From mboxrd@z Thu Jan 1 00:00:00 1970 From: Daniel Mack Subject: [PATCH v3 1/2] bpf: add a longest prefix match trie map implementation Date: Sat, 14 Jan 2017 13:17:26 +0100 Message-ID: <20170114121727.14784-2-daniel@zonque.org> References: <20170114121727.14784-1-daniel@zonque.org> Cc: dh.herrmann@gmail.com, daniel@iogearbox.net, netdev@vger.kernel.org, davem@davemloft.net, Daniel Mack To: ast@fb.com Return-path: Received: from svenfoo.org ([82.94.215.22]:41037 "EHLO mail.zonque.de" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1751952AbdANMRg (ORCPT ); Sat, 14 Jan 2017 07:17:36 -0500 In-Reply-To: <20170114121727.14784-1-daniel@zonque.org> Sender: netdev-owner@vger.kernel.org List-ID: This trie implements a longest prefix match algorithm that can be used to match IP addresses to a stored set of ranges. Internally, data is stored in an unbalanced trie of nodes that has a maximum height of n, where n is the prefixlen the trie was created with. Tries may be created with prefix lengths that are multiples of 8, in the range from 8 to 2048. The key used for lookup and update operations is a struct bpf_lpm_trie_key, and the value is a uint64_t. The code carries more information about the internal implementation. Signed-off-by: Daniel Mack Reviewed-by: David Herrmann --- include/uapi/linux/bpf.h | 7 + kernel/bpf/Makefile | 2 +- kernel/bpf/lpm_trie.c | 493 +++++++++++++++++++++++++++++++++++++++++++++++ 3 files changed, 501 insertions(+), 1 deletion(-) create mode 100644 kernel/bpf/lpm_trie.c diff --git a/include/uapi/linux/bpf.h b/include/uapi/linux/bpf.h index 0eb0e87..d564277 100644 --- a/include/uapi/linux/bpf.h +++ b/include/uapi/linux/bpf.h @@ -63,6 +63,12 @@ struct bpf_insn { __s32 imm; /* signed immediate constant */ }; +/* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */ +struct bpf_lpm_trie_key { + __u32 prefixlen; /* up to 32 for AF_INET, 128 for AF_INET6 */ + __u8 data[0]; /* Arbitrary size */ +}; + /* BPF syscall commands, see bpf(2) man-page for details. */ enum bpf_cmd { BPF_MAP_CREATE, @@ -89,6 +95,7 @@ enum bpf_map_type { BPF_MAP_TYPE_CGROUP_ARRAY, BPF_MAP_TYPE_LRU_HASH, BPF_MAP_TYPE_LRU_PERCPU_HASH, + BPF_MAP_TYPE_LPM_TRIE, }; enum bpf_prog_type { diff --git a/kernel/bpf/Makefile b/kernel/bpf/Makefile index 1276474..e1ce4f4 100644 --- a/kernel/bpf/Makefile +++ b/kernel/bpf/Makefile @@ -1,7 +1,7 @@ obj-y := core.o obj-$(CONFIG_BPF_SYSCALL) += syscall.o verifier.o inode.o helpers.o -obj-$(CONFIG_BPF_SYSCALL) += hashtab.o arraymap.o percpu_freelist.o bpf_lru_list.o +obj-$(CONFIG_BPF_SYSCALL) += hashtab.o arraymap.o percpu_freelist.o bpf_lru_list.o lpm_trie.o ifeq ($(CONFIG_PERF_EVENTS),y) obj-$(CONFIG_BPF_SYSCALL) += stackmap.o endif diff --git a/kernel/bpf/lpm_trie.c b/kernel/bpf/lpm_trie.c new file mode 100644 index 0000000..1c1ad27 --- /dev/null +++ b/kernel/bpf/lpm_trie.c @@ -0,0 +1,493 @@ +/* + * Longest prefix match list implementation + * + * Copyright (c) 2016,2017 Daniel Mack + * Copyright (c) 2016 David Herrmann + * + * This file is subject to the terms and conditions of version 2 of the GNU + * General Public License. See the file COPYING in the main directory of the + * Linux distribution for more details. + */ + +#include +#include +#include +#include +#include +#include + +/* Intermediate node */ +#define LPM_TREE_NODE_FLAG_IM BIT(0) + +struct lpm_trie_node; + +struct lpm_trie_node { + struct rcu_head rcu; + struct lpm_trie_node __rcu *child[2]; + u32 prefixlen; + u32 flags; + u8 data[0]; +}; + +struct lpm_trie { + struct bpf_map map; + struct lpm_trie_node __rcu *root; + size_t n_entries; + size_t max_prefixlen; + size_t data_size; + raw_spinlock_t lock; +}; + +/* This trie implements a longest prefix match algorithm that can be used to + * match IP addresses to a stored set of ranges. + * + * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is + * interpreted as big endian, so data[0] stores the most significant byte. + * + * Match ranges are internally stored in instances of struct lpm_trie_node + * which each contain their prefix length as well as two pointers that may + * lead to more nodes containing more specific matches. Each node also stores + * a value that is defined by and returned to userspace via the update_elem + * and lookup functions. + * + * For instance, let's start with a trie that was created with a prefix length + * of 32, so it can be used for IPv4 addresses, and one single element that + * matches 192.168.0.0/16. The data array would hence contain + * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will + * stick to IP-address notation for readability though. + * + * As the trie is empty initially, the new node (1) will be places as root + * node, denoted as (R) in the example below. As there are no other node, both + * child pointers are %NULL. + * + * +----------------+ + * | (1) (R) | + * | 192.168.0.0/16 | + * | value: 1 | + * | [0] [1] | + * +----------------+ + * + * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already + * a node with the same data and a smaller prefix (ie, a less specific one), + * node (2) will become a child of (1). In child index depends on the next bit + * that is outside of what (1) matches, and that bit is 0, so (2) will be + * child[0] of (1): + * + * +----------------+ + * | (1) (R) | + * | 192.168.0.0/16 | + * | value: 1 | + * | [0] [1] | + * +----------------+ + * | + * +----------------+ + * | (2) | + * | 192.168.0.0/24 | + * | value: 2 | + * | [0] [1] | + * +----------------+ + * + * The child[1] slot of (1) could be filled with another node which has bit #17 + * (the next bit after the ones that (1) matches on) set to 1. For instance, + * 192.168.128.0/24: + * + * +----------------+ + * | (1) (R) | + * | 192.168.0.0/16 | + * | value: 1 | + * | [0] [1] | + * +----------------+ + * | | + * +----------------+ +------------------+ + * | (2) | | (3) | + * | 192.168.0.0/24 | | 192.168.128.0/24 | + * | value: 2 | | value: 3 | + * | [0] [1] | | [0] [1] | + * +----------------+ +------------------+ + * + * Let's add another node (4) to the game for 192.168.1.0/24. In order to place + * it, node (1) is looked at first, and because (4) of the semantics laid out + * above (bit #17 is 0), it would normally be attached to (1) as child[0]. + * However, that slot is already allocated, so a new node is needed in between. + * That node does not have a value attached to it and it will never be + * returned to users as result of a lookup. It is only there to differentiate + * the traversal further. It will get a prefix as wide as necessary to + * distinguish its two children: + * + * +----------------+ + * | (1) (R) | + * | 192.168.0.0/16 | + * | value: 1 | + * | [0] [1] | + * +----------------+ + * | | + * +----------------+ +------------------+ + * | (4) (I) | | (3) | + * | 192.168.0.0/23 | | 192.168.128.0/24 | + * | value: --- | | value: 3 | + * | [0] [1] | | [0] [1] | + * +----------------+ +------------------+ + * | | + * +----------------+ +----------------+ + * | (2) | | (5) | + * | 192.168.0.0/24 | | 192.168.1.0/24 | + * | value: 2 | | value: 5 | + * | [0] [1] | | [0] [1] | + * +----------------+ +----------------+ + * + * 192.168.1.1/32 would be a child of (5) etc. + * + * An intermediate node will be turned into a 'real' node on demand. In the + * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie. + * + * A fully populated trie would have a height of 32 nodes, as the trie was + * created with a prefix length of 32. + * + * The lookup starts at the root node. If the current node matches and if there + * is a child that can be used to become more specific, the trie is traversed + * downwards. The last node in the traversal that is a non-intermediate one is + * returned. + */ + +static inline int extract_bit(const u8 *data, size_t index) +{ + return !!(data[index / 8] & (1 << (7 - (index % 8)))); +} + +/** + * longest_prefix_match() - determine the longest prefix + * @trie: The trie to get internal sizes from + * @node: The node to operate on + * @key: The key to compare to @node + * + * Determine the longest prefix of @node that matches the bits in @key. + */ +static size_t longest_prefix_match(const struct lpm_trie *trie, + const struct lpm_trie_node *node, + const struct bpf_lpm_trie_key *key) +{ + size_t prefixlen = 0; + size_t i; + + for (i = 0; i < trie->data_size; i++) { + size_t b; + + b = 8 - fls(node->data[i] ^ key->data[i]); + prefixlen += b; + + if (prefixlen >= node->prefixlen || prefixlen >= key->prefixlen) + return min(node->prefixlen, key->prefixlen); + + if (b < 8) + break; + } + + return prefixlen; +} + +/* Called from syscall or from eBPF program */ +static void *trie_lookup_elem(struct bpf_map *map, void *_key) +{ + struct lpm_trie *trie = container_of(map, struct lpm_trie, map); + struct lpm_trie_node *node, *found = NULL; + struct bpf_lpm_trie_key *key = _key; + + /* Start walking the trie from the root node ... */ + + for (node = rcu_dereference(trie->root); node;) { + unsigned int next_bit; + size_t matchlen; + + /* Determine the longest prefix of @node that matches @key. + * If it's the maximum possible prefix for this trie, we have + * an exact match and can return it directly. + */ + matchlen = longest_prefix_match(trie, node, key); + if (matchlen == trie->max_prefixlen) { + found = node; + break; + } + + /* If the number of bits that match is smaller than the prefix + * length of @node, bail out and return the node we have seen + * last in the traversal (ie, the parent). + */ + if (matchlen < node->prefixlen) + break; + + /* Consider this node as return candidate unless it is an + * artificially added intermediate one. + */ + if (!(node->flags & LPM_TREE_NODE_FLAG_IM)) + found = node; + + /* If the node match is fully satisfied, let's see if we can + * become more specific. Determine the next bit in the key and + * traverse down. + */ + next_bit = extract_bit(key->data, node->prefixlen); + node = rcu_dereference(node->child[next_bit]); + } + + if (!found) + return NULL; + + return found->data + trie->data_size; +} + +static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie, + const void *value) +{ + struct lpm_trie_node *node; + size_t size = sizeof(struct lpm_trie_node) + trie->data_size; + + if (value) + size += trie->map.value_size; + + node = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN); + if (!node) + return NULL; + + node->flags = 0; + + if (value) + memcpy(node->data + trie->data_size, value, + trie->map.value_size); + + return node; +} + +/* Called from syscall or from eBPF program */ +static int trie_update_elem(struct bpf_map *map, + void *_key, void *value, u64 flags) +{ + struct lpm_trie *trie = container_of(map, struct lpm_trie, map); + struct lpm_trie_node *node, *im_node, *new_node = NULL; + struct lpm_trie_node __rcu **slot; + struct bpf_lpm_trie_key *key = _key; + unsigned long irq_flags; + unsigned int next_bit; + size_t matchlen = 0; + int ret = 0; + + if (unlikely(flags > BPF_EXIST)) + return -EINVAL; + + if (key->prefixlen > trie->max_prefixlen) + return -EINVAL; + + raw_spin_lock_irqsave(&trie->lock, irq_flags); + + /* Allocate and fill a new node */ + + if (trie->n_entries == trie->map.max_entries) { + ret = -ENOSPC; + goto out; + } + + new_node = lpm_trie_node_alloc(trie, value); + if (!new_node) { + ret = -ENOMEM; + goto out; + } + + trie->n_entries++; + + new_node->prefixlen = key->prefixlen; + RCU_INIT_POINTER(new_node->child[0], NULL); + RCU_INIT_POINTER(new_node->child[1], NULL); + memcpy(new_node->data, key->data, trie->data_size); + + /* Now find a slot to attach the new node. To do that, walk the tree + * from the root and match as many bits as possible for each node until + * we either find an empty slot or a slot that needs to be replaced by + * an intermediate node. + */ + slot = &trie->root; + + while ((node = rcu_dereference_protected(*slot, + lockdep_is_held(&trie->lock)))) { + matchlen = longest_prefix_match(trie, node, key); + + if (node->prefixlen != matchlen || + node->prefixlen == key->prefixlen || + node->prefixlen == trie->max_prefixlen) + break; + + next_bit = extract_bit(key->data, node->prefixlen); + slot = &node->child[next_bit]; + } + + /* If the slot is empty (a free child pointer or an empty root), + * simply assign the @new_node to that slot and be done. + */ + if (!node) { + rcu_assign_pointer(*slot, new_node); + goto out; + } + + /* If the slot we picked already exists, replace it with @new_node + * which already has the correct data array set. + */ + if (node->prefixlen == matchlen) { + new_node->child[0] = node->child[0]; + new_node->child[1] = node->child[1]; + + if (!(node->flags & LPM_TREE_NODE_FLAG_IM)) + trie->n_entries--; + + rcu_assign_pointer(*slot, new_node); + kfree_rcu(node, rcu); + + goto out; + } + + /* If the new node matches the prefix completely, it must be inserted + * as an ancestor. Simply insert it between @node and *@slot. + */ + if (matchlen == key->prefixlen) { + next_bit = extract_bit(node->data, matchlen); + rcu_assign_pointer(new_node->child[next_bit], node); + rcu_assign_pointer(*slot, new_node); + goto out; + } + + im_node = lpm_trie_node_alloc(trie, NULL); + if (!im_node) { + ret = -ENOMEM; + goto out; + } + + im_node->prefixlen = matchlen; + im_node->flags |= LPM_TREE_NODE_FLAG_IM; + memcpy(im_node->data, node->data, trie->data_size); + + /* Now determine which child to install in which slot */ + if (extract_bit(key->data, matchlen)) { + rcu_assign_pointer(im_node->child[0], node); + rcu_assign_pointer(im_node->child[1], new_node); + } else { + rcu_assign_pointer(im_node->child[0], new_node); + rcu_assign_pointer(im_node->child[1], node); + } + + /* Finally, assign the intermediate node to the determined spot */ + rcu_assign_pointer(*slot, im_node); + +out: + if (ret) { + if (new_node) + trie->n_entries--; + + kfree(new_node); + kfree(im_node); + } + + raw_spin_unlock_irqrestore(&trie->lock, irq_flags); + + return ret; +} + +static struct bpf_map *trie_alloc(union bpf_attr *attr) +{ + size_t cost, cost_per_node; + struct lpm_trie *trie; + int ret; + + /* check sanity of attributes */ + if (attr->max_entries == 0 || + attr->map_flags != BPF_F_NO_PREALLOC || + attr->key_size < sizeof(struct bpf_lpm_trie_key) + 1 || + attr->key_size > sizeof(struct bpf_lpm_trie_key) + 256 || + attr->value_size == 0) + return ERR_PTR(-EINVAL); + + trie = kzalloc(sizeof(*trie), GFP_USER | __GFP_NOWARN); + if (!trie) + return ERR_PTR(-ENOMEM); + + /* copy mandatory map attributes */ + trie->map.map_type = attr->map_type; + trie->map.key_size = attr->key_size; + trie->map.value_size = attr->value_size; + trie->map.max_entries = attr->max_entries; + trie->data_size = attr->key_size - + offsetof(struct bpf_lpm_trie_key, data); + trie->max_prefixlen = trie->data_size * 8; + + cost_per_node = sizeof(struct lpm_trie_node) + + attr->value_size + trie->data_size; + cost = sizeof(*trie) + attr->max_entries * cost_per_node; + trie->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; + + ret = bpf_map_precharge_memlock(trie->map.pages); + if (ret) { + kfree(trie); + return ERR_PTR(ret); + } + + raw_spin_lock_init(&trie->lock); + + return &trie->map; +} + +static void trie_free(struct bpf_map *map) +{ + struct lpm_trie *trie = container_of(map, struct lpm_trie, map); + struct lpm_trie_node __rcu **slot; + struct lpm_trie_node *node; + + raw_spin_lock(&trie->lock); + + /* Always start at the root and walk down to a node that has no + * children. Then free that node, nullify its reference in the parent + * and start over. + */ + + for (;;) { + slot = &trie->root; + + for (;;) { + node = rcu_dereference_protected(*slot, + lockdep_is_held(&trie->lock)); + if (!node) + goto unlock; + + if (rcu_access_pointer(node->child[0])) { + slot = &node->child[0]; + continue; + } + + if (rcu_access_pointer(node->child[1])) { + slot = &node->child[1]; + continue; + } + + kfree(node); + RCU_INIT_POINTER(*slot, NULL); + break; + } + } + +unlock: + raw_spin_unlock(&trie->lock); +} + +static const struct bpf_map_ops trie_ops = { + .map_alloc = trie_alloc, + .map_free = trie_free, + .map_lookup_elem = trie_lookup_elem, + .map_update_elem = trie_update_elem, +}; + +static struct bpf_map_type_list trie_type __read_mostly = { + .ops = &trie_ops, + .type = BPF_MAP_TYPE_LPM_TRIE, +}; + +static int __init register_trie_map(void) +{ + bpf_register_map_type(&trie_type); + return 0; +} +late_initcall(register_trie_map); -- 2.9.3