
Argos Final Document

Ben Kaap, Shailesh Kochhar, Scott Stuttle

May 7, 2004

Contents

List of Figures 5

1 Project Background 6

1.1 What is Argos about? . 7

1.2 Argos is a One Of A Kind . 7

2 Requirements 9

2.1 Introduction . 10

2.2 What is Argos? . 10

2.3 Unique Benefits . 11

2.4 What Problem Does Argos Solve? . 12

2.5 How Does Argos Solve the Problem? . 13

2.6 Who Will Use Argos? . 14

2.7 Usage Principles/Constraints . 14

2.8 Input . 15

2.9 Output . 16

2.10 How is Argos Used? . 17

2.10.1 Use Case 1 . 17

2.10.2 Use Case 2 . 17

2.10.3 Use Case 3 . 18

2.10.4 Use Case 4 . 18

2

CONTENTS 3

2.11 Software Architecture . 19

2.12 Technical Constraints . 20

3 Design 21

3.1 Design Motivations . 22

3.1.1 Structure . 22

3.1.2 Language Choice . 24

3.2 Parser Design . 25

3.2.1 Parser Components . 25

3.2.2 Parsing . 26

3.3 API Design . 27

3.3.1 API Components . 28

3.4 GUI Design . 29

4 GUI 32

4.1 GUI Design . 33

4.2 GUI Function . 34

4.3 GUI Future . 35

5 Implementation Issues 41

5.1 Introduction . 42

5.2 Inherent Issues . 42

5.2.1 TCPDump Issues . 43

5.3 Design Issues . 44

5.3.1 Interface Design Issues . 44

5.4 Implementation Issues . 47

5.4.1 Parser vs GUI - Clash of the Titans 47

5.4.2 Argos Uncertainty Principle . 47

5.4.3 GUIs are Hard. Let’s Go Shopping. 48

5.4.4 Data Structure Woes . 49

4 CONTENTS

6 Future Plans 50

6.1 Plans for the Future . 51

7 Closing Remarks 52

7.1 Conclusion . 53

A User Manual 55

A.1 Getting Started . 56

A.1.1 Launching Argos . 56

A.1.2 Creating a visualization . 57

A.1.3 Adding Nodes . 58

A.2 Using Argos . 59

A.2.1 Selecting a Node for Display . 59

A.2.2 Selecting Multiple Nodes . 60

B 802.11: Wireless LAN Frame Formats 61

B.1 Frame Formats . 61

B.2 Individual Frame Type Formats . 62

C Argos Class Structure 63

Bibliography 66

List of Figures

3.1 Argos Parser Hierarchy . 26

3.2 Argos API Hierarchy . 29

3.3 Argos GUI Hierarchy . 31

4.1 GUI Mockup 1 . 37

4.2 GUI Mockup 2 . 38

4.3 Current GUI . 39

4.4 Future GUI . 40

A.1 Launching Argos . 56

A.2 Creating a visualization . 57

A.3 Adding Nodes . 58

A.4 Selecting a Node for Display . 59

A.5 Selecting Multiple Nodes . 60

B.1 MAC Frame Format . 61

B.2 Frame Control Field . 61

B.3 Control Frame Subfields . 62

B.4 Data Frame Subfields . 62

B.5 Management Frame Subfields . 62

5

Chapter 1

Background

This project has been brought to you

by the number 802.11, the letter B,

and users just like you.

Team 1

6

WHAT IS ARGOS ABOUT? 7

1.1 What is Argos about?

Imagine – if you will – a situation where you’ve got a wireless network that is exhibiting

very strange behavior: packet loss is abundant, signals get dropped, nodes become silent for

minutes at a time, even in the face of a lot of traffic. You have a feeling something is amiss

in your network setup, so you spend hours poring through packet logs measuring in the

hundreds of megabytes, possibly even gigabytes. You end up manually comparing multiple

files to each other, line by line, byte by byte, in order to glean any understanding of what

the symptoms are, let alone the solution to your problem. Sound fun?

Welcome to the world of your average wireless network administrator. Before Argos1,

that was the only way to diagnose problem areas. Sure, “regular” network administrators

had tools like Ethereal[1] to work with, but none of those tools are catered towards the

up-and-coming, wave-of-the-future 802.112 trend. We plan to change that.

1.2 Argos is a One Of A Kind

After scouring the Internet for any sort of tool that would aid us in our quest to make life

easier for the aforementioned administrator, we came up empty. This fact is both blessing

and curse:

• On one hand, it means we have no working codebase to build upon and improve to

add our own features and functionality into. This means that all of the code that is

going to be a part of the project has to be written by us and is not already out there.

• On the other hand, it means we’re also not constrained into whatever language

choice/programming paradigm/existing featureset that is already in a pre-existing

1Argos Panoptes (meaning ‘All-Seeing’) was a demi-god from Greek mythology. He was a herdsman and
his body was covered with eyes, so he was considered “the watcher.” Hera commissioned him to ensure
that Io, a beautiful woman from the city – who was later turned into a black and white heifer, which is
why Argos was the perfect person/demi-god to watch over her – wouldn’t be seduced by her husband Zeus.
Much like Argos was a “watcher” who was charged with the task of watching Io, our Argos is designed
to watch over network traffic, or – in other words – I/O.

2Note: This text, like all other text in bold-faced type is defined in glossary

8 PROJECT BACKGROUND

code base. This freedom allows us to ensure that everything is done “right” the first

time, and does not3 require us to spend a lot of time maintaining ugly or broken code.

Besides, no one really wants to deal with and maintain 3 year old COBOL code, for

example.

As we will soon see, Argos aims to be the link between administrator and network. Argos

facilitates in-depth analysis of all aspects of network traffic through a sophisticated yet easy-

to-use interface.

3Thankfully.

Chapter 2

Requirements

Good, Fast, Cheap... Pick two.

Unknown

9

10 REQUIREMENTS

2.1 Introduction

Argos1 is a 802.11b2 tool that analyzes wireless network traffic. Its goal is to monitor

network traffic on the 2.4GHz radio frequency in order to help the user analyze traffic

patterns and thus optimize performance. Argos will be delivered to the customer at the

conclusion of the project both in executable and source code form. This should hopefully

allow for Argos to be quickly equipped to perform its task. This quick deployment is

another informal requirement of the project, since the area of wireless network management

is growing more important with each passing day.

2.2 What is Argos?

We designed Argos to optimize a wireless network in terms of the interference it experi-

ences. This interference can be both internal and external, as well. Internal interference is

interference that is caused by the nodes inside the network. When individual nodes have

too much power, their signal can travel much further than it needs to and be overheard by

nodes that shouldn’t be receiving them. Once these eavesdropping nodes hear the traffic,

they release the medium and wait until it is open again. This causes unnecessary lag in

transmission, since this waiting period should not be happening. External interference is

similar in that there is waiting that is unnecessary, but is caused by nodes in other sur-

rounding networks. This distinction between internal and external is necessary, however.

Although little can be done to remedy external interference, much can be done to fix the

problem of internal interference, since the administrator controls both ends of the transmis-

sion.

Over a user-specified interval of time, Argos can convert TCPDump log files of network

traffic into a graphical visualization. This visualization will not only allow an at-a-glance

perspective of network traffic and performance, it will also precipitate in- depth analysis of

1nee “Monitoring the CU wireless system”
2the IEEE standard for wireless network communication, operating at a frequency of 2.4GHz with a

maximum throughput of 11Mb/s

UNIQUE BENEFITS 11

packet transfer and specifically problematic areas. The visualization will also allow the user

to synchronize network logs that were collected. This synchronization helps the user to get

a very accurate image of past network traffic.

The customer expects us to have a usable starting point with the ability to analyze pack-

ets and display the necessary data. The customer does not expect that all features be

implemented however, so long as the potential to do so is there.

2.3 Unique Benefits

Argos will allow our customer to adequately and efficiently monitor and analyze traffic on

the wireless network. Other tools exist to discover and join wireless networks, but none

exist whose sole purpose is to ensure satisfactory performance by taking into account out-

side variables. The simple fact is that the Argos project is on the forefront of modern

networking technology, and is attempting to bring something new to the table that has

been previously unheard-of in the area of 802.11.

The major benefit of Argos is that it will allow the customer to quickly visualize net-

work traffic in such a way that precipitates an easy understanding of the big picture. It

is an invaluable asset to be able to see – at a glance – a sequence of communications be-

tween two nodes in terms of the packets transmitted, received, and replied-to. Without this

graphical overview of the traffic, the user must resort to looking at those million-line binary

packet logs from multiple sources to try and get a mental picture of the situation without

any assistance or automation.

Once again, there are crude brute-force tools that already exist for the more standard

ethernet architecture, but 802.11 is uncharted territory in this area. In fact, the tools avail-

able for ethernet often have so few features that they’re not very useful to diagnose standard

networking problems, either. Most end up being glorified packet sniffers capable of little

12 REQUIREMENTS

more than just a slightly more user-friendly version of the text provided by TCPDump’s

standard output.

It is this graphical traffic visualization alone that makes Argos truly unique.

2.4 What Problem Does Argos Solve?

The Champaign-Urbana Wireless (CUW) Network is having problems with the speed and

reliability of its 802.11 network. After some in-depth inspection of these problems, they’ve

concluded that they fall under several categories. These categories are: outside traffic, inter-

nal network crosstalk, and packet collisions. All of these problems can be properly diagnosed

and solved using Argos and the visualization it provides.

Outside traffic is a problem when other local networks are transmitting on similar fre-

quencies without any or with insufficient courtesy to the CUW network. These sources need

not be simply computers operating “outside” of the CUW network; they may be entirely

unrelated to wireless networking as a whole. Some examples may include portable phones

or even microwave ovens.

These signals are being heard by CUW’s network and create contention . When this courtesy

is not returned it results in an inability for CUW’s network to find space in the now-congested

traffic to communicate. This behavior can be diagnosed by noticing that logs have large

periods without traffic, even though attempts are made by individual nodes to clear the

channel and send data to each other.

Internal network crosstalk occurs when there are more than two nodes on a network. Each

node need only be close enough to communicate with one other node on the network. This

allows for the possibility that one node may not be able to ‘hear’ one or more nodes and

can try to send messages at the same time. This can result in corrupted data received or

HOW DOES ARGOS SOLVE THE PROBLEM? 13

loss of entire transmissions. Crosstalk can also create deadlock situations, where a chain of

nodes exists and each node is waiting for the next to transmit because the previous node

has no idea the other nodes exist. This problem is exhibited in Argos by the fact that

packets from particular nodes are visible in the logs of other nodes, but the responses to

those packets are not.

Packet collisions occur when two nodes on a single network try to send data simultane-

ously. This differs from internal network crosstalk in that these two nodes are generally

within ‘hearing’ distance. The problem that arises is that wireless network nodes can have

long pauses in transmissions while they wait for another node to complete its communi-

cation. This results in very slow transmission rates. Packet collisions are even more clear

when Argos is being utilized. If both problem nodes are being examined simultaneously

in Argos the colliding packets are clearly visible and in competition by their locations on

the timeline. Since the timeline is divided clearly by the desired unit, any packets sent in

the same location on their timelines are obviously being sent at the same time in reality.

2.5 How Does Argos Solve the Problem?

Through data extraction from TCPDump logs, and information extrapolation, Argos

presents a visualization of network traffic. This allows the user to quickly identify the source

of each problem. By showing information regarding past and current traffic patterns3 in

microsecond detail, Argos pinpoints problem areas to minimize the costs by eliminating

ineffective solutions.

With side-by-side display of packet transmissions, data transmissions and receptions, it

will be easy to identify areas of prolific packet collisions. Areas where there is data waiting

to be sent and there isn’t any traffic on the network will illustrate outside traffic issues.

Being able to change which nodes are being viewed can aid in the resolution of internal

3information such as packet order, number of packets, wait times, transmission times

14 REQUIREMENTS

network crosstalk.

Although the final step in solving these network problems is modifications done to the net-

work infrastructure by the user, Argos will be a valuable tool in the problem identification

process.

2.6 Who Will Use Argos?

Our proposed users would be people like network system administrators. Anyone who has

an interest in seeing how they can enhance network performance and has access to sufficient

traffic logs will find Argos worthwhile.

This can include everyone from the average computing hobbyist who would like to set up

a wireless network around his own home to a coffee shop owner who would like to provide

wireless internet access to his customers to a highly- paid consultant contracted to solve a

walk-up wireless computing problem for a large university or corporation.

However, to truly delve deeply into the more advanced capabilities of the system and actu-

ally be able to use the information presented by Argos, one would have to be an individual

who is very experienced in the area of networking, especially that of wireless networking.

2.7 Usage Principles/Constraints

Argos should be capable of handling nearly any and all traffic data, as long as it’s of an

acceptable format. An “acceptable format” is simply any standardized format that includes

all of the information that is necessary to accurately examine the traffic at the level of detail

desired.

Regardless of whether the data is valid or logical, Argos should handle it gracefully. Its

INPUT 15

job is to display data, not analyze it itself. That’s the user’s responsibility. It is in this way

that Argos keeps a tight rein on the scope of its usage. Since Argos provides simply more

information related to the situation, this more hands-off approach keeps it generic enough

to not hamper problem-solving with any artificial bias.

Argos also needs to be as intuitive as possible in order to increase the ease-of-use fac-

tor for the user. It is intended to be a relatively transparent helper that allows the user to

get the information he/she desires without intruding.

2.8 Input

The eventual goal of Argos will be to automatically perform a TCPDump of the APs

which the user wishes to monitor. However, although the world of wireless networking is

constantly and quickly changing, the capability of using an AP to both perform an active

role in the network as well as collect traffic data is still a ways off.

Therefore, Argos initially requires the user to perform these dumps manually and properly

locate the data according to a pre-defined structure.

As long as the input is in a standardized form, it will be accepted by Argos, regard-

less of correctness, again due to the role Argos plays in the process of problem-solving.

Also, the user will be able to load pre-constructed saved-state files which allow for the

user to view specific scenarios saved previously. That way, the time spent to evaluate a

certain situation won’t have to be wasted, and any progress already made will still be there

when the scenario is loaded.

16 REQUIREMENTS

2.9 Output

The final and overall output of this program will be a graphic visualization of the packets

at each AP. Each AP will have its own ‘timeline’ which will display the incoming and out-

going packets. The user will be able to manipulate the packets to account for any erroneous

data. Since this visualization is the bulk of the project from both development and user

standpoints, we will explain the specifics in more detail.

Each packet (or packet-like unit) is represented by a shape decided by its packet type and

then placed chronologically on a linear timeline. If more than one APs output is desired,

another timeline is added below the previously selected AP(s).

Since there is no real way to ensure proper temporal synchronization between APs (be-

cause of hardware intricacies in some cases, and idiosyncrasies of the protocol in others),

these timelines are capable of being dilated or compressed, as well as shifted. These move-

ments – which can be performed using keyboard commands or “drag ‘n’ drop” style mouse

manipulation – allow the user to compensate for a lack of data, or possibly erroneous data

resulting from the lack of synchronization issue.

It will also be possible to save the current state of a visualization, preserving modifica-

tions in timeline synchronization and compression for later use. These saved objects are the

only real “output”4 which the program creates.

The overall real substantial output of the program is the enlightenment of the user, which

helps to facilitate the quick resolution of their problem.

4in terms of raw, physical bits of data in a file

HOW IS ARGOS USED? 17

2.10 How is Argos Used?

2.10.1 Use Case 1

User wishes to visualize overall network traffic.

He/she runs Argos using his/her personal traffic data, and Argos displays the data along

a timeline with different kinds of packets represented as color-coded5 shapes6 whose dimen-

sions are determined by packet length or transmission time. The location of each shape

on the timeline is relative to real-time as well as the other packets adjacent to it. Thus,

there is both an ordinal component of the layout as well as a cardinal one. Packets are

placed in the order they are sent or received, and the sizes of their shape representations

are representative of overall packet size or duration of transmission. This facilitates easy

viewing and comprehension and the user can see how nodes are communicating over the

network.

2.10.2 Use Case 2

User’s traffic logs from different APs are not synchronized, so it is impossible to see delays

or lags by default.

He/she runs Argos using the data again. Argos presents the same output as earlier.

Since the data is no longer synchronized as in Case 1, the packets that are visible may be in

the wrong locations on the timeline. This time, the user manipulates the displayed timelines

by moving them to the appropriate interval of time sliding them around either the keyboard

or mouse so they can become synchronized based on some landmark. User may now view

traffic as in Case 1.

5specific colors to be defined later
6specific shapes for packet types to be defined later as well

18 REQUIREMENTS

2.10.3 Use Case 3

User wishes to visualize broad trends in network traffic.

He/she follows the steps as in Case 1 above, but “zooms out” by compressing a larger

time interval (for example an hour) into a single snapshot so that the desired interval can

be seen at once. In order to fit more packets on a single timeline, each packet will shrink

horizontally, but keep the same height. With a wide enough time frame, the display may

begin to resemble a histogram of packet traffic.

From this broader scope, larger trends (e.g. daily, weekly) become more obvious, as groups

of packets and gaps are still clearly visible. The only issue, then, is that individual packets

become more cumbersome to manipulate. However, it can be safely assumed that if a large

amount of data is desired, this invidual manipulation isn’t a high priority.

2.10.4 Use Case 4

User wishes to use the minimum amount of power required to successfully transmit between

nodes in the network to save power and decrease interference.

He/she follows the same steps as in previous cases, but watches the packets be displayed

on-screen in real-time via a real-time parser. This enables the user to modulate power levels

on the fly while examining whether or not packet transmissions are successful.

As fewer packets arrive at their destination, the user is able to see what power levels are

required to succesfully complete transmissions. From this data, the user can decide whether

or not packet loss is within acceptable limits.

SOFTWARE ARCHITECTURE 19

2.11 Software Architecture

The architecture for the project is to be designed to be extremely functional while keeping

maximum modularity in mind. Given the nature and area of use of the software we are

creating, it is not unrealistic to expect some (and possibly crucial) elements of the existing

resource base to change. These changes, such as advancements or changes in technology or

different equipment, might provide an improved dataset7, or perhaps one that is radically

different. All design decisions that we shall make are made keeping this guiding principle

in mind.

The software is to built upon a two-tier structure namely:

• The parser or the bottom layer.

• The GUI or the top layer.

This structure, though similar to the classic two-tier client/server architecture8, has a key

difference. The two tiers, or modules as they may be called, will communicate with one

another through a middle layer, dubbed “the interface”. The objective of the interface is

to provide a level of abstraction between the parser and the GUI, that is not otherwise

available. This ensures that the parser and the GUI may function independently of one

another, while simultaneously ensuring that changes that are made in one will not affect

the other. Keeping in mind the interests of hassle-free development, the interface will be

defined as broadly as possible and will encompass as much data as possible to ensure that

redesign is not required at later stages. Also, having the interface between the parser and

the GUI leaves room for modifications to the file format and possible changes in parsing

methodologies.

7The data we are dealing with currently is restricted by the radios that are in use which are nascent in
terms of sophistication. If and when more sophisticated radios are used, there would be better data available
in terms of signal strength, transmission time and duration and latency.

8Two tier architectures consist of components distributed in two layers: client (requester of services)
and server (provider of services). The two tier design allocates the user system interface exclusively to the
client, and places data management on the server, creating two layers

20 REQUIREMENTS

When the software is run, the parser processes a certain set of files, converting the in-

put text stream into a organized set of objects defined by the interface. The interface is

designed to lay out a structure that will be convenient for the GUI to utilize, in order to

maximize efficiency. The interface defines the information that is obtainable by the GUI

and will act as the medium through which the parsed and structured data (in the form of

objects) is made available to the GUI. When the GUI is loaded it will take this data and

display it to the user in the form of a timeline allowing the user to modify and adjust the

views as required.

2.12 Technical Constraints

The following applications/platforms are required for Argos to perform:

• TCPDump or equivalent - to generate the traffic data to be analyzed

• An OS capable of running a TCPDump or equivalent, as well as a Java Virtual

Machine9.

9Luckily, this includes nearly all known OSes

Chapter 3

Design

To invent, you need a good

imagination and a pile of junk.

Thomas A. Edison

21

22 DESIGN

3.1 Design Motivations

3.1.1 Structure

As discussed earlier, modularity was the primary motivation while designing Argos to en-

sure easy reconfigurability and reusability. Thus each Argos design decision was made

keeping in mind the premise of maintaining and increasing modularity. The reason for this

emphasis on reconfigurability stems from the key area that the software package addresses,

namely network visualization over the 802.11 layer achieved by examining packet logs gener-

ated by TCPDump. These fundamental considerations around which Argos is built, allow

us to compensate for the inherent fluidity with regard to both the underlying components

that our software relies on and the output it generates. From the outset we are aware that

a number of critical parameters, such as the format used by TCPDump to log data, the

radios used for communication, the variety of information to be visualized and other similar

requirements, might change in the near future. This would most certainly result in a change

in the quantity and nature of the data available. In such a scenario, lack of flexibility in the

structure would necessitate a major code rewrite and would effectively render the software

crippled.

To ensure that the software continues to function effectively, and can be used for a rea-

sonable length of time, we designed Argos into a set of disjoint modules which when

combined, represent a classic client/server two- tier architecture.

• The Parser

The parser is responsible for converting a log file into Java objects that are

then available for the GUI to display. In our case the log file is a TCPDump

file, however, with the modular design, the log file could just as well be in

any other format, XML is one such example, and it would be able to mesh

perfectly with Argos. The parsing component represents the lowest level of

the architecture. It is comprised of the following class(es) and interface[(s):

DESIGN MOTIVATIONS 23

1. AbstractParserFactory

2. ArgosParser

• The Middleware or API

The middleware for our implementation consists of an API or a standard

utilized by the GUI to extract data from a set of log files that the user

specifies. Given this standard, it is easily possible for a user to customize or

perhaps even replace various components of the framework, including the

parser, and still use the GUI for visualization purposes. This middleware

is most closely tied to the parser, yet it maintains abstractness as far as

possible. As long as a new component conforms to the API expected by

the GUI, it can be seamlessly integrated into the software. In this manner

the API works to provide the functionality for the GUI to work efficiently.

The API level of the architecture is comprised of the following class(es) and

interface(s):

1. Log

2. ArgosLog

3. Node

4. ArgosNode

• The GUI or Interface

The purpose of the GUI is to provide the user with the functionality and

display options that he/ she expects from Argos. The GUI will effectively

be isolated from the data and will merely provide the user with means of

manipulating it. Here again the modular design plays a significant role in

shaping the ability to augment the current components or to completely re-

place them with other more sophisticated visualization tools. To accomplish

this we implemented an Observer/Observed hierarchy, where a visualization

component that is observing a Node receives information when the Node’s

24 DESIGN

state changes. The GUI level of the architecture is comprised of the following

class(es) and interface(s):

1. ArgosGUI

2. VisualizationFrame

3. TimelinePanel

4. NodeObserver

5. Timeline

• Data Storage Design

Argos has two primary data storage structures, the Addr object which rep-

resents a MAC Address and the Packet object which represents the infor-

mation contained within a network packet. The Packet object takes its

constructor several data members which are then immutable for the lifetime

of the packet. Since the composition of this information is not set in stone,

there exists a method that allows a user to add more information to the

Packet other than what it presently contains.

3.1.2 Language Choice

Since a large part of the parser component of the project consisted of manipulating bits

within larger length strings, Java was a natural choice of language to implement the project

in.

This decision also provides the added functionality of allowing the project to be portable.

Despite the fact that our present client1 has a homogenous setup running NetBSD, it allows

Argos to be run in a variety of environments thereby enhancing its usability outside of the

narrow scope that it is presently intended for.

1CU Wireless

PARSER DESIGN 25

3.2 Parser Design

The parser class is designed to take a log file (perhaps generated by a utility such as TCP-

Dump) and convert the information contained within it into Packet objects. These object

can then be manipulated by the GUI components to render them effectively on the scree.

The current implementation of our project does not contain a fully functional TCPDump

parser but instead relies on simulated data that the ArgosParser class feeds to the GUI

components when prompted.

In the typical deployment scenario, the parser shall take a log file that is output by TCP-

Dump, and then convert this into the Java objects required for the GUI.

The format of the information that the parser is looking for is described in the 802.11b

specification2. Specifically, the parser seeks to identify the three main types of frames:

• Control Frames

These frames such as RTS (Request To Send), CTS (Clear To Send) and ACK (Ac-

knowledge) frames manage the distribution of the physical layer and distribute usage

amongst the various nodes that comprise the network.

• Management Frames

These frames such as Association and Disassociation requests, Probes and Beacons

help control allow access to the layer and help ensure that the integrity of the network

is not reached.

• Data Frames

These frames such as Data + CF (Contention Free), plain Data and other are respon-

sible for the actual transmission of data from one node to the next.

3.2.1 Parser Components

This design objective is accomplished by the following class structure.

• The AbstractParserFactory Interface

2See Appendix B on page 61 for more detailed information

26 DESIGN

The parser design consists of an abstract interface named AbstractParserFactory

that defines methods that any parser to be used in Argos must implement.3

These methods allow the client code to request packets of information that

are relevant to the particular node and time-interval being visualized.

• The ArgosParser Class

In our implementation, the ArgosParser class performs the functions that

are required of the parser. It creates simulated information in the form of

Packet objects which it then provides to its clients as requested.

Figure 3.1: Argos Parser Hierarchy.

The parser class is instantiated when the user chooses to visualize a log. Each log format

shall have a parser component associated with it, and when the user chooses a log to parse,

the appropriate parsing engine shall be invoked.

3.2.2 Parsing

1. Parsing begins when the user chooses a log file to visualize. At this step the parser

is invoked and it begins by reading through the file collecting information about the

nodes that are represented in the log.

3For a more thorough discussion of the interface and required methods, consult Appendix C on page 63,
which lays out the UML diagram and internal structure of Argos components.

API DESIGN 27

2. This information is used by the GUI to allow the user to make selections regarding

the nodes he/she wishes to visualize.

3. The actual parsing process is done by reading a line of text from the log file, which is

then converted into its corresponding byte stream.

4. Time information is extracted from the TCPDump header portion of the stream, after

which the TCPDump section is discarded.

5. The remainder of the stream represents a portion of the packet that has the 802.11

header around it. The first two bits (0-1) of the header are examined to determine

the packet type.

6. The remainder of the byte stream is examined to extract other information such as the

packet subtype, the duration of the transmission, the source and destination addresses

and the BSSID.

7. The packet subtype helps in the identification of the remainder of the data which is

then extracted from the byte stream, and the process continues with the next line of

the log.

3.3 API Design

The viewpoint behind a separate API for the project that lies between the GUI and the

parser is to disassociate the user-interface from the parsing process. Our aim is to make the

GUI independent of the data structures and formats associated with the process of parsing

the log file. This will allow the user to replace the current parsing component with another

in the future, if the structure or the source, of logged data changes.

Thus, if for example, the format in which data is logged by TCPDump changes, or if

the data available from the radio transmitter increases or changes in anyway, then a new

parsing component can be written to replace the existing parser. The user could also write a

28 DESIGN

packet sniffer in another language, say Perl, then by writing a “translation” module the user

can continue to use our software. The role of the “translation” module will be to implement

the required interface methods that will allow Argos to utilize the data generated by the

new packet sniffer. In this manner, it is no longer necessary for the GUI to have intimate

knowledge of the structure of the parsed data. When a user wishes to visualize a log, the

GUI makes the requisite API calls for the corresponding sections of data, the implementing

class performs any translations that are required and hands the information to the GUI,

which then displays it according to the user’s preferences.

This gives us maximum modularity while allowing the GUI component to be reused in

an unrelated project that has a requirement to visualize data similar in nature.

3.3.1 API Components

To accomplish these goals, the design of the classes that comprise the middleware is as

follows:

• The Log classes and interface:

The abstract Log class encapsulates the concept of a log file. A Log is in-

stantiated with a AbstractParserFactory object that performs the parsing

when necessary. The Log has information about the Node objects that can

be found in the log, as well as information about the time interval that is

represented by the log file. The Log class provides the interface used by the

GUI extract data. It provides methods that return packets based on time

and node information.

In our current implementation ArgosLog provides much of the functionality

that the Log class requires.

• The Node classes in interface:

The abstract Node class encapsulates the concept of a node in the network.

A Node object is closely related to the actual screen display. A Node may

GUI DESIGN 29

contain multiple logs since it is theoretically possible for more than one log

to contain information about a specific packet. The Node object also con-

tains information about the entire range of time intervals that are contained

in all its logs. The GUI directly manipulates a Node object, which in turn

performs operations on the Log objects that it contains to provide Packet

information to display.

In our current implementation ArgosNode provides the functionality de-

manded by the abstract Node class.

Figure 3.2: Argos API Hierarchy.

In a typical session, given a combination of 〈log file, Log object, Node object〉, the GUI shall

be able to extract all the relevant information without any hinderance.

3.4 GUI Design

In comparison to the other components the design for the GUI is far more involved and

required considerable effort. Since the functions of the GUI are more detailed and more

complex, the structure of the class(es) that provide these functions needs to be more flex-

ible and robust. The underlying objective has been to expose a working API for the to

30 DESIGN

make it possible to develop components that can plug into Argos and provide additional

visualization capabilities. This has allowed us to concentrate on the extensibility of the

software, rather than focusing on implementing a limited set of features that could not be

added to at a later time.

Primarily, the structure consists of the following classes:

• ArgosGUI Class

This class is the driver of the entire application. It provides the basic in-

terface that allows the user to create and manipulate visualizations. The

ArgosGUI class instantiates a VisualizationFrame class when prompted to

create a visualization.

• A VisualizationFrame Class

The visualization frame class encapsulates a visualization to which the user

can add or remover nodes and log files. The visualization frame provides the

ability to manipulate a single timeline view of a node or multiple timeline

views at the same time. The visualization frame takes as a parameter in its

constructor a Log object that it uses to draw node information from.

• A TimelinePanel Class

The TimelinePanel Class allows the user manipulate and view multiple

timelines at a single time. It acts as a container class that takes special

actions from the user and applies them to all the Timeline objects that are

contained within it.

• A Timeline Class

This class defines a particular timeline. It contain instances of packets in the

form of DisplayObject instances and has functions and methods that allow

the user to manipulate packets that are being visualized. These methods

GUI DESIGN 31

include methods that navigate the timeline, perform zoom-in and zoom-out

functions and identify individual packet information.

The Timeline class implements the NodeObserver interface which allows it

access to information regarding the change of state of a particular node. In

essence it is possible to design to different visualization components that

observe the same Node object, and have them aware of changes made to the

state of the Node by the other.

• A DisplayObject Class

This class manages the display of a single packet transmission. It is different

from the Packet class in the lower level architecture in that its primary

purpose is to manipulate packets on a timeline rather than encapsulate

data. It provides methods that render the packet on the timeline based

on the packet type and subtype, and methods that align the packet to a

particular point in the timeline as well.

Figure 3.3: Argos GUI Hierarchy.

Chapter 4

GUI

mmmmm, goooey

Homer J. Simpson

32

GUI DESIGN 33

4.1 GUI Design

Since Java is the language of choice for Argos we needed a GUI platform that would work

with Java without any major hassles or integration issues. With that in mind Swing[4]

was chosen. Swing is already integrated with, and is a core part of, the Java 2 platform.

With components such as Combo Boxes, Sliders, and Drag & Drop support, Swing is ideal

for accomplishing what the GUI needs to do.

Because the GUI is what sets Argos apart from all other network debugging applica-

tions, that is what the bulk of the design of this project has been aimed toward. We have

gone through several iterations of the GUI already, refining the design as we progressed to

optimize both usability and functionality. That series of GUI iterations is displayed in the

following section.

• Stage 1

– Our initial mockup was very text-based and a very rough representation of what

Argos was planned to display.

– It was essentially non-interactive and more of a visual representation of data,

rather than a display capable of being manipulated.

– It also did not utilize any of the capabilities afforded to us by the use of Java and

Swing.

• Stage 2

– This mockup was created in Visual Basic as the basis for the finished GUI.

– Nearly everything contained in this mockup will hopefully be part of the final

product.

– This iteration contained a much more standard interface, as well as more added

functionality that allowed for the manipulation of packets, as well as some of the

more advanced features such as auto-analysis of traffic problems.

34 GUI

• Stage 3

– This iteration was created in Java using Swing, and is the current state of the

GUI.

– It may seem at first glance to be feature-light, but the majority of the work done

to create this GUI allows for modularity and future functionality.

– One major addition to the GUI design over the mockup in Stage 2 is the ability

to monitor a varying number of nodes not limited to only two.

• Future

– This iteration is a logical extension of the current state of the GUI, and would

be what Argos would look like if given another month of work.

– It contains a realistic number of features that can be found in the Visual Basic

GUI, but transplanted into our current Swing GUI.

Since Argos is a visualizer, the GUI is the centerpiece of this project. It allows the user

to choose any number of TCP dumps to be displayed and create a visual timeline model

of a default range of network traffic. Since there are times where the sequence of multiple

dumps will not align properly, the GUI allows the user to adjust, or slide, one visualization

over to accommodate. To view different sections of the timelines Argos can be adjusted

via buttons to slide the range in the GUI temporally. This can also adjust the “zoom” of

the visualization which will also be an option in Argos.

4.2 GUI Function

Beyond simply moving the dump timelines around, our GUI will have some minimal func-

tionality. Although much can be done in the visualization process without the GUI actually

handling any calculations, there are some things that Argos will do that the GUI will be

required to do. These will include minimal processing of user requests, basic interface error

handling, as well as saving and reloading the state of the project.

GUI FUTURE 35

Each time a user requests a different set of data, an additional dump visualization, or a

different range of the current timeline, the request must be handled. By implementing an

extra layer of abstraction in our middleware design we relieve the GUI from much of the

processing. It will only be required to make requests that the middleware will carry out.

The minimal amount of functionality still required of the GUI, such as formatting the re-

quests to the standard of the middleware, will be negligible.

As far as processing goes, one thing that cannot be passed off is interface error handling.

That is, making sure the user requests are valid, within limits, and warning the user if ex-

tensive amounts of resources may be required to complete each request. Out of range values

will need to be met with error messages. Redundant requests will need to be handled to

avoid conflicts. And, of course, we wouldn’t want the user exiting Argos without saving

the user’s changes.

Saving changes will be one of the lower priorities as far as implementing the GUI, how-

ever it will be an important one. If a user does a few hours of work to set up the timeline

visualizations properly, Argos will be able to save enough information to recreate the

project at the point the user stopped. This implementation will also require us to write

the loading side of the saved states. By loading this saved state Argos will bring up the

visualization just as the user recalls it so they can restart where they left off.

4.3 GUI Future

The fate of the GUI is now in the hands of future developers. Due to the highly-modular

design of the GUI, it should prove relatively straightforward for any interested developer to

add on to and modify the existing GUI framework.

Some of the extra “features” we envision being added include Drag & Drop and Grav-

36 GUI

ity support as well as a possible Auto-Analyze feature. Dragging & Dropping will be useful

to the user for simple addition or removal of dumps or switching of visualizations. Gravity

is the concept where as the user drags items near an object or grid line the item will “snap”

to the object or line and not leave small arbitrary gaps between the items or objects. This

not only helps the user, but also reduces errors by eliminating the small gaps between where

a user intended to place and object and where it is placed in the GUI.

Among the more ambitious of our final goals is an Auto-Analyze feature that will look

at the timelines and find obvious errors that can be identified by the order of TCP packets.

For instance if a data packet is sent over and over this indicates a traffic error which may

be caused by previously-discussed problems. This Auto-Analyze feature will be difficult

to implement and may end up being an applet separate from Argos’s GUI. The Stage 2

screen shot following this section has another example of what the Auto-Analyzer may be

able to detect. The red circle brings attention to crosstalk from a node not seen by the node

that is currently trying to transmit data. This could be the cause of major network traffic

slowdown but may be difficult to identify without the use of tools such as Argos.

GUI FUTURE 37

F
ig

ur
e

4.
1:

A
r
g

o
s

St
ag

e
1

Sc
re

en
sh

ot

38 GUI

F
ig

ur
e

4.
2:

A
r
g

o
s

St
ag

e
2

Sc
re

en
sh

ot

GUI FUTURE 39

F
ig

ur
e

4.
3:

A
r
g

o
s

St
ag

e
3

Sc
re

en
sh

ot

40 GUI

F
ig

ur
e

4.
4:

A
r
g

o
s

Fu
tu

re
Sc

re
en

sh
ot

Chapter 5

Implementation Issues

The devil is in the details

Anon.

41

42 IMPLEMENTATION ISSUES

5.1 Introduction

As with any project or undertaking of this size, some issues regarding implementation arose.

In the specific case of Argos, two major issues came about, as well as a host of minor related

problems. Here, we will show not only the problems encountered, but also their solutions1.

We shall first address those issues created due to the nature of the project itself, and then

those which occurred due to our particular implementation approach.

5.2 Inherent Issues

Logically, the first issue that was encountered was that of packet acquisition. It was de-

cided that the acquisition of packets from different access points on the network would be

performed by running TCPDump on each node, which allows us to track all network traffic

through and around that node. TCPDump was chosen for three major reasons:

• Timestamping

allows for accurate temporal ordering of packets

1as well as projected solutions for those yet to be resolved

INHERENT ISSUES 43

• Updatable Formatting

allows for ease in tailoring the logs in a format that can be manipulated

• Widespread Portability

ensures2 portability to many different platforms

5.2.1 TCPDump Issues

Timestamping

The timestamp within the packet will give only the time the packet was sent from that

particular host. Since this system must work within the context of a wireless packet routing

scheme, with APs transferring packets to other APs. This creates so many issues that it

was infeasible to compute the actual arrival time at a particular host.

TCPDump’s timestamp at acquisition creates issues of its own. The timestamp is applied

after the packet has left the network’s buffer space. This is only accurate to the millisecond

of receiving time[5].

We would desire the time of transmit as well as the time the packet exists the network’s

buffer space. Without building the packets ourselves and creating our own wrapper class

between the 802.11 encapsulation and the TCP/IP encapsulation. This was deemed infea-

sible within the scope of this project. It has been documented as a viable solution with the

continuation of the project and functionality has been included within the current structure

for such a solution.

Updatable Formatting

Since we are using a third party software system to perform our dumping for us, we must

assure that a change in that software’s encoding of the packet information will not break our

system. It is for exactly this reason that we decided upon TCPDump. TCPDump uses the

2along with the fact that our project is implemented in Java

44 IMPLEMENTATION ISSUES

C library ‘libpcap’[6] which has been ported to Java in JPcap[7], giving all functionality

which is associated within C and C++ to a Java based system. These functionalities

include: acquiring information from a dump created with TCPDump, or any other dumping

mechanism which uses libpcap for packet captures.

Widespread System Portability

TCPDump has been ported to include a wide variety of systems including: Sun SPARC,

PC x86 (both Windows & Linux), HP 9000/C110, SGI/CRAY 02000, Solaris 2.6 SPARC,

Solaris 2.5.1 x86, HP-UX 10.20, and IRIX 6.5.7m. The only systems not ported to are Apple

machines at the time of this document.

5.3 Design Issues

The second type of issue that was encountered was one that came about due to choices that

we made in our implementation, rather than a problem inherent in the goal of the project.

The major one of these was the interface design.

5.3.1 Interface Design Issues

After intense research into the 802.11 specification, it became clear that the way the packets

and headers were structured lent itself very well to a system revolving around objects. Due to

the several slight variations in the classes of 802.11 packets mentioned earlier, it was decided

that a hierarchical object-oriented system was the best and most appropriate solution. This

solution created two additional minor issues, however: pre-parsing vs. run-time parsing,

and language choice itself.

Pre-Parsing vs. Run-time Parsing

There are only two distinct ways of attacking the issue of parsing the data into something

easily displayed. One is to pre-parse, and the other is to parse at run-time.

DESIGN ISSUES 45

• Pre-Parsing

Pre-parsing consists of reading the input log at the beginning of the process and

storing the data in object form on the disk, since many logs will be far too large to

be held in memory. This would only happen once, because the objects created have

only the necessary and relevant data in them. After pre-parsing, the GUI would pull

the already-parsed data off of the disk and perform its functions with no extraneous

information to sift through.

This possible solution has its strength in its simplicity of implementation. Its weak-

ness, however, lies in the fact that this serialization of log data to Java objects is

relatively slow.

• Run-time Parsing

Run-time parsing consists of the same basic steps as pre-parsing, but the actual

parsing is postponed until the GUI explicitly needs it. In other words, there would

be a minimal amount of parsing at first, to store the log data in binary form on the

disk, which would later be parsed and objectified as necessary. Since the objects aren’t

being serialized to disk, we avoid the speed issue involved with pre-parsing, and the

implementation itself is arguably no more complicated than pre-parsing in its design.

However, we have found that its implementation is not as straight-forward as it once

seemed.

It would seem obvious that run-time parsing is the way to go, which is why that is the

avenue we chose to pursue for Argos . We chose run-time parsing partly because of the

more open-ended approach available to us in terms of parser design. One advantage is that

with a run-time parser, the ability to create a real-time parser is possible. This goes a long

way toward our goal of modularity, although it requires much more work in the long-run.

46 IMPLEMENTATION ISSUES

Choice of Language

As previously noted, Java was taken to be our language of choice for this project. This

decision was not made lightly, however, as many different facts and trade-offs, and advan-

tages and disadvantages had to be understood and balanced before the appropriate language

could be chosen. Once again, these issues are described in detail. This time, however, from

the implementation point of view, rather than simply the design standpoint.

Advantages:

• Platform independence

As previously stated, Java is completely platform agnostic. This is a definite

plus, as it allows the audience of our application to be much larger than it would be

otherwise

• Experience

Each team member working on the project has had fairly extensive experience

working with and writing Java code. This allowed us all to become involved in the

design process as well as the creation process, and no one was left behind.

• OO-ness

Because Java is structured entirely around the concept of objects, it fit the design

model perfectly, as it, too, was designed around an object-oriented framework.

Disadvantages:

• Speed

In almost all circumstances, Java tends to be anywhere from slightly to extremely

slower than other languages like C and C++

• Abstraction

Other languages allow for complete access to the hardware when necessary, but

Java shrouds that from the user in a thick layer of abstraction

IMPLEMENTATION ISSUES 47

5.4 Implementation Issues

Despite our very elaborate and in-depth design, we still ran into a series of roadblocks when

it came time to implement both the GUI and the parser.

5.4.1 Parser vs GUI - Clash of the Titans

When we began the project, we believed the parser to be the most difficult and important

issue to tackle in our implementation of the design. The GUI, on the other hand, we felt

would be relatively straightfoward in its design, but slow and time-consuming in its imple-

mentation due to the many idiosyncrasies of GUI programming.

As we found out much later, however, our belief that the parser was both the most difficult

and most important part of the project was unfounded. The difficulty we were experiencing

in the implementation of the parser was due more to the fact that none of us had written

a parser than any inherent difficulty in the design. Furthermore, a parser infrastructure is

already in place in many other forms, allowing the user to use Argos for more than what

our initial design was based around. Writing our own proprietary parser would also limit

the portability of the GUI, and thus diminish its widespread use throughout the networking

world.

5.4.2 Argos Uncertainty Principle

Another implementation problem that we ran into was a conceptual one. That is, in cur-

rently available wireless hardware, it is infeasible for an active participant in transmission to

log all traffic it can detect. This requires there to be a monitoring node that must make sev-

eral assumptions about the reception of packets by network nodes. For example, although a

monitor node may be perfectly capable of intercepting packets in transit that are destined to

reach a particular node, there is no guarantee that the destination node is actually receiving

them. In other words, because of our monitor’s incomplete view of the network traffic, we

must make assumptions that alter the model we use to display said traffic.

48 IMPLEMENTATION ISSUES

5.4.3 GUIs are Hard. Let’s Go Shopping.

Although we knew coming into this stage of development that GUI programming could

be tedious and time-consuming, none of us had attempted to create an interface of this

magnitude, so we grossly underestimated the investment of time required. This assumption

led us to a much lower than optimal level of preparation. Such an inadequate grasp of

the language specifics required us to spend valuable time researching Swing constructs in

parallel with the actual writing of GUI code.

One of the early stumbling blocks we encountered was the manner in which Swing ob-

jects interact with each other. We found ourselves implementing large chunks of code based

on our intuition of the system’s inner workings, and later realized that, in actuality, Swing

was designed in a completely different fashion. Due to this conflict, we found ourselves

second-guessing our methods of coding, prompting us to consult the Swing specification at

every step, thus slowing the coding process.

Another stumbling block that we encountered later on in the development of the GUI

was that of painting. The same method that Swing uses to manipulate video buffers to

eliminate flickering also complicates the process by which a programmer is able to draw ob-

jects to the screen. This problem manifested itself whenever we attempted to draw a packet

or timeline to the display, or visually manipulate a packet or timeline that has already been

drawn to the display. Instead of simply redrawing the screen whenever we affected the dis-

play area, we found that the only way to get our desired result was to minimize the window

and force a refresh.

All in all, this underestimation of time requirements forced us to re-evaluate the true diffi-

culty of GUI programming. We now know to devote more time to the GUI stage of future

project implementation.

IMPLEMENTATION ISSUES 49

5.4.4 Data Structure Woes

The final major problem we encountered in the implementation of the GUI was that of

data structures. Since we knew that we had to have a data structure capable of containing

mappings between nodes and their names, the logical choice was to use a built-in hash map.

We soon found out, however, that that was ill-advised at best.

Since a hash map is defined by its ability to hash objects to their proper positions in

the map, it requires knowledge of equality between objects in order to ensure that position.

Java’s built-in hash map seemed like it was capable of performing this task adequately at

first. However, we soon found out that since we were using custom objects, that notion of

equality was unknown to the virtual machine. We spent a large amount of time trying to

alter the way that Java could interpret equality between our nodes, only to find out that

it was impossible.

After this realization, we simply created an extension to the standard Java hash map,

which we then modified to utilize our own notion of equality. This cumbersome, but even-

tually successful, endeavor became part of the final product. Similarly, we created modified

hash sets with the same reasoning.

Chapter 6

Future Plans

Roads? Where we’re going we don’t

need roads.

Dr. Emmett Brown

50

PLANS FOR THE FUTURE 51

6.1 Plans for the Future

As you’ve already no doubt seen, there has already been a substantial amount of design
work done thus far. However, with a series of several setbacks in development, progress has
slowed in most cases, and regressed in a few. We firmly believe that the base of the project
is solidly defined and provides for a good point at which to allow for further development
on the GUI portion alone.

Below is a basic overall glimpse at what has been accomplished (the text with the strike-
through), and what has yet to be accomplished.

• Parser

– Design Abstract Parser classes

– Write Parser classes

– Serialize objects1

– Thoroughly test parser2

• Protocol/Interface/Middleware

– Define protocol specifications

– Design overall structure

– Implement object classes

• GUI

– Create mockup for design

– Identify overall hierarchy

– Write classes and primitive GUI structure

– Enhance and test GUI3

∗ Auto-Analyze - The feature in a previous iteration of the GUI design that
allows Argos to do a bit of the grunt work of traffic analysis on its own

∗ Displaying Packet Information - The ability to click on a specific packet and
see packet-specific information, including possibly the data in its payload

∗ Timeline Shifting - A major goal, which is to be able to shift packets around
the timeline via drag-n-drop to help visually align packets

∗ Overview Timeline - A larger timeline display that encompasses all traffic on
all nodes; allows the user to zoom, shift and scale the display

∗ State Saving/Loading - The ability to save the current state of the display
in order to be able to recall it later without re-doing all of the work required
to set it up

1Again, this is a possibly defunct goal, depending on serialization tactic to be decided later
2With the change in focus of the project, the parser has taken the wayside, but it is still a necessary part

of the application and, as such, requires thorough testing
3Again, this is potentially an eternally ongoing plan, as – much like a work of art – no GUI is truly

finished

Chapter 7

Closing Remarks

M-I-C... (See you real soon)...

K-E-Y... (Why? because we like

you)... M-O-U-S-E.

Mickey Mouse Club

52

CONCLUSION 53

7.1 Conclusion

In conclusion, we feel that Argos has the potential to redefine the way that administrators

of wireless networks can do their jobs. With Argos , one will be able to quickly and suc-

cinctly diagnose and treat any networking problems, no matter how large or small, using its

intuitive interface. As of this writing it may be a pale representation of that potential, but

there is little doubt that it’s there lying under the surface.

It is a monumentous task, but the hardest part (designing the whole application, including

the intricate class structures and hierarchies required to represent all necessary data) is

done, and the task of finishing the implementation is the only thing remaining. We have

made great strides toward the goal of the project, and have a very concrete concept that

simply needs to be realized. This is not to say that it will be a breeze from here on out.

GUI implementation is one of the hardest things to get done, let alone to get right. Even

though we have a proper GUI skeleton upon which to base all further development, the

task of rendering all of the desired data to the screen is a non-trivial one.

We still look forward to the final product since we all have an interest in wireless as well,

and we realize that the need for a tool like Argos is increasing as each day passes. This

project is as much for us and everyone else that is interested in 802.11 as it is for our client

alone, which makes it all the more important that we succeed in our goals of making an

intuitive and efficient application.

Although our project has not reached its final stage of completion and we have officially

ceased development as the semester has come to a close, we plan to release the source code

we have in the form of a sourceforge project in the coming weeks. This will allow us, and

anyone else who is interested and motivated in the project to work after graduation, and

for the collaboration of everyone in the Open Source community for aid in both testing and

development. That collaboration will help find and remedy more bugs and get more varied

54 CLOSING REMARKS

input than our group and client can come up with alone.

Appendix A

User Manual

You can fool some of the people all the

time, all the people some of the time,

but you can’t fool all the people all the

time

Abraham Lincoln

55

56 USER MANUAL

A.1 Getting Started

A.1.1 Launching Argos

Once the setup process is complete and Argos is available on your system, executing the

application brings you to this stage:

Figure A.1: Argos Launching Screenshot

This is the starting point for all of Argos’s functions.

GETTING STARTED 57

A.1.2 Creating a visualization

Once Argos is up and running, you can create a new visualization by going to the Visualization

menu and choosing New Visualization.

Figure A.2: Argos with a new visualization

Once this visualization is created, the real work can be done.

58 USER MANUAL

A.1.3 Adding Nodes

To add nodes, simply click the Add button on the panel on the left.

Figure A.3: 2 Nodes Added

Argos then parses through your available logs and displays a list of all of the nodes it has

encountered.

USING ARGOS 59

A.2 Using Argos

A.2.1 Selecting a Node for Display

Now that Argos has found all of the available nodes in your logs, you can click on the

checkbox next to a node to view a single timeline with its data.

Figure A.4: Viewing a single timeline

From here, packet display and manipulation are possible.

60 USER MANUAL

A.2.2 Selecting Multiple Nodes

Displaying a single node doesn’t usually give you much information, however. Since the real

reason Argos is used is to monitor traffic between a set of nodes, you can click on all of the

checkboxes next to the nodes you wish to view.

Figure A.5: Viewing multiple timelines

The only limit to the number of timelines is the number of nodes you have available to you.

Appendix B

802.11: Wireless LAN Frame

Formats

B.1 Frame Formats

Figure B.1: Frame Formats: MAC Frame Format

Figure B.2: Frame Formats: Frame Control Field

61

62 802.11: WIRELESS LAN FRAME FORMATS

B.2 Individual Frame Type Formats

Figure B.3: Frame Control Field Subfield Values: Control Frames

Figure B.4: Frame Control Field Subfield Values: Data Frames

Figure B.5: Frame Control Field Subfield Values: Management Frames

Appendix C

Argos Class Structure

Argos’s class structure can be found on the following page.

63

Glossary

802.11 - IEEE’s official wireless networking specification

AP - Access Point; nodes on the network that allow for users to begin transmit-

ting/receiving data from each other

COBOL - (Common Business Oriented Language) Clumsy, archaic programming language

dating back to 1959.

contention - when a node detects that another node wishes to transmit, it pauses to allow

the other transmission to terminate; they are therefore “contending” for use of the

network

deadlock - a situation where two or more objects are present, and none can proceed,

resulting in a standstill

GUI - Graphical User Interface

Java - A programming language created by Sun Microsystems that is designed to be platform-

independent. This is achieved by the use of “virtual machines that allow Java pro-

grams to run on a particular operating system.

OS - Operating System

packet sniffers - tools designed to analyze individual packets and inspect their contents

painting - The rendering process that Swing uses to display objects on-screen

64

65

parser - A program that determines the structure of a string of symbols in some format (in

our case a TCPdump file). A parser normally takes as input a sequence of tokens,

and produces some kind structured data as output.

Swing - As defined by Sun Microsystems, the code name for a collection of GUI components

that runs uniformly on any native platform that supports the Java virtual machine

(JVM). Contrast with Abstract Window Toolkit.

TCPDump - an enumerated and structured output of all TCP packets transmitted be-

tween nodes

Virtual Machine - The mechanism the Java language uses to execute Java bytecode on

any physical computer. The virtual machine (VM) converts the bytecode to the

native instruction for the destination computer

Bibliography

[1] Gerald Combs “The Ethereal Network Protocol Analyzer”,

http://www.ethereal.com/

[2] Marius Milner, “802.11b based wireless network auditing utility”,

http://www.netstumbler.com/

[3] Mike Kershaw “802.11 wireless network sniffer”,

http://www.kismetwireless.net/

[4] Sun Microsystems “Java Foundation Classes (JFC/Swing)”

http://java.sun.com/products/jfc/

[5] Yuchung Cheng to Marcos Paredes Farrera “Help with timestamp”

http://www.tcpdump.org/lists/workers/2003/08/msg00423.html

[6] Bill Fenner, Guy Harris, and Michael Richardson, “The libpcap Project”,

http://sourceforge.net/projects/libpcap/

[7] Patrick Charles, “JPCap: Network Packet Capture Facility for Java”,

http://sourceforge.net/projects/jpcap/

[8] Lawrence Berkeley National Laboratory “Protocol packet capture and dumper pro-

gram”,

http://www.tcpdump.org

[9] Institute of Electrical and Electronics Engineers http://www.ieee.org/

66

BIBLIOGRAPHY 67

[10] Institute of Electrical and Electronics Engineers “802.11 Wireless Protocol Specifica-

tion”,

http://slappy.cs.uiuc.edu/fall03/team1/files/802.11-1999.pdf

[11] Open Source Development Network “World’s largest open source software development

site”,

http://sourceforge.net

