All of lore.kernel.org
 help / color / mirror / Atom feed
From: "Michael S. Tsirkin" <mst@redhat.com>
To: Peter Xu <peterx@redhat.com>
Cc: kvm@vger.kernel.org, linux-kernel@vger.kernel.org,
	Christophe de Dinechin <dinechin@redhat.com>,
	Paolo Bonzini <pbonzini@redhat.com>,
	Sean Christopherson <sean.j.christopherson@intel.com>,
	Yan Zhao <yan.y.zhao@intel.com>,
	Alex Williamson <alex.williamson@redhat.com>,
	Jason Wang <jasowang@redhat.com>,
	Kevin Kevin <kevin.tian@intel.com>,
	Vitaly Kuznetsov <vkuznets@redhat.com>,
	"Dr . David Alan Gilbert" <dgilbert@redhat.com>,
	Lei Cao <lei.cao@stratus.com>
Subject: Re: [PATCH v3 12/21] KVM: X86: Implement ring-based dirty memory tracking
Date: Thu, 9 Jan 2020 14:35:46 -0500	[thread overview]
Message-ID: <20200109141634-mutt-send-email-mst@kernel.org> (raw)
In-Reply-To: <20200109191514.GD36997@xz-x1>

On Thu, Jan 09, 2020 at 02:15:14PM -0500, Peter Xu wrote:
> On Thu, Jan 09, 2020 at 11:29:28AM -0500, Michael S. Tsirkin wrote:
> > On Thu, Jan 09, 2020 at 09:57:20AM -0500, Peter Xu wrote:
> > > This patch is heavily based on previous work from Lei Cao
> > > <lei.cao@stratus.com> and Paolo Bonzini <pbonzini@redhat.com>. [1]
> > > 
> > > KVM currently uses large bitmaps to track dirty memory.  These bitmaps
> > > are copied to userspace when userspace queries KVM for its dirty page
> > > information.  The use of bitmaps is mostly sufficient for live
> > > migration, as large parts of memory are be dirtied from one log-dirty
> > > pass to another.  However, in a checkpointing system, the number of
> > > dirty pages is small and in fact it is often bounded---the VM is
> > > paused when it has dirtied a pre-defined number of pages. Traversing a
> > > large, sparsely populated bitmap to find set bits is time-consuming,
> > > as is copying the bitmap to user-space.
> > > 
> > > A similar issue will be there for live migration when the guest memory
> > > is huge while the page dirty procedure is trivial.  In that case for
> > > each dirty sync we need to pull the whole dirty bitmap to userspace
> > > and analyse every bit even if it's mostly zeros.
> > > 
> > > The preferred data structure for above scenarios is a dense list of
> > > guest frame numbers (GFN).
> > 
> > No longer, this uses an array of structs.
> 
> (IMHO it's more or less a wording thing, because it's still an array
>  of GFNs behind it...)
> 
> [...]
> 
> > > +Dirty GFNs (Guest Frame Numbers) are stored in the dirty_gfns array.
> > > +For each of the dirty entry it's defined as:
> > > +
> > > +struct kvm_dirty_gfn {
> > > +        __u32 pad;
> > 
> > How about sticking a length here?
> > This way huge pages can be dirtied in one go.
> 
> As we've discussed previously, current KVM tracks dirty in 4K page
> only, so it seems to be something that is not easily covered in this
> series.
> 
> We probably need to justify on having KVM to track huge pages first,
> or at least a trend that we're going to do that, then we can properly
> reserve it here.
> 
> > 
> > > +        __u32 slot; /* as_id | slot_id */
> > > +        __u64 offset;
> > > +};
> > > +
> > > +Most of the ring structure is used by KVM internally, while only the
> > > +indices are exposed to userspace:
> > > +
> > > +struct kvm_dirty_ring_indices {
> > > +	__u32 avail_index; /* set by kernel */
> > > +	__u32 fetch_index; /* set by userspace */
> > > +};
> > > +
> > > +The two indices in the ring buffer are free running counters.
> > > +
> > > +Userspace calls KVM_ENABLE_CAP ioctl right after KVM_CREATE_VM ioctl
> > > +to enable this capability for the new guest and set the size of the
> > > +rings.  It is only allowed before creating any vCPU, and the size of
> > > +the ring must be a power of two.
> > 
> > 
> > I know index design is popular, but testing with virtio showed
> > that it's better to just have a flags field marking
> > an entry as valid. In particular this gets rid of the
> > running counters and power of two limitations.
> > It also removes the need for a separate index page, which is nice.
> 
> Firstly, note that the separate index page has already been dropped
> since V2, so we don't need to worry on that.

changelog would be nice.
So now, how does userspace tell kvm it's done with the ring?

> Regarding dropping the indices: I feel like it can be done, though we
> probably need two extra bits for each GFN entry, for example:
> 
>   - Bit 0 of the GFN address to show whether this is a valid publish
>     of dirty gfn
> 
>   - Bit 1 of the GFN address to show whether this is collected by the
>     user


I wonder whether you will end up reinventing virtio.
You are already pretty close with avail/used bits in flags.



> We can also use the padding field, but just want to show the idea
> first.
> 
> Then for each GFN we can go through state changes like this (things
> like "00b" stands for "bit1 bit0" values):
> 
>   00b (invalid GFN) ->
>     01b (valid gfn published by kernel, which is dirty) ->
>       10b (gfn dirty page collected by userspace) ->
>         00b (gfn reset by kernel, so goes back to invalid gfn)
> 
> And we should always guarantee that both the userspace and KVM walks
> the GFN array in a linear manner, for example, KVM must publish a new
> GFN with bit 1 set right after the previous publish of GFN.  Vice
> versa to the userspace when it collects the dirty GFN and mark bit 2.
> 
> Michael, do you mean something like this?
> 
> I think it should work logically, however IIUC it can expose more
> security risks, say, dirty ring is different from virtio in that
> userspace is not trusted,

In what sense?

> while for virtio, both sides (hypervisor,
> and the guest driver) are trusted.

What gave you the impression guest is trusted in virtio?


>  Above means we need to do these to
> change to the new design:
> 
>   - Allow the GFN array to be mapped as writable by userspace (so that
>     userspace can publish bit 2),
> 
>   - The userspace must be trusted to follow the design (just imagine
>     what if the userspace overwrites a GFN when it publishes bit 2
>     over a valid dirty gfn entry?  KVM could wrongly unprotect a page
>     for the guest...).

You mean protect, right?  So what?

> While if we use the indices, we restrict the userspace to only be able
> to write to one index only (which is the reset_index).  That's all it
> can do to mess things up (and it could never as long as we properly
> validate the reset_index when read, which only happens during
> KVM_RESET_DIRTY_RINGS and is very rare).  From that pov, it seems the
> indices solution still has its benefits.

So if you mess up index how is this different?

I agree RO page kind of feels safer generally though.

I will have to re-read how does the ring works though,
my comments were based on the old assumption of mmaped
page with indices.



> > 
> > 
> > 
> > >  The larger the ring buffer, the less
> > > +likely the ring is full and the VM is forced to exit to userspace. The
> > > +optimal size depends on the workload, but it is recommended that it be
> > > +at least 64 KiB (4096 entries).
> > 
> > Where's this number coming from? Given you have indices as well,
> > 4K size rings is likely to cause cache contention.
> 
> I think we've had some similar discussion in previous versions on the
> size of ring.  Again imho it's really something that may not have a
> direct clue as long as it's big enough (4K should be).
> 
> Regarding to the cache contention: could you explain more?

4K is a whole cache way. 64K 16 ways.  If there's anything else is a hot
path then you are pushing everything out of cache.  To re-read how do
indices work so see whether an index is on hot path or not. If yes your
structure won't fit in L1 cache which is not great.


>  Do you
> have a suggestion on the size of ring instead considering the issue?
> 
> [...]

I'll have to re-learn how do things work with indices gone
from shared memory.

> > > +int kvm_dirty_ring_reset(struct kvm *kvm, struct kvm_dirty_ring *ring)
> > > +{
> > > +	u32 cur_slot, next_slot;
> > > +	u64 cur_offset, next_offset;
> > > +	unsigned long mask;
> > > +	u32 fetch;
> > > +	int count = 0;
> > > +	struct kvm_dirty_gfn *entry;
> > > +	struct kvm_dirty_ring_indices *indices = ring->indices;
> > > +	bool first_round = true;
> > > +
> > > +	fetch = READ_ONCE(indices->fetch_index);
> > 
> > So this does not work if the data cache is virtually tagged.
> > Which to the best of my knowledge isn't the case on any
> > CPU kvm supports. However it might not stay being the
> > case forever. Worth at least commenting.
> 
> This is the read side.  IIUC even if with virtually tagged archs, we
> should do the flushing on the write side rather than the read side,
> and that should be enough?

No.
See e.g.  Documentation/core-api/cachetlb.rst

  ``void flush_dcache_page(struct page *page)``

        Any time the kernel writes to a page cache page, _OR_
        the kernel is about to read from a page cache page and
        user space shared/writable mappings of this page potentially
        exist, this routine is called.


> Also, I believe this is the similar question that Jason has asked in
> V2.  Sorry I should mention this earlier, but I didn't address that in
> this series because if we need to do so we probably need to do it
> kvm-wise, rather than only in this series.

You need to document these things.

>  I feel like it's missing
> probably only because all existing KVM supported archs do not have
> virtual-tagged caches as you mentioned.

But is that a fact? ARM has such a variety of CPUs,
I can't really tell. Did you research this to make sure?

> If so, I would prefer if you
> can allow me to ignore that issue until KVM starts to support such an
> arch.

Document limitations pls.  Don't ignore them.

> > 
> > 
> > > +
> > > +	/*
> > > +	 * Note that fetch_index is written by the userspace, which
> > > +	 * should not be trusted.  If this happens, then it's probably
> > > +	 * that the userspace has written a wrong fetch_index.
> > > +	 */
> > > +	if (fetch - ring->reset_index > ring->size)
> > > +		return -EINVAL;
> > > +
> > > +	if (fetch == ring->reset_index)
> > > +		return 0;
> > > +
> > > +	/* This is only needed to make compilers happy */
> > > +	cur_slot = cur_offset = mask = 0;
> > > +	while (ring->reset_index != fetch) {
> > > +		entry = &ring->dirty_gfns[ring->reset_index & (ring->size - 1)];
> > > +		next_slot = READ_ONCE(entry->slot);
> > > +		next_offset = READ_ONCE(entry->offset);
> > 
> > What is this READ_ONCE doing? Entries are only written by kernel
> > and it's under lock.
> 
> The entries are written in kvm_dirty_ring_push() where there should
> have no lock (there's one wmb() though to guarantee ordering of these
> and the index update).
> 
> With the wmb(), the write side should guarantee to make it to memory.
> For the read side here, I think it's still good to have it to make
> sure we read from memory?
> 
> > 
> > > +		ring->reset_index++;
> > > +		count++;
> > > +		/*
> > > +		 * Try to coalesce the reset operations when the guest is
> > > +		 * scanning pages in the same slot.
> > > +		 */
> > > +		if (!first_round && next_slot == cur_slot) {
> > > +			s64 delta = next_offset - cur_offset;
> > > +
> > > +			if (delta >= 0 && delta < BITS_PER_LONG) {
> > > +				mask |= 1ull << delta;
> > > +				continue;
> > > +			}
> > > +
> > > +			/* Backwards visit, careful about overflows!  */
> > > +			if (delta > -BITS_PER_LONG && delta < 0 &&
> > > +			    (mask << -delta >> -delta) == mask) {
> > > +				cur_offset = next_offset;
> > > +				mask = (mask << -delta) | 1;
> > > +				continue;
> > > +			}
> > > +		}
> > 
> > Well how important is this logic? Because it will not be
> > too effective on an SMP system, so don't you need a per-cpu ring?
> 
> It's my fault to have omit the high-level design in the cover letter,
> but we do have per-vcpu ring now.  Actually that's what we only have
> (we dropped the per-vm ring already) so ring access does not need lock
> any more.
> 
> This logic is good because kvm_reset_dirty_gfn, especially inside that
> there's kvm_arch_mmu_enable_log_dirty_pt_masked() that supports masks,
> so it would be good to do the reset for continuous pages (or page
> that's close enough) in a single shot.
> 
> > 
> > 
> > 
> > > +		kvm_reset_dirty_gfn(kvm, cur_slot, cur_offset, mask);
> > > +		cur_slot = next_slot;
> > > +		cur_offset = next_offset;
> > > +		mask = 1;
> > > +		first_round = false;
> > > +	}
> > > +	kvm_reset_dirty_gfn(kvm, cur_slot, cur_offset, mask);
> > > +
> > > +	trace_kvm_dirty_ring_reset(ring);
> > > +
> > > +	return count;
> > > +}
> > > +
> > > +void kvm_dirty_ring_push(struct kvm_dirty_ring *ring, u32 slot, u64 offset)
> > > +{
> > > +	struct kvm_dirty_gfn *entry;
> > > +	struct kvm_dirty_ring_indices *indices = ring->indices;
> > > +
> > > +	/* It should never get full */
> > > +	WARN_ON_ONCE(kvm_dirty_ring_full(ring));
> > > +
> > > +	entry = &ring->dirty_gfns[ring->dirty_index & (ring->size - 1)];
> > > +	entry->slot = slot;
> > > +	entry->offset = offset;
> > > +	/*
> > > +	 * Make sure the data is filled in before we publish this to
> > > +	 * the userspace program.  There's no paired kernel-side reader.
> > > +	 */
> > > +	smp_wmb();
> > > +	ring->dirty_index++;
> > 
> > 
> > Do I understand it correctly that the ring is shared between CPUs?
> > If so I don't understand why it's safe for SMP guests.
> > Don't you need atomics or locking?
> 
> No, it's per-vcpu.
> 
> Thanks,
> 
> -- 
> Peter Xu


  reply	other threads:[~2020-01-09 19:36 UTC|newest]

Thread overview: 84+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2020-01-09 14:57 [PATCH v3 00/21] KVM: Dirty ring interface Peter Xu
2020-01-09 14:57 ` [PATCH v3 01/21] vfio: introduce vfio_iova_rw to read/write a range of IOVAs Peter Xu
2020-01-09 14:57 ` [PATCH v3 02/21] drm/i915/gvt: subsitute kvm_read/write_guest with vfio_iova_rw Peter Xu
2020-01-09 14:57 ` [PATCH v3 03/21] KVM: Remove kvm_read_guest_atomic() Peter Xu
2020-01-09 14:57 ` [PATCH v3 04/21] KVM: Add build-time error check on kvm_run size Peter Xu
2020-01-09 14:57 ` [PATCH v3 05/21] KVM: X86: Change parameter for fast_page_fault tracepoint Peter Xu
2020-01-09 14:57 ` [PATCH v3 06/21] KVM: X86: Don't take srcu lock in init_rmode_identity_map() Peter Xu
2020-01-09 14:57 ` [PATCH v3 07/21] KVM: Cache as_id in kvm_memory_slot Peter Xu
2020-01-09 14:57 ` [PATCH v3 08/21] KVM: X86: Drop x86_set_memory_region() Peter Xu
2020-01-09 14:57 ` [PATCH v3 09/21] KVM: X86: Don't track dirty for KVM_SET_[TSS_ADDR|IDENTITY_MAP_ADDR] Peter Xu
2020-01-19  9:01   ` Paolo Bonzini
2020-01-20  6:45     ` Peter Xu
2020-01-21 15:56   ` Sean Christopherson
2020-01-21 16:14     ` Paolo Bonzini
2020-01-28  5:50     ` Peter Xu
2020-01-28 18:24       ` Sean Christopherson
2020-01-31 15:08         ` Peter Xu
2020-01-31 19:33           ` Sean Christopherson
2020-01-31 20:28             ` Peter Xu
2020-01-31 20:36               ` Sean Christopherson
2020-01-31 20:55                 ` Peter Xu
2020-01-31 21:29                   ` Sean Christopherson
2020-01-31 22:16                     ` Peter Xu
2020-01-31 22:20                       ` Sean Christopherson
2020-01-09 14:57 ` [PATCH v3 10/21] KVM: Pass in kvm pointer into mark_page_dirty_in_slot() Peter Xu
2020-01-09 14:57 ` [PATCH v3 11/21] KVM: Move running VCPU from ARM to common code Peter Xu
2020-01-09 14:57 ` [PATCH v3 12/21] KVM: X86: Implement ring-based dirty memory tracking Peter Xu
2020-01-09 16:29   ` Michael S. Tsirkin
2020-01-09 16:56     ` Alex Williamson
2020-01-09 19:21       ` Peter Xu
2020-01-09 19:36         ` Michael S. Tsirkin
2020-01-09 19:15     ` Peter Xu
2020-01-09 19:35       ` Michael S. Tsirkin [this message]
2020-01-09 20:19         ` Peter Xu
2020-01-09 22:18           ` Michael S. Tsirkin
2020-01-10 15:29             ` Peter Xu
2020-01-12  6:24               ` Michael S. Tsirkin
2020-01-14 20:01         ` Peter Xu
2020-01-15  6:50           ` Michael S. Tsirkin
2020-01-15 15:20             ` Peter Xu
2020-01-19  9:09       ` Paolo Bonzini
2020-01-19 10:12         ` Michael S. Tsirkin
2020-01-20  7:29           ` Peter Xu
2020-01-20  7:47             ` Michael S. Tsirkin
2020-01-21  8:29               ` Peter Xu
2020-01-21 10:25                 ` Paolo Bonzini
2020-01-21 10:24             ` Paolo Bonzini
2020-01-11  4:49   ` kbuild test robot
2020-01-11  4:49     ` kbuild test robot
2020-01-11 23:19   ` kbuild test robot
2020-01-11 23:19     ` kbuild test robot
2020-01-15  6:47   ` Michael S. Tsirkin
2020-01-15 15:27     ` Peter Xu
2020-01-16  8:38   ` Michael S. Tsirkin
2020-01-16 16:27     ` Peter Xu
2020-01-17  9:50       ` Michael S. Tsirkin
2020-01-20  6:48         ` Peter Xu
2020-01-09 14:57 ` [PATCH v3 13/21] KVM: Make dirty ring exclusive to dirty bitmap log Peter Xu
2020-01-09 14:57 ` [PATCH v3 14/21] KVM: Don't allocate dirty bitmap if dirty ring is enabled Peter Xu
2020-01-09 16:41   ` Peter Xu
2020-01-09 14:57 ` [PATCH v3 15/21] KVM: selftests: Always clear dirty bitmap after iteration Peter Xu
2020-01-09 14:57 ` [PATCH v3 16/21] KVM: selftests: Sync uapi/linux/kvm.h to tools/ Peter Xu
2020-01-09 14:57 ` [PATCH v3 17/21] KVM: selftests: Use a single binary for dirty/clear log test Peter Xu
2020-01-09 14:57 ` [PATCH v3 18/21] KVM: selftests: Introduce after_vcpu_run hook for dirty " Peter Xu
2020-01-09 14:57 ` [PATCH v3 19/21] KVM: selftests: Add dirty ring buffer test Peter Xu
2020-01-09 14:57 ` [PATCH v3 20/21] KVM: selftests: Let dirty_log_test async for dirty ring test Peter Xu
2020-01-09 14:57 ` [PATCH v3 21/21] KVM: selftests: Add "-c" parameter to dirty log test Peter Xu
2020-01-09 15:59 ` [PATCH v3 00/21] KVM: Dirty ring interface Michael S. Tsirkin
2020-01-09 16:17   ` Peter Xu
2020-01-09 16:40     ` Michael S. Tsirkin
2020-01-09 17:08       ` Peter Xu
2020-01-09 19:08         ` Michael S. Tsirkin
2020-01-09 19:39           ` Peter Xu
2020-01-09 20:42             ` Paolo Bonzini
2020-01-09 22:28             ` Michael S. Tsirkin
2020-01-10 15:10               ` Peter Xu
2020-01-09 16:47 ` Alex Williamson
2020-01-09 17:58   ` Peter Xu
2020-01-09 19:13     ` Michael S. Tsirkin
2020-01-09 19:23       ` Peter Xu
2020-01-09 19:37         ` Michael S. Tsirkin
2020-01-09 20:51       ` Paolo Bonzini
2020-01-09 22:21         ` Michael S. Tsirkin
2020-01-19  9:11 ` Paolo Bonzini

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=20200109141634-mutt-send-email-mst@kernel.org \
    --to=mst@redhat.com \
    --cc=alex.williamson@redhat.com \
    --cc=dgilbert@redhat.com \
    --cc=dinechin@redhat.com \
    --cc=jasowang@redhat.com \
    --cc=kevin.tian@intel.com \
    --cc=kvm@vger.kernel.org \
    --cc=lei.cao@stratus.com \
    --cc=linux-kernel@vger.kernel.org \
    --cc=pbonzini@redhat.com \
    --cc=peterx@redhat.com \
    --cc=sean.j.christopherson@intel.com \
    --cc=vkuznets@redhat.com \
    --cc=yan.y.zhao@intel.com \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.