From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org X-Spam-Level: X-Spam-Status: No, score=-19.4 required=3.0 tests=BAYES_00,DKIMWL_WL_HIGH, DKIM_SIGNED,DKIM_VALID,DKIM_VALID_AU,HEADER_FROM_DIFFERENT_DOMAINS, INCLUDES_CR_TRAILER,INCLUDES_PATCH,MAILING_LIST_MULTI,SPF_HELO_NONE, URIBL_BLOCKED,USER_AGENT_GIT autolearn=unavailable autolearn_force=no version=3.4.0 Received: from mail.kernel.org (mail.kernel.org [198.145.29.99]) by smtp.lore.kernel.org (Postfix) with ESMTP id CAD87C11F7A for ; Mon, 12 Jul 2021 06:49:33 +0000 (UTC) Received: from vger.kernel.org (vger.kernel.org [23.128.96.18]) by mail.kernel.org (Postfix) with ESMTP id B0CC26102A for ; Mon, 12 Jul 2021 06:49:33 +0000 (UTC) Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S240406AbhGLGvw (ORCPT ); Mon, 12 Jul 2021 02:51:52 -0400 Received: from mail.kernel.org ([198.145.29.99]:34600 "EHLO mail.kernel.org" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S237936AbhGLGjq (ORCPT ); Mon, 12 Jul 2021 02:39:46 -0400 Received: by mail.kernel.org (Postfix) with ESMTPSA id EF77A61006; Mon, 12 Jul 2021 06:35:41 +0000 (UTC) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/simple; d=linuxfoundation.org; s=korg; t=1626071742; bh=PT5rB8gHDN7BXRpWaTEithSJq3djL1Ukt618J76ZiS0=; h=From:To:Cc:Subject:Date:In-Reply-To:References:From; b=d0VXCkX71FdZm+pwiapKq/mRL1mmTsOBwwQN80g75JbMcux/zJzssPBHs8Jr7rNna j8zbCLBUTdT8rJ5Rt7KJs8iFcKpdnzbRbVvk8JuntniJ4YL//y6LQS9b7bGR6etpJ6 GScoC+Zdgap1ADBb4qF5+BqEUaIzaThsh9odwfRI= From: Greg Kroah-Hartman To: linux-kernel@vger.kernel.org Cc: Greg Kroah-Hartman , stable@vger.kernel.org, Chris Mason , "Paul E. McKenney" , Thomas Gleixner , Feng Tang , Sasha Levin Subject: [PATCH 5.10 198/593] clocksource: Retry clock read if long delays detected Date: Mon, 12 Jul 2021 08:05:58 +0200 Message-Id: <20210712060904.793368758@linuxfoundation.org> X-Mailer: git-send-email 2.32.0 In-Reply-To: <20210712060843.180606720@linuxfoundation.org> References: <20210712060843.180606720@linuxfoundation.org> User-Agent: quilt/0.66 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org From: Paul E. McKenney [ Upstream commit db3a34e17433de2390eb80d436970edcebd0ca3e ] When the clocksource watchdog marks a clock as unstable, this might be due to that clock being unstable or it might be due to delays that happen to occur between the reads of the two clocks. Yes, interrupts are disabled across those two reads, but there are no shortage of things that can delay interrupts-disabled regions of code ranging from SMI handlers to vCPU preemption. It would be good to have some indication as to why the clock was marked unstable. Therefore, re-read the watchdog clock on either side of the read from the clock under test. If the watchdog clock shows an excessive time delta between its pair of reads, the reads are retried. The maximum number of retries is specified by a new kernel boot parameter clocksource.max_cswd_read_retries, which defaults to three, that is, up to four reads, one initial and up to three retries. If more than one retry was required, a message is printed on the console (the occasional single retry is expected behavior, especially in guest OSes). If the maximum number of retries is exceeded, the clock under test will be marked unstable. However, the probability of this happening due to various sorts of delays is quite small. In addition, the reason (clock-read delays) for the unstable marking will be apparent. Reported-by: Chris Mason Signed-off-by: Paul E. McKenney Signed-off-by: Thomas Gleixner Acked-by: Feng Tang Link: https://lore.kernel.org/r/20210527190124.440372-1-paulmck@kernel.org Signed-off-by: Sasha Levin --- .../admin-guide/kernel-parameters.txt | 6 +++ kernel/time/clocksource.c | 53 ++++++++++++++++--- 2 files changed, 53 insertions(+), 6 deletions(-) diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt index 26bfe7ae711b..f103667d3727 100644 --- a/Documentation/admin-guide/kernel-parameters.txt +++ b/Documentation/admin-guide/kernel-parameters.txt @@ -577,6 +577,12 @@ loops can be debugged more effectively on production systems. + clocksource.max_cswd_read_retries= [KNL] + Number of clocksource_watchdog() retries due to + external delays before the clock will be marked + unstable. Defaults to three retries, that is, + four attempts to read the clock under test. + clearcpuid=BITNUM[,BITNUM...] [X86] Disable CPUID feature X for the kernel. See arch/x86/include/asm/cpufeatures.h for the valid bit diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c index 02441ead3c3b..a2059b78e34b 100644 --- a/kernel/time/clocksource.c +++ b/kernel/time/clocksource.c @@ -124,6 +124,13 @@ static void __clocksource_change_rating(struct clocksource *cs, int rating); #define WATCHDOG_INTERVAL (HZ >> 1) #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4) +/* + * Maximum permissible delay between two readouts of the watchdog + * clocksource surrounding a read of the clocksource being validated. + * This delay could be due to SMIs, NMIs, or to VCPU preemptions. + */ +#define WATCHDOG_MAX_SKEW (100 * NSEC_PER_USEC) + static void clocksource_watchdog_work(struct work_struct *work) { /* @@ -184,12 +191,45 @@ void clocksource_mark_unstable(struct clocksource *cs) spin_unlock_irqrestore(&watchdog_lock, flags); } +static ulong max_cswd_read_retries = 3; +module_param(max_cswd_read_retries, ulong, 0644); + +static bool cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow) +{ + unsigned int nretries; + u64 wd_end, wd_delta; + int64_t wd_delay; + + for (nretries = 0; nretries <= max_cswd_read_retries; nretries++) { + local_irq_disable(); + *wdnow = watchdog->read(watchdog); + *csnow = cs->read(cs); + wd_end = watchdog->read(watchdog); + local_irq_enable(); + + wd_delta = clocksource_delta(wd_end, *wdnow, watchdog->mask); + wd_delay = clocksource_cyc2ns(wd_delta, watchdog->mult, + watchdog->shift); + if (wd_delay <= WATCHDOG_MAX_SKEW) { + if (nretries > 1 || nretries >= max_cswd_read_retries) { + pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n", + smp_processor_id(), watchdog->name, nretries); + } + return true; + } + } + + pr_warn("timekeeping watchdog on CPU%d: %s read-back delay of %lldns, attempt %d, marking unstable\n", + smp_processor_id(), watchdog->name, wd_delay, nretries); + return false; +} + static void clocksource_watchdog(struct timer_list *unused) { - struct clocksource *cs; u64 csnow, wdnow, cslast, wdlast, delta; - int64_t wd_nsec, cs_nsec; int next_cpu, reset_pending; + int64_t wd_nsec, cs_nsec; + struct clocksource *cs; spin_lock(&watchdog_lock); if (!watchdog_running) @@ -206,10 +246,11 @@ static void clocksource_watchdog(struct timer_list *unused) continue; } - local_irq_disable(); - csnow = cs->read(cs); - wdnow = watchdog->read(watchdog); - local_irq_enable(); + if (!cs_watchdog_read(cs, &csnow, &wdnow)) { + /* Clock readout unreliable, so give it up. */ + __clocksource_unstable(cs); + continue; + } /* Clocksource initialized ? */ if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) || -- 2.30.2