cpu_Cf;
+extern TCGv     cpu_Zf;
+extern TCGv     cpu_Nf;
+extern TCGv     cpu_Vf;
+extern TCGv     cpu_Sf;
+extern TCGv     cpu_Hf;
+extern TCGv     cpu_Tf;
+extern TCGv     cpu_If;
+
+extern TCGv     cpu_rampD;
+extern TCGv     cpu_rampX;
+extern TCGv     cpu_rampY;
+extern TCGv     cpu_rampZ;
+
+extern TCGv     cpu_io[64];
+extern TCGv     cpu_r[32];
+extern TCGv     cpu_eind;
+extern TCGv     cpu_sp;
+
+enum {
+    BS_NONE     = 0,    /*  Nothing special (none of the below          */
+    BS_STOP     = 1,    /*  We want to stop translation for any reason  */
+    BS_BRANCH   = 2,    /*  A branch condition is reached               */
+    BS_EXCP     = 3,    /*  An exception condition is reached           */
+};
+
+uint32_t    get_opcode(uint8_t const *code, unsigned bitBase, unsigned bitSize);
+
+typedef struct DisasContext DisasContext;
+typedef struct InstInfo     InstInfo;
+
+typedef int (*translate_function_t)(CPUAVRState *env, DisasContext *ctx,
+                                        uint32_t opcode);
+struct InstInfo {
+    target_long                 cpc;
+    target_long                 npc;
+    uint32_t                    opcode;
+    translate_function_t        translate;
+    unsigned                    length;
+};
+
+/*This is the state at translation time.  */
+struct DisasContext {
+    struct TranslationBlock    *tb;
+
+    InstInfo                    inst[2];/*  two consequitive instructions   */
+
+    /*Routine used to access memory */
+    int                         memidx;
+    int                         bstate;
+    int                         singlestep;
+};
+
+void avr_decode(uint32_t pc, uint32_t *length, uint32_t opcode,
+                        translate_function_t *translate);
+
+static inline void  gen_goto_tb(CPUAVRState *env, DisasContext *ctx,
+                        int n, target_ulong dest)
+{
+    TranslationBlock   *tb;
+
+    tb      = ctx->tb;
+
+    if (ctx->singlestep == 0) {
+        tcg_gen_goto_tb(n);
+        tcg_gen_movi_i32(cpu_pc, dest);
+        tcg_gen_exit_tb((uintptr_t)tb + n);
+    } else {
+        tcg_gen_movi_i32(cpu_pc, dest);
+        gen_helper_debug(cpu_env);
+        tcg_gen_exit_tb(0);
+    }
+}
+
+
+#endif
+
-- 
2.4.9 (Apple Git-60)

  parent reply	other threads:[~2016-07-01 14:48 UTC|newest]

Thread overview: 41+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2016-07-01 14:47 [Qemu-devel] [PATCH v9 00/10] 8bit AVR cores Michael Rolnik
2016-07-01 14:47 ` [Qemu-devel] [PATCH v9 01/10] target-avr: AVR cores support is added. 1. basic CPU structure 2. registers 3. no instructions 4. saving sreg, rampD, rampX, rampY, rampD, eind in HW representation saving cpu features Michael Rolnik
2016-07-01 14:47 ` [Qemu-devel] [PATCH v9 02/10] target-avr: adding AVR CPU features/flavors Michael Rolnik
2016-07-01 14:47 ` [Qemu-devel] [PATCH v9 03/10] target-avr: adding a sample AVR board Michael Rolnik
2016-07-01 14:47 ` [Qemu-devel] [PATCH v9 04/10] target-avr: adding instructions encodings Michael Rolnik
2016-07-01 14:47 ` [Qemu-devel] [PATCH v9 05/10] target-avr: adding AVR interrupt handling Michael Rolnik
2016-07-01 14:47 ` [Qemu-devel] [PATCH v9 06/10] target-avr: adding helpers for IN, OUT, SLEEP, WBR & unsupported instructions Michael Rolnik
2016-07-01 14:47 ` [Qemu-devel] [PATCH v9 07/10] target-avr: adding instruction decoder Michael Rolnik
2016-07-01 14:47 ` Michael Rolnik [this message]
2016-07-01 14:47 ` [Qemu-devel] [PATCH v9 09/10] target-avr: updating translate.c to use instructions translation Michael Rolnik
2016-07-05 21:02   ` Peter Maydell
2016-07-01 14:47 ` [Qemu-devel] [PATCH v9 10/10] target-avr: decoder generator. currently not used by the build, can be used manually Michael Rolnik
2016-07-01 19:09 ` [Qemu-devel] [PATCH v9 00/10] 8bit AVR cores Richard Henderson
2016-07-02 18:20   ` Michael Rolnik
2016-07-02 19:56     ` Michael Rolnik
2016-07-05 18:15       ` Michael Rolnik
2016-07-05 19:54         ` Peter Maydell
2016-07-05 20:31           ` Michael Rolnik
2016-07-05 20:39             ` Peter Maydell
2016-07-05 21:51               ` Michael Rolnik
2016-07-05 21:04             ` Peter Maydell
2016-07-05 21:41               ` Michael Rolnik
2016-07-05 22:24                 ` Peter Maydell
2016-07-05 23:55                 ` Richard Henderson
2016-07-06  5:50                   ` Michael Rolnik
2016-07-06  9:19                   ` Peter Maydell
2016-07-06  9:36                     ` Michael Rolnik
2016-07-06  9:43                       ` Peter Maydell
2016-07-06  9:49                         ` Michael Rolnik
2016-07-06  9:54                           ` Peter Maydell
2016-07-06  9:58                             ` Michael Rolnik
2016-07-06  9:52                       ` Peter Maydell
2016-07-06  9:55                         ` Michael Rolnik
2016-07-06 10:03                           ` Peter Maydell
2016-07-06 10:04                             ` Michael Rolnik
2016-07-06 10:10                               ` Peter Maydell
2016-07-06 10:11                                 ` Michael Rolnik
2016-07-06 17:11                                   ` Michael Rolnik
2016-07-06 17:22                                     ` Peter Maydell
2016-07-06 17:22                                     ` Richard Henderson
  -- strict thread matches above, loose matches on Subject: below --
2016-06-22  9:51 Michael Rolnik
2016-06-22  9:51 ` [Qemu-devel] [PATCH v9 08/10] target-avr: adding instruction translation Michael Rolnik

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=1467384450-7267-9-git-send-email-mrolnik@gmail.com \
    --to=mrolnik@gmail.com \
    --cc=peter.maydell@linaro.org \
    --cc=qemu-devel@nongnu.org \
    --cc=rth@twiddle.net \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.