All of lore.kernel.org
 help / color / mirror / Atom feed
From: Jonathan Corbet <corbet@lwn.net>
To: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org, Al Viro <viro@zeniv.linux.org.uk>,
	axboe@kernel.dk, Jonathan Corbet <corbet@lwn.net>
Subject: [PATCH 1/2] docs: Bring some order to filesystem documentation
Date: Thu, 21 Feb 2019 12:02:29 -0700	[thread overview]
Message-ID: <20190221190230.17985-2-corbet@lwn.net> (raw)
In-Reply-To: <20190221190230.17985-1-corbet@lwn.net>

Documentation/filesystems is, like much of the rest of the kernel's
documentation, a jumble of unorganized information.  Split the
documentation into categories and try to bring some order to the top-level
index.rst files.  No text changes other than a few section-introductory
blurbs; this is all just moving stuff around.

Signed-off-by: Jonathan Corbet <corbet@lwn.net>
---
 Documentation/filesystems/api-summary.rst | 150 ++++++++
 Documentation/filesystems/index.rst       | 394 ++--------------------
 Documentation/filesystems/journalling.rst | 184 ++++++++++
 Documentation/filesystems/path-lookup.rst |  15 +
 Documentation/filesystems/splice.rst      |  22 ++
 5 files changed, 395 insertions(+), 370 deletions(-)
 create mode 100644 Documentation/filesystems/api-summary.rst
 create mode 100644 Documentation/filesystems/journalling.rst
 create mode 100644 Documentation/filesystems/splice.rst

diff --git a/Documentation/filesystems/api-summary.rst b/Documentation/filesystems/api-summary.rst
new file mode 100644
index 000000000000..aa51ffcfa029
--- /dev/null
+++ b/Documentation/filesystems/api-summary.rst
@@ -0,0 +1,150 @@
+=============================
+Linux Filesystems API summary
+=============================
+
+This section contains API-level documentation, mostly taken from the source
+code itself.
+
+The Linux VFS
+=============
+
+The Filesystem types
+--------------------
+
+.. kernel-doc:: include/linux/fs.h
+   :internal:
+
+The Directory Cache
+-------------------
+
+.. kernel-doc:: fs/dcache.c
+   :export:
+
+.. kernel-doc:: include/linux/dcache.h
+   :internal:
+
+Inode Handling
+--------------
+
+.. kernel-doc:: fs/inode.c
+   :export:
+
+.. kernel-doc:: fs/bad_inode.c
+   :export:
+
+Registration and Superblocks
+----------------------------
+
+.. kernel-doc:: fs/super.c
+   :export:
+
+File Locks
+----------
+
+.. kernel-doc:: fs/locks.c
+   :export:
+
+.. kernel-doc:: fs/locks.c
+   :internal:
+
+Other Functions
+---------------
+
+.. kernel-doc:: fs/mpage.c
+   :export:
+
+.. kernel-doc:: fs/namei.c
+   :export:
+
+.. kernel-doc:: fs/buffer.c
+   :export:
+
+.. kernel-doc:: block/bio.c
+   :export:
+
+.. kernel-doc:: fs/seq_file.c
+   :export:
+
+.. kernel-doc:: fs/filesystems.c
+   :export:
+
+.. kernel-doc:: fs/fs-writeback.c
+   :export:
+
+.. kernel-doc:: fs/block_dev.c
+   :export:
+
+.. kernel-doc:: fs/anon_inodes.c
+   :export:
+
+.. kernel-doc:: fs/attr.c
+   :export:
+
+.. kernel-doc:: fs/d_path.c
+   :export:
+
+.. kernel-doc:: fs/dax.c
+   :export:
+
+.. kernel-doc:: fs/direct-io.c
+   :export:
+
+.. kernel-doc:: fs/file_table.c
+   :export:
+
+.. kernel-doc:: fs/libfs.c
+   :export:
+
+.. kernel-doc:: fs/posix_acl.c
+   :export:
+
+.. kernel-doc:: fs/stat.c
+   :export:
+
+.. kernel-doc:: fs/sync.c
+   :export:
+
+.. kernel-doc:: fs/xattr.c
+   :export:
+
+The proc filesystem
+===================
+
+sysctl interface
+----------------
+
+.. kernel-doc:: kernel/sysctl.c
+   :export:
+
+proc filesystem interface
+-------------------------
+
+.. kernel-doc:: fs/proc/base.c
+   :internal:
+
+Events based on file descriptors
+================================
+
+.. kernel-doc:: fs/eventfd.c
+   :export:
+
+The Filesystem for Exporting Kernel Objects
+===========================================
+
+.. kernel-doc:: fs/sysfs/file.c
+   :export:
+
+.. kernel-doc:: fs/sysfs/symlink.c
+   :export:
+
+The debugfs filesystem
+======================
+
+debugfs interface
+-----------------
+
+.. kernel-doc:: fs/debugfs/inode.c
+   :export:
+
+.. kernel-doc:: fs/debugfs/file.c
+   :export:
diff --git a/Documentation/filesystems/index.rst b/Documentation/filesystems/index.rst
index 61d2441b25d5..1131c34d77f6 100644
--- a/Documentation/filesystems/index.rst
+++ b/Documentation/filesystems/index.rst
@@ -1,389 +1,43 @@
-=====================
-Linux Filesystems API
-=====================
+===============================
+Filesystems in the Linux kernel
+===============================
 
-The Linux VFS
-=============
+This under-development manual will, some glorious day, provide
+comprehensive information on how the Linux virtual filesystem (VFS) layer
+works, along with the filesystems that sit below it.  For now, what we have
+can be found below.
 
-The Filesystem types
---------------------
-
-.. kernel-doc:: include/linux/fs.h
-   :internal:
-
-The Directory Cache
--------------------
-
-.. kernel-doc:: fs/dcache.c
-   :export:
-
-.. kernel-doc:: include/linux/dcache.h
-   :internal:
-
-Inode Handling
---------------
-
-.. kernel-doc:: fs/inode.c
-   :export:
-
-.. kernel-doc:: fs/bad_inode.c
-   :export:
-
-Registration and Superblocks
-----------------------------
-
-.. kernel-doc:: fs/super.c
-   :export:
-
-File Locks
-----------
-
-.. kernel-doc:: fs/locks.c
-   :export:
-
-.. kernel-doc:: fs/locks.c
-   :internal:
-
-Other Functions
----------------
-
-.. kernel-doc:: fs/mpage.c
-   :export:
-
-.. kernel-doc:: fs/namei.c
-   :export:
-
-.. kernel-doc:: fs/buffer.c
-   :export:
-
-.. kernel-doc:: block/bio.c
-   :export:
-
-.. kernel-doc:: fs/seq_file.c
-   :export:
-
-.. kernel-doc:: fs/filesystems.c
-   :export:
-
-.. kernel-doc:: fs/fs-writeback.c
-   :export:
-
-.. kernel-doc:: fs/block_dev.c
-   :export:
-
-.. kernel-doc:: fs/anon_inodes.c
-   :export:
-
-.. kernel-doc:: fs/attr.c
-   :export:
-
-.. kernel-doc:: fs/d_path.c
-   :export:
-
-.. kernel-doc:: fs/dax.c
-   :export:
-
-.. kernel-doc:: fs/direct-io.c
-   :export:
-
-.. kernel-doc:: fs/file_table.c
-   :export:
-
-.. kernel-doc:: fs/libfs.c
-   :export:
-
-.. kernel-doc:: fs/posix_acl.c
-   :export:
-
-.. kernel-doc:: fs/stat.c
-   :export:
-
-.. kernel-doc:: fs/sync.c
-   :export:
-
-.. kernel-doc:: fs/xattr.c
-   :export:
-
-The proc filesystem
-===================
-
-sysctl interface
-----------------
-
-.. kernel-doc:: kernel/sysctl.c
-   :export:
-
-proc filesystem interface
--------------------------
-
-.. kernel-doc:: fs/proc/base.c
-   :internal:
-
-Events based on file descriptors
-================================
-
-.. kernel-doc:: fs/eventfd.c
-   :export:
-
-The Filesystem for Exporting Kernel Objects
-===========================================
-
-.. kernel-doc:: fs/sysfs/file.c
-   :export:
-
-.. kernel-doc:: fs/sysfs/symlink.c
-   :export:
-
-The debugfs filesystem
+Core VFS documentation
 ======================
 
-debugfs interface
------------------
+See these manuals for documentation about the VFS layer itself and how its
+algorithms work.
 
-.. kernel-doc:: fs/debugfs/inode.c
-   :export:
+.. toctree::
+   :maxdepth: 2
 
-.. kernel-doc:: fs/debugfs/file.c
-   :export:
+   path-lookup.rst
+   api-summary
+   splice
 
-The Linux Journalling API
+Filesystem support layers
 =========================
 
-Overview
---------
-
-Details
-~~~~~~~
-
-The journalling layer is easy to use. You need to first of all create a
-journal_t data structure. There are two calls to do this dependent on
-how you decide to allocate the physical media on which the journal
-resides. The :c:func:`jbd2_journal_init_inode` call is for journals stored in
-filesystem inodes, or the :c:func:`jbd2_journal_init_dev` call can be used
-for journal stored on a raw device (in a continuous range of blocks). A
-journal_t is a typedef for a struct pointer, so when you are finally
-finished make sure you call :c:func:`jbd2_journal_destroy` on it to free up
-any used kernel memory.
-
-Once you have got your journal_t object you need to 'mount' or load the
-journal file. The journalling layer expects the space for the journal
-was already allocated and initialized properly by the userspace tools.
-When loading the journal you must call :c:func:`jbd2_journal_load` to process
-journal contents. If the client file system detects the journal contents
-does not need to be processed (or even need not have valid contents), it
-may call :c:func:`jbd2_journal_wipe` to clear the journal contents before
-calling :c:func:`jbd2_journal_load`.
-
-Note that jbd2_journal_wipe(..,0) calls
-:c:func:`jbd2_journal_skip_recovery` for you if it detects any outstanding
-transactions in the journal and similarly :c:func:`jbd2_journal_load` will
-call :c:func:`jbd2_journal_recover` if necessary. I would advise reading
-:c:func:`ext4_load_journal` in fs/ext4/super.c for examples on this stage.
-
-Now you can go ahead and start modifying the underlying filesystem.
-Almost.
-
-You still need to actually journal your filesystem changes, this is done
-by wrapping them into transactions. Additionally you also need to wrap
-the modification of each of the buffers with calls to the journal layer,
-so it knows what the modifications you are actually making are. To do
-this use :c:func:`jbd2_journal_start` which returns a transaction handle.
-
-:c:func:`jbd2_journal_start` and its counterpart :c:func:`jbd2_journal_stop`,
-which indicates the end of a transaction are nestable calls, so you can
-reenter a transaction if necessary, but remember you must call
-:c:func:`jbd2_journal_stop` the same number of times as
-:c:func:`jbd2_journal_start` before the transaction is completed (or more
-accurately leaves the update phase). Ext4/VFS makes use of this feature to
-simplify handling of inode dirtying, quota support, etc.
-
-Inside each transaction you need to wrap the modifications to the
-individual buffers (blocks). Before you start to modify a buffer you
-need to call :c:func:`jbd2_journal_get_create_access()` /
-:c:func:`jbd2_journal_get_write_access()` /
-:c:func:`jbd2_journal_get_undo_access()` as appropriate, this allows the
-journalling layer to copy the unmodified
-data if it needs to. After all the buffer may be part of a previously
-uncommitted transaction. At this point you are at last ready to modify a
-buffer, and once you are have done so you need to call
-:c:func:`jbd2_journal_dirty_metadata`. Or if you've asked for access to a
-buffer you now know is now longer required to be pushed back on the
-device you can call :c:func:`jbd2_journal_forget` in much the same way as you
-might have used :c:func:`bforget` in the past.
-
-A :c:func:`jbd2_journal_flush` may be called at any time to commit and
-checkpoint all your transactions.
-
-Then at umount time , in your :c:func:`put_super` you can then call
-:c:func:`jbd2_journal_destroy` to clean up your in-core journal object.
-
-Unfortunately there a couple of ways the journal layer can cause a
-deadlock. The first thing to note is that each task can only have a
-single outstanding transaction at any one time, remember nothing commits
-until the outermost :c:func:`jbd2_journal_stop`. This means you must complete
-the transaction at the end of each file/inode/address etc. operation you
-perform, so that the journalling system isn't re-entered on another
-journal. Since transactions can't be nested/batched across differing
-journals, and another filesystem other than yours (say ext4) may be
-modified in a later syscall.
-
-The second case to bear in mind is that :c:func:`jbd2_journal_start` can block
-if there isn't enough space in the journal for your transaction (based
-on the passed nblocks param) - when it blocks it merely(!) needs to wait
-for transactions to complete and be committed from other tasks, so
-essentially we are waiting for :c:func:`jbd2_journal_stop`. So to avoid
-deadlocks you must treat :c:func:`jbd2_journal_start` /
-:c:func:`jbd2_journal_stop` as if they were semaphores and include them in
-your semaphore ordering rules to prevent
-deadlocks. Note that :c:func:`jbd2_journal_extend` has similar blocking
-behaviour to :c:func:`jbd2_journal_start` so you can deadlock here just as
-easily as on :c:func:`jbd2_journal_start`.
-
-Try to reserve the right number of blocks the first time. ;-). This will
-be the maximum number of blocks you are going to touch in this
-transaction. I advise having a look at at least ext4_jbd.h to see the
-basis on which ext4 uses to make these decisions.
-
-Another wriggle to watch out for is your on-disk block allocation
-strategy. Why? Because, if you do a delete, you need to ensure you
-haven't reused any of the freed blocks until the transaction freeing
-these blocks commits. If you reused these blocks and crash happens,
-there is no way to restore the contents of the reallocated blocks at the
-end of the last fully committed transaction. One simple way of doing
-this is to mark blocks as free in internal in-memory block allocation
-structures only after the transaction freeing them commits. Ext4 uses
-journal commit callback for this purpose.
-
-With journal commit callbacks you can ask the journalling layer to call
-a callback function when the transaction is finally committed to disk,
-so that you can do some of your own management. You ask the journalling
-layer for calling the callback by simply setting
-``journal->j_commit_callback`` function pointer and that function is
-called after each transaction commit. You can also use
-``transaction->t_private_list`` for attaching entries to a transaction
-that need processing when the transaction commits.
-
-JBD2 also provides a way to block all transaction updates via
-:c:func:`jbd2_journal_lock_updates()` /
-:c:func:`jbd2_journal_unlock_updates()`. Ext4 uses this when it wants a
-window with a clean and stable fs for a moment. E.g.
-
-::
-
-
-        jbd2_journal_lock_updates() //stop new stuff happening..
-        jbd2_journal_flush()        // checkpoint everything.
-        ..do stuff on stable fs
-        jbd2_journal_unlock_updates() // carry on with filesystem use.
-
-The opportunities for abuse and DOS attacks with this should be obvious,
-if you allow unprivileged userspace to trigger codepaths containing
-these calls.
-
-Summary
-~~~~~~~
-
-Using the journal is a matter of wrapping the different context changes,
-being each mount, each modification (transaction) and each changed
-buffer to tell the journalling layer about them.
-
-Data Types
-----------
-
-The journalling layer uses typedefs to 'hide' the concrete definitions
-of the structures used. As a client of the JBD2 layer you can just rely
-on the using the pointer as a magic cookie of some sort. Obviously the
-hiding is not enforced as this is 'C'.
-
-Structures
-~~~~~~~~~~
-
-.. kernel-doc:: include/linux/jbd2.h
-   :internal:
-
-Functions
----------
-
-The functions here are split into two groups those that affect a journal
-as a whole, and those which are used to manage transactions
-
-Journal Level
-~~~~~~~~~~~~~
-
-.. kernel-doc:: fs/jbd2/journal.c
-   :export:
-
-.. kernel-doc:: fs/jbd2/recovery.c
-   :internal:
-
-Transasction Level
-~~~~~~~~~~~~~~~~~~
-
-.. kernel-doc:: fs/jbd2/transaction.c
-
-See also
---------
-
-`Journaling the Linux ext2fs Filesystem, LinuxExpo 98, Stephen
-Tweedie <http://kernel.org/pub/linux/kernel/people/sct/ext3/journal-design.ps.gz>`__
-
-`Ext3 Journalling FileSystem, OLS 2000, Dr. Stephen
-Tweedie <http://olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html>`__
-
-splice API
-==========
-
-splice is a method for moving blocks of data around inside the kernel,
-without continually transferring them between the kernel and user space.
-
-.. kernel-doc:: fs/splice.c
-
-pipes API
-=========
-
-Pipe interfaces are all for in-kernel (builtin image) use. They are not
-exported for use by modules.
-
-.. kernel-doc:: include/linux/pipe_fs_i.h
-   :internal:
-
-.. kernel-doc:: fs/pipe.c
-
-Encryption API
-==============
-
-A library which filesystems can hook into to support transparent
-encryption of files and directories.
+Documentation for the support code within the filesystem layer for use in
+filesystem implementations.
 
 .. toctree::
-    :maxdepth: 2
-
-    fscrypt
-
-Pathname lookup
-===============
-
-
-This write-up is based on three articles published at lwn.net:
+   :maxdepth: 2
 
-- <https://lwn.net/Articles/649115/> Pathname lookup in Linux
-- <https://lwn.net/Articles/649729/> RCU-walk: faster pathname lookup in Linux
-- <https://lwn.net/Articles/650786/> A walk among the symlinks
+   journalling
+   fscrypt
 
-Written by Neil Brown with help from Al Viro and Jon Corbet.
-It has subsequently been updated to reflect changes in the kernel
-including:
+Filesystem-specific documentation
+=================================
 
-- per-directory parallel name lookup.
+Documentation for individual filesystem types can be found here.
 
 .. toctree::
    :maxdepth: 2
 
-   path-lookup.rst
-
-binderfs
-========
-
-.. toctree::
-
    binderfs.rst
diff --git a/Documentation/filesystems/journalling.rst b/Documentation/filesystems/journalling.rst
new file mode 100644
index 000000000000..58ce6b395206
--- /dev/null
+++ b/Documentation/filesystems/journalling.rst
@@ -0,0 +1,184 @@
+The Linux Journalling API
+=========================
+
+Overview
+--------
+
+Details
+~~~~~~~
+
+The journalling layer is easy to use. You need to first of all create a
+journal_t data structure. There are two calls to do this dependent on
+how you decide to allocate the physical media on which the journal
+resides. The :c:func:`jbd2_journal_init_inode` call is for journals stored in
+filesystem inodes, or the :c:func:`jbd2_journal_init_dev` call can be used
+for journal stored on a raw device (in a continuous range of blocks). A
+journal_t is a typedef for a struct pointer, so when you are finally
+finished make sure you call :c:func:`jbd2_journal_destroy` on it to free up
+any used kernel memory.
+
+Once you have got your journal_t object you need to 'mount' or load the
+journal file. The journalling layer expects the space for the journal
+was already allocated and initialized properly by the userspace tools.
+When loading the journal you must call :c:func:`jbd2_journal_load` to process
+journal contents. If the client file system detects the journal contents
+does not need to be processed (or even need not have valid contents), it
+may call :c:func:`jbd2_journal_wipe` to clear the journal contents before
+calling :c:func:`jbd2_journal_load`.
+
+Note that jbd2_journal_wipe(..,0) calls
+:c:func:`jbd2_journal_skip_recovery` for you if it detects any outstanding
+transactions in the journal and similarly :c:func:`jbd2_journal_load` will
+call :c:func:`jbd2_journal_recover` if necessary. I would advise reading
+:c:func:`ext4_load_journal` in fs/ext4/super.c for examples on this stage.
+
+Now you can go ahead and start modifying the underlying filesystem.
+Almost.
+
+You still need to actually journal your filesystem changes, this is done
+by wrapping them into transactions. Additionally you also need to wrap
+the modification of each of the buffers with calls to the journal layer,
+so it knows what the modifications you are actually making are. To do
+this use :c:func:`jbd2_journal_start` which returns a transaction handle.
+
+:c:func:`jbd2_journal_start` and its counterpart :c:func:`jbd2_journal_stop`,
+which indicates the end of a transaction are nestable calls, so you can
+reenter a transaction if necessary, but remember you must call
+:c:func:`jbd2_journal_stop` the same number of times as
+:c:func:`jbd2_journal_start` before the transaction is completed (or more
+accurately leaves the update phase). Ext4/VFS makes use of this feature to
+simplify handling of inode dirtying, quota support, etc.
+
+Inside each transaction you need to wrap the modifications to the
+individual buffers (blocks). Before you start to modify a buffer you
+need to call :c:func:`jbd2_journal_get_create_access()` /
+:c:func:`jbd2_journal_get_write_access()` /
+:c:func:`jbd2_journal_get_undo_access()` as appropriate, this allows the
+journalling layer to copy the unmodified
+data if it needs to. After all the buffer may be part of a previously
+uncommitted transaction. At this point you are at last ready to modify a
+buffer, and once you are have done so you need to call
+:c:func:`jbd2_journal_dirty_metadata`. Or if you've asked for access to a
+buffer you now know is now longer required to be pushed back on the
+device you can call :c:func:`jbd2_journal_forget` in much the same way as you
+might have used :c:func:`bforget` in the past.
+
+A :c:func:`jbd2_journal_flush` may be called at any time to commit and
+checkpoint all your transactions.
+
+Then at umount time , in your :c:func:`put_super` you can then call
+:c:func:`jbd2_journal_destroy` to clean up your in-core journal object.
+
+Unfortunately there a couple of ways the journal layer can cause a
+deadlock. The first thing to note is that each task can only have a
+single outstanding transaction at any one time, remember nothing commits
+until the outermost :c:func:`jbd2_journal_stop`. This means you must complete
+the transaction at the end of each file/inode/address etc. operation you
+perform, so that the journalling system isn't re-entered on another
+journal. Since transactions can't be nested/batched across differing
+journals, and another filesystem other than yours (say ext4) may be
+modified in a later syscall.
+
+The second case to bear in mind is that :c:func:`jbd2_journal_start` can block
+if there isn't enough space in the journal for your transaction (based
+on the passed nblocks param) - when it blocks it merely(!) needs to wait
+for transactions to complete and be committed from other tasks, so
+essentially we are waiting for :c:func:`jbd2_journal_stop`. So to avoid
+deadlocks you must treat :c:func:`jbd2_journal_start` /
+:c:func:`jbd2_journal_stop` as if they were semaphores and include them in
+your semaphore ordering rules to prevent
+deadlocks. Note that :c:func:`jbd2_journal_extend` has similar blocking
+behaviour to :c:func:`jbd2_journal_start` so you can deadlock here just as
+easily as on :c:func:`jbd2_journal_start`.
+
+Try to reserve the right number of blocks the first time. ;-). This will
+be the maximum number of blocks you are going to touch in this
+transaction. I advise having a look at at least ext4_jbd.h to see the
+basis on which ext4 uses to make these decisions.
+
+Another wriggle to watch out for is your on-disk block allocation
+strategy. Why? Because, if you do a delete, you need to ensure you
+haven't reused any of the freed blocks until the transaction freeing
+these blocks commits. If you reused these blocks and crash happens,
+there is no way to restore the contents of the reallocated blocks at the
+end of the last fully committed transaction. One simple way of doing
+this is to mark blocks as free in internal in-memory block allocation
+structures only after the transaction freeing them commits. Ext4 uses
+journal commit callback for this purpose.
+
+With journal commit callbacks you can ask the journalling layer to call
+a callback function when the transaction is finally committed to disk,
+so that you can do some of your own management. You ask the journalling
+layer for calling the callback by simply setting
+``journal->j_commit_callback`` function pointer and that function is
+called after each transaction commit. You can also use
+``transaction->t_private_list`` for attaching entries to a transaction
+that need processing when the transaction commits.
+
+JBD2 also provides a way to block all transaction updates via
+:c:func:`jbd2_journal_lock_updates()` /
+:c:func:`jbd2_journal_unlock_updates()`. Ext4 uses this when it wants a
+window with a clean and stable fs for a moment. E.g.
+
+::
+
+
+        jbd2_journal_lock_updates() //stop new stuff happening..
+        jbd2_journal_flush()        // checkpoint everything.
+        ..do stuff on stable fs
+        jbd2_journal_unlock_updates() // carry on with filesystem use.
+
+The opportunities for abuse and DOS attacks with this should be obvious,
+if you allow unprivileged userspace to trigger codepaths containing
+these calls.
+
+Summary
+~~~~~~~
+
+Using the journal is a matter of wrapping the different context changes,
+being each mount, each modification (transaction) and each changed
+buffer to tell the journalling layer about them.
+
+Data Types
+----------
+
+The journalling layer uses typedefs to 'hide' the concrete definitions
+of the structures used. As a client of the JBD2 layer you can just rely
+on the using the pointer as a magic cookie of some sort. Obviously the
+hiding is not enforced as this is 'C'.
+
+Structures
+~~~~~~~~~~
+
+.. kernel-doc:: include/linux/jbd2.h
+   :internal:
+
+Functions
+---------
+
+The functions here are split into two groups those that affect a journal
+as a whole, and those which are used to manage transactions
+
+Journal Level
+~~~~~~~~~~~~~
+
+.. kernel-doc:: fs/jbd2/journal.c
+   :export:
+
+.. kernel-doc:: fs/jbd2/recovery.c
+   :internal:
+
+Transasction Level
+~~~~~~~~~~~~~~~~~~
+
+.. kernel-doc:: fs/jbd2/transaction.c
+
+See also
+--------
+
+`Journaling the Linux ext2fs Filesystem, LinuxExpo 98, Stephen
+Tweedie <http://kernel.org/pub/linux/kernel/people/sct/ext3/journal-design.ps.gz>`__
+
+`Ext3 Journalling FileSystem, OLS 2000, Dr. Stephen
+Tweedie <http://olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html>`__
+
diff --git a/Documentation/filesystems/path-lookup.rst b/Documentation/filesystems/path-lookup.rst
index 80e22eda4132..434a07b0002b 100644
--- a/Documentation/filesystems/path-lookup.rst
+++ b/Documentation/filesystems/path-lookup.rst
@@ -1,3 +1,18 @@
+===============
+Pathname lookup
+===============
+
+This write-up is based on three articles published at lwn.net:
+
+- <https://lwn.net/Articles/649115/> Pathname lookup in Linux
+- <https://lwn.net/Articles/649729/> RCU-walk: faster pathname lookup in Linux
+- <https://lwn.net/Articles/650786/> A walk among the symlinks
+
+Written by Neil Brown with help from Al Viro and Jon Corbet.
+It has subsequently been updated to reflect changes in the kernel
+including:
+
+- per-directory parallel name lookup.
 
 Introduction to pathname lookup
 ===============================
diff --git a/Documentation/filesystems/splice.rst b/Documentation/filesystems/splice.rst
new file mode 100644
index 000000000000..edd874808472
--- /dev/null
+++ b/Documentation/filesystems/splice.rst
@@ -0,0 +1,22 @@
+================
+splice and pipes
+================
+
+splice API
+==========
+
+splice is a method for moving blocks of data around inside the kernel,
+without continually transferring them between the kernel and user space.
+
+.. kernel-doc:: fs/splice.c
+
+pipes API
+=========
+
+Pipe interfaces are all for in-kernel (builtin image) use. They are not
+exported for use by modules.
+
+.. kernel-doc:: include/linux/pipe_fs_i.h
+   :internal:
+
+.. kernel-doc:: fs/pipe.c
-- 
2.20.1


  reply	other threads:[~2019-02-21 19:02 UTC|newest]

Thread overview: 5+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2019-02-21 19:02 [PATCH 0/2] docs: Add some struct file refcounting information Jonathan Corbet
2019-02-21 19:02 ` Jonathan Corbet [this message]
2019-02-21 19:02 ` [PATCH 2/2] docs: Add struct file refcounting and SCM_RIGHTS mess info Jonathan Corbet
2019-02-21 19:06 ` [PATCH 0/2] docs: Add some struct file refcounting information Jonathan Corbet
2019-03-04 20:01 [RESEND PATCH " Jonathan Corbet
2019-03-04 20:01 ` [PATCH 1/2] docs: Bring some order to filesystem documentation Jonathan Corbet

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=20190221190230.17985-2-corbet@lwn.net \
    --to=corbet@lwn.net \
    --cc=axboe@kernel.dk \
    --cc=linux-doc@vger.kernel.org \
    --cc=linux-kernel@vger.kernel.org \
    --cc=viro@zeniv.linux.org.uk \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.