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ABSTRACT
As Linux runs an increasing variety of workloads, its in-
kernel readahead algorithm has been challenged by many
unexpected and subtle problems. To name a few: readahead
thrashings arise when readahead pages are evicted prema-
turely under memory pressure; readahead attempts on al-
ready cached pages are undesirable; interrupted-then-retried
reads and locally disordered NFS reads that can easily fool
the sequential detection logic. In this paper, we present a
new Linux readahead framework with flexible and robust
heuristics that can cover varied sequential I/O patterns. It
also enjoys great simplicity by handling most abnormal cases
in an implicit way. We demonstrate its advantages by a
host of case studies. Network throughput is 3 times better
in the case of thrashing and 1.8 times better for large NFS
files. On serving large files with lighttpd, the disk utiliza-
tion is decreased by 26% while providing 17% more network
throughput.

Categories and Subject Descriptors
D.4.3 [Operating Systems]: File Systems Management;
D.4.8 [Operating Systems]: Performance; I.5.1 [Pattern
Recognition]: Models

Keywords
Linux, operating systems, I/O performance, prefetching, read-
ahead, access pattern, sequentiality, caching, thrashing

1. INTRODUCTION
Sequential prefetching, also known as readahead in Linux, is
a widely deployed technique to bridge the huge gap between
the characteristics of disk drives and their inefficient ways of
usage by applications. At one end, disk drives suffers from
big seek latencies and are better utilized by large accesses.
At the other, applications tend to do lots of tiny sequential
reads. To make the two ends meet, operating systems and
disk drives do prefetching: to bring in data blocks for the
upcoming requests, and do so in big chunks.

Prefetching could bring three major benefits[25]. Firstly,
I/O delays are effectively hidden from the applications. When
an application requests for a page, it has been prefetched
and is ready to use. Secondly, disks are better utilized with
the larger prefetching requests. Lastly, it helps to amortize
processing overheads in the I/O path.

The Linux kernel does sequential file prefetching in a generic
readahead framework that dates back to 2002. It actively
intercepts file read requests in the VFS layer and transforms
the sequential ones into large and asynchronous readahead
requests. This seemingly simple task turns out to be rather
tricky in practice[19, 27]. The wide deployment of Linux -
from embedded devices to supercomputers - confronts read-
ahead algorithms with an incredible variety of workloads.
Almost every early stage assumptions have been invalidated:

(A) Sequential accesses do not necessary translate into con-
secutive page indexes: unaligned reads, retried reads[1],
reordered NFS reads[7], concurrent reads.

(B) Readahead should not always be performed on sequen-
tial reads: readahead cache hits, congested I/O queue.

(C) Readahead may not always succeed: out of memory,
full I/O queue.

(D) Readahead pages may be reclaimed before being ac-
cessed: readahead thrashing.

It follows from (A) that the sequential detection logic should
be extended to cover more semi-sequential patterns. When
dealing with sequentiality, the legacy readahead algorithm
has been over-conservative. Next, the issues in (B,C,D) are
not related to access patterns. They arise out of various
system states and should be handled in an isolated way.

In this paper, we present a design and an implementation
of readahead framework for the Linux 2.6 kernel. It enables
sequential and semi-sequential I/O patterns to be served in
a uniform way. The modular design frees the readahead
algorithms from the chores of abnormal system dynamics.
We concentrate on how the new principles and techniques
differ from the conventional wisdom, and illustrate how the
various challenges are addressed in the new framework. The
algorithms, practical implications and I/O performance will
be compared with the legacy readahead framework.
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Figure 1: Page cache oriented read and readahead:
when an empty page cache file is asked for the first
4KB data, a 16KB readahead I/O will be triggered

The rest of this paper is organized as follows. Sections 2
and 3 describe the design principles and case studies of the
readahead algorithms. The I/O performances are evaluated
in section 4. Finally, we introduce related work and conclude
the paper in sections 5, 6.

2. READAHEAD ALGORITHMS
2.1 Readahead in Linux
Linux 2.6 does autonomous file level prefetching in two ways:
read-around for memory mapped file accesses, and read-
ahead for buffered reads. The read-around logic is mainly
designed for executables and libraries, which are perhaps the
most prevalent mmap file users. They typically do a lot of
random reads that exhibit strong locality of reference. So
a simple read-around policy is employed for mmap files: on
every mmap cache miss, try to pre-fault some more pages
around the faulting page. This policy also does a reasonable
good job for sequential accesses in both directions.

The readahead logic for buffered reads, including read(),

pread(), readv(), sendfile(), aio_read() and the linux
specific splice() system calls, is designed to be a general
purpose one and hence is more comprehensive. It watches
those read requests and tries to discover predictable patterns
in them, so that it can prefetch data in a more I/O efficient
way. Due to a number of reasons described in section 1, it
has been hard to get right, and only sequential reads are
supported for now.

The read-around and read-ahead algorithms are dumb and
heuristic, and can be helped with some kind of hints. Some
per-device parameters max_readahead are accessible via com-
mand blockdev. They default to 128KB for hard disks,
2*stripe_width for software RAID, and rsize*15 for NFS.
Linux also provides madvise(), posix_fadvise() and the
non-portable readahead() system calls for applications to
alter the default behavior of the read-around and readahead
algorithms, or even to do application controlled prefetching.

Figure 1 shows how Linux transforms a regular read() call
into an internal readahead request. Here page cache plays a
central role: user-space data consumers do read()s which
transfer data from page cache, while the in-kernel read-
ahead routine populates data from the storage device into
page cache. The read requests are thus decoupled from the
real disk I/Os. This layer of indirection enables the ker-
nel to reshape ‘silly’ I/O requests from applications: a huge
sendfile(1GB) will be broken into smaller max_readahead

sized chunks, while many tiny 1KB sequential reads will be
aggregated into up to max_readahead sized readahead re-
quests.

The readahead algorithms don’t manage a standalone read-
ahead buffer, prefetched pages are put into page cache to-
gether with cached pages. Neither will they guard the life
time of the prefetched pages. Every prefetched page will
be inserted not only into the per-file page cache, but also
to one of the system wide LRU queues to be managed by
the page replacement algorithm. The design is simple and
elegant in general. However when memory pressure goes
high the interactions between prefetching and caching algo-
rithms become visible. On the one hand, readahead blurs
the correlation between a page’s position in the LRU queue
with its first reference time. Such correlation is relied on
by the page replacement algorithm to do proper page aging
and eviction. On the other hand, the page replacement algo-
rithm may evict readahead pages before they are accessed by
the application. The latter issue will be revisited in section
3.2.

2.2 Readahead Windows and Pipelining
Each time a readahead I/O decision is made, it is recorded as
a readahead window. A readahead window takes the form of
(start,size), where start is the first page index and size

is the number of pages. The readahead window produced
from this run of readahead will be saved for referencing in
the next run.

Readahead pipelining is a technique to parallelize the CPU
and disk activities for better resource utilization and system
performance. The legacy readahead algorithm adopts dual
windows to do pipelining: while the application is walking
in the current_window, I/O is underway asynchronously in
the ahead_window. Whenever the read request is crossing
into ahead_window, it becomes current_window, and a read-
ahead I/O will be triggered to make the new ahead_window.

Readahead pipelining is all about doing asynchronous read-
ahead. The key question is how early should the next read-
ahead be started asynchronously? The dual window scheme
cannot provide an exact answer, since both read request
and ahead_window are wide ranges. As a result it is not
able to control the degree of asynchrony. Our solution is
to introduce it as an explicit parameter async_size: as
soon as the number of not-yet-consumed readahead pages
falls under this threshold, it is time for readahead. async_

size can be freely tuned: async_size=0 disables pipelining,
whereas async_size=readahead_size opens full pipelining.
It avoids maintaining two readahead windows and decouples
async_size from readahead_size.

Figure 2 shows the data structures. Note that we also tag the
page at start+size-async_size with PG_readahead. The
page flag is more stable than other readahead states. It can
tell if the readahead states are still valid and dependable.

2.3 Call Convention
The traditional practice is to feed every read request to the
readahead algorithm, and let it handle all possible system
states in the process of sorting out the access patterns and
making readahead decisions. Figure 3 shows the issues that
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Figure 3: The task list of legacy readahead routine

the legacy readahead routine page_cache_readahead() has
to deal with.

It is a waste of time to blindly and excessively call into
page_cache_readahead(), since no actions are required in
most times. For example, when doing 256-page readaheads
for 1-page sequential reads, one readahead invocation will
be adequate for every 256 reads; for a cached file, readahead
actions are not desirable at all. Moreover, we know from
(B,C,D) in section 1 that seeing read requests or submit-
ting readahead requests does not necessarily mean the cor-
responding pages will be transfered or populated. They are
not reliable criteria, and have lead to convoluted feedbacks
on detecting and handling the abnormalities happened to
read or readahead requests in legacy readahead.

The above observations lead us to two new principles.

Figure 4: The new modular framework: readahead
heuristics are called only when necessary and simply
to handle access patterns

Figure 5: Flow chart of the new framework

criterion case
offset == 0 start of file
offset == prev_offset + 1 trivial sequential
offset == prev_offset unaligned sequential
read_size > readahead_max big read(e.g. sendfile)

Table 1: The sequentiality criteria

1. Trap into the readahead heuristics only when it is the
right time to do readahead.

2. Whenever feasible, judge by the page status instead of
the read requests and readahead windows.

That yields a modular readahead framework(figure 4,5). It
introduces two simple readahead triggers. Whenever the fol-
lowing pages are accessed, it’s time to do readahead:

• cache miss page: it’s time for synchronous readahead.
An I/O is required to fault in the current page. The
I/O size could be inflated to piggy back more pages.

• PG_ readahead page: it’s time for asynchronous read-
ahead. The PG_readahead tag is set by a previous
readahead to indicate the time to do next readahead.

On designing this readahead framework, our original goals
were to support readahead thrashing and interleaved reads:
the first trigger enables us to re-establish the readahead win-
dow as soon as it is thrashed; the second one helps to keep
track of unlimited number of concurrent read streams in
one file. Later on we are much amused to find it address-
ing more challenges from cache hits and retried/reordered
reads. They could be good testimonies to the new design
principles.

2.4 Sequentiality



Table 1 shows the sequentiality criteria used by both read-
ahead algorithms. The most fundamental one among them
is the consecutive criterion, where accessed page offsets are
incremented one by one. The legacy readahead algorithm
enforces the sequentiality criteria on each and every read
request, so one single seek will immediately shutdown the
readahead windows. Such rigid policy guarantees high read-
ahead hit ratio. However it has been found to be too conser-
vative to be useful for many important real life workloads.

Instead of demanding a rigorous sequentiality, we propose
to do readahead for reads that have good probability to be
sequential. In the new readahead framework, the following
rules are employed:

1. prev_offset points to the last accessed page. It used
to be the last requested page in current_window. How-
ever we know that neither read requests nor readahead
windows are dependable.

2. Check sequentiality only for synchronous readahead
triggered by a missing page. This ensures that ran-
dom reads will be recognized as the random pattern,
while a random read in between a sequential stream
won’t interrupt the stream’s readahead sequence.

3. Assume sequentiality for the asynchronous readahead
triggered by a PG_readahead page. Even if the page
was hit by a true random read, it indicates two ran-
dom reads that are close enough both spatially and
temporally. Hence it could be a hot accessed area that
deserves to be readahead.

2.5 Readahead Sizes
Assume the sequence of readahead I/Os performed for a
sequential stream to be

{Ai = (starti, sizei) : i = 0, 1, · · · ,M} (1)

We call A0 the initial readahead ; A1, A2, . . . the subsequent
readaheads. Their sizes are computed as follows:

1. Initial readahead: initialized from the read size.

size = read_size * scale0, where scale0 is 2 or 4

async_size = size - read_size

2. Subsequent readahead: ramp up sizes exponentially.

size = prev_size * 2

async_size = size

3. Always enforce the maximum allowed I/O size.

size = min(size, max_readahead)

async_size = min(async_size, size)

The legacy algorithm triggers asynchronous readahead as
soon as the read request crossed into ahead_window. Due to
the uncertainty of the read size, its ‘async_size’ is a random
value that lies in range [max_readahead,2*max_readahead).

3. CASE STUDIES
3.1 Readahead Cache Hits
Linux manages a page cache to keep frequently accessed file
pages in memory. A read request for an already cached
page is called a cache hit, otherwise it is a cache miss. If
a readahead request is made for an already cached page, it
makes a readahead cache hit. Cache hits are good whereas
readahead cache hits are evil: they are nothing more than
overheads. Since cache hits can far outweigh cache misses in
a typical system, it is important to shutdown readahead on
large ranges of cached pages to avoid excessive readahead
cache hits.

The legacy readahead counts continuous readahead cache
hits in cache_hit. Whenever it goes up to VM_MAX_CACHE_

HIT(=256), the flag RA_FLAG_INCACHE will be set. It dis-
ables further readahead until a cache miss happens, which
indicates that the application have walked out of the cached
segment. The whole process goes in the following steps:

1. Call page_cache_readahead() on each read request;

2. Disable readahead after 256 cache hits;

3. Call page_cache_readahead() on each accessed page;

4. Enable readahead on cache miss.

That scheme works, but is not satisfactory.

1. It only works for large files. If a fully cached file is
smaller than 1MB, it won’t be able to see the light of
RA_FLAG_INCACHE. This tend to be a common case.
Imagine a web server that caches a lot of Web pages
and images, or desktop systems that are dominated by
small files.

2. Pretend that it happily enters cache-hit-no-readahead
mode for a sendfile(100M) and avoids extra page
cache lookups. Now another overhead rises: page_

cache_readahead() that used to be called once every
max_readahead pages will be called on each page to
ensure in time restarting of readahead after the first
cache miss.

In the new framework, we stop readahead cache hits by tak-
ing care that PG_readahead be only set on a newly allocated
readahead page and get cleared on the first hit. Figure 6
shows how the rules work out. When the new window lies
inside a range of cached pages, PG_readahead won’t be set,
disabling further readaheads. As soon as the reader steps
out of the cached range, there will be a cache miss which
automatically restarts the readahead. If the whole file is
cached, there will be no missing or tagged pages at all to
trigger readahead.

3.2 Readahead Thrashing
We call a page the readahead page if it was populated by the
readahead algorithm and is waiting to be accessed by some
reader. Once being referenced, it is turned into a cached
page. Linux manages readahead pages in inactive_list



Figure 6: Avoiding readahead cache hits: readahead
stops at A2 by not setting the PG_readahead tag;
restarts from B0 on the first cache miss

together with the cached pages. For the readahead pages,
inactive_list can be viewed as a simple FIFO queue. It
could be rotated quickly in a loaded and memory tight server.
Readahead thrashing happens when the readahead pages are
shifted out of inactive_list and reclaimed, before the slow
reader is able to access them in time.

Readahead thrashing can be easily detected. If a cache miss
occurs inside the readahead windows, a thrashing happened.
In this case, the legacy readahead algorithm will decrease the
next readahead size by 2. By doing so it hopes to adapt read-
ahead size to the thrashing threshold, which is the largest
possible thrashing safe readahead size. As the readahead
size steps slowly off to the thrashing threshold, the thrash-
ings will fade away. However, once the thrashings stop, the
readahead algorithm immediately reverts back to the normal
behavior of ramping up the window size by 2 or 4, leading
to a new round of thrashings. On average, about half of the
readahead pages will be lost.

Besides the wastage of memory and bandwidth resources, it
could be even more destructive for disk I/O. Suppose that
the pages in current_window are reclaimed when an appli-
cation is walking in the middle of it. Figure 7 shows the disk
I/Os that follow the thrashing. The legacy readahead logic
will be notified via handle_ra_miss(). However it merely
sets a flag RA_FLAG_MISS which will take effect in the next
readahead. There’s no immediate action to recover the to be
accessed pages inside current_window. The VFS read rou-
tine do_generic_mapping_read() then starts to fault them
in one by one, generating a lot of disk seeks. Overall, up to
half pages will be faulted in with tiny 4KB I/Os.

Our proposed framework has basic safeguards against read-
ahead thrashing. Firstly, the first read after thrashing makes
a cache miss, which will automatically restart readahead
from the current position. Hence it avoids catastrophic 1-
page I/Os suffered by the legacy readahead. Secondly, the
size ramp up process may be starting from a small initial
value and keep growing exponentially until thrashing again,
which effectively keeps the average readahead size close to
the thrashing threshold.

3.3 Sequential Reads
Interestingly, sequential reads may not look like sequential.
Figure 8 shows three different forms of sequential reads that
have been discovered in the practices of Linux readahead.
In the following two cases, the test offset==prev_offset+1
could fail even when an application visits data consecutively.

Unaligned Reads. File reads work on byte ranges, while read-
ahead algorithm works on pages. When a read request does
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Figure 10: Sequential accesses over NFS can become
out of order when reaching the readahead routine

not start or stop at page boundaries, it becomes an unaligned
read. Sequential unaligned reads can access the same page
more than once. For example, 1KB sized unaligned reads
will present the readahead algorithm with a page series of
0, 0, 0, 0, 1, 1, 1, 1, . . . To cover such cases, this sequentiality
criterion has been added in: offset==prev_offset.

Retried Reads. In many cases – such as non-blocking I/O,
the retry based Linux AIO, or an interrupted system call –
the kernel may interrupt a read that has only transferred
partial amounts of data. A typical application will issue
retried read requests for the remaining data. The possible
requested pages could be: [0, 1000], [4, 1000], [8, 1000], . . .
Such pattern confuses the legacy readahead totally(figure
9). They will be taken as huge random reads and trigger
the following readahead requests: (0, 32), (4, 32), (8, 32), . . .
Which are overlapped with each other, leading to a lot of
readahead cache hits and tiny 4-page I/Os. We get rid of
the retried read problem with the new call convention, where
readahead is triggered by the real accessed pages instead of
spurious read requests. The readahead heuristics won’t even
be aware of the existence of retried reads.

3.4 Semi-sequential Reads
Access patterns in real world workloads can deviate from
the sequential model in many ways. One common case is
the reordered NFS reads. The pages may not be served
at NFS server in the order they are requested by a client
side application. They could get reordered in the process
of being sent out, arriving at the server, and finally hitting
the readahead logic. Figure 10 shows a trace of NFS reads
observed by the readahead logic.

Ellard et al. proposed the term δ-consecutive to describe
the nfsd reads where any page is within δ pages of its pre-
decessor[7]. They also proposed the SlowDown algorithm[8],
in which the sequentiality criterion is extended to cover the
δ-consecutive pattern and the readahead size will be halved
step by step instead of being directly reset to 0 on each ran-
dom read. The SlowDown algorithm can handle the NFS
case very good and also makes a sequential stream less sus-
ceptible to random disturbs.

This paper offers a clean and general readahead framework
for semi-sequential reads. Its call convention and sequen-
tial detection logics work just fine in face of random distur-
bances, thanks to the following two properties:



Figure 7: Disk I/Os on readahead thrashing: (1) last two readahead I/Os before thrashing; (2-1) legacy
framework: continue the original readahead sequence, the lost pages are fault in with lots of 1-page I/Os;
(2-2) new framework: start a new readahead sequence from the current read position
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Figure 8: The trivial/unaligned/retried sequential reads

Figure 9: Readahead on retried reads: (1) retried reads, each read only transfered 4 pages; (2-1) legacy
framework: each read triggers two back-to-back readaheads, which are mostly overlapped, the real I/O sizes
are 64, 4, 4, 4 pages; (2-2) new framework: two normal 32-page readahead I/Os



case legacy new delta
sequential re-read in 4KB 20.30 20.05 −1.2%
sequential re-read in 1MB 37.68 36.48 −3.2%
small files re-read (tar/lib) 49.13 48.47 −1.3%
sequential read on sparse file 389.26 387.97 −0.3%
random read on sparse file 80.44 81.17 +0.9%

Table 2: Comparison of CPU overheads: each task
is big enough to show stable numbers in seconds

• startup It’s easy to start an initial readahead window.
It will be opened as soon as two consecutive cache
misses occur. Since semi-sequential reads are mostly
consecutive, it happens very quickly.

• continuation It’s guaranteed that one readahead win-
dow will lead to another in the absence of cache hits.
So a readahead sequence won’t be interrupted by some
wild random reads. A PG_readahead tag will be set
for each new readahead window. It will be hit by a
subsequent read and unconditionally trigger the next
readahead. It does not matter if that read is a non-
consecutive one.

4. PERFORMANCE EVALUATION
4.1 Overheads in Common Workloads
In order to avoid unnecessary regressions, the new frame-
work inherits almost the same readahead policies from the
legacy one for normal workloads. The resulted disk I/O
behaviors and performances are close if not identical. How-
ever there are good differences in implementation and hence
CPU overheads. To demonstrate them, we ran some com-
mon workloads on cached files and sparse files, where no disk
I/O is involved. The results are shown in table 2. The basic
setup is

• Linux 2.6.20 (vanilla and patched)

• 1MB max readahead size

• 2.9 GHz Intel R© Core 2 CPU

• 2GB memory

Cache hot sequential reads on a huge file are now faster by
1.2% for 1-page reads and by 3.2% for 256-page reads. The
improvements come from the fact that the new framework
will stop working on continuous cache hits, while the legacy
one has to actively trap into the readahead routine for each
cached page. Cache hot reads on small files (tar/lib) see
1.3% speed up. In this case the new framework is able to
totally avoid the overheads of readahead cache hits.

We also measured the maximum possible overheads on the
trivial random and sequential reads. The scenario is to do
1-page sized reads on a huge sparse file. It is 0.9% worse
for random reads, and 0.3% better for sequential ones. The
random reads are slightly slower because the actual I/O will
be started a bit later - the legacy algorithm submits I/O
upon receiving the request, while the new one will do so
after looking up the page cache and make sure the page has
not been cached. Anyway, the differences are trivial enough
to be lost in noises when the costly disk I/Os are involved.
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Figure 11: I/O performance on readahead thrashing

4.2 Readahead Thrashing
We boot the kernel with mem=128m single, and start one
new 100KB/s stream on every second. Various statistics are
collected and showed in Figure 11. The thrashing begins
at 20 second. The legacy readahead starts to overload the
disk at 50 second, and eventually achieved 5MB/s maximum
network throughput. With the new framework, throughput
keeps growing and the trend is going up to 15MB/s. That’s
three times better. The average I/O size also improves a lot.
It used to drop sharply to about 5KB, while the new behav-
ior is to slowly go down to 40KB under increasing loads.
Correspondingly, the disk quickly goes 100% utilization for
legacy readahead. It is actually overloaded by the storm of
seeks as a result of the tiny 1-page I/Os.

4.3 Random Reads
The proposed framework may improve performance for high
density random reads. For example, we saw pure perfor-
mance gains when carrying out a series of OLTP tests on
MySQL with the sysbench tool(table 3). The database file
is accessed mostly by 4-page sized random reads. The reads
are not uniformly distributed, there are hot areas that are
accessed more frequently than others. Sometimes there will
be 16-page readahead triggered by two consecutive reads.
They are likely to reside in one of the hot areas, if so, their
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Figure 12: Timing overlapped random reads

2k transactions run 10k transactions run
threads trans/sec gain trans/sec gain

1 38.04 +1.3% 64.56 +2.8%
2 38.99 +1.5% 70.93 +4.4%
4 46.45 +2.3% 85.87 +5.0%
8 52.36 +1.4% 97.89 +3.5%

16 55.18 +1.5% 104.68 +5.7%
32 54.49 +4.5% 104.28 +8.7%
64 54.61 +0.9% 103.68 +7.5%

Table 3: MySQL OLTP performance gains

PG_readahead pages are more likely to be accessed later on,
and trigger further readahead pages. In general, the more
read density, the more readahead and readahead hit ratio,
hence the more performance gain.

Hot areas could be detected in two opportunistic ways: a
random read that hits a PG_readahead page, or a random
read that starts from a cached page. In either cases it indi-
cates that some nearby pages have been accessed recently.
As long as the workload is a stationary process, doing some
readahead could be profitable: the readahead pages will have
good probability to be accessed in their life time, saving
some possible future seeks.

To verify the effectiveness of the above theory, we fabri-
cated some overlapped random reads that will trigger more
and more readaheads as the read density grows. In the
benchmark, some 8/16/32/64KB sized random reads are
performed on a 100MB file. The reads are page aligned and
could be overlapping with each other. On every 10MB reads,
the total seconds elapsed are recorded. Figure 12 shows the
difference of time between the two readahead frameworks in
a progressive way.

The performance gain goes up in general as the read density
grows. The largest gain is about 30% for 16/32KB reads.
The largest regression is about 2% for 64KB reads. The
regression is mainly due to the fact that the new readahead
framework will not start I/O as early as the legacy one for
random reads that start from a cached page. For example,
for an 8-page random read whose first 4 pages are cache hits,

legacy new
avg readahead size(pages) 15 228 x15

cpu %iowait 25.20 21.00 -16.7%
disk %util 13.03 9.62 -26.2%

network bandwidth(MB/s) 37.00 43.40 +17.3%
disk bandwidth(MB/s) 28.18 36.46 +29.4%

Table 4: lighttpd retried reads performance

the legacy algorithm will submit readahead I/O as early as it
sees the request, whereas the new framework will do so after
the first 4 cached pages have been transfered to user space.
So the user visible I/O latencies are increased. It mainly
hurts the throughput for one thread. The overall system
throughput on high-concurrency servers won’t be affected.

4.4 User Reports
Besides the home made benchmarks, we’d like to present
some user reports coming from real life workloads. They
may not be as scientific or rigorous. The numbers only show
the possible strength of the new readahead framework.

NFS file serving The server is equipped with big RAID and
runs 16 nfsd serving 100MB sized files. The sequential
read throughput was 260MB/s in 2.6.18, and bumped up
to 470MB/s for 2.6.23, which features the new framework.

lighttpd file serving It’s an AMD Opteron 250 server with
16G mem, the lighttpd is serving big files to about 1200
concurrent clients. Its trace of sendfile() system calls are
obviously retried reads: it requests more than 18MB data
from the current position to the end of file, but each time
only less than 37KB data are transfered.

sendfile(188, 1921, [1478592], 19553028) = 37440
sendfile(188, 1921, [1516032], 19515588) = 28800
sendfile(188, 1921, [1544832], 19486788) = 37440
sendfile(188, 1921, [1582272], 19449348) = 14400
sendfile(188, 1921, [1596672], 19434948) = 37440
sendfile(188, 1921, [1634112], 19397508) = 37440

Table 4 shows the performance numbers. With 1MB max
readahead size, the average readahead I/O size goes from
15 pages with legacy readahead to 228 pages with our new
framework, that’s 15 times better. As a result, the disk
utilization rate dropped by 26.2% and CPU iowaits dropped
by 16.7%, while the network throughput increased by 17.3%.

5. RELATED WORK
Prefetching is a well established technique for improving I/O
performance. It can be either heuristic or informed. The
heuristic algorithms try to predict I/O blocks to be accessed
in the future based on the past ones. The most success-
ful one is the sequential readahead, which has long been a
standard practice among operating systems[10, 18]. There
are also more comprehensive works to mine correlations be-
tween files[13, 23, 26] or data blocks[16]. In the other hand,
informed prefetching gets hints from the application about
its future I/O operations. The hints could either be applica-
tion controlled[5, 21, 22] or be automatically generated[2].



It was recently argued that more aggressive prefetching poli-
cies should be employed[20]. Our experiences are backing it:
there are risks of regressions in extending the sequential de-
tection logic to cover more semi-sequential access patterns,
however we received no single negative feedback since its
wide deployment in Linux 2.6.23. It’s all about performance
gains in practice, including the tricky AIO[1] and NFS[7, 8]
problems.

Caching is another ubiquitous performance technique. It is
a common practice to share the prefetch memory with cache
memory, hence there could be strong interactions between
prefetching and caching. Our readahead framework has ba-
sic defensive support for readahead thrashing. There are
more comprehensive works dealing with integrated prefetch-
ing and caching[3, 4, 5, 6, 12, 21] and schemes to dynamically
adapt the prefetch memory[14] or depth[11, 15, 17, 24].

Two exciting advances about cache media are the great
abundance of dynamic memory and the general availability
of flash memory. One might expect them to bing negative
impacts to the relevance of prefetching techniques. When
more data can be cached in the two types of memories, there
would be less disk I/Os and readahead invocations. How-
ever, another consequence of the bigger memory is, aggres-
sive prefetching becomes a practical consideration for mod-
ern desktop systems. A well known example is boot time
prefetching for fast system boot and application startup[9].

Flash memory and its caching algorithms fit nicely in one big
arena where magnetic disk and its readahead algorithms are
not good at: small random accesses. The Intel turbo mem-
ory and hybrid hard drive are two widely recognized ways
to utilize the flash memory as a complementary cache for
magnetic disks. And apparently the solid-state disk(SSD) is
the future for mobile computing. However, the huge capac-
ity gap isn’t closing any time soon. Hard disks and storage
networks are still the main choice in the foreseeable future to
meet the unprecedented storage demand created by the ex-
plosion of digital information, where readahead algorithms
will continue to play an important role.

The solid-state disks eliminate the costly seek time, however
there are still non-trivial access delays. In particular, SSD
storage is basically comprised of a number of chips operating
in parallel, and the larger IO triggered by readahead will
be able to take advantage of the parallel chips. The size
of the readahead window required to get full performance
from the SSD storage will be different from spinning media,
and vary from device to device. So readahead with tunable
max_readahead is key even on SSD.

6. CONCLUSIONS
We have analyzed major challenges to readahead algorithms
and introduced a new Linux readahead framework with new
call conventions, revised data structures, relaxed sequential
detection logic and simplified readahead heuristics.

The modular design greatly simplified the readahead algo-
rithms. We successfully eliminated the complexity of dual
windows, cache hit/miss, unaligned reads and retried reads.
The system dynamics are now automatically handled by the
framework. Readahead algorithms only need to care about

the read patterns and readahead states. We believe that this
framework makes a better platform for future work.

It inherits the good I/O behavior and performance for com-
mon sequential/random access patterns. The overheads on
cache hits are eliminated. Performance on readahead thrash-
ing, retried reads, and reordered NFS reads are greatly im-
proved. We also demonstrate that readahead on high density
random reads can be benefitial.

The readahead framework described in this paper has been
merged into Linux 2.6.23 with slight changes. Feedbacks
from the community are encouraging. It’s worth noting
that no negative reports have been received till this writ-
ing. We conclude that the relaxed readahead heuristics have
been successful in improving performance on many work-
loads while avoiding undesirable side effects in others.

7. FUTURE WORK
There are a lot room for further improvements. The obvious
next step would be to support more access patterns. Stride
reads occur when an application is reading a matrix in row
order that was stored in column order, a typical case in sci-
entific arenas. Backward reads are also possible. And things
get more complicated when multiple threads are accessing
the same file. Concurrent sequential streams on the same
file may become interleaved. In the case of Linux, the read-
ahead state variables are static allocated for each opened
file descriptor. When one file descriptor is used for multi-
ple concurrent streams, the states could be overwritten by
one another. The newly introduced page flag PG_readahead

provides a reliable way to identify each stream and tell if the
readahead states are valid for the current stream.

The current readahead framework works on logical blocks
inside files. It disregards possible file fragmentations, or the
stripe boundaries in RAID like configurations, or locking
boundaries in cluster file systems. It may be desirable to
provide an interface to the underlying file systems for better
alignment management. It might also be worthwhile to do
block level readahead for meta data operations.

File servers serving large number of concurrent clients may
want better thrashing threshold estimation to adapt read-
ahead sizes accordingly. Our framework is merely doing the
fundamentals right so that system performance won’t fall
sharply on thrashing. Also in disk arrays, storage networks
and clustered file systems, it is desirable to adaptively scale
up the readahead size and async readahead size so that disks
and storage servers can be better utilized in parallel.
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