From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1751698AbcGNSbl (ORCPT ); Thu, 14 Jul 2016 14:31:41 -0400 Received: from bombadil.infradead.org ([198.137.202.9]:43603 "EHLO bombadil.infradead.org" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1751285AbcGNSbe (ORCPT ); Thu, 14 Jul 2016 14:31:34 -0400 Message-Id: <20160714183022.272275102@infradead.org> User-Agent: quilt/0.63-1 Date: Thu, 14 Jul 2016 20:25:46 +0200 From: Peter Zijlstra To: mingo@kernel.org, linux-kernel@vger.kernel.org Cc: oleg@redhat.com, tj@kernel.org, paulmck@linux.vnet.ibm.com, john.stultz@linaro.org, dimitrysh@google.com, romlem@google.com, ccross@google.com, tkjos@google.com, peterz@infradead.org Subject: [PATCH 1/2] locking/percpu-rwsem: Optimize readers and reduce global impact References: <20160714182545.786693675@infradead.org> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Disposition: inline; filename=peterz-locking-percpu-rwsem-opt.patch Sender: linux-kernel-owner@vger.kernel.org List-ID: X-Mailing-List: linux-kernel@vger.kernel.org Currently the percpu-rwsem switches to (global) atomic ops while a writer is waiting; which could be quite a while and slows down releasing the readers. This patch cures this problem by ordering the reader-state vs reader-count (see the comments in __percpu_down_read() and percpu_down_write()). This changes a global atomic op into a full memory barrier, which doesn't have the global cacheline contention. Cc: Oleg Nesterov Cc: Paul McKenney Signed-off-by: Peter Zijlstra (Intel) --- include/linux/percpu-rwsem.h | 85 +++++++++++++-- kernel/locking/percpu-rwsem.c | 236 ++++++++++++++++++++++++------------------ 2 files changed, 216 insertions(+), 105 deletions(-) --- a/include/linux/percpu-rwsem.h +++ b/include/linux/percpu-rwsem.h @@ -10,30 +10,97 @@ struct percpu_rw_semaphore { struct rcu_sync rss; - unsigned int __percpu *fast_read_ctr; + unsigned int __percpu *read_count; struct rw_semaphore rw_sem; - atomic_t slow_read_ctr; - wait_queue_head_t write_waitq; + wait_queue_head_t writer; + int state; }; -extern void percpu_down_read(struct percpu_rw_semaphore *); -extern int percpu_down_read_trylock(struct percpu_rw_semaphore *); -extern void percpu_up_read(struct percpu_rw_semaphore *); +extern void __percpu_down_read(struct percpu_rw_semaphore *); +extern int __percpu_down_read_trylock(struct percpu_rw_semaphore *); +extern void __percpu_up_read(struct percpu_rw_semaphore *); + +static inline void percpu_down_read(struct percpu_rw_semaphore *sem) +{ + might_sleep(); + + rwsem_acquire_read(&sem->rw_sem.dep_map, 0, 0, _RET_IP_); + + preempt_disable(); + /* + * We are in an RCU-sched read-side critical section, so the writer + * cannot both change sem->state from readers_fast and start checking + * counters while we are here. So if we see !sem->state, we know that + * the writer won't be checking until we're past the preempt_enable() + * and that one the synchronize_sched() is done, the writer will see + * anything we did within this RCU-sched read-size critical section. + */ + __this_cpu_inc(*sem->read_count); + if (unlikely(!rcu_sync_is_idle(&sem->rss))) + __percpu_down_read(sem); /* Unconditional memory barrier */ + preempt_enable(); + /* + * The barrier() from preempt_enable() prevents the compiler from + * bleeding the critical section out. + */ +} + +static inline int percpu_down_read_trylock(struct percpu_rw_semaphore *sem) +{ + int ret = 1; + + preempt_disable(); + /* + * Same as in percpu_down_read(). + */ + __this_cpu_inc(*sem->read_count); + if (unlikely(!rcu_sync_is_idle(&sem->rss))) + ret = __percpu_down_read_trylock(sem); + preempt_enable(); + /* + * The barrier() from preempt_enable() prevents the compiler from + * bleeding the critical section out. + */ + + if (ret) + rwsem_acquire_read(&sem->rw_sem.dep_map, 0, 1, _RET_IP_); + + return ret; +} + +static inline void percpu_up_read(struct percpu_rw_semaphore *sem) +{ + /* + * The barrier() in preempt_disable() prevents the compiler from + * bleeding the critical section out. + */ + preempt_disable(); + /* + * Same as in percpu_down_read(). + */ + if (likely(rcu_sync_is_idle(&sem->rss))) + __this_cpu_dec(*sem->read_count); + else + __percpu_up_read(sem); /* Unconditional memory barrier */ + preempt_enable(); + + rwsem_release(&sem->rw_sem.dep_map, 1, _RET_IP_); +} extern void percpu_down_write(struct percpu_rw_semaphore *); extern void percpu_up_write(struct percpu_rw_semaphore *); extern int __percpu_init_rwsem(struct percpu_rw_semaphore *, const char *, struct lock_class_key *); + extern void percpu_free_rwsem(struct percpu_rw_semaphore *); -#define percpu_init_rwsem(brw) \ +#define percpu_init_rwsem(sem) \ ({ \ static struct lock_class_key rwsem_key; \ - __percpu_init_rwsem(brw, #brw, &rwsem_key); \ + __percpu_init_rwsem(sem, #sem, &rwsem_key); \ }) - #define percpu_rwsem_is_held(sem) lockdep_is_held(&(sem)->rw_sem) static inline void percpu_rwsem_release(struct percpu_rw_semaphore *sem, --- a/kernel/locking/percpu-rwsem.c +++ b/kernel/locking/percpu-rwsem.c @@ -8,152 +8,196 @@ #include #include -int __percpu_init_rwsem(struct percpu_rw_semaphore *brw, +enum { readers_slow, readers_block }; + +int __percpu_init_rwsem(struct percpu_rw_semaphore *sem, const char *name, struct lock_class_key *rwsem_key) { - brw->fast_read_ctr = alloc_percpu(int); - if (unlikely(!brw->fast_read_ctr)) + sem->read_count = alloc_percpu(int); + if (unlikely(!sem->read_count)) return -ENOMEM; /* ->rw_sem represents the whole percpu_rw_semaphore for lockdep */ - __init_rwsem(&brw->rw_sem, name, rwsem_key); - rcu_sync_init(&brw->rss, RCU_SCHED_SYNC); - atomic_set(&brw->slow_read_ctr, 0); - init_waitqueue_head(&brw->write_waitq); + rcu_sync_init(&sem->rss, RCU_SCHED_SYNC); + __init_rwsem(&sem->rw_sem, name, rwsem_key); + init_waitqueue_head(&sem->writer); + sem->state = readers_slow; return 0; } EXPORT_SYMBOL_GPL(__percpu_init_rwsem); -void percpu_free_rwsem(struct percpu_rw_semaphore *brw) +void percpu_free_rwsem(struct percpu_rw_semaphore *sem) { /* * XXX: temporary kludge. The error path in alloc_super() * assumes that percpu_free_rwsem() is safe after kzalloc(). */ - if (!brw->fast_read_ctr) + if (!sem->read_count) return; - rcu_sync_dtor(&brw->rss); - free_percpu(brw->fast_read_ctr); - brw->fast_read_ctr = NULL; /* catch use after free bugs */ + rcu_sync_dtor(&sem->rss); + free_percpu(sem->read_count); + sem->read_count = NULL; /* catch use after free bugs */ } EXPORT_SYMBOL_GPL(percpu_free_rwsem); -/* - * This is the fast-path for down_read/up_read. If it succeeds we rely - * on the barriers provided by rcu_sync_enter/exit; see the comments in - * percpu_down_write() and percpu_up_write(). - * - * If this helper fails the callers rely on the normal rw_semaphore and - * atomic_dec_and_test(), so in this case we have the necessary barriers. - */ -static bool update_fast_ctr(struct percpu_rw_semaphore *brw, unsigned int val) +void __percpu_down_read(struct percpu_rw_semaphore *sem) { - bool success; + /* + * Due to having preemption disabled the decrement happens on + * the same CPU as the increment, avoiding the + * increment-on-one-CPU-and-decrement-on-another problem. + * + * And yes, if the reader misses the writer's assignment of + * readers_block to sem->state, then the writer is + * guaranteed to see the reader's increment. Conversely, any + * readers that increment their sem->read_count after the + * writer looks are guaranteed to see the readers_block value, + * which in turn means that they are guaranteed to immediately + * decrement their sem->read_count, so that it doesn't matter + * that the writer missed them. + */ - preempt_disable(); - success = rcu_sync_is_idle(&brw->rss); - if (likely(success)) - __this_cpu_add(*brw->fast_read_ctr, val); - preempt_enable(); + smp_mb(); /* A matches D */ - return success; -} + /* + * If !readers_block the critical section starts here, matched by the + * release in percpu_up_write(). + */ + if (likely(smp_load_acquire(&sem->state) != readers_block)) + return; -/* - * Like the normal down_read() this is not recursive, the writer can - * come after the first percpu_down_read() and create the deadlock. - * - * Note: returns with lock_is_held(brw->rw_sem) == T for lockdep, - * percpu_up_read() does rwsem_release(). This pairs with the usage - * of ->rw_sem in percpu_down/up_write(). - */ -void percpu_down_read(struct percpu_rw_semaphore *brw) -{ - might_sleep(); - rwsem_acquire_read(&brw->rw_sem.dep_map, 0, 0, _RET_IP_); + /* + * Per the above comment; we still have preemption disabled and + * will thus decrement on the same CPU as we incremented. + */ + __percpu_up_read(sem); - if (likely(update_fast_ctr(brw, +1))) - return; + /* + * We either call schedule() in the wait, or we'll fall through + * and reschedule on the preempt_enable() in percpu_down_read(). + */ + preempt_enable_no_resched(); + + /* + * Avoid lockdep for the down/up_read() we already have them. + */ + __down_read(&sem->rw_sem); + __this_cpu_inc(*sem->read_count); + __up_read(&sem->rw_sem); - /* Avoid rwsem_acquire_read() and rwsem_release() */ - __down_read(&brw->rw_sem); - atomic_inc(&brw->slow_read_ctr); - __up_read(&brw->rw_sem); + preempt_disable(); } -EXPORT_SYMBOL_GPL(percpu_down_read); +EXPORT_SYMBOL_GPL(__percpu_down_read); -int percpu_down_read_trylock(struct percpu_rw_semaphore *brw) +int __percpu_down_read_trylock(struct percpu_rw_semaphore *sem) { - if (unlikely(!update_fast_ctr(brw, +1))) { - if (!__down_read_trylock(&brw->rw_sem)) - return 0; - atomic_inc(&brw->slow_read_ctr); - __up_read(&brw->rw_sem); - } + smp_mb(); /* A matches D */ + + if (likely(smp_load_acquire(&sem->state) != readers_block)) + return 1; - rwsem_acquire_read(&brw->rw_sem.dep_map, 0, 1, _RET_IP_); - return 1; + __percpu_up_read(sem); + return 0; } +EXPORT_SYMBOL_GPL(__percpu_down_read_trylock); -void percpu_up_read(struct percpu_rw_semaphore *brw) +void __percpu_up_read(struct percpu_rw_semaphore *sem) { - rwsem_release(&brw->rw_sem.dep_map, 1, _RET_IP_); - - if (likely(update_fast_ctr(brw, -1))) - return; + smp_mb(); /* B matches C */ + /* + * In other words, if they see our decrement (presumably to aggregate + * zero, as that is the only time it matters) they will also see our + * critical section. + */ + __this_cpu_dec(*sem->read_count); - /* false-positive is possible but harmless */ - if (atomic_dec_and_test(&brw->slow_read_ctr)) - wake_up_all(&brw->write_waitq); + /* Prod writer to recheck readers_active */ + wake_up(&sem->writer); } -EXPORT_SYMBOL_GPL(percpu_up_read); +EXPORT_SYMBOL_GPL(__percpu_up_read); + +#define per_cpu_sum(var) \ +({ \ + typeof(var) __sum = 0; \ + int cpu; \ + compiletime_assert_atomic_type(__sum); \ + for_each_possible_cpu(cpu) \ + __sum += per_cpu(var, cpu); \ + __sum; \ +}) -static int clear_fast_ctr(struct percpu_rw_semaphore *brw) +/* + * Return true if the modular sum of the sem->read_count per-CPU variable is + * zero. If this sum is zero, then it is stable due to the fact that if any + * newly arriving readers increment a given counter, they will immediately + * decrement that same counter. + */ +static bool readers_active_check(struct percpu_rw_semaphore *sem) { - unsigned int sum = 0; - int cpu; + if (per_cpu_sum(*sem->read_count) != 0) + return false; + + /* + * If we observed the decrement; ensure we see the entire critical + * section. + */ - for_each_possible_cpu(cpu) { - sum += per_cpu(*brw->fast_read_ctr, cpu); - per_cpu(*brw->fast_read_ctr, cpu) = 0; - } + smp_mb(); /* C matches B */ - return sum; + return true; } -void percpu_down_write(struct percpu_rw_semaphore *brw) +void percpu_down_write(struct percpu_rw_semaphore *sem) { + down_write(&sem->rw_sem); + + /* Notify readers to take the slow path. */ + rcu_sync_enter(&sem->rss); + /* - * Make rcu_sync_is_idle() == F and thus disable the fast-path in - * percpu_down_read() and percpu_up_read(), and wait for gp pass. - * - * The latter synchronises us with the preceding readers which used - * the fast-past, so we can not miss the result of __this_cpu_add() - * or anything else inside their criticial sections. + * Notify new readers to block; up until now, and thus throughout the + * longish rcu_sync_enter() above, new readers could still come in. */ - rcu_sync_enter(&brw->rss); + WRITE_ONCE(sem->state, readers_block); - /* exclude other writers, and block the new readers completely */ - down_write(&brw->rw_sem); + smp_mb(); /* D matches A */ - /* nobody can use fast_read_ctr, move its sum into slow_read_ctr */ - atomic_add(clear_fast_ctr(brw), &brw->slow_read_ctr); + /* + * If they don't see our writer of readers_block to sem->state, + * then we are guaranteed to see their sem->read_count increment, and + * therefore will wait for them. + */ - /* wait for all readers to complete their percpu_up_read() */ - wait_event(brw->write_waitq, !atomic_read(&brw->slow_read_ctr)); + /* Wait for all now active readers to complete. */ + wait_event(sem->writer, readers_active_check(sem)); } EXPORT_SYMBOL_GPL(percpu_down_write); -void percpu_up_write(struct percpu_rw_semaphore *brw) +void percpu_up_write(struct percpu_rw_semaphore *sem) { - /* release the lock, but the readers can't use the fast-path */ - up_write(&brw->rw_sem); /* - * Enable the fast-path in percpu_down_read() and percpu_up_read() - * but only after another gp pass; this adds the necessary barrier - * to ensure the reader can't miss the changes done by us. + * Signal the writer is done, no fast path yet. + * + * One reason that we cannot just immediately flip to readers_fast is + * that new readers might fail to see the results of this writer's + * critical section. + * + * Therefore we force it through the slow path which guarantees an + * acquire and thereby guarantees the critical section's consistency. + */ + smp_store_release(&sem->state, readers_slow); + + /* + * Release the write lock, this will allow readers back in the game. + */ + up_write(&sem->rw_sem); + + /* + * Once this completes (at least one RCU grace period hence) the reader + * fast path will be available again. Safe to use outside the exclusive + * write lock because its counting. */ - rcu_sync_exit(&brw->rss); + rcu_sync_exit(&sem->rss); } -EXPORT_SYMBOL_GPL(percpu_up_write); +EXPORT_SYMBOL(percpu_up_write);