All of lore.kernel.org
 help / color / mirror / Atom feed
From: Will Deacon <will@kernel.org>
To: linux-arm-kernel@lists.infradead.org
Cc: linux-arch@vger.kernel.org, linux-kernel@vger.kernel.org,
	Will Deacon <will@kernel.org>,
	Catalin Marinas <catalin.marinas@arm.com>,
	Marc Zyngier <maz@kernel.org>,
	Greg Kroah-Hartman <gregkh@linuxfoundation.org>,
	Peter Zijlstra <peterz@infradead.org>,
	Morten Rasmussen <morten.rasmussen@arm.com>,
	Qais Yousef <qais.yousef@arm.com>,
	Suren Baghdasaryan <surenb@google.com>,
	Quentin Perret <qperret@google.com>, Tejun Heo <tj@kernel.org>,
	Johannes Weiner <hannes@cmpxchg.org>,
	Ingo Molnar <mingo@redhat.com>,
	Juri Lelli <juri.lelli@redhat.com>,
	Vincent Guittot <vincent.guittot@linaro.org>,
	"Rafael J. Wysocki" <rjw@rjwysocki.net>,
	Dietmar Eggemann <dietmar.eggemann@arm.com>,
	Daniel Bristot de Oliveira <bristot@redhat.com>,
	Valentin Schneider <valentin.schneider@arm.com>,
	Mark Rutland <mark.rutland@arm.com>,
	kernel-team@android.com
Subject: [PATCH v11 16/16] Documentation: arm64: describe asymmetric 32-bit support
Date: Fri, 30 Jul 2021 12:24:43 +0100	[thread overview]
Message-ID: <20210730112443.23245-17-will@kernel.org> (raw)
In-Reply-To: <20210730112443.23245-1-will@kernel.org>

Document support for running 32-bit tasks on asymmetric 32-bit systems
and its impact on the user ABI when enabled.

Signed-off-by: Will Deacon <will@kernel.org>
---
 .../admin-guide/kernel-parameters.txt         |   3 +
 Documentation/arm64/asymmetric-32bit.rst      | 155 ++++++++++++++++++
 Documentation/arm64/index.rst                 |   1 +
 3 files changed, 159 insertions(+)
 create mode 100644 Documentation/arm64/asymmetric-32bit.rst

diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index 6ab625dea8c0..b2f5dd4ea805 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -295,6 +295,9 @@
 			EL0 is indicated by /sys/devices/system/cpu/aarch32_el0
 			and hot-unplug operations may be restricted.
 
+			See Documentation/arm64/asymmetric-32bit.rst for more
+			information.
+
 	amd_iommu=	[HW,X86-64]
 			Pass parameters to the AMD IOMMU driver in the system.
 			Possible values are:
diff --git a/Documentation/arm64/asymmetric-32bit.rst b/Documentation/arm64/asymmetric-32bit.rst
new file mode 100644
index 000000000000..64a0b505da7d
--- /dev/null
+++ b/Documentation/arm64/asymmetric-32bit.rst
@@ -0,0 +1,155 @@
+======================
+Asymmetric 32-bit SoCs
+======================
+
+Author: Will Deacon <will@kernel.org>
+
+This document describes the impact of asymmetric 32-bit SoCs on the
+execution of 32-bit (``AArch32``) applications.
+
+Date: 2021-05-17
+
+Introduction
+============
+
+Some Armv9 SoCs suffer from a big.LITTLE misfeature where only a subset
+of the CPUs are capable of executing 32-bit user applications. On such
+a system, Linux by default treats the asymmetry as a "mismatch" and
+disables support for both the ``PER_LINUX32`` personality and
+``execve(2)`` of 32-bit ELF binaries, with the latter returning
+``-ENOEXEC``. If the mismatch is detected during late onlining of a
+64-bit-only CPU, then the onlining operation fails and the new CPU is
+unavailable for scheduling.
+
+Surprisingly, these SoCs have been produced with the intention of
+running legacy 32-bit binaries. Unsurprisingly, that doesn't work very
+well with the default behaviour of Linux.
+
+It seems inevitable that future SoCs will drop 32-bit support
+altogether, so if you're stuck in the unenviable position of needing to
+run 32-bit code on one of these transitionary platforms then you would
+be wise to consider alternatives such as recompilation, emulation or
+retirement. If neither of those options are practical, then read on.
+
+Enabling kernel support
+=======================
+
+Since the kernel support is not completely transparent to userspace,
+allowing 32-bit tasks to run on an asymmetric 32-bit system requires an
+explicit "opt-in" and can be enabled by passing the
+``allow_mismatched_32bit_el0`` parameter on the kernel command-line.
+
+For the remainder of this document we will refer to an *asymmetric
+system* to mean an asymmetric 32-bit SoC running Linux with this kernel
+command-line option enabled.
+
+Userspace impact
+================
+
+32-bit tasks running on an asymmetric system behave in mostly the same
+way as on a homogeneous system, with a few key differences relating to
+CPU affinity.
+
+sysfs
+-----
+
+The subset of CPUs capable of running 32-bit tasks is described in
+``/sys/devices/system/cpu/aarch32_el0`` and is documented further in
+``Documentation/ABI/testing/sysfs-devices-system-cpu``.
+
+**Note:** CPUs are advertised by this file as they are detected and so
+late-onlining of 32-bit-capable CPUs can result in the file contents
+being modified by the kernel at runtime. Once advertised, CPUs are never
+removed from the file.
+
+``execve(2)``
+-------------
+
+On a homogeneous system, the CPU affinity of a task is preserved across
+``execve(2)``. This is not always possible on an asymmetric system,
+specifically when the new program being executed is 32-bit yet the
+affinity mask contains 64-bit-only CPUs. In this situation, the kernel
+determines the new affinity mask as follows:
+
+  1. If the 32-bit-capable subset of the affinity mask is not empty,
+     then the affinity is restricted to that subset and the old affinity
+     mask is saved. This saved mask is inherited over ``fork(2)`` and
+     preserved across ``execve(2)`` of 32-bit programs.
+
+     **Note:** This step does not apply to ``SCHED_DEADLINE`` tasks.
+     See `SCHED_DEADLINE`_.
+
+  2. Otherwise, the cpuset hierarchy of the task is walked until an
+     ancestor is found containing at least one 32-bit-capable CPU. The
+     affinity of the task is then changed to match the 32-bit-capable
+     subset of the cpuset determined by the walk.
+
+  3. On failure (i.e. out of memory), the affinity is changed to the set
+     of all 32-bit-capable CPUs of which the kernel is aware.
+
+A subsequent ``execve(2)`` of a 64-bit program by the 32-bit task will
+invalidate the affinity mask saved in (1) and attempt to restore the CPU
+affinity of the task using the saved mask if it was previously valid.
+This restoration may fail due to intervening changes to the deadline
+policy or cpuset hierarchy, in which case the ``execve(2)`` continues
+with the affinity unchanged.
+
+Calls to ``sched_setaffinity(2)`` for a 32-bit task will consider only
+the 32-bit-capable CPUs of the requested affinity mask. On success, the
+affinity for the task is updated and any saved mask from a prior
+``execve(2)`` is invalidated.
+
+``SCHED_DEADLINE``
+------------------
+
+Explicit admission of a 32-bit deadline task to the default root domain
+(e.g. by calling ``sched_setattr(2)``) is rejected on an asymmetric
+32-bit system unless admission control is disabled by writing -1 to
+``/proc/sys/kernel/sched_rt_runtime_us``.
+
+``execve(2)`` of a 32-bit program from a 64-bit deadline task will
+return ``-ENOEXEC`` if the root domain for the task contains any
+64-bit-only CPUs and admission control is enabled. Concurrent offlining
+of 32-bit-capable CPUs may still necessitate the procedure described in
+`execve(2)`_, in which case step (1) is skipped and a warning is
+emitted on the console.
+
+**Note:** It is recommended that a set of 32-bit-capable CPUs are placed
+into a separate root domain if ``SCHED_DEADLINE`` is to be used with
+32-bit tasks on an asymmetric system. Failure to do so is likely to
+result in missed deadlines.
+
+Cpusets
+-------
+
+The affinity of a 32-bit task on an asymmetric system may include CPUs
+that are not explicitly allowed by the cpuset to which it is attached.
+This can occur as a result of the following two situations:
+
+  - A 64-bit task attached to a cpuset which allows only 64-bit CPUs
+    executes a 32-bit program.
+
+  - All of the 32-bit-capable CPUs allowed by a cpuset containing a
+    32-bit task are offlined.
+
+In both of these cases, the new affinity is calculated according to step
+(2) of the process described in `execve(2)`_ and the cpuset hierarchy is
+unchanged irrespective of the cgroup version.
+
+CPU hotplug
+-----------
+
+On an asymmetric system, the first detected 32-bit-capable CPU is
+prevented from being offlined by userspace and any such attempt will
+return ``-EPERM``. Note that suspend is still permitted even if the
+primary CPU (i.e. CPU 0) is 64-bit-only.
+
+KVM
+---
+
+Although KVM will not advertise 32-bit EL0 support to any vCPUs on an
+asymmetric system, a broken guest at EL1 could still attempt to execute
+32-bit code at EL0. In this case, an exit from a vCPU thread in 32-bit
+mode will return to host userspace with an ``exit_reason`` of
+``KVM_EXIT_FAIL_ENTRY`` and will remain non-runnable until successfully
+re-initialised by a subsequent ``KVM_ARM_VCPU_INIT`` operation.
diff --git a/Documentation/arm64/index.rst b/Documentation/arm64/index.rst
index 97d65ba12a35..4f840bac083e 100644
--- a/Documentation/arm64/index.rst
+++ b/Documentation/arm64/index.rst
@@ -10,6 +10,7 @@ ARM64 Architecture
     acpi_object_usage
     amu
     arm-acpi
+    asymmetric-32bit
     booting
     cpu-feature-registers
     elf_hwcaps
-- 
2.32.0.402.g57bb445576-goog


WARNING: multiple messages have this Message-ID (diff)
From: Will Deacon <will@kernel.org>
To: linux-arm-kernel@lists.infradead.org
Cc: linux-arch@vger.kernel.org, linux-kernel@vger.kernel.org,
	Will Deacon <will@kernel.org>,
	Catalin Marinas <catalin.marinas@arm.com>,
	Marc Zyngier <maz@kernel.org>,
	Greg Kroah-Hartman <gregkh@linuxfoundation.org>,
	Peter Zijlstra <peterz@infradead.org>,
	Morten Rasmussen <morten.rasmussen@arm.com>,
	Qais Yousef <qais.yousef@arm.com>,
	Suren Baghdasaryan <surenb@google.com>,
	Quentin Perret <qperret@google.com>, Tejun Heo <tj@kernel.org>,
	Johannes Weiner <hannes@cmpxchg.org>,
	Ingo Molnar <mingo@redhat.com>,
	Juri Lelli <juri.lelli@redhat.com>,
	Vincent Guittot <vincent.guittot@linaro.org>,
	"Rafael J. Wysocki" <rjw@rjwysocki.net>,
	Dietmar Eggemann <dietmar.eggemann@arm.com>,
	Daniel Bristot de Oliveira <bristot@redhat.com>,
	Valentin Schneider <valentin.schneider@arm.com>,
	Mark Rutland <mark.rutland@arm.com>,
	kernel-team@android.com
Subject: [PATCH v11 16/16] Documentation: arm64: describe asymmetric 32-bit support
Date: Fri, 30 Jul 2021 12:24:43 +0100	[thread overview]
Message-ID: <20210730112443.23245-17-will@kernel.org> (raw)
In-Reply-To: <20210730112443.23245-1-will@kernel.org>

Document support for running 32-bit tasks on asymmetric 32-bit systems
and its impact on the user ABI when enabled.

Signed-off-by: Will Deacon <will@kernel.org>
---
 .../admin-guide/kernel-parameters.txt         |   3 +
 Documentation/arm64/asymmetric-32bit.rst      | 155 ++++++++++++++++++
 Documentation/arm64/index.rst                 |   1 +
 3 files changed, 159 insertions(+)
 create mode 100644 Documentation/arm64/asymmetric-32bit.rst

diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index 6ab625dea8c0..b2f5dd4ea805 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -295,6 +295,9 @@
 			EL0 is indicated by /sys/devices/system/cpu/aarch32_el0
 			and hot-unplug operations may be restricted.
 
+			See Documentation/arm64/asymmetric-32bit.rst for more
+			information.
+
 	amd_iommu=	[HW,X86-64]
 			Pass parameters to the AMD IOMMU driver in the system.
 			Possible values are:
diff --git a/Documentation/arm64/asymmetric-32bit.rst b/Documentation/arm64/asymmetric-32bit.rst
new file mode 100644
index 000000000000..64a0b505da7d
--- /dev/null
+++ b/Documentation/arm64/asymmetric-32bit.rst
@@ -0,0 +1,155 @@
+======================
+Asymmetric 32-bit SoCs
+======================
+
+Author: Will Deacon <will@kernel.org>
+
+This document describes the impact of asymmetric 32-bit SoCs on the
+execution of 32-bit (``AArch32``) applications.
+
+Date: 2021-05-17
+
+Introduction
+============
+
+Some Armv9 SoCs suffer from a big.LITTLE misfeature where only a subset
+of the CPUs are capable of executing 32-bit user applications. On such
+a system, Linux by default treats the asymmetry as a "mismatch" and
+disables support for both the ``PER_LINUX32`` personality and
+``execve(2)`` of 32-bit ELF binaries, with the latter returning
+``-ENOEXEC``. If the mismatch is detected during late onlining of a
+64-bit-only CPU, then the onlining operation fails and the new CPU is
+unavailable for scheduling.
+
+Surprisingly, these SoCs have been produced with the intention of
+running legacy 32-bit binaries. Unsurprisingly, that doesn't work very
+well with the default behaviour of Linux.
+
+It seems inevitable that future SoCs will drop 32-bit support
+altogether, so if you're stuck in the unenviable position of needing to
+run 32-bit code on one of these transitionary platforms then you would
+be wise to consider alternatives such as recompilation, emulation or
+retirement. If neither of those options are practical, then read on.
+
+Enabling kernel support
+=======================
+
+Since the kernel support is not completely transparent to userspace,
+allowing 32-bit tasks to run on an asymmetric 32-bit system requires an
+explicit "opt-in" and can be enabled by passing the
+``allow_mismatched_32bit_el0`` parameter on the kernel command-line.
+
+For the remainder of this document we will refer to an *asymmetric
+system* to mean an asymmetric 32-bit SoC running Linux with this kernel
+command-line option enabled.
+
+Userspace impact
+================
+
+32-bit tasks running on an asymmetric system behave in mostly the same
+way as on a homogeneous system, with a few key differences relating to
+CPU affinity.
+
+sysfs
+-----
+
+The subset of CPUs capable of running 32-bit tasks is described in
+``/sys/devices/system/cpu/aarch32_el0`` and is documented further in
+``Documentation/ABI/testing/sysfs-devices-system-cpu``.
+
+**Note:** CPUs are advertised by this file as they are detected and so
+late-onlining of 32-bit-capable CPUs can result in the file contents
+being modified by the kernel at runtime. Once advertised, CPUs are never
+removed from the file.
+
+``execve(2)``
+-------------
+
+On a homogeneous system, the CPU affinity of a task is preserved across
+``execve(2)``. This is not always possible on an asymmetric system,
+specifically when the new program being executed is 32-bit yet the
+affinity mask contains 64-bit-only CPUs. In this situation, the kernel
+determines the new affinity mask as follows:
+
+  1. If the 32-bit-capable subset of the affinity mask is not empty,
+     then the affinity is restricted to that subset and the old affinity
+     mask is saved. This saved mask is inherited over ``fork(2)`` and
+     preserved across ``execve(2)`` of 32-bit programs.
+
+     **Note:** This step does not apply to ``SCHED_DEADLINE`` tasks.
+     See `SCHED_DEADLINE`_.
+
+  2. Otherwise, the cpuset hierarchy of the task is walked until an
+     ancestor is found containing at least one 32-bit-capable CPU. The
+     affinity of the task is then changed to match the 32-bit-capable
+     subset of the cpuset determined by the walk.
+
+  3. On failure (i.e. out of memory), the affinity is changed to the set
+     of all 32-bit-capable CPUs of which the kernel is aware.
+
+A subsequent ``execve(2)`` of a 64-bit program by the 32-bit task will
+invalidate the affinity mask saved in (1) and attempt to restore the CPU
+affinity of the task using the saved mask if it was previously valid.
+This restoration may fail due to intervening changes to the deadline
+policy or cpuset hierarchy, in which case the ``execve(2)`` continues
+with the affinity unchanged.
+
+Calls to ``sched_setaffinity(2)`` for a 32-bit task will consider only
+the 32-bit-capable CPUs of the requested affinity mask. On success, the
+affinity for the task is updated and any saved mask from a prior
+``execve(2)`` is invalidated.
+
+``SCHED_DEADLINE``
+------------------
+
+Explicit admission of a 32-bit deadline task to the default root domain
+(e.g. by calling ``sched_setattr(2)``) is rejected on an asymmetric
+32-bit system unless admission control is disabled by writing -1 to
+``/proc/sys/kernel/sched_rt_runtime_us``.
+
+``execve(2)`` of a 32-bit program from a 64-bit deadline task will
+return ``-ENOEXEC`` if the root domain for the task contains any
+64-bit-only CPUs and admission control is enabled. Concurrent offlining
+of 32-bit-capable CPUs may still necessitate the procedure described in
+`execve(2)`_, in which case step (1) is skipped and a warning is
+emitted on the console.
+
+**Note:** It is recommended that a set of 32-bit-capable CPUs are placed
+into a separate root domain if ``SCHED_DEADLINE`` is to be used with
+32-bit tasks on an asymmetric system. Failure to do so is likely to
+result in missed deadlines.
+
+Cpusets
+-------
+
+The affinity of a 32-bit task on an asymmetric system may include CPUs
+that are not explicitly allowed by the cpuset to which it is attached.
+This can occur as a result of the following two situations:
+
+  - A 64-bit task attached to a cpuset which allows only 64-bit CPUs
+    executes a 32-bit program.
+
+  - All of the 32-bit-capable CPUs allowed by a cpuset containing a
+    32-bit task are offlined.
+
+In both of these cases, the new affinity is calculated according to step
+(2) of the process described in `execve(2)`_ and the cpuset hierarchy is
+unchanged irrespective of the cgroup version.
+
+CPU hotplug
+-----------
+
+On an asymmetric system, the first detected 32-bit-capable CPU is
+prevented from being offlined by userspace and any such attempt will
+return ``-EPERM``. Note that suspend is still permitted even if the
+primary CPU (i.e. CPU 0) is 64-bit-only.
+
+KVM
+---
+
+Although KVM will not advertise 32-bit EL0 support to any vCPUs on an
+asymmetric system, a broken guest at EL1 could still attempt to execute
+32-bit code at EL0. In this case, an exit from a vCPU thread in 32-bit
+mode will return to host userspace with an ``exit_reason`` of
+``KVM_EXIT_FAIL_ENTRY`` and will remain non-runnable until successfully
+re-initialised by a subsequent ``KVM_ARM_VCPU_INIT`` operation.
diff --git a/Documentation/arm64/index.rst b/Documentation/arm64/index.rst
index 97d65ba12a35..4f840bac083e 100644
--- a/Documentation/arm64/index.rst
+++ b/Documentation/arm64/index.rst
@@ -10,6 +10,7 @@ ARM64 Architecture
     acpi_object_usage
     amu
     arm-acpi
+    asymmetric-32bit
     booting
     cpu-feature-registers
     elf_hwcaps
-- 
2.32.0.402.g57bb445576-goog


_______________________________________________
linux-arm-kernel mailing list
linux-arm-kernel@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/linux-arm-kernel

  parent reply	other threads:[~2021-07-30 11:26 UTC|newest]

Thread overview: 67+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2021-07-30 11:24 [PATCH v11 00/16] Add support for 32-bit tasks on asymmetric AArch32 systems Will Deacon
2021-07-30 11:24 ` Will Deacon
2021-07-30 11:24 ` [PATCH v11 01/16] sched: Introduce task_cpu_possible_mask() to limit fallback rq selection Will Deacon
2021-07-30 11:24   ` Will Deacon
2021-08-23  9:26   ` [tip: sched/core] " tip-bot2 for Will Deacon
2021-07-30 11:24 ` [PATCH v11 02/16] cpuset: Don't use the cpu_possible_mask as a last resort for cgroup v1 Will Deacon
2021-07-30 11:24   ` Will Deacon
2021-08-23  9:26   ` [tip: sched/core] " tip-bot2 for Will Deacon
2021-07-30 11:24 ` [PATCH v11 03/16] cpuset: Honour task_cpu_possible_mask() in guarantee_online_cpus() Will Deacon
2021-07-30 11:24   ` Will Deacon
2021-08-23  9:26   ` [tip: sched/core] " tip-bot2 for Will Deacon
2021-07-30 11:24 ` [PATCH v11 04/16] cpuset: Cleanup cpuset_cpus_allowed_fallback() use in select_fallback_rq() Will Deacon
2021-07-30 11:24   ` Will Deacon
2021-08-23  9:26   ` [tip: sched/core] " tip-bot2 for Will Deacon
2021-07-30 11:24 ` [PATCH v11 05/16] sched: Reject CPU affinity changes based on task_cpu_possible_mask() Will Deacon
2021-07-30 11:24   ` Will Deacon
2021-08-23  9:26   ` [tip: sched/core] " tip-bot2 for Will Deacon
2021-07-30 11:24 ` [PATCH v11 06/16] sched: Introduce task_struct::user_cpus_ptr to track requested affinity Will Deacon
2021-07-30 11:24   ` Will Deacon
2021-08-23  9:26   ` [tip: sched/core] " tip-bot2 for Will Deacon
2021-07-30 11:24 ` [PATCH v11 07/16] sched: Split the guts of sched_setaffinity() into a helper function Will Deacon
2021-07-30 11:24   ` Will Deacon
2021-08-17 15:40   ` Peter Zijlstra
2021-08-17 15:40     ` Peter Zijlstra
2021-08-18 10:50     ` Will Deacon
2021-08-18 10:50       ` Will Deacon
2021-08-18 10:56       ` Peter Zijlstra
2021-08-18 10:56         ` Peter Zijlstra
2021-08-18 11:11         ` Will Deacon
2021-08-18 11:11           ` Will Deacon
2021-08-23  9:26   ` [tip: sched/core] " tip-bot2 for Will Deacon
2021-07-30 11:24 ` [PATCH v11 08/16] sched: Allow task CPU affinity to be restricted on asymmetric systems Will Deacon
2021-07-30 11:24   ` Will Deacon
2021-08-17 15:10   ` Peter Zijlstra
2021-08-17 15:10     ` Peter Zijlstra
2021-08-18 10:42     ` Will Deacon
2021-08-18 10:42       ` Will Deacon
2021-08-18 10:56       ` Peter Zijlstra
2021-08-18 10:56         ` Peter Zijlstra
2021-08-18 11:53         ` Peter Zijlstra
2021-08-18 11:53           ` Peter Zijlstra
2021-08-18 12:19           ` Will Deacon
2021-08-18 12:19             ` Will Deacon
2021-08-18 11:06       ` Peter Zijlstra
2021-08-18 11:06         ` Peter Zijlstra
2021-08-17 15:41   ` Peter Zijlstra
2021-08-17 15:41     ` Peter Zijlstra
2021-08-18 10:43     ` Will Deacon
2021-08-18 10:43       ` Will Deacon
2021-08-23  9:26   ` [tip: sched/core] " tip-bot2 for Will Deacon
2021-07-30 11:24 ` [PATCH v11 09/16] sched: Introduce dl_task_check_affinity() to check proposed affinity Will Deacon
2021-07-30 11:24   ` Will Deacon
2021-08-23  9:26   ` [tip: sched/core] " tip-bot2 for Will Deacon
2021-07-30 11:24 ` [PATCH v11 10/16] arm64: Implement task_cpu_possible_mask() Will Deacon
2021-07-30 11:24   ` Will Deacon
2021-07-30 11:24 ` [PATCH v11 11/16] arm64: exec: Adjust affinity for compat tasks with mismatched 32-bit EL0 Will Deacon
2021-07-30 11:24   ` Will Deacon
2021-07-30 11:24 ` [PATCH v11 12/16] arm64: Prevent offlining first CPU with 32-bit EL0 on mismatched system Will Deacon
2021-07-30 11:24   ` Will Deacon
2021-07-30 11:24 ` [PATCH v11 13/16] arm64: Advertise CPUs capable of running 32-bit applications in sysfs Will Deacon
2021-07-30 11:24   ` Will Deacon
2021-07-30 11:24 ` [PATCH v11 14/16] arm64: Hook up cmdline parameter to allow mismatched 32-bit EL0 Will Deacon
2021-07-30 11:24   ` Will Deacon
2021-07-30 11:24 ` [PATCH v11 15/16] arm64: Remove logic to kill 32-bit tasks on 64-bit-only cores Will Deacon
2021-07-30 11:24   ` Will Deacon
2021-07-30 11:24 ` Will Deacon [this message]
2021-07-30 11:24   ` [PATCH v11 16/16] Documentation: arm64: describe asymmetric 32-bit support Will Deacon

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=20210730112443.23245-17-will@kernel.org \
    --to=will@kernel.org \
    --cc=bristot@redhat.com \
    --cc=catalin.marinas@arm.com \
    --cc=dietmar.eggemann@arm.com \
    --cc=gregkh@linuxfoundation.org \
    --cc=hannes@cmpxchg.org \
    --cc=juri.lelli@redhat.com \
    --cc=kernel-team@android.com \
    --cc=linux-arch@vger.kernel.org \
    --cc=linux-arm-kernel@lists.infradead.org \
    --cc=linux-kernel@vger.kernel.org \
    --cc=mark.rutland@arm.com \
    --cc=maz@kernel.org \
    --cc=mingo@redhat.com \
    --cc=morten.rasmussen@arm.com \
    --cc=peterz@infradead.org \
    --cc=qais.yousef@arm.com \
    --cc=qperret@google.com \
    --cc=rjw@rjwysocki.net \
    --cc=surenb@google.com \
    --cc=tj@kernel.org \
    --cc=valentin.schneider@arm.com \
    --cc=vincent.guittot@linaro.org \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.