All of lore.kernel.org
 help / color / mirror / Atom feed
From: Aleksandar Markovic <aleksandar.markovic@rt-rk.com>
To: qemu-devel@nongnu.org
Cc: Richard Henderson <richard.henderson@linaro.org>,
	Michael Rolnik <mrolnik@gmail.com>,
	Aleksandar Markovic <aleksandar.m.mail@gmail.com>
Subject: [PATCH rc4 09/29] target/avr: Add instruction translation - Arithmetic and Logic Instructions
Date: Fri, 31 Jan 2020 01:02:53 +0100	[thread overview]
Message-ID: <1580428993-4767-10-git-send-email-aleksandar.markovic@rt-rk.com> (raw)
In-Reply-To: <1580428993-4767-1-git-send-email-aleksandar.markovic@rt-rk.com>

From: Michael Rolnik <mrolnik@gmail.com>

This includes:
- ADD, ADC, ADIW
- SBIW, SUB, SUBI, SBC, SBCI
- AND, ANDI
- OR, ORI, EOR
- COM, NEG
- INC, DEC
- MUL, MULS, MULSU
- FMUL, FMULS, FMULSU
- DES

Signed-off-by: Michael Rolnik <mrolnik@gmail.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Aleksandar Markovic <aleksandar.m.mail@gmail.com>
---
 target/avr/insn.decode |  93 ++++++
 target/avr/translate.c | 752 +++++++++++++++++++++++++++++++++++++++++++++++++
 2 files changed, 845 insertions(+)
 create mode 100644 target/avr/insn.decode

diff --git a/target/avr/insn.decode b/target/avr/insn.decode
new file mode 100644
index 0000000..9c71ed6
--- /dev/null
+++ b/target/avr/insn.decode
@@ -0,0 +1,93 @@
+#
+# AVR instruction decode definitions.
+#
+# Copyright (c) 2019 Michael Rolnik <mrolnik@gmail.com>
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License, or (at your option) any later version.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, see <http://www.gnu.org/licenses/>.
+#
+
+#
+#   regs_16_31_by_one = [16 .. 31]
+#   regs_16_23_by_one = [16 .. 23]
+#   regs_24_30_by_two = [24, 26, 28, 30]
+#   regs_00_30_by_two = [0, 2, 4, 6, 8, .. 30]
+
+%rd             4:5
+%rr             9:1 0:4
+
+%rd_a           4:4                         !function=to_regs_16_31_by_one
+%rd_b           4:3                         !function=to_regs_16_23_by_one
+%rd_c           4:2                         !function=to_regs_24_30_by_two
+%rd_d           4:4                         !function=to_regs_00_30_by_two
+%rr_a           0:4                         !function=to_regs_16_31_by_one
+%rr_b           0:3                         !function=to_regs_16_23_by_one
+%rr_d           0:4                         !function=to_regs_00_30_by_two
+
+%imm6           6:2 0:4
+%imm8           8:4 0:4
+
+%io_imm         9:2 0:4
+%ldst_d_imm     13:1 10:2 0:3
+
+# The 22-bit immediate is partially in the opcode word,
+# and partially in the next.  Use append_16 to build the
+# complete 22-bit value.
+%imm_call       4:5 0:1                     !function=append_16
+
+
+&rd_rr          rd rr
+&rd_imm         rd imm
+
+@op_rd_rr       .... .. . ..... ....        &rd_rr      rd=%rd rr=%rr
+@op_rd_imm6     .... .... .. .. ....        &rd_imm     rd=%rd_c imm=%imm6
+@op_rd_imm8     .... .... .... ....         &rd_imm     rd=%rd_a imm=%imm8
+@op_bit         .... .... . bit:3 ....
+@op_bit_imm     .... .. imm:s7 bit:3
+@fmul           .... .... . ... . ...       &rd_rr      rd=%rd_b rr=%rr_b
+@io_rd_imm      .... . .. ..... ....        &rd_imm     rd=%rd imm=%io_imm
+@ldst_d         .. . . .. . rd:5  . ...     &rd_imm     imm=%ldst_d_imm
+
+# The 16-bit immediate is completely in the next word.
+# Fields cannot be defined with no bits, so we cannot play
+# the same trick and append to a zero-bit value.
+# Defer reading the immediate until trans_{LDS,STS}.
+@ldst_s         .... ... rd:5 ....          imm=0
+
+#
+# Arithmetic Instructions
+#
+ADD             0000 11 . ..... ....        @op_rd_rr
+ADC             0001 11 . ..... ....        @op_rd_rr
+ADIW            1001 0110 .. .. ....        @op_rd_imm6
+SUB             0001 10 . ..... ....        @op_rd_rr
+SUBI            0101 .... .... ....         @op_rd_imm8
+SBC             0000 10 . ..... ....        @op_rd_rr
+SBCI            0100 .... .... ....         @op_rd_imm8
+SBIW            1001 0111 .. .. ....        @op_rd_imm6
+AND             0010 00 . ..... ....        @op_rd_rr
+ANDI            0111 .... .... ....         @op_rd_imm8
+OR              0010 10 . ..... ....        @op_rd_rr
+ORI             0110 .... .... ....         @op_rd_imm8
+EOR             0010 01 . ..... ....        @op_rd_rr
+COM             1001 010 rd:5 0000
+NEG             1001 010 rd:5 0001
+INC             1001 010 rd:5 0011
+DEC             1001 010 rd:5 1010
+MUL             1001 11 . ..... ....        @op_rd_rr
+MULS            0000 0010 .... ....         &rd_rr      rd=%rd_a rr=%rr_a
+MULSU           0000 0011 0 ... 0 ...       @fmul
+FMUL            0000 0011 0 ... 1 ...       @fmul
+FMULS           0000 0011 1 ... 0 ...       @fmul
+FMULSU          0000 0011 1 ... 1 ...       @fmul
+DES             1001 0100 imm:4 1011
diff --git a/target/avr/translate.c b/target/avr/translate.c
index 535f666..00fb3f5 100644
--- a/target/avr/translate.c
+++ b/target/avr/translate.c
@@ -169,3 +169,755 @@ static bool avr_have_feature(DisasContext *ctx, int feature)
 
 static bool decode_insn(DisasContext *ctx, uint16_t insn);
 #include "decode_insn.inc.c"
+
+/*
+ * Arithmetic Instructions
+ */
+
+static void gen_add_CHf(TCGv R, TCGv Rd, TCGv Rr)
+{
+    TCGv t1 = tcg_temp_new_i32();
+    TCGv t2 = tcg_temp_new_i32();
+    TCGv t3 = tcg_temp_new_i32();
+
+    tcg_gen_and_tl(t1, Rd, Rr); /* t1 = Rd & Rr */
+    tcg_gen_andc_tl(t2, Rd, R); /* t2 = Rd & ~R */
+    tcg_gen_andc_tl(t3, Rr, R); /* t3 = Rr & ~R */
+    tcg_gen_or_tl(t1, t1, t2); /* t1 = t1 | t2 | t3 */
+    tcg_gen_or_tl(t1, t1, t3);
+    tcg_gen_shri_tl(cpu_Cf, t1, 7); /* Cf = t1(7) */
+    tcg_gen_shri_tl(cpu_Hf, t1, 3); /* Hf = t1(3) */
+    tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
+
+    tcg_temp_free_i32(t3);
+    tcg_temp_free_i32(t2);
+    tcg_temp_free_i32(t1);
+}
+
+
+static void gen_add_Vf(TCGv R, TCGv Rd, TCGv Rr)
+{
+    TCGv t1 = tcg_temp_new_i32();
+    TCGv t2 = tcg_temp_new_i32();
+
+    /* t1 = Rd & Rr & ~R | ~Rd & ~Rr & R */
+    /*    = (Rd ^ R) & ~(Rd ^ Rr) */
+    tcg_gen_xor_tl(t1, Rd, R);
+    tcg_gen_xor_tl(t2, Rd, Rr);
+    tcg_gen_andc_tl(t1, t1, t2);
+    tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */
+
+    tcg_temp_free_i32(t2);
+    tcg_temp_free_i32(t1);
+}
+
+
+static void gen_sub_CHf(TCGv R, TCGv Rd, TCGv Rr)
+{
+    TCGv t1 = tcg_temp_new_i32();
+    TCGv t2 = tcg_temp_new_i32();
+    TCGv t3 = tcg_temp_new_i32();
+
+    tcg_gen_not_tl(t1, Rd); /* t1 = ~Rd */
+    tcg_gen_and_tl(t2, t1, Rr); /* t2 = ~Rd & Rr */
+    tcg_gen_or_tl(t3, t1, Rr); /* t3 = (~Rd | Rr) & R */
+    tcg_gen_and_tl(t3, t3, R);
+    tcg_gen_or_tl(t2, t2, t3); /* t2 = ~Rd & Rr | ~Rd & R | R & Rr */
+    tcg_gen_shri_tl(cpu_Cf, t2, 7); /* Cf = t2(7) */
+    tcg_gen_shri_tl(cpu_Hf, t2, 3); /* Hf = t2(3) */
+    tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
+
+    tcg_temp_free_i32(t3);
+    tcg_temp_free_i32(t2);
+    tcg_temp_free_i32(t1);
+}
+
+
+static void gen_sub_Vf(TCGv R, TCGv Rd, TCGv Rr)
+{
+    TCGv t1 = tcg_temp_new_i32();
+    TCGv t2 = tcg_temp_new_i32();
+
+    /* t1 = Rd & ~Rr & ~R | ~Rd & Rr & R */
+    /*    = (Rd ^ R) & (Rd ^ R) */
+    tcg_gen_xor_tl(t1, Rd, R);
+    tcg_gen_xor_tl(t2, Rd, Rr);
+    tcg_gen_and_tl(t1, t1, t2);
+    tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */
+
+    tcg_temp_free_i32(t2);
+    tcg_temp_free_i32(t1);
+}
+
+
+static void gen_NSf(TCGv R)
+{
+    tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
+    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+}
+
+
+static void gen_ZNSf(TCGv R)
+{
+    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
+    tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
+    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+}
+
+/*
+ *  Adds two registers without the C Flag and places the result in the
+ *  destination register Rd.
+ */
+static bool trans_ADD(DisasContext *ctx, arg_ADD *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv Rr = cpu_r[a->rr];
+    TCGv R = tcg_temp_new_i32();
+
+    tcg_gen_add_tl(R, Rd, Rr); /* Rd = Rd + Rr */
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+    /* update status register */
+    gen_add_CHf(R, Rd, Rr);
+    gen_add_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+    /* update output registers */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return true;
+}
+
+/*
+ *  Adds two registers and the contents of the C Flag and places the result in
+ *  the destination register Rd.
+ */
+static bool trans_ADC(DisasContext *ctx, arg_ADC *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv Rr = cpu_r[a->rr];
+    TCGv R = tcg_temp_new_i32();
+
+    tcg_gen_add_tl(R, Rd, Rr); /* R = Rd + Rr + Cf */
+    tcg_gen_add_tl(R, R, cpu_Cf);
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+    /* update status register */
+    gen_add_CHf(R, Rd, Rr);
+    gen_add_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+    /* update output registers */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return true;
+}
+
+/*
+ *  Adds an immediate value (0 - 63) to a register pair and places the result
+ *  in the register pair. This instruction operates on the upper four register
+ *  pairs, and is well suited for operations on the pointer registers.  This
+ *  instruction is not available in all devices. Refer to the device specific
+ *  instruction set summary.
+ */
+static bool trans_ADIW(DisasContext *ctx, arg_ADIW *a)
+{
+    if (!avr_have_feature(ctx, AVR_FEATURE_ADIW_SBIW)) {
+        return true;
+    }
+
+    TCGv RdL = cpu_r[a->rd];
+    TCGv RdH = cpu_r[a->rd + 1];
+    int Imm = (a->imm);
+    TCGv R = tcg_temp_new_i32();
+    TCGv Rd = tcg_temp_new_i32();
+
+    tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */
+    tcg_gen_addi_tl(R, Rd, Imm); /* R = Rd + Imm */
+    tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
+    /* update status register */
+    tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */
+    tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15);
+    tcg_gen_andc_tl(cpu_Vf, R, Rd); /* Vf = R & ~Rd */
+    tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15);
+    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
+    tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */
+    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf);/* Sf = Nf ^ Vf */
+    /* update output registers */
+    tcg_gen_andi_tl(RdL, R, 0xff);
+    tcg_gen_shri_tl(RdH, R, 8);
+
+    tcg_temp_free_i32(Rd);
+    tcg_temp_free_i32(R);
+
+    return true;
+}
+
+/*
+ *  Subtracts two registers and places the result in the destination
+ *  register Rd.
+ */
+static bool trans_SUB(DisasContext *ctx, arg_SUB *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv Rr = cpu_r[a->rr];
+    TCGv R = tcg_temp_new_i32();
+
+    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+    /* update status register */
+    tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+    /* update output registers */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return true;
+}
+
+/*
+ *  Subtracts a register and a constant and places the result in the
+ *  destination register Rd. This instruction is working on Register R16 to R31
+ *  and is very well suited for operations on the X, Y, and Z-pointers.
+ */
+static bool trans_SUBI(DisasContext *ctx, arg_SUBI *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv Rr = tcg_const_i32(a->imm);
+    TCGv R = tcg_temp_new_i32();
+
+    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Imm */
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+    /* update status register */
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+    /* update output registers */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+    tcg_temp_free_i32(Rr);
+
+    return true;
+}
+
+/*
+ *  Subtracts two registers and subtracts with the C Flag and places the
+ *  result in the destination register Rd.
+ */
+static bool trans_SBC(DisasContext *ctx, arg_SBC *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv Rr = cpu_r[a->rr];
+    TCGv R = tcg_temp_new_i32();
+    TCGv zero = tcg_const_i32(0);
+
+    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
+    tcg_gen_sub_tl(R, R, cpu_Cf);
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+    /* update status register */
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_NSf(R);
+
+    /*
+     * Previous value remains unchanged when the result is zero;
+     * cleared otherwise.
+     */
+    tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero);
+    /* update output registers */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(zero);
+    tcg_temp_free_i32(R);
+
+    return true;
+}
+
+/*
+ *  SBCI -- Subtract Immediate with Carry
+ */
+static bool trans_SBCI(DisasContext *ctx, arg_SBCI *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv Rr = tcg_const_i32(a->imm);
+    TCGv R = tcg_temp_new_i32();
+    TCGv zero = tcg_const_i32(0);
+
+    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
+    tcg_gen_sub_tl(R, R, cpu_Cf);
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+    /* update status register */
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_NSf(R);
+
+    /*
+     * Previous value remains unchanged when the result is zero;
+     * cleared otherwise.
+     */
+    tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero);
+    /* update output registers */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(zero);
+    tcg_temp_free_i32(R);
+    tcg_temp_free_i32(Rr);
+
+    return true;
+}
+
+/*
+ *  Subtracts an immediate value (0-63) from a register pair and places the
+ *  result in the register pair. This instruction operates on the upper four
+ *  register pairs, and is well suited for operations on the Pointer Registers.
+ *  This instruction is not available in all devices. Refer to the device
+ *  specific instruction set summary.
+ */
+static bool trans_SBIW(DisasContext *ctx, arg_SBIW *a)
+{
+    if (!avr_have_feature(ctx, AVR_FEATURE_ADIW_SBIW)) {
+        return true;
+    }
+
+    TCGv RdL = cpu_r[a->rd];
+    TCGv RdH = cpu_r[a->rd + 1];
+    int Imm = (a->imm);
+    TCGv R = tcg_temp_new_i32();
+    TCGv Rd = tcg_temp_new_i32();
+
+    tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */
+    tcg_gen_subi_tl(R, Rd, Imm); /* R = Rd - Imm */
+    tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
+    /* update status register */
+    tcg_gen_andc_tl(cpu_Cf, R, Rd);
+    tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15); /* Cf = R & ~Rd */
+    tcg_gen_andc_tl(cpu_Vf, Rd, R);
+    tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15); /* Vf = Rd & ~R */
+    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
+    tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */
+    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+    /* update output registers */
+    tcg_gen_andi_tl(RdL, R, 0xff);
+    tcg_gen_shri_tl(RdH, R, 8);
+
+    tcg_temp_free_i32(Rd);
+    tcg_temp_free_i32(R);
+
+    return true;
+}
+
+/*
+ *  Performs the logical AND between the contents of register Rd and register
+ *  Rr and places the result in the destination register Rd.
+ */
+static bool trans_AND(DisasContext *ctx, arg_AND *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv Rr = cpu_r[a->rr];
+    TCGv R = tcg_temp_new_i32();
+
+    tcg_gen_and_tl(R, Rd, Rr); /* Rd = Rd and Rr */
+    /* update status register */
+    tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */
+    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
+    gen_ZNSf(R);
+    /* update output registers */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return true;
+}
+
+/*
+ *  Performs the logical AND between the contents of register Rd and a constant
+ *  and places the result in the destination register Rd.
+ */
+static bool trans_ANDI(DisasContext *ctx, arg_ANDI *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    int Imm = (a->imm);
+
+    tcg_gen_andi_tl(Rd, Rd, Imm); /* Rd = Rd & Imm */
+    /* update status register */
+    tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
+    gen_ZNSf(Rd);
+
+    return true;
+}
+
+/*
+ *  Performs the logical OR between the contents of register Rd and register
+ *  Rr and places the result in the destination register Rd.
+ */
+static bool trans_OR(DisasContext *ctx, arg_OR *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv Rr = cpu_r[a->rr];
+    TCGv R = tcg_temp_new_i32();
+
+    tcg_gen_or_tl(R, Rd, Rr);
+    /* update status register */
+    tcg_gen_movi_tl(cpu_Vf, 0);
+    gen_ZNSf(R);
+    /* update output registers */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return true;
+}
+
+/*
+ *  Performs the logical OR between the contents of register Rd and a
+ *  constant and places the result in the destination register Rd.
+ */
+static bool trans_ORI(DisasContext *ctx, arg_ORI *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    int Imm = (a->imm);
+
+    tcg_gen_ori_tl(Rd, Rd, Imm); /* Rd = Rd | Imm */
+    /* update status register */
+    tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
+    gen_ZNSf(Rd);
+
+    return true;
+}
+
+/*
+ *  Performs the logical EOR between the contents of register Rd and
+ *  register Rr and places the result in the destination register Rd.
+ */
+static bool trans_EOR(DisasContext *ctx, arg_EOR *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv Rr = cpu_r[a->rr];
+
+    tcg_gen_xor_tl(Rd, Rd, Rr);
+    /* update status register */
+    tcg_gen_movi_tl(cpu_Vf, 0);
+    gen_ZNSf(Rd);
+
+    return true;
+}
+
+/*
+ *  Clears the specified bits in register Rd. Performs the logical AND
+ *  between the contents of register Rd and the complement of the constant mask
+ *  K. The result will be placed in register Rd.
+ */
+static bool trans_COM(DisasContext *ctx, arg_COM *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv R = tcg_temp_new_i32();
+
+    tcg_gen_xori_tl(Rd, Rd, 0xff);
+    /* update status register */
+    tcg_gen_movi_tl(cpu_Cf, 1); /* Cf = 1 */
+    tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */
+    gen_ZNSf(Rd);
+
+    tcg_temp_free_i32(R);
+
+    return true;
+}
+
+/*
+ *  Replaces the contents of register Rd with its two's complement; the
+ *  value $80 is left unchanged.
+ */
+static bool trans_NEG(DisasContext *ctx, arg_NEG *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv t0 = tcg_const_i32(0);
+    TCGv R = tcg_temp_new_i32();
+
+    tcg_gen_sub_tl(R, t0, Rd); /* R = 0 - Rd */
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+    /* update status register */
+    gen_sub_CHf(R, t0, Rd);
+    gen_sub_Vf(R, t0, Rd);
+    gen_ZNSf(R);
+    /* update output registers */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(R);
+
+    return true;
+}
+
+/*
+ *  Adds one -1- to the contents of register Rd and places the result in the
+ *  destination register Rd.  The C Flag in SREG is not affected by the
+ *  operation, thus allowing the INC instruction to be used on a loop counter in
+ *  multiple-precision computations.  When operating on unsigned numbers, only
+ *  BREQ and BRNE branches can be expected to perform consistently. When
+ *  operating on two's complement values, all signed branches are available.
+ */
+static bool trans_INC(DisasContext *ctx, arg_INC *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+
+    tcg_gen_addi_tl(Rd, Rd, 1);
+    tcg_gen_andi_tl(Rd, Rd, 0xff);
+    /* update status register */
+    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x80); /* Vf = Rd == 0x80 */
+    gen_ZNSf(Rd);
+
+    return true;
+}
+
+/*
+ *  Subtracts one -1- from the contents of register Rd and places the result
+ *  in the destination register Rd.  The C Flag in SREG is not affected by the
+ *  operation, thus allowing the DEC instruction to be used on a loop counter in
+ *  multiple-precision computations.  When operating on unsigned values, only
+ *  BREQ and BRNE branches can be expected to perform consistently.  When
+ *  operating on two's complement values, all signed branches are available.
+ */
+static bool trans_DEC(DisasContext *ctx, arg_DEC *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+
+    tcg_gen_subi_tl(Rd, Rd, 1); /* Rd = Rd - 1 */
+    tcg_gen_andi_tl(Rd, Rd, 0xff); /* make it 8 bits */
+    /* update status register */
+    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x7f); /* Vf = Rd == 0x7f */
+    gen_ZNSf(Rd);
+
+    return true;
+}
+
+/*
+ *  This instruction performs 8-bit x 8-bit -> 16-bit unsigned multiplication.
+ */
+static bool trans_MUL(DisasContext *ctx, arg_MUL *a)
+{
+    if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
+        return true;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[a->rd];
+    TCGv Rr = cpu_r[a->rr];
+    TCGv R = tcg_temp_new_i32();
+
+    tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd * Rr */
+    tcg_gen_andi_tl(R0, R, 0xff);
+    tcg_gen_shri_tl(R1, R, 8);
+    /* update status register */
+    tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
+    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
+
+    tcg_temp_free_i32(R);
+
+    return true;
+}
+
+/*
+ *  This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication.
+ */
+static bool trans_MULS(DisasContext *ctx, arg_MULS *a)
+{
+    if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
+        return true;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[a->rd];
+    TCGv Rr = cpu_r[a->rr];
+    TCGv R = tcg_temp_new_i32();
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+    tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */
+    tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */
+    tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
+    tcg_gen_andi_tl(R0, R, 0xff);
+    tcg_gen_shri_tl(R1, R, 8);
+    /* update status register */
+    tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
+    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(R);
+
+    return true;
+}
+
+/*
+ *  This instruction performs 8-bit x 8-bit -> 16-bit multiplication of a
+ *  signed and an unsigned number.
+ */
+static bool trans_MULSU(DisasContext *ctx, arg_MULSU *a)
+{
+    if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
+        return true;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[a->rd];
+    TCGv Rr = cpu_r[a->rr];
+    TCGv R = tcg_temp_new_i32();
+    TCGv t0 = tcg_temp_new_i32();
+
+    tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+    tcg_gen_mul_tl(R, t0, Rr); /* R = Rd * Rr */
+    tcg_gen_andi_tl(R, R, 0xffff); /* make R 16 bits */
+    tcg_gen_andi_tl(R0, R, 0xff);
+    tcg_gen_shri_tl(R1, R, 8);
+    /* update status register */
+    tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
+    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
+
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(R);
+
+    return true;
+}
+
+/*
+ *  This instruction performs 8-bit x 8-bit -> 16-bit unsigned
+ *  multiplication and shifts the result one bit left.
+ */
+static bool trans_FMUL(DisasContext *ctx, arg_FMUL *a)
+{
+    if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
+        return true;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[a->rd];
+    TCGv Rr = cpu_r[a->rr];
+    TCGv R = tcg_temp_new_i32();
+
+    tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd * Rr */
+    /* update status register */
+    tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
+    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
+    /* update output registers */
+    tcg_gen_shli_tl(R, R, 1);
+    tcg_gen_andi_tl(R0, R, 0xff);
+    tcg_gen_shri_tl(R1, R, 8);
+    tcg_gen_andi_tl(R1, R1, 0xff);
+
+
+    tcg_temp_free_i32(R);
+
+    return true;
+}
+
+/*
+ *  This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication
+ *  and shifts the result one bit left.
+ */
+static bool trans_FMULS(DisasContext *ctx, arg_FMULS *a)
+{
+    if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
+        return true;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[a->rd];
+    TCGv Rr = cpu_r[a->rr];
+    TCGv R = tcg_temp_new_i32();
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+    tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */
+    tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */
+    tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
+    /* update status register */
+    tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
+    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
+    /* update output registers */
+    tcg_gen_shli_tl(R, R, 1);
+    tcg_gen_andi_tl(R0, R, 0xff);
+    tcg_gen_shri_tl(R1, R, 8);
+    tcg_gen_andi_tl(R1, R1, 0xff);
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(R);
+
+    return true;
+}
+
+/*
+ *  This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication
+ *  and shifts the result one bit left.
+ */
+static bool trans_FMULSU(DisasContext *ctx, arg_FMULSU *a)
+{
+    if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
+        return true;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[a->rd];
+    TCGv Rr = cpu_r[a->rr];
+    TCGv R = tcg_temp_new_i32();
+    TCGv t0 = tcg_temp_new_i32();
+
+    tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+    tcg_gen_mul_tl(R, t0, Rr); /* R = Rd * Rr */
+    tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
+    /* update status register */
+    tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
+    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
+    /* update output registers */
+    tcg_gen_shli_tl(R, R, 1);
+    tcg_gen_andi_tl(R0, R, 0xff);
+    tcg_gen_shri_tl(R1, R, 8);
+    tcg_gen_andi_tl(R1, R1, 0xff);
+
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(R);
+
+    return true;
+}
+
+/*
+ *  The module is an instruction set extension to the AVR CPU, performing
+ *  DES iterations. The 64-bit data block (plaintext or ciphertext) is placed in
+ *  the CPU register file, registers R0-R7, where LSB of data is placed in LSB
+ *  of R0 and MSB of data is placed in MSB of R7. The full 64-bit key (including
+ *  parity bits) is placed in registers R8- R15, organized in the register file
+ *  with LSB of key in LSB of R8 and MSB of key in MSB of R15. Executing one DES
+ *  instruction performs one round in the DES algorithm. Sixteen rounds must be
+ *  executed in increasing order to form the correct DES ciphertext or
+ *  plaintext. Intermediate results are stored in the register file (R0-R15)
+ *  after each DES instruction. The instruction's operand (K) determines which
+ *  round is executed, and the half carry flag (H) determines whether encryption
+ *  or decryption is performed.  The DES algorithm is described in
+ *  "Specifications for the Data Encryption Standard" (Federal Information
+ *  Processing Standards Publication 46). Intermediate results in this
+ *  implementation differ from the standard because the initial permutation and
+ *  the inverse initial permutation are performed each iteration. This does not
+ *  affect the result in the final ciphertext or plaintext, but reduces
+ *  execution time.
+ */
+static bool trans_DES(DisasContext *ctx, arg_DES *a)
+{
+    /* TODO */
+    if (!avr_have_feature(ctx, AVR_FEATURE_DES)) {
+        return true;
+    }
+
+    return true;
+}
-- 
2.7.4



  parent reply	other threads:[~2020-01-31  0:10 UTC|newest]

Thread overview: 70+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2020-01-31  0:02 [PATCH rc4 00/29] target/avr merger Aleksandar Markovic
2020-01-31  0:02 ` [PATCH rc4 01/29] target/avr: Add basic parameters for new AVR platform Aleksandar Markovic
2020-01-31 18:47   ` Aleksandar Markovic
2020-01-31 19:23   ` Aleksandar Markovic
2020-01-31 20:07   ` Aleksandar Markovic
2020-01-31  0:02 ` [PATCH rc4 02/29] target/avr: Introduce AVR CPU class object Aleksandar Markovic
2020-01-31  0:02 ` [PATCH rc4 03/29] target/avr: Add migration support Aleksandar Markovic
2020-01-31  0:02 ` [PATCH rc4 04/29] target/avr: Add GDB support Aleksandar Markovic
2020-01-31  0:02 ` [PATCH rc4 05/29] target/avr: Introduce enumeration AVRFeature Aleksandar Markovic
2020-01-31  0:02 ` [PATCH rc4 06/29] target/avr: Add defintions of AVR core types Aleksandar Markovic
2020-02-02 15:40   ` Joaquin de Andres
2020-02-08  7:35     ` Aleksandar Markovic
2020-02-10  7:39       ` Michael Rolnik
2020-02-21 11:03         ` Michael Rolnik
2020-02-21 15:31           ` Aleksandar Markovic
2020-02-27  8:38             ` Michael Rolnik
2020-03-06 13:34               ` Michael Rolnik
2020-06-16  8:56                 ` Philippe Mathieu-Daudé
2020-06-29  9:51                 ` Philippe Mathieu-Daudé
2020-01-31  0:02 ` [PATCH rc4 07/29] target/avr: Add instruction helpers Aleksandar Markovic
2020-02-01 12:27   ` Aleksandar Markovic
2020-01-31  0:02 ` [PATCH rc4 08/29] target/avr: Add instruction translation - Register definitions Aleksandar Markovic
2020-01-31  0:02 ` Aleksandar Markovic [this message]
2020-01-31  0:02 ` [PATCH rc4 10/29] target/avr: Add instruction translation - Branch Instructions Aleksandar Markovic
2020-01-31  0:02 ` [PATCH rc4 11/29] target/avr: Add instruction translation - Data Transfer Instructions Aleksandar Markovic
2020-01-31  0:02 ` [PATCH rc4 12/29] target/avr: Add instruction translation - Bit and Bit-test Instructions Aleksandar Markovic
2020-01-31  0:02 ` [PATCH rc4 13/29] target/avr: Add instruction translation - MCU Control Instructions Aleksandar Markovic
2020-01-31  0:02 ` [PATCH rc4 14/29] target/avr: Add instruction translation - CPU main translation function Aleksandar Markovic
2020-01-31  0:02 ` [PATCH rc4 15/29] target/avr: Add instruction disassembly function Aleksandar Markovic
2020-01-31  0:03 ` [PATCH rc4 16/29] hw/char: Add limited support for AVR USART peripheral Aleksandar Markovic
2020-01-31  0:03 ` [PATCH rc4 17/29] hw/timer: Add limited support for AVR 16-bit timer peripheral Aleksandar Markovic
2020-01-31  0:03 ` [PATCH rc4 18/29] hw/misc: Add limited support for AVR power device Aleksandar Markovic
2020-01-31  0:03 ` [PATCH rc4 19/29] target/avr: Add section about AVR into QEMU documentation Aleksandar Markovic
2020-02-01 13:19   ` Aleksandar Markovic
2020-01-31  0:03 ` [PATCH rc4 20/29] target/avr: Register AVR support with the rest of QEMU Aleksandar Markovic
2020-01-31  0:23   ` Philippe Mathieu-Daudé
2020-01-31  0:27     ` Aleksandar Markovic
2020-01-31  0:03 ` [PATCH rc4 21/29] target/avr: Add machine none test Aleksandar Markovic
2020-01-31  0:03 ` [PATCH rc4 22/29] target/avr: Update MAINTAINERS file Aleksandar Markovic
2020-01-31  0:03 ` [PATCH rc4 23/29] hw/avr: Add helper to load raw/ELF firmware binaries Aleksandar Markovic
2020-01-31  0:20   ` Philippe Mathieu-Daudé
2020-01-31  0:26     ` Aleksandar Markovic
2020-01-31  0:28       ` Philippe Mathieu-Daudé
2020-01-31  0:30         ` Aleksandar Markovic
2020-01-31  0:03 ` [PATCH rc4 24/29] hw/avr: Add some ATmega microcontrollers Aleksandar Markovic
2020-01-31  1:56   ` Aleksandar Markovic
2020-01-31  3:09     ` Philippe Mathieu-Daudé
2020-01-31  3:45       ` Aleksandar Markovic
2020-01-31  4:11         ` Aleksandar Markovic
2020-01-31  9:35           ` Thomas Huth
2020-01-31  9:40             ` Aleksandar Markovic
2020-01-31 10:45               ` Philippe Mathieu-Daudé
2020-01-31 11:07                 ` Aleksandar Markovic
2020-01-31  0:03 ` [PATCH rc4 25/29] hw/avr: Add some Arduino boards Aleksandar Markovic
2020-01-31  0:03 ` [PATCH rc4 26/29] target/avr: Update build system Aleksandar Markovic
2020-02-04 22:58   ` Aleksandar Markovic
2020-01-31  0:03 ` [PATCH rc4 27/29] tests/boot-serial-test: Test some Arduino boards (AVR based) Aleksandar Markovic
2020-01-31  0:03 ` [PATCH rc4 28/29] tests/acceptance: Test the Arduino MEGA2560 board Aleksandar Markovic
2020-01-31  0:03 ` [PATCH rc4 29/29] .travis.yml: Run the AVR acceptance tests Aleksandar Markovic
2020-01-31  0:12 ` [PATCH rc4 00/29] target/avr merger Aleksandar Markovic
2020-01-31  1:23   ` Philippe Mathieu-Daudé
2020-01-31 14:43     ` Michael Rolnik
2020-01-31  1:09 ` [PATCH 0/2] !fixup target/avr merger-rc4 Philippe Mathieu-Daudé
2020-01-31  1:09   ` [PATCH 1/2] !fixup "hw/misc: Add limited support for AVR power device" Philippe Mathieu-Daudé
2020-01-31 11:27     ` Alex Bennée
2020-01-31 12:39       ` Philippe Mathieu-Daudé
2020-01-31 14:52         ` Alex Bennée
2020-01-31  1:09   ` [PATCH 2/2] !fixup "hw/timer: Add limited support for AVR 16-bit timer peripheral" Philippe Mathieu-Daudé
2020-01-31 11:31     ` Alex Bennée
2020-01-31  1:12   ` [PATCH 0/2] !fixup target/avr merger-rc4 Aleksandar Markovic

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=1580428993-4767-10-git-send-email-aleksandar.markovic@rt-rk.com \
    --to=aleksandar.markovic@rt-rk.com \
    --cc=aleksandar.m.mail@gmail.com \
    --cc=mrolnik@gmail.com \
    --cc=qemu-devel@nongnu.org \
    --cc=richard.henderson@linaro.org \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.