All of lore.kernel.org
 help / color / mirror / Atom feed
* [PATCH v2 0/1] selinux: Measure state and hash of policy using IMA
@ 2020-09-26 16:39 Lakshmi Ramasubramanian
  2020-09-26 16:40 ` [PATCH 1/1] " Lakshmi Ramasubramanian
  0 siblings, 1 reply; 4+ messages in thread
From: Lakshmi Ramasubramanian @ 2020-09-26 16:39 UTC (permalink / raw)
  To: zohar, stephen.smalley.work, paul, omosnace
  Cc: tyhicks, tusharsu, sashal, linux-integrity, selinux, linux-kernel

Critical data structures of security modules are currently not measured.
Therefore an attestation service, for instance, would not be able to
attest whether the security modules are always operating with the policies
and configurations that the system administrator had setup. The policies
and configurations for the security modules could be tampered by rogue
user mode agents or modified through some inadvertent actions on
the system. Measuring such critical data would enable an attestation
service to reliably assess the security configuration of the system.

SELinux configuration and policy are some of the critical data for this
security module that need to be measured. This measurement can be used
by an attestation service, for instance, to verify if the configurations
and policies have been setup correctly and that they haven't been
tampered at run-time.

This patch set adds support for measuring SELinux configuration,
policy capabilities settings, and the hash of the loaded policy by
calling the IMA hook ima_measure_critical_data().

Since the size of the loaded policy can be large (several MB), hash
of the policy is measured instead of the entire policy to avoid
bloating the IMA log entry.

This patch is based on commit 8861d0af642c ("selinux: Add helper functions to get and set checkreqprot")
in "next" branch in https://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/selinux.git

This patch is dependent on the following patch series and must be
applied in the given order:
  1, https://patchwork.kernel.org/patch/11709527/
  2, https://patchwork.kernel.org/patch/11795559/
  3, https://patchwork.kernel.org/patch/11801525/

Lakshmi Ramasubramanian (1):
  selinux: Measure state and hash of policy using IMA

 security/integrity/ima/ima.h            |   1 +
 security/integrity/ima/ima_queue_data.c |   5 +-
 security/selinux/Makefile               |   2 +
 security/selinux/hooks.c                |   3 +
 security/selinux/include/security.h     |  11 +-
 security/selinux/measure.c              | 154 ++++++++++++++++++++++++
 security/selinux/selinuxfs.c            |   9 ++
 security/selinux/ss/services.c          |  71 +++++++++--
 8 files changed, 244 insertions(+), 12 deletions(-)
 create mode 100644 security/selinux/measure.c

-- 
2.28.0


^ permalink raw reply	[flat|nested] 4+ messages in thread

* [PATCH 1/1] selinux: Measure state and hash of policy using IMA
  2020-09-26 16:39 [PATCH v2 0/1] selinux: Measure state and hash of policy using IMA Lakshmi Ramasubramanian
@ 2020-09-26 16:40 ` Lakshmi Ramasubramanian
  2020-09-28 16:29   ` Stephen Smalley
  0 siblings, 1 reply; 4+ messages in thread
From: Lakshmi Ramasubramanian @ 2020-09-26 16:40 UTC (permalink / raw)
  To: zohar, stephen.smalley.work, paul, omosnace
  Cc: tyhicks, tusharsu, sashal, linux-integrity, selinux, linux-kernel

Critical data structures of security modules are currently not measured.
Therefore an attestation service, for instance, would not be able to
attest whether the security modules are always operating with the policies
and configurations that the system administrator had setup. The policies
and configurations for the security modules could be tampered by rogue
user mode agents or modified through some inadvertent actions on
the system. Measuring such critical data would enable an attestation
service to reliably assess the security configuration of the system.

SELinux configuration and policy are some of the critical data for this
security module that need to be measured. This measurement can be used
by an attestation service, for instance, to verify if the configurations
and policies have been setup correctly and that they haven't been
tampered at run-time.

Measure SELinux configurations, policy capabilities settings, and
the hash of the loaded policy by calling the IMA hook
ima_measure_critical_data(). Since the size of the loaded policy can
be large (several MB), measure the hash of the policy instead of
the entire policy to avoid bloating the IMA log entry.

Add "selinux" to the list of supported data sources maintained by IMA
to enable measuring SELinux data.

Since SELinux calls the IMA hook to measure data before
a custom IMA policy is loaded, enable queuing if CONFIG_SECURITY_SELINUX
is enabled, to defer processing SELinux data until a custom IMA policy
is loaded.

Sample measurement of SELinux state and hash of the policy:

10 e32e...5ac3 ima-buf sha256:86e8...4594 selinux-state-1595389364:287899386 696e697469616c697a65643d313b656e61626c65643d313b656e666f7263696e673d303b636865636b72657170726f743d313b6e6574776f726b5f706565725f636f6e74726f6c733d313b6f70656e5f7065726d733d313b657874656e6465645f736f636b65745f636c6173733d313b616c776179735f636865636b5f6e6574776f726b3d303b6367726f75705f7365636c6162656c3d313b6e6e705f6e6f737569645f7472616e736974696f6e3d313b67656e66735f7365636c6162656c5f73796d6c696e6b733d303
10 9e81...0857 ima-buf sha256:4941...68fc selinux-policy-hash-1597335667:462051628 8d1d...1834

To verify the measurement check the following:

Execute the following command to extract the measured data
from the IMA log for SELinux configuration (selinux-state).

  grep -m 1 "selinux-state" /sys/kernel/security/integrity/ima/ascii_runtime_measurements | cut -d' ' -f 6 | xxd -r -p

The output should be the list of key-value pairs. For example,
 initialized=1;enabled=1;enforcing=0;checkreqprot=1;network_peer_controls=1;open_perms=1;extended_socket_class=1;always_check_network=0;cgroup_seclabel=1;nnp_nosuid_transition=1;genfs_seclabel_symlinks=0;

To verify the measured data with the current SELinux state:

 => enabled should be set to 1 if /sys/fs/selinux folder exists,
    0 otherwise

For other entries, compare the integer value in the files
 => /sys/fs/selinux/enforce
 => /sys/fs/selinux/checkreqprot
And, each of the policy capabilities files under
 => /sys/fs/selinux/policy_capabilities

For selinux-policy-hash, the hash of SELinux policy is included
in the IMA log entry.

To verify the measured data with the current SELinux policy run
the following commands and verify the output hash values match.

  sha256sum /sys/fs/selinux/policy | cut -d' ' -f 1

  grep -m 1 "selinux-policy-hash" /sys/kernel/security/integrity/ima/ascii_runtime_measurements | cut -d' ' -f 6

Signed-off-by: Lakshmi Ramasubramanian <nramas@linux.microsoft.com>
Suggested-by: Stephen Smalley <stephen.smalley.work@gmail.com>
---
 security/integrity/ima/ima.h            |   1 +
 security/integrity/ima/ima_queue_data.c |   5 +-
 security/selinux/Makefile               |   2 +
 security/selinux/hooks.c                |   3 +
 security/selinux/include/security.h     |  11 +-
 security/selinux/measure.c              | 154 ++++++++++++++++++++++++
 security/selinux/selinuxfs.c            |   9 ++
 security/selinux/ss/services.c          |  71 +++++++++--
 8 files changed, 244 insertions(+), 12 deletions(-)
 create mode 100644 security/selinux/measure.c

diff --git a/security/integrity/ima/ima.h b/security/integrity/ima/ima.h
index e99e5e0db720..89ae938a5112 100644
--- a/security/integrity/ima/ima.h
+++ b/security/integrity/ima/ima.h
@@ -230,6 +230,7 @@ struct modsig;
 
 #define __ima_supported_kernel_data_sources(source)	\
 	source(MIN_SOURCE, min_source)			\
+	source(SELINUX, selinux)			\
 	source(MAX_SOURCE, max_source)
 
 #define __ima_enum_stringify(ENUM, str) (#str),
diff --git a/security/integrity/ima/ima_queue_data.c b/security/integrity/ima/ima_queue_data.c
index 4871ed3af436..cbd41853b04c 100644
--- a/security/integrity/ima/ima_queue_data.c
+++ b/security/integrity/ima/ima_queue_data.c
@@ -35,8 +35,9 @@ static bool timer_expired;
 
 static inline bool ima_queuing_enabled(void)
 {
-	return (IS_ENABLED(CONFIG_IMA_MEASURE_ASYMMETRIC_KEYS) &&
-		IS_ENABLED(CONFIG_SYSTEM_TRUSTED_KEYRING));
+	return ((IS_ENABLED(CONFIG_IMA_MEASURE_ASYMMETRIC_KEYS) &&
+		 IS_ENABLED(CONFIG_SYSTEM_TRUSTED_KEYRING)) ||
+		 IS_ENABLED(CONFIG_SECURITY_SELINUX));
 }
 
 /*
diff --git a/security/selinux/Makefile b/security/selinux/Makefile
index 4d8e0e8adf0b..83d512116341 100644
--- a/security/selinux/Makefile
+++ b/security/selinux/Makefile
@@ -16,6 +16,8 @@ selinux-$(CONFIG_NETLABEL) += netlabel.o
 
 selinux-$(CONFIG_SECURITY_INFINIBAND) += ibpkey.o
 
+selinux-$(CONFIG_IMA) += measure.o
+
 ccflags-y := -I$(srctree)/security/selinux -I$(srctree)/security/selinux/include
 
 $(addprefix $(obj)/,$(selinux-y)): $(obj)/flask.h
diff --git a/security/selinux/hooks.c b/security/selinux/hooks.c
index d6b182c11700..e9bd3c2197a0 100644
--- a/security/selinux/hooks.c
+++ b/security/selinux/hooks.c
@@ -7402,6 +7402,9 @@ int selinux_disable(struct selinux_state *state)
 	}
 
 	selinux_mark_disabled(state);
+	mutex_lock(&state->policy_mutex);
+	selinux_measure_state(state);
+	mutex_unlock(&state->policy_mutex);
 
 	pr_info("SELinux:  Disabled at runtime.\n");
 
diff --git a/security/selinux/include/security.h b/security/selinux/include/security.h
index 3cc8bab31ea8..18ee65c98446 100644
--- a/security/selinux/include/security.h
+++ b/security/selinux/include/security.h
@@ -229,7 +229,8 @@ void selinux_policy_cancel(struct selinux_state *state,
 			struct selinux_policy *policy);
 int security_read_policy(struct selinux_state *state,
 			 void **data, size_t *len);
-
+int security_read_policy_kernel(struct selinux_state *state,
+				void **data, size_t *len);
 int security_policycap_supported(struct selinux_state *state,
 				 unsigned int req_cap);
 
@@ -446,4 +447,12 @@ extern void ebitmap_cache_init(void);
 extern void hashtab_cache_init(void);
 extern int security_sidtab_hash_stats(struct selinux_state *state, char *page);
 
+#ifdef CONFIG_IMA
+extern void selinux_measure_state(struct selinux_state *selinux_state);
+#else
+static inline void selinux_measure_state(struct selinux_state *selinux_state)
+{
+}
+#endif
+
 #endif /* _SELINUX_SECURITY_H_ */
diff --git a/security/selinux/measure.c b/security/selinux/measure.c
new file mode 100644
index 000000000000..b29baaa271f0
--- /dev/null
+++ b/security/selinux/measure.c
@@ -0,0 +1,154 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Measure SELinux state using IMA subsystem.
+ */
+#include <linux/vmalloc.h>
+#include <linux/ktime.h>
+#include <linux/ima.h>
+#include "security.h"
+
+/*
+ * This function creates a unique name by appending the timestamp to
+ * the given string. This string is passed as "event_name" to the IMA
+ * hook to measure the given SELinux data.
+ *
+ * The data provided by SELinux to the IMA subsystem for measuring may have
+ * already been measured (for instance the same state existed earlier).
+ * But for SELinux the current data represents a state change and hence
+ * needs to be measured again. To enable this, pass a unique "event_name"
+ * to the IMA hook so that IMA subsystem will always measure the given data.
+ *
+ * For example,
+ * At time T0 SELinux data to be measured is "foo". IMA measures it.
+ * At time T1 the data is changed to "bar". IMA measures it.
+ * At time T2 the data is changed to "foo" again. IMA will not measure it
+ * (since it was already measured) unless the event_name, for instance,
+ * is different in this call.
+ */
+static char *selinux_event_name(const char *name_prefix)
+{
+	char *event_name = NULL;
+	struct timespec64 cur_time;
+
+	ktime_get_real_ts64(&cur_time);
+	event_name = kasprintf(GFP_KERNEL, "%s-%lld:%09ld", name_prefix,
+			       cur_time.tv_sec, cur_time.tv_nsec);
+	if (!event_name) {
+		pr_err("%s: event name not allocated.\n", __func__);
+		return NULL;
+	}
+
+	return event_name;
+}
+
+static int read_selinux_state(char **state_str, int *state_str_len,
+			      struct selinux_state *state)
+{
+	char *buf, *str_fmt = "%s=%d;";
+	int i, buf_len, curr;
+	bool initialized = selinux_initialized(state);
+	bool enabled = !selinux_disabled(state);
+	bool enforcing = enforcing_enabled(state);
+	bool checkreqprot = checkreqprot_get(state);
+
+	buf_len = snprintf(NULL, 0, str_fmt, "initialized", initialized);
+	buf_len += snprintf(NULL, 0, str_fmt, "enabled", enabled);
+	buf_len += snprintf(NULL, 0, str_fmt, "enforcing", enforcing);
+	buf_len += snprintf(NULL, 0, str_fmt, "checkreqprot", checkreqprot);
+
+	for (i = 0; i < __POLICYDB_CAPABILITY_MAX; i++) {
+		buf_len += snprintf(NULL, 0, str_fmt,
+				    selinux_policycap_names[i],
+				    state->policycap[i]);
+	}
+	++buf_len;
+
+	buf = kzalloc(buf_len, GFP_KERNEL);
+	if (!buf)
+		return -ENOMEM;
+
+	curr = snprintf(buf, buf_len, str_fmt,
+			"initialized", initialized);
+	curr += snprintf((buf + curr), (buf_len - curr), str_fmt,
+			 "enabled", enabled);
+	curr += snprintf((buf + curr), (buf_len - curr), str_fmt,
+			 "enforcing", enforcing);
+	curr += snprintf((buf + curr), (buf_len - curr), str_fmt,
+			 "checkreqprot", checkreqprot);
+
+	for (i = 0; i < __POLICYDB_CAPABILITY_MAX; i++) {
+		curr += snprintf((buf + curr), (buf_len - curr), str_fmt,
+				 selinux_policycap_names[i],
+				 state->policycap[i]);
+	}
+
+	*state_str = buf;
+	*state_str_len = curr;
+
+	return 0;
+}
+
+/*
+ * selinux_measure_state - Measure SELinux state configuration and hash of
+ *			   the SELinux policy.
+ * @state: selinux state struct
+ *
+ * NOTE: This function must be called with policy_mutex held.
+ */
+void selinux_measure_state(struct selinux_state *state)
+{
+	void *policy = NULL;
+	char *state_event_name = NULL;
+	char *policy_event_name = NULL;
+	char *state_str = NULL;
+	size_t policy_len;
+	int state_str_len, rc = 0;
+	bool initialized = selinux_initialized(state);
+
+	rc = read_selinux_state(&state_str, &state_str_len, state);
+	if (rc) {
+		pr_err("%s: Failed to read selinux state.\n", __func__);
+		return;
+	}
+
+	/*
+	 * Get a unique string for measuring the current SELinux state.
+	 */
+	state_event_name = selinux_event_name("selinux-state");
+	if (!state_event_name) {
+		pr_err("%s: Event name for state not allocated.\n",
+		       __func__);
+		rc = -ENOMEM;
+		goto out;
+	}
+
+	ima_measure_critical_data(state_event_name, "selinux",
+				  state_str, state_str_len, false);
+
+	/*
+	 * Measure SELinux policy only after initialization is completed.
+	 */
+	if (!initialized)
+		goto out;
+
+	rc = security_read_policy_kernel(state, &policy, &policy_len);
+	if (rc)
+		goto out;
+
+	policy_event_name = selinux_event_name("selinux-policy-hash");
+	if (!policy_event_name) {
+		pr_err("%s: Event name for policy not allocated.\n",
+		       __func__);
+		rc = -ENOMEM;
+		goto out;
+	}
+
+	ima_measure_critical_data(policy_event_name, "selinux",
+				  policy, policy_len, true);
+
+out:
+	kfree(state_event_name);
+	kfree(policy_event_name);
+	kfree(state_str);
+	vfree(policy);
+}
diff --git a/security/selinux/selinuxfs.c b/security/selinux/selinuxfs.c
index 4bde570d56a2..a4f1282f7178 100644
--- a/security/selinux/selinuxfs.c
+++ b/security/selinux/selinuxfs.c
@@ -182,6 +182,10 @@ static ssize_t sel_write_enforce(struct file *file, const char __user *buf,
 		selinux_status_update_setenforce(state, new_value);
 		if (!new_value)
 			call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
+
+		mutex_lock(&state->policy_mutex);
+		selinux_measure_state(state);
+		mutex_unlock(&state->policy_mutex);
 	}
 	length = count;
 out:
@@ -762,6 +766,11 @@ static ssize_t sel_write_checkreqprot(struct file *file, const char __user *buf,
 
 	checkreqprot_set(fsi->state, (new_value ? 1 : 0));
 	length = count;
+
+	mutex_lock(&fsi->state->policy_mutex);
+	selinux_measure_state(fsi->state);
+	mutex_unlock(&fsi->state->policy_mutex);
+
 out:
 	kfree(page);
 	return length;
diff --git a/security/selinux/ss/services.c b/security/selinux/ss/services.c
index 9704c8a32303..dfa2e00894ae 100644
--- a/security/selinux/ss/services.c
+++ b/security/selinux/ss/services.c
@@ -2180,6 +2180,7 @@ static void selinux_notify_policy_change(struct selinux_state *state,
 	selinux_status_update_policyload(state, seqno);
 	selinux_netlbl_cache_invalidate();
 	selinux_xfrm_notify_policyload();
+	selinux_measure_state(state);
 }
 
 void selinux_policy_commit(struct selinux_state *state,
@@ -3875,8 +3876,33 @@ int security_netlbl_sid_to_secattr(struct selinux_state *state,
 }
 #endif /* CONFIG_NETLABEL */
 
+/**
+ * security_read_selinux_policy - read the policy.
+ * @policy: SELinux policy
+ * @data: binary policy data
+ * @len: length of data in bytes
+ *
+ */
+static int security_read_selinux_policy(struct selinux_policy *policy,
+					void *data, size_t *len)
+{
+	int rc;
+	struct policy_file fp;
+
+	fp.data = data;
+	fp.len = *len;
+
+	rc = policydb_write(&policy->policydb, &fp);
+	if (rc)
+		return rc;
+
+	*len = (unsigned long)fp.data - (unsigned long)data;
+	return 0;
+}
+
 /**
  * security_read_policy - read the policy.
+ * @state: selinux_state
  * @data: binary policy data
  * @len: length of data in bytes
  *
@@ -3885,8 +3911,6 @@ int security_read_policy(struct selinux_state *state,
 			 void **data, size_t *len)
 {
 	struct selinux_policy *policy;
-	int rc;
-	struct policy_file fp;
 
 	policy = rcu_dereference_protected(
 			state->policy, lockdep_is_held(&state->policy_mutex));
@@ -3898,14 +3922,43 @@ int security_read_policy(struct selinux_state *state,
 	if (!*data)
 		return -ENOMEM;
 
-	fp.data = *data;
-	fp.len = *len;
+	return security_read_selinux_policy(policy, *data, len);
+}
 
-	rc = policydb_write(&policy->policydb, &fp);
-	if (rc)
-		return rc;
+/**
+ * security_read_policy_kernel - read the policy.
+ * @state: selinux_state
+ * @data: binary policy data
+ * @len: length of data in bytes
+ *
+ * Allocates kernel memory for reading SELinux policy.
+ * This function is for internal use only and should not
+ * be used for returning data to user space.
+ *
+ * This function must be called with policy_mutex held.
+ */
+int security_read_policy_kernel(struct selinux_state *state,
+				void **data, size_t *len)
+{
+	struct selinux_policy *policy;
+	int rc = 0;
 
-	*len = (unsigned long)fp.data - (unsigned long)*data;
-	return 0;
+	policy = rcu_dereference_protected(
+			state->policy, lockdep_is_held(&state->policy_mutex));
+	if (!policy) {
+		rc = -EINVAL;
+		goto out;
+	}
+
+	*len = policy->policydb.len;
+	*data = vmalloc(*len);
+	if (!*data) {
+		rc = -ENOMEM;
+		goto out;
+	}
 
+	rc = security_read_selinux_policy(policy, *data, len);
+
+out:
+	return rc;
 }
-- 
2.28.0


^ permalink raw reply related	[flat|nested] 4+ messages in thread

* Re: [PATCH 1/1] selinux: Measure state and hash of policy using IMA
  2020-09-26 16:40 ` [PATCH 1/1] " Lakshmi Ramasubramanian
@ 2020-09-28 16:29   ` Stephen Smalley
  2020-09-29  5:50     ` Lakshmi Ramasubramanian
  0 siblings, 1 reply; 4+ messages in thread
From: Stephen Smalley @ 2020-09-28 16:29 UTC (permalink / raw)
  To: Lakshmi Ramasubramanian
  Cc: Mimi Zohar, Paul Moore, Ondrej Mosnacek, Tyler Hicks, tusharsu,
	Sasha Levin, linux-integrity, SElinux list, linux-kernel

On Sat, Sep 26, 2020 at 12:40 PM Lakshmi Ramasubramanian
<nramas@linux.microsoft.com> wrote:
>
> Critical data structures of security modules are currently not measured.
> Therefore an attestation service, for instance, would not be able to
> attest whether the security modules are always operating with the policies
> and configurations that the system administrator had setup. The policies
> and configurations for the security modules could be tampered by rogue
> user mode agents or modified through some inadvertent actions on
> the system. Measuring such critical data would enable an attestation
> service to reliably assess the security configuration of the system.
>
> SELinux configuration and policy are some of the critical data for this
> security module that need to be measured. This measurement can be used
> by an attestation service, for instance, to verify if the configurations
> and policies have been setup correctly and that they haven't been
> tampered at run-time.
>
> Measure SELinux configurations, policy capabilities settings, and
> the hash of the loaded policy by calling the IMA hook
> ima_measure_critical_data(). Since the size of the loaded policy can
> be large (several MB), measure the hash of the policy instead of
> the entire policy to avoid bloating the IMA log entry.
>
> Add "selinux" to the list of supported data sources maintained by IMA
> to enable measuring SELinux data.

Please provide an example /etc/ima/ima-policy snippet for enabling
this support, e.g.
measure func=CRITICAL_DATA data_sources=selinux template=ima-buf

> Since SELinux calls the IMA hook to measure data before
> a custom IMA policy is loaded, enable queuing if CONFIG_SECURITY_SELINUX
> is enabled, to defer processing SELinux data until a custom IMA policy
> is loaded.
>
> Sample measurement of SELinux state and hash of the policy:
>
> 10 e32e...5ac3 ima-buf sha256:86e8...4594 selinux-state-1595389364:287899386 696e697469616c697a65643d313b656e61626c65643d313b656e666f7263696e673d303b636865636b72657170726f743d313b6e6574776f726b5f706565725f636f6e74726f6c733d313b6f70656e5f7065726d733d313b657874656e6465645f736f636b65745f636c6173733d313b616c776179735f636865636b5f6e6574776f726b3d303b6367726f75705f7365636c6162656c3d313b6e6e705f6e6f737569645f7472616e736974696f6e3d313b67656e66735f7365636c6162656c5f73796d6c696e6b733d303
> 10 9e81...0857 ima-buf sha256:4941...68fc selinux-policy-hash-1597335667:462051628 8d1d...1834
>
> To verify the measurement check the following:
>
> Execute the following command to extract the measured data
> from the IMA log for SELinux configuration (selinux-state).
>
>   grep -m 1 "selinux-state" /sys/kernel/security/integrity/ima/ascii_runtime_measurements | cut -d' ' -f 6 | xxd -r -p

NB This will only extract the first such record, which will always be
prior to policy load (initialized=0) so that won't be terribly useful.
For real verification, they would want to check all such records or at
least the last/latest one (depending on their goal).

> The output should be the list of key-value pairs. For example,
>  initialized=1;enabled=1;enforcing=0;checkreqprot=1;network_peer_controls=1;open_perms=1;extended_socket_class=1;always_check_network=0;cgroup_seclabel=1;nnp_nosuid_transition=1;genfs_seclabel_symlinks=0;
>
> To verify the measured data with the current SELinux state:
>
>  => enabled should be set to 1 if /sys/fs/selinux folder exists,
>     0 otherwise
>
> For other entries, compare the integer value in the files
>  => /sys/fs/selinux/enforce
>  => /sys/fs/selinux/checkreqprot
> And, each of the policy capabilities files under
>  => /sys/fs/selinux/policy_capabilities

To be clear, actual verification would be against an expected state
and done on a system other than the measured system, typically
requiring "initialized=1; enabled=1;enforcing=1;checkreqprot=0;" for a
secure state and then whatever policy capabilities are actually set in
the expected policy (which can be extracted from the policy itself via
seinfo or the like).

> For selinux-policy-hash, the hash of SELinux policy is included
> in the IMA log entry.
>
> To verify the measured data with the current SELinux policy run
> the following commands and verify the output hash values match.
>
>   sha256sum /sys/fs/selinux/policy | cut -d' ' -f 1
>
>   grep -m 1 "selinux-policy-hash" /sys/kernel/security/integrity/ima/ascii_runtime_measurements | cut -d' ' -f 6

As above, this will only extract the first policy load, whereas for
real verification they will want to check either all of them or at
least the latest/last one.  For actual verification, they would need
to load the expected policy into an identical kernel on a
pristine/known-safe system and run the sha256sum
/sys/kernel/selinux/policy there to get the expected hash.

> Signed-off-by: Lakshmi Ramasubramanian <nramas@linux.microsoft.com>
> Suggested-by: Stephen Smalley <stephen.smalley.work@gmail.com>
> ---

> diff --git a/security/selinux/measure.c b/security/selinux/measure.c
> new file mode 100644
> index 000000000000..b29baaa271f0
> --- /dev/null
> +++ b/security/selinux/measure.c
> @@ -0,0 +1,154 @@
> +// SPDX-License-Identifier: GPL-2.0-or-later
> +/*
> + * Measure SELinux state using IMA subsystem.
> + */
> +#include <linux/vmalloc.h>
> +#include <linux/ktime.h>
> +#include <linux/ima.h>
> +#include "security.h"
> +
> +/*
> + * This function creates a unique name by appending the timestamp to
> + * the given string. This string is passed as "event_name" to the IMA
> + * hook to measure the given SELinux data.
> + *
> + * The data provided by SELinux to the IMA subsystem for measuring may have
> + * already been measured (for instance the same state existed earlier).
> + * But for SELinux the current data represents a state change and hence
> + * needs to be measured again. To enable this, pass a unique "event_name"
> + * to the IMA hook so that IMA subsystem will always measure the given data.
> + *
> + * For example,
> + * At time T0 SELinux data to be measured is "foo". IMA measures it.
> + * At time T1 the data is changed to "bar". IMA measures it.
> + * At time T2 the data is changed to "foo" again. IMA will not measure it
> + * (since it was already measured) unless the event_name, for instance,
> + * is different in this call.
> + */
> +static char *selinux_event_name(const char *name_prefix)
> +{
> +       char *event_name = NULL;
> +       struct timespec64 cur_time;
> +
> +       ktime_get_real_ts64(&cur_time);
> +       event_name = kasprintf(GFP_KERNEL, "%s-%lld:%09ld", name_prefix,
> +                              cur_time.tv_sec, cur_time.tv_nsec);
> +       if (!event_name) {
> +               pr_err("%s: event name not allocated.\n", __func__);
> +               return NULL;
> +       }
> +
> +       return event_name;
> +}
> +
> +static int read_selinux_state(char **state_str, int *state_str_len,
> +                             struct selinux_state *state)
> +{
> +       char *buf, *str_fmt = "%s=%d;";
> +       int i, buf_len, curr;
> +       bool initialized = selinux_initialized(state);
> +       bool enabled = !selinux_disabled(state);
> +       bool enforcing = enforcing_enabled(state);
> +       bool checkreqprot = checkreqprot_get(state);
> +
> +       buf_len = snprintf(NULL, 0, str_fmt, "initialized", initialized);
> +       buf_len += snprintf(NULL, 0, str_fmt, "enabled", enabled);
> +       buf_len += snprintf(NULL, 0, str_fmt, "enforcing", enforcing);
> +       buf_len += snprintf(NULL, 0, str_fmt, "checkreqprot", checkreqprot);
> +
> +       for (i = 0; i < __POLICYDB_CAPABILITY_MAX; i++) {
> +               buf_len += snprintf(NULL, 0, str_fmt,
> +                                   selinux_policycap_names[i],
> +                                   state->policycap[i]);
> +       }
> +       ++buf_len;
> +
> +       buf = kzalloc(buf_len, GFP_KERNEL);
> +       if (!buf)
> +               return -ENOMEM;
> +
> +       curr = snprintf(buf, buf_len, str_fmt,
> +                       "initialized", initialized);
> +       curr += snprintf((buf + curr), (buf_len - curr), str_fmt,
> +                        "enabled", enabled);
> +       curr += snprintf((buf + curr), (buf_len - curr), str_fmt,
> +                        "enforcing", enforcing);
> +       curr += snprintf((buf + curr), (buf_len - curr), str_fmt,
> +                        "checkreqprot", checkreqprot);

Wondering if we should be using scnprintf() when writing to the buffer
instead of snprintf() to ensure it returns the actual length written.
Technically shouldn't be an issue since we just computed the length
above and allocated to that size but might be less prone to error in
the future.

> +
> +       for (i = 0; i < __POLICYDB_CAPABILITY_MAX; i++) {
> +               curr += snprintf((buf + curr), (buf_len - curr), str_fmt,
> +                                selinux_policycap_names[i],
> +                                state->policycap[i]);

Ditto

> +       }
> +
> +       *state_str = buf;
> +       *state_str_len = curr;
> +
> +       return 0;
> +}
> +
> +/*
> + * selinux_measure_state - Measure SELinux state configuration and hash of
> + *                        the SELinux policy.
> + * @state: selinux state struct
> + *
> + * NOTE: This function must be called with policy_mutex held.
> + */
> +void selinux_measure_state(struct selinux_state *state)
> +{
> +       void *policy = NULL;
> +       char *state_event_name = NULL;
> +       char *policy_event_name = NULL;
> +       char *state_str = NULL;
> +       size_t policy_len;
> +       int state_str_len, rc = 0;
> +       bool initialized = selinux_initialized(state);
> +
> +       rc = read_selinux_state(&state_str, &state_str_len, state);
> +       if (rc) {
> +               pr_err("%s: Failed to read selinux state.\n", __func__);
> +               return;
> +       }
> +
> +       /*
> +        * Get a unique string for measuring the current SELinux state.
> +        */
> +       state_event_name = selinux_event_name("selinux-state");
> +       if (!state_event_name) {
> +               pr_err("%s: Event name for state not allocated.\n",
> +                      __func__);
> +               rc = -ENOMEM;
> +               goto out;
> +       }

Why get the event name after creating the state string?  If memory is
under sufficient pressure to cause the event name allocation to fail,
then we're going to fail on allocating the state string too and no
point in doing the work in that case.

> +
> +       ima_measure_critical_data(state_event_name, "selinux",
> +                                 state_str, state_str_len, false);
> +
> +       /*
> +        * Measure SELinux policy only after initialization is completed.
> +        */
> +       if (!initialized)
> +               goto out;
> +
> +       rc = security_read_policy_kernel(state, &policy, &policy_len);
> +       if (rc)
> +               goto out;
> +
> +       policy_event_name = selinux_event_name("selinux-policy-hash");
> +       if (!policy_event_name) {
> +               pr_err("%s: Event name for policy not allocated.\n",
> +                      __func__);
> +               rc = -ENOMEM;
> +               goto out;
> +       }

Ditto.

> +
> +       ima_measure_critical_data(policy_event_name, "selinux",
> +                                 policy, policy_len, true);
> +
> +out:
> +       kfree(state_event_name);
> +       kfree(policy_event_name);
> +       kfree(state_str);
> +       vfree(policy);

Can you free them in the reverse order in which they were allocated?
And the vfree() likely can get moved before the out:
label if you reverse the order in which the event name and policy get allocated.
For some related discussion around error handling and freeing of
things, see https://lore.kernel.org/selinux/20200825125130.GA304650@mwanda/
and https://lore.kernel.org/selinux/20200826113148.GA393664@mwanda/.

> +}
> diff --git a/security/selinux/selinuxfs.c b/security/selinux/selinuxfs.c
> index 4bde570d56a2..a4f1282f7178 100644
> --- a/security/selinux/selinuxfs.c
> +++ b/security/selinux/selinuxfs.c
> @@ -182,6 +182,10 @@ static ssize_t sel_write_enforce(struct file *file, const char __user *buf,
>                 selinux_status_update_setenforce(state, new_value);
>                 if (!new_value)
>                         call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
> +
> +               mutex_lock(&state->policy_mutex);
> +               selinux_measure_state(state);
> +               mutex_unlock(&state->policy_mutex);

Side bar question for selinux maintainers: should we extend the scope
of this mutex to cover the entire operation (or at least everything
from reading the old value to setting the new value)?  It isn't
strictly necessary but might be nicer.  Ditto for disable and
checkreqprot, although both of those are being deprecated.

^ permalink raw reply	[flat|nested] 4+ messages in thread

* Re: [PATCH 1/1] selinux: Measure state and hash of policy using IMA
  2020-09-28 16:29   ` Stephen Smalley
@ 2020-09-29  5:50     ` Lakshmi Ramasubramanian
  0 siblings, 0 replies; 4+ messages in thread
From: Lakshmi Ramasubramanian @ 2020-09-29  5:50 UTC (permalink / raw)
  To: Stephen Smalley
  Cc: Mimi Zohar, Paul Moore, Ondrej Mosnacek, Tyler Hicks, tusharsu,
	Sasha Levin, linux-integrity, SElinux list, linux-kernel

On 9/28/20 9:29 AM, Stephen Smalley wrote:
> On Sat, Sep 26, 2020 at 12:40 PM Lakshmi Ramasubramanian
> <nramas@linux.microsoft.com> wrote:
>>
>> Critical data structures of security modules are currently not measured.
>> Therefore an attestation service, for instance, would not be able to
>> attest whether the security modules are always operating with the policies
>> and configurations that the system administrator had setup. The policies
>> and configurations for the security modules could be tampered by rogue
>> user mode agents or modified through some inadvertent actions on
>> the system. Measuring such critical data would enable an attestation
>> service to reliably assess the security configuration of the system.
>>
>> SELinux configuration and policy are some of the critical data for this
>> security module that need to be measured. This measurement can be used
>> by an attestation service, for instance, to verify if the configurations
>> and policies have been setup correctly and that they haven't been
>> tampered at run-time.
>>
>> Measure SELinux configurations, policy capabilities settings, and
>> the hash of the loaded policy by calling the IMA hook
>> ima_measure_critical_data(). Since the size of the loaded policy can
>> be large (several MB), measure the hash of the policy instead of
>> the entire policy to avoid bloating the IMA log entry.
>>
>> Add "selinux" to the list of supported data sources maintained by IMA
>> to enable measuring SELinux data.
> 
> Please provide an example /etc/ima/ima-policy snippet for enabling
> this support, e.g.
> measure func=CRITICAL_DATA data_sources=selinux template=ima-buf
Will do.

> 
>> Since SELinux calls the IMA hook to measure data before
>> a custom IMA policy is loaded, enable queuing if CONFIG_SECURITY_SELINUX
>> is enabled, to defer processing SELinux data until a custom IMA policy
>> is loaded.
>>
>> Sample measurement of SELinux state and hash of the policy:
>>
>> 10 e32e...5ac3 ima-buf sha256:86e8...4594 selinux-state-1595389364:287899386 696e697469616c697a65643d313b656e61626c65643d313b656e666f7263696e673d303b636865636b72657170726f743d313b6e6574776f726b5f706565725f636f6e74726f6c733d313b6f70656e5f7065726d733d313b657874656e6465645f736f636b65745f636c6173733d313b616c776179735f636865636b5f6e6574776f726b3d303b6367726f75705f7365636c6162656c3d313b6e6e705f6e6f737569645f7472616e736974696f6e3d313b67656e66735f7365636c6162656c5f73796d6c696e6b733d303
>> 10 9e81...0857 ima-buf sha256:4941...68fc selinux-policy-hash-1597335667:462051628 8d1d...1834
>>
>> To verify the measurement check the following:
>>
>> Execute the following command to extract the measured data
>> from the IMA log for SELinux configuration (selinux-state).
>>
>>    grep -m 1 "selinux-state" /sys/kernel/security/integrity/ima/ascii_runtime_measurements | cut -d' ' -f 6 | xxd -r -p
> 
> NB This will only extract the first such record, which will always be
> prior to policy load (initialized=0) so that won't be terribly useful.
> For real verification, they would want to check all such records or at
> least the last/latest one (depending on their goal).
Will update to fetch the latest measurement entry for selinux state.

I have posted a patch that adds test in LTP to validate selinux 
measurement made by IMA. That test extracts the latest selinux 
measurement entry from the IMA log and validates. The link to that patch 
is https://patchwork.kernel.org/patch/11804587/

> 
>> The output should be the list of key-value pairs. For example,
>>   initialized=1;enabled=1;enforcing=0;checkreqprot=1;network_peer_controls=1;open_perms=1;extended_socket_class=1;always_check_network=0;cgroup_seclabel=1;nnp_nosuid_transition=1;genfs_seclabel_symlinks=0;
>>
>> To verify the measured data with the current SELinux state:
>>
>>   => enabled should be set to 1 if /sys/fs/selinux folder exists,
>>      0 otherwise
>>
>> For other entries, compare the integer value in the files
>>   => /sys/fs/selinux/enforce
>>   => /sys/fs/selinux/checkreqprot
>> And, each of the policy capabilities files under
>>   => /sys/fs/selinux/policy_capabilities
> 
> To be clear, actual verification would be against an expected state
> and done on a system other than the measured system, typically
> requiring "initialized=1; enabled=1;enforcing=1;checkreqprot=0;" for a
> secure state and then whatever policy capabilities are actually set in
> the expected policy (which can be extracted from the policy itself via
> seinfo or the like).
Agreed. The measurement of selinux state done by IMA would ideally be 
validated by a remote attestation service against expected state.

> 
>> For selinux-policy-hash, the hash of SELinux policy is included
>> in the IMA log entry.
>>
>> To verify the measured data with the current SELinux policy run
>> the following commands and verify the output hash values match.
>>
>>    sha256sum /sys/fs/selinux/policy | cut -d' ' -f 1
>>
>>    grep -m 1 "selinux-policy-hash" /sys/kernel/security/integrity/ima/ascii_runtime_measurements | cut -d' ' -f 6
> 
> As above, this will only extract the first policy load, whereas for
> real verification they will want to check either all of them or at
> least the latest/last one.  For actual verification, they would need
> to load the expected policy into an identical kernel on a
> pristine/known-safe system and run the sha256sum
> /sys/kernel/selinux/policy there to get the expected hash.

The test patch, for adding a test for validating selinux measurement, 
extracts the latest entry for selinux policy measurement and validates
against the policy read from /sys/kernel/selinux/policy.

This is just to validate that the selinux policy was measured correctly 
by selinux & IMA.

Similar to selinux state verification, a remote attestation service 
should validate the policy hash against an expected hash to validate 
that the policy set by the administrator hasn't been tampered with.

> 
>> Signed-off-by: Lakshmi Ramasubramanian <nramas@linux.microsoft.com>
>> Suggested-by: Stephen Smalley <stephen.smalley.work@gmail.com>
>> ---
> 
>> diff --git a/security/selinux/measure.c b/security/selinux/measure.c
>> new file mode 100644
>> index 000000000000..b29baaa271f0
>> --- /dev/null
>> +++ b/security/selinux/measure.c
>> @@ -0,0 +1,154 @@
>> +// SPDX-License-Identifier: GPL-2.0-or-later
>> +/*
>> + * Measure SELinux state using IMA subsystem.
>> + */
>> +#include <linux/vmalloc.h>
>> +#include <linux/ktime.h>
>> +#include <linux/ima.h>
>> +#include "security.h"
>> +
>> +/*
>> + * This function creates a unique name by appending the timestamp to
>> + * the given string. This string is passed as "event_name" to the IMA
>> + * hook to measure the given SELinux data.
>> + *
>> + * The data provided by SELinux to the IMA subsystem for measuring may have
>> + * already been measured (for instance the same state existed earlier).
>> + * But for SELinux the current data represents a state change and hence
>> + * needs to be measured again. To enable this, pass a unique "event_name"
>> + * to the IMA hook so that IMA subsystem will always measure the given data.
>> + *
>> + * For example,
>> + * At time T0 SELinux data to be measured is "foo". IMA measures it.
>> + * At time T1 the data is changed to "bar". IMA measures it.
>> + * At time T2 the data is changed to "foo" again. IMA will not measure it
>> + * (since it was already measured) unless the event_name, for instance,
>> + * is different in this call.
>> + */
>> +static char *selinux_event_name(const char *name_prefix)
>> +{
>> +       char *event_name = NULL;
>> +       struct timespec64 cur_time;
>> +
>> +       ktime_get_real_ts64(&cur_time);
>> +       event_name = kasprintf(GFP_KERNEL, "%s-%lld:%09ld", name_prefix,
>> +                              cur_time.tv_sec, cur_time.tv_nsec);
>> +       if (!event_name) {
>> +               pr_err("%s: event name not allocated.\n", __func__);
>> +               return NULL;
>> +       }
>> +
>> +       return event_name;
>> +}
>> +
>> +static int read_selinux_state(char **state_str, int *state_str_len,
>> +                             struct selinux_state *state)
>> +{
>> +       char *buf, *str_fmt = "%s=%d;";
>> +       int i, buf_len, curr;
>> +       bool initialized = selinux_initialized(state);
>> +       bool enabled = !selinux_disabled(state);
>> +       bool enforcing = enforcing_enabled(state);
>> +       bool checkreqprot = checkreqprot_get(state);
>> +
>> +       buf_len = snprintf(NULL, 0, str_fmt, "initialized", initialized);
>> +       buf_len += snprintf(NULL, 0, str_fmt, "enabled", enabled);
>> +       buf_len += snprintf(NULL, 0, str_fmt, "enforcing", enforcing);
>> +       buf_len += snprintf(NULL, 0, str_fmt, "checkreqprot", checkreqprot);
>> +
>> +       for (i = 0; i < __POLICYDB_CAPABILITY_MAX; i++) {
>> +               buf_len += snprintf(NULL, 0, str_fmt,
>> +                                   selinux_policycap_names[i],
>> +                                   state->policycap[i]);
>> +       }
>> +       ++buf_len;
>> +
>> +       buf = kzalloc(buf_len, GFP_KERNEL);
>> +       if (!buf)
>> +               return -ENOMEM;
>> +
>> +       curr = snprintf(buf, buf_len, str_fmt,
>> +                       "initialized", initialized);
>> +       curr += snprintf((buf + curr), (buf_len - curr), str_fmt,
>> +                        "enabled", enabled);
>> +       curr += snprintf((buf + curr), (buf_len - curr), str_fmt,
>> +                        "enforcing", enforcing);
>> +       curr += snprintf((buf + curr), (buf_len - curr), str_fmt,
>> +                        "checkreqprot", checkreqprot);
> 
> Wondering if we should be using scnprintf() when writing to the buffer
> instead of snprintf() to ensure it returns the actual length written.
> Technically shouldn't be an issue since we just computed the length
> above and allocated to that size but might be less prone to error in
> the future.
Agreed - will change it to scnprintf().

> 
>> +
>> +       for (i = 0; i < __POLICYDB_CAPABILITY_MAX; i++) {
>> +               curr += snprintf((buf + curr), (buf_len - curr), str_fmt,
>> +                                selinux_policycap_names[i],
>> +                                state->policycap[i]);
> 
> Ditto
Will use scnprintf here as well.

> 
>> +       }
>> +
>> +       *state_str = buf;
>> +       *state_str_len = curr;
>> +
>> +       return 0;
>> +}
>> +
>> +/*
>> + * selinux_measure_state - Measure SELinux state configuration and hash of
>> + *                        the SELinux policy.
>> + * @state: selinux state struct
>> + *
>> + * NOTE: This function must be called with policy_mutex held.
>> + */
>> +void selinux_measure_state(struct selinux_state *state)
>> +{
>> +       void *policy = NULL;
>> +       char *state_event_name = NULL;
>> +       char *policy_event_name = NULL;
>> +       char *state_str = NULL;
>> +       size_t policy_len;
>> +       int state_str_len, rc = 0;
>> +       bool initialized = selinux_initialized(state);
>> +
>> +       rc = read_selinux_state(&state_str, &state_str_len, state);
>> +       if (rc) {
>> +               pr_err("%s: Failed to read selinux state.\n", __func__);
>> +               return;
>> +       }
>> +
>> +       /*
>> +        * Get a unique string for measuring the current SELinux state.
>> +        */
>> +       state_event_name = selinux_event_name("selinux-state");
>> +       if (!state_event_name) {
>> +               pr_err("%s: Event name for state not allocated.\n",
>> +                      __func__);
>> +               rc = -ENOMEM;
>> +               goto out;
>> +       }
> 
> Why get the event name after creating the state string?  If memory is
> under sufficient pressure to cause the event name allocation to fail,
> then we're going to fail on allocating the state string too and no
> point in doing the work in that case.
I will allocate event name and if that succeeds then read the state.

> 
>> +
>> +       ima_measure_critical_data(state_event_name, "selinux",
>> +                                 state_str, state_str_len, false);
>> +
>> +       /*
>> +        * Measure SELinux policy only after initialization is completed.
>> +        */
>> +       if (!initialized)
>> +               goto out;
>> +
>> +       rc = security_read_policy_kernel(state, &policy, &policy_len);
>> +       if (rc)
>> +               goto out;
>> +
>> +       policy_event_name = selinux_event_name("selinux-policy-hash");
>> +       if (!policy_event_name) {
>> +               pr_err("%s: Event name for policy not allocated.\n",
>> +                      __func__);
>> +               rc = -ENOMEM;
>> +               goto out;
>> +       }
> 
> Ditto.
Will do the same here as well - allocate event name and if that succeeds 
then read the policy.

> 
>> +
>> +       ima_measure_critical_data(policy_event_name, "selinux",
>> +                                 policy, policy_len, true);
>> +
>> +out:
>> +       kfree(state_event_name);
>> +       kfree(policy_event_name);
>> +       kfree(state_str);
>> +       vfree(policy);
> 
> Can you free them in the reverse order in which they were allocated?
> And the vfree() likely can get moved before the out:
> label if you reverse the order in which the event name and policy get allocated.
> For some related discussion around error handling and freeing of
> things, see https://lore.kernel.org/selinux/20200825125130.GA304650@mwanda/
> and https://lore.kernel.org/selinux/20200826113148.GA393664@mwanda/.
Will do.

> 
>> +}
>> diff --git a/security/selinux/selinuxfs.c b/security/selinux/selinuxfs.c
>> index 4bde570d56a2..a4f1282f7178 100644
>> --- a/security/selinux/selinuxfs.c
>> +++ b/security/selinux/selinuxfs.c
>> @@ -182,6 +182,10 @@ static ssize_t sel_write_enforce(struct file *file, const char __user *buf,
>>                  selinux_status_update_setenforce(state, new_value);
>>                  if (!new_value)
>>                          call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
>> +
>> +               mutex_lock(&state->policy_mutex);
>> +               selinux_measure_state(state);
>> +               mutex_unlock(&state->policy_mutex);
> 
> Side bar question for selinux maintainers: should we extend the scope
> of this mutex to cover the entire operation (or at least everything
> from reading the old value to setting the new value)?  It isn't
> strictly necessary but might be nicer.  Ditto for disable and
> checkreqprot, although both of those are being deprecated.
> 

thanks,
  -lakshmi

^ permalink raw reply	[flat|nested] 4+ messages in thread

end of thread, other threads:[~2020-09-29  5:51 UTC | newest]

Thread overview: 4+ messages (download: mbox.gz / follow: Atom feed)
-- links below jump to the message on this page --
2020-09-26 16:39 [PATCH v2 0/1] selinux: Measure state and hash of policy using IMA Lakshmi Ramasubramanian
2020-09-26 16:40 ` [PATCH 1/1] " Lakshmi Ramasubramanian
2020-09-28 16:29   ` Stephen Smalley
2020-09-29  5:50     ` Lakshmi Ramasubramanian

This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.