From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org Received: from mail.kernel.org (mail.kernel.org [198.145.29.99]) by smtp.lore.kernel.org (Postfix) with ESMTP id 76E34C433EF for ; Tue, 5 Oct 2021 20:17:55 +0000 (UTC) Received: from vger.kernel.org (vger.kernel.org [23.128.96.18]) by mail.kernel.org (Postfix) with ESMTP id 5D9186142A for ; Tue, 5 Oct 2021 20:17:55 +0000 (UTC) Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S236149AbhJEUTp (ORCPT ); Tue, 5 Oct 2021 16:19:45 -0400 Received: from lindbergh.monkeyblade.net ([23.128.96.19]:42626 "EHLO lindbergh.monkeyblade.net" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S236060AbhJEUTi (ORCPT ); Tue, 5 Oct 2021 16:19:38 -0400 Received: from mail-qt1-x830.google.com (mail-qt1-x830.google.com [IPv6:2607:f8b0:4864:20::830]) by lindbergh.monkeyblade.net (Postfix) with ESMTPS id 99B9CC061753 for ; Tue, 5 Oct 2021 13:17:47 -0700 (PDT) Received: by mail-qt1-x830.google.com with SMTP id t2so323515qtx.8 for ; Tue, 05 Oct 2021 13:17:47 -0700 (PDT) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20210112; h=from:to:cc:subject:date:message-id:in-reply-to:references :mime-version:content-transfer-encoding; bh=hWRdzcwy5pavNEYEELsEY50gWUTPCGMh6fXm38Kcnwg=; b=MoULmMNCc4Idu9ZImFeNa1VIhx/xzUslMv/8+5o4nSuRkW5osOBewyuxo0wtI0f/mv wz4jLSoonROXu/Wldp2TXAu/xXwzBVXFNOwp8ibWsBQ1KdOmUbdQV4LAZ56/6EIsEAo8 9nI1q+VxUoFfh9Q3+DI2gxKoLMs0p3rcGxBUbtcYXcpqm7SdZ8vURyi0zl2DFisT2aLQ wNGujKBsaRl4CeSZpUjF7zP4L4qGXOK7WI8c667OevdJActG3GMqhKJabzzqj+GHaQm0 tED16j/iyfDYcS9QucM1ZYynPWSmkVPqDdgugL9XKg/xdsE8b3uemOjZNjc44F3fROLI Te7A== X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20210112; h=x-gm-message-state:from:to:cc:subject:date:message-id:in-reply-to :references:mime-version:content-transfer-encoding; bh=hWRdzcwy5pavNEYEELsEY50gWUTPCGMh6fXm38Kcnwg=; b=wPP49CbpXEO2Rf8GhChA/rK7nPWmCfdBHwi9ecTg77z5/aN2MlOiDq3Z09db61Erzr pLSTP6BUuvacqr4I2II5QVPgJX+zb7P9THLONAbLu1s+g/Rk9Lzm0Pdzh+0qrjcDliqx wcqH4UkBqb/RgCNyR63nikl0wFKGwKFzniIiU/Zxaqk6aXmY0JpS+rfefh3O4gz5Bx2T j3dA4oRcnLCTnZRwSdAGfEFokojK1exukA1eyfOO3Ib/M94vuwxqZ8Ypy6+X/KPadqS/ sB5xWbUHfJnO3WQ1qbWA1bnW8F5xUz9xcfem1/N3UpF2fKbLkIKD1K572jWAwUm8GXJ+ G0Fg== X-Gm-Message-State: AOAM531KQrnv0ecfXsCJLeYAxkns9eoeXL5emVYFk5/9742WOAUYM5TQ 2wC83C0/WwDNXQu6/IXrzYw= X-Google-Smtp-Source: ABdhPJz3mYgQzp0H6NaSiD0iK49qRhDH80PVSZE25keNhKKJ+X696uqWCtGvNVBHgQ+wFBfHvR8txQ== X-Received: by 2002:ac8:698f:: with SMTP id o15mr22021492qtq.104.1633465066720; Tue, 05 Oct 2021 13:17:46 -0700 (PDT) Received: from localhost.localdomain ([2804:14c:125:9b98::1007]) by smtp.googlemail.com with ESMTPSA id j2sm13056905qta.84.2021.10.05.13.17.44 (version=TLS1_3 cipher=TLS_AES_256_GCM_SHA384 bits=256/256); Tue, 05 Oct 2021 13:17:46 -0700 (PDT) From: Igor Matheus Andrade Torrente To: rodrigosiqueiramelo@gmail.com, melissa.srw@gmail.com Cc: Igor Matheus Andrade Torrente , hamohammed.sa@gmail.com, daniel@ffwll.ch, airlied@linux.ie, contact@emersion.fr, leandro.ribeiro@collabora.com, dri-devel@lists.freedesktop.org, linux-kernel@vger.kernel.org, lkcamp@lists.libreplanetbr.org Subject: [PATCH 6/6] drm: vkms: Refactor the plane composer to accept new formats Date: Tue, 5 Oct 2021 17:16:37 -0300 Message-Id: <20211005201637.58563-7-igormtorrente@gmail.com> X-Mailer: git-send-email 2.30.2 In-Reply-To: <20211005201637.58563-1-igormtorrente@gmail.com> References: <20211005201637.58563-1-igormtorrente@gmail.com> MIME-Version: 1.0 Content-Transfer-Encoding: 8bit Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org Currently the blend function only accepts XRGB_8888 and ARGB_8888 as a color input. This patch refactors all the functions related to the plane composition to overcome this limitation. Now the blend function receives a format handler to each plane and a blend function pointer. It will take two ARGB_1616161616 pixels, one for each handler, and will use the blend function to calculate and store the final color in the output buffer. These format handlers will receive the `vkms_composer` and a pair of coordinates. And they should return the respective pixel in the ARGB_16161616 format. The blend function will receive two ARGB_16161616 pixels, x, y, and the vkms_composer of the output buffer. The method should perform the blend operation and store output to the format aforementioned ARGB_16161616. Signed-off-by: Igor Matheus Andrade Torrente --- drivers/gpu/drm/vkms/vkms_composer.c | 275 ++++++++++++++------------- drivers/gpu/drm/vkms/vkms_formats.h | 125 ++++++++++++ 2 files changed, 271 insertions(+), 129 deletions(-) create mode 100644 drivers/gpu/drm/vkms/vkms_formats.h diff --git a/drivers/gpu/drm/vkms/vkms_composer.c b/drivers/gpu/drm/vkms/vkms_composer.c index 82f79e508f81..1e7c10c02a52 100644 --- a/drivers/gpu/drm/vkms/vkms_composer.c +++ b/drivers/gpu/drm/vkms/vkms_composer.c @@ -9,18 +9,28 @@ #include #include "vkms_drv.h" - -static u32 get_pixel_from_buffer(int x, int y, const u8 *buffer, - const struct vkms_composer *composer) -{ - u32 pixel; - int src_offset = composer->offset + (y * composer->pitch) - + (x * composer->cpp); - - pixel = *(u32 *)&buffer[src_offset]; - - return pixel; -} +#include "vkms_formats.h" + +#define get_output_vkms_composer(buffer_pointer, composer) \ + ((struct vkms_composer) { \ + .fb = (struct drm_framebuffer) { \ + .format = &(struct drm_format_info) { \ + .format = DRM_FORMAT_ARGB16161616, \ + }, \ + }, \ + .map[0].vaddr = (buffer_pointer), \ + .src = (composer)->src, \ + .dst = (composer)->dst, \ + .cpp = sizeof(u64), \ + .pitch = drm_rect_width(&(composer)->dst) * sizeof(u64) \ + }) + +struct vkms_pixel_composition_functions { + u64 (*get_src_pixel)(struct vkms_composer *composer, int x, int y); + u64 (*get_dst_pixel)(struct vkms_composer *composer, int x, int y); + void (*pixel_blend)(u64 argb_src1, u64 argb_src2, int x, int y, + struct vkms_composer *dst_composer); +}; /** * compute_crc - Compute CRC value on output frame @@ -31,42 +41,33 @@ static u32 get_pixel_from_buffer(int x, int y, const u8 *buffer, * returns CRC value computed using crc32 on the visible portion of * the final framebuffer at vaddr_out */ -static uint32_t compute_crc(const u8 *vaddr, +static uint32_t compute_crc(const __le64 *vaddr, const struct vkms_composer *composer) { - int x, y; - u32 crc = 0, pixel = 0; - int x_src = composer->src.x1 >> 16; - int y_src = composer->src.y1 >> 16; - int h_src = drm_rect_height(&composer->src) >> 16; - int w_src = drm_rect_width(&composer->src) >> 16; - - for (y = y_src; y < y_src + h_src; ++y) { - for (x = x_src; x < x_src + w_src; ++x) { - pixel = get_pixel_from_buffer(x, y, vaddr, composer); - crc = crc32_le(crc, (void *)&pixel, sizeof(u32)); - } - } + int h = drm_rect_height(&composer->dst); + int w = drm_rect_width(&composer->dst); - return crc; + return crc32_le(0, (void *)vaddr, w * h * sizeof(u64)); } -static u8 blend_channel(u8 src, u8 dst, u8 alpha) +static __le16 blend_channel(u16 src, u16 dst, u16 alpha) { - u32 pre_blend; - u8 new_color; + u64 pre_blend; + u16 new_color; - pre_blend = (src * 255 + dst * (255 - alpha)); + pre_blend = (src * 0xffff + dst * (0xffff - alpha)); - /* Faster div by 255 */ - new_color = ((pre_blend + ((pre_blend + 257) >> 8)) >> 8); + new_color = DIV_ROUND_UP(pre_blend, 0xffff); - return new_color; + return cpu_to_le16(new_color); } /** * alpha_blend - alpha blending equation - * @argb_src: src pixel on premultiplied alpha mode + * @argb_src1: pixel of the source plane on premultiplied alpha mode + * @argb_src2: pixel of the destiny planes on premultiplied alpha mode + * @x: The x coodinate(width) of the pixel + * @y: The y coodinate(heigth) of the pixel * @argb_dst: dst pixel completely opaque * * blend pixels using premultiplied blend formula. The current DRM assumption @@ -74,50 +75,52 @@ static u8 blend_channel(u8 src, u8 dst, u8 alpha) * channel values. See more drm_plane_create_blend_mode_property(). Also, this * formula assumes a completely opaque background. */ -static void alpha_blend(const u8 *argb_src, u8 *argb_dst) +static void alpha_blend(u64 argb_src1, u64 argb_src2, int y, int x, + struct vkms_composer *dst_composer) { - u8 alpha; + __le16 *output_pixel = packed_pixels_addr(dst_composer, y, x); - alpha = argb_src[3]; - argb_dst[0] = blend_channel(argb_src[0], argb_dst[0], alpha); - argb_dst[1] = blend_channel(argb_src[1], argb_dst[1], alpha); - argb_dst[2] = blend_channel(argb_src[2], argb_dst[2], alpha); -} + u16 src1_a = (argb_src1 & (0xffffllu << 48)) >> 48; + u16 src1_r = (argb_src1 & (0xffffllu << 32)) >> 32; + u16 src1_g = (argb_src1 & (0xffffllu << 16)) >> 16; + u16 src1_b = argb_src1 & 0xffffllu; -/** - * x_blend - blending equation that ignores the pixel alpha - * - * overwrites RGB color value from src pixel to dst pixel. - */ -static void x_blend(const u8 *xrgb_src, u8 *xrgb_dst) -{ - memcpy(xrgb_dst, xrgb_src, sizeof(u8) * 3); + u16 src2_r = (argb_src2 & (0xffffllu << 32)) >> 32; + u16 src2_g = (argb_src2 & (0xffffllu << 16)) >> 16; + u16 src2_b = argb_src2 & 0xffffllu; + + output_pixel[0] = blend_channel(src1_b, src2_b, src1_a); + output_pixel[1] = blend_channel(src1_g, src2_g, src1_a); + output_pixel[2] = blend_channel(src1_r, src2_r, src1_a); + output_pixel[3] = 0xffff; } /** - * blend - blend value at vaddr_src with value at vaddr_dst - * @vaddr_dst: destination address - * @vaddr_src: source address - * @dst_composer: destination framebuffer's metadata * @src_composer: source framebuffer's metadata - * @pixel_blend: blending equation based on plane format + * @dst_composer: destiny framebuffer's metadata + * @funcs: A struct containing all the composition functions(get_src_pixel, + * get_dst_pixel, and pixel_blend) * - * Blend the vaddr_src value with the vaddr_dst value using a pixel blend - * equation according to the supported plane formats DRM_FORMAT_(A/XRGB8888) - * and clearing alpha channel to an completely opaque background. This function - * uses buffer's metadata to locate the new composite values at vaddr_dst. + * Using the pixel_blend function passed as parameter, this function blends + * all pixels from src planes into a output buffer. + * Information of the output buffer is in the dst_composer parameter + * and the source plane in the src_composer. + * The get_src_pixel will use the src_composer to get the respective pixel, + * convert, and return it as ARGB_16161616. + * The same is true for the dst_composer and get_dst_pixel respectively. + * And finally, the blend function will receive the dst_composer, src, + * and dst pixels. Blend, and store thre result in the output using the + * dst_composer buffer information. * * TODO: completely clear the primary plane (a = 0xff) before starting to blend * pixel color values */ -static void blend(void *vaddr_dst, void *vaddr_src, +static void blend(struct vkms_composer *src_composer, struct vkms_composer *dst_composer, - struct vkms_composer *src_composer, - void (*pixel_blend)(const u8 *, u8 *)) + struct vkms_pixel_composition_functions *funcs) { int i, j, j_dst, i_dst; - int offset_src, offset_dst; - u8 *pixel_dst, *pixel_src; + u64 pixel_dst, pixel_src; int x_src = src_composer->src.x1 >> 16; int y_src = src_composer->src.y1 >> 16; @@ -130,80 +133,101 @@ static void blend(void *vaddr_dst, void *vaddr_src, int y_limit = y_src + h_dst; int x_limit = x_src + w_dst; - for (i = y_src, i_dst = y_dst; i < y_limit; ++i) { - for (j = x_src, j_dst = x_dst; j < x_limit; ++j) { - offset_dst = dst_composer->offset - + (i_dst * dst_composer->pitch) - + (j_dst++ * dst_composer->cpp); - offset_src = src_composer->offset - + (i * src_composer->pitch) - + (j * src_composer->cpp); - - pixel_src = (u8 *)(vaddr_src + offset_src); - pixel_dst = (u8 *)(vaddr_dst + offset_dst); - pixel_blend(pixel_src, pixel_dst); - /* clearing alpha channel (0xff)*/ - pixel_dst[3] = 0xff; + for (i = y_src, i_dst = y_dst; i < y_limit; ++i, i_dst++) { + for (j = x_src, j_dst = x_dst; j < x_limit; ++j, j_dst++) { + pixel_src = funcs->get_src_pixel(src_composer, j, i); + pixel_dst = funcs->get_dst_pixel(dst_composer, j_dst, i_dst); + + funcs->pixel_blend(pixel_src, pixel_dst, j_dst, i_dst, + dst_composer); } - i_dst++; } } -static void compose_plane(struct vkms_composer *primary_composer, - struct vkms_composer *plane_composer, - void *vaddr_out) +static u64 ((*get_pixel_fmt_transform_function(u32 format)) + (struct vkms_composer *, int, int)) { - struct drm_framebuffer *fb = &plane_composer->fb; - void *vaddr; - void (*pixel_blend)(const u8 *p_src, u8 *p_dst); + if (format == DRM_FORMAT_ARGB8888) + return &ARGB8888_to_ARGB16161616; + else if (format == DRM_FORMAT_ARGB16161616) + return &get_ARGB16161616; + else + return &XRGB8888_to_ARGB16161616; +} - if (WARN_ON(dma_buf_map_is_null(&primary_composer->map[0]))) - return; +static void ((*get_pixel_blend_function(u32 format)) + (u64, u64, int, int, struct vkms_composer *)) +{ + if (format == DRM_FORMAT_ARGB8888) + return &convert_to_ARGB8888; + else if (format == DRM_FORMAT_ARGB16161616) + return &convert_to_ARGB16161616; + else + return &convert_to_XRGB8888; +} - vaddr = plane_composer->map[0].vaddr; +static void compose_plane(struct vkms_composer *src_composer, + struct vkms_composer *dst_composer, + struct vkms_pixel_composition_functions *funcs) +{ + u32 src_format = src_composer->fb.format->format; + u32 dst_format = dst_composer->fb.format->format; - if (fb->format->format == DRM_FORMAT_ARGB8888) - pixel_blend = &alpha_blend; - else - pixel_blend = &x_blend; + funcs->get_src_pixel = get_pixel_fmt_transform_function(src_format); + funcs->get_dst_pixel = get_pixel_fmt_transform_function(dst_format); - blend(vaddr_out, vaddr, primary_composer, plane_composer, pixel_blend); + blend(src_composer, dst_composer, funcs); } -static int compose_active_planes(void **vaddr_out, - struct vkms_composer *primary_composer, - struct vkms_crtc_state *crtc_state) +static __le64 *compose_active_planes(struct vkms_composer *primary_composer, + struct vkms_crtc_state *crtc_state) { - struct drm_framebuffer *fb = &primary_composer->fb; - struct drm_gem_object *gem_obj = drm_gem_fb_get_obj(fb, 0); - const void *vaddr; + struct vkms_plane_state **active_planes = crtc_state->active_planes; + int h = drm_rect_height(&primary_composer->dst); + int w = drm_rect_width(&primary_composer->dst); + struct vkms_pixel_composition_functions funcs; + struct vkms_composer dst_composer; + __le64 *vaddr_out; int i; - if (!*vaddr_out) { - *vaddr_out = kvzalloc(gem_obj->size, GFP_KERNEL); - if (!*vaddr_out) { - DRM_ERROR("Cannot allocate memory for output frame."); - return -ENOMEM; - } - } - if (WARN_ON(dma_buf_map_is_null(&primary_composer->map[0]))) - return -EINVAL; + return NULL; - vaddr = primary_composer->map[0].vaddr; + vaddr_out = kvzalloc(w * h * sizeof(__le64), GFP_KERNEL); + if (!vaddr_out) { + DRM_ERROR("Cannot allocate memory for output frame."); + return NULL; + } - memcpy(*vaddr_out, vaddr, gem_obj->size); + dst_composer = get_output_vkms_composer(vaddr_out, primary_composer); + funcs.pixel_blend = get_pixel_blend_function(DRM_FORMAT_ARGB16161616); + compose_plane(active_planes[0]->composer, &dst_composer, &funcs); /* If there are other planes besides primary, we consider the active * planes should be in z-order and compose them associatively: * ((primary <- overlay) <- cursor) */ + funcs.pixel_blend = alpha_blend; for (i = 1; i < crtc_state->num_active_planes; i++) - compose_plane(primary_composer, - crtc_state->active_planes[i]->composer, - *vaddr_out); + compose_plane(active_planes[i]->composer, &dst_composer, &funcs); - return 0; + return vaddr_out; +} + +static void write_wb_buffer(struct vkms_writeback_job *active_wb, + struct vkms_composer *primary_composer, + __le64 *vaddr_out) +{ + u32 dst_fb_format = active_wb->composer.fb.format->format; + struct vkms_pixel_composition_functions funcs; + struct vkms_composer src_composer; + + src_composer = get_output_vkms_composer(vaddr_out, primary_composer); + funcs.pixel_blend = get_pixel_blend_function(dst_fb_format); + active_wb->composer.src = primary_composer->src; + active_wb->composer.dst = primary_composer->dst; + + compose_plane(&src_composer, &active_wb->composer, &funcs); } /** @@ -221,14 +245,14 @@ void vkms_composer_worker(struct work_struct *work) struct vkms_crtc_state, composer_work); struct drm_crtc *crtc = crtc_state->base.crtc; + struct vkms_writeback_job *active_wb = crtc_state->active_writeback; struct vkms_output *out = drm_crtc_to_vkms_output(crtc); struct vkms_composer *primary_composer = NULL; struct vkms_plane_state *act_plane = NULL; bool crc_pending, wb_pending; - void *vaddr_out = NULL; + __le64 *vaddr_out = NULL; u32 crc32 = 0; u64 frame_start, frame_end; - int ret; spin_lock_irq(&out->composer_lock); frame_start = crtc_state->frame_start; @@ -256,28 +280,21 @@ void vkms_composer_worker(struct work_struct *work) if (!primary_composer) return; - if (wb_pending) - vaddr_out = crtc_state->active_writeback->data[0].vaddr; - - ret = compose_active_planes(&vaddr_out, primary_composer, - crtc_state); - if (ret) { - if (ret == -EINVAL && !wb_pending) - kvfree(vaddr_out); + vaddr_out = compose_active_planes(primary_composer, crtc_state); + if (!vaddr_out) return; - } - - crc32 = compute_crc(vaddr_out, primary_composer); if (wb_pending) { + write_wb_buffer(active_wb, primary_composer, vaddr_out); drm_writeback_signal_completion(&out->wb_connector, 0); spin_lock_irq(&out->composer_lock); crtc_state->wb_pending = false; spin_unlock_irq(&out->composer_lock); - } else { - kvfree(vaddr_out); } + crc32 = compute_crc(vaddr_out, primary_composer); + kvfree(vaddr_out); + /* * The worker can fall behind the vblank hrtimer, make sure we catch up. */ diff --git a/drivers/gpu/drm/vkms/vkms_formats.h b/drivers/gpu/drm/vkms/vkms_formats.h new file mode 100644 index 000000000000..60e21adbf68d --- /dev/null +++ b/drivers/gpu/drm/vkms/vkms_formats.h @@ -0,0 +1,125 @@ +/* SPDX-License-Identifier: GPL-2.0+ */ + +#ifndef _VKMS_FORMATS_H_ +#define _VKMS_FORMATS_H_ + +#include + +#define pixel_offset(composer, x, y) \ + ((composer)->offset + ((y) * (composer)->pitch) + ((x) * (composer)->cpp)) + +/* + * packed_pixels_addr - Get the pointer to pixel of a given pair of coordinates + * + * @composer: Buffer metadata + * @x: The x(width) coordinate of the 2D buffer + * @y: The y(Heigth) coordinate of the 2D buffer + * + * Takes the information stored in the composer, a pair of coordinates, and + * returns the address of the first color channel. + * This function assumes the channels are packed together, i.e. a color channel + * comes immediately after another. And therefore, this function doesn't work + * for YUV with chroma subsampling (e.g. YUV420 and NV21). + */ +void *packed_pixels_addr(struct vkms_composer *composer, int x, int y) +{ + int offset = pixel_offset(composer, x, y); + + return (u8 *)composer->map[0].vaddr + offset; +} + +u64 ARGB8888_to_ARGB16161616(struct vkms_composer *composer, int x, int y) +{ + u8 *pixel_addr = packed_pixels_addr(composer, x, y); + + /* + * Organizes the channels in their respective positions and converts + * the 8 bits channel to 16. + * The 257 is the "conversion ratio". This number is obtained by the + * (2^16 - 1) / (2^8 - 1) division. Which, in this case, tries to get + * the best color value in a color space with more possibilities. + * And a similar idea applies to others RGB color conversions. + */ + return ((u64)pixel_addr[3] * 257) << 48 | + ((u64)pixel_addr[2] * 257) << 32 | + ((u64)pixel_addr[1] * 257) << 16 | + ((u64)pixel_addr[0] * 257); +} + +u64 XRGB8888_to_ARGB16161616(struct vkms_composer *composer, int x, int y) +{ + u8 *pixel_addr = packed_pixels_addr(composer, x, y); + + /* + * The same as the ARGB8888 but with the alpha channel as the + * maximum value as possible. + */ + return 0xffffllu << 48 | + ((u64)pixel_addr[2] * 257) << 32 | + ((u64)pixel_addr[1] * 257) << 16 | + ((u64)pixel_addr[0] * 257); +} + +u64 get_ARGB16161616(struct vkms_composer *composer, int x, int y) +{ + __le64 *pixel_addr = packed_pixels_addr(composer, x, y); + + /* + * Because the format byte order is in little-endian and this code + * needs to run on big-endian machines too, we need modify + * the byte order from little-endian to the CPU native byte order. + */ + return le64_to_cpu(*pixel_addr); +} + +/* + * The following functions are used as blend operations. But unlike the + * `alpha_blend`, these functions take an ARGB16161616 pixel from the + * source, convert it to a specific format, and store it in the destination. + * + * They are used in the `compose_active_planes` and `write_wb_buffer` to + * copy and convert one pixel from/to the output buffer to/from + * another buffer (e.g. writeback buffer, primary plane buffer). + */ + +void convert_to_ARGB8888(u64 argb_src1, u64 argb_src2, int x, int y, + struct vkms_composer *dst_composer) +{ + u8 *pixel_addr = packed_pixels_addr(dst_composer, x, y); + + /* + * This sequence below is important because the format's byte order is + * in little-endian. In the case of the ARGB8888 the memory is + * organized this way: + * + * | Addr | = blue channel + * | Addr + 1 | = green channel + * | Addr + 2 | = Red channel + * | Addr + 3 | = Alpha channel + */ + pixel_addr[0] = DIV_ROUND_UP(argb_src1 & 0xffffllu, 257); + pixel_addr[1] = DIV_ROUND_UP((argb_src1 & (0xffffllu << 16)) >> 16, 257); + pixel_addr[2] = DIV_ROUND_UP((argb_src1 & (0xffffllu << 32)) >> 32, 257); + pixel_addr[3] = DIV_ROUND_UP((argb_src1 & (0xffffllu << 48)) >> 48, 257); +} + +void convert_to_XRGB8888(u64 argb_src1, u64 argb_src2, int x, int y, + struct vkms_composer *dst_composer) +{ + u8 *pixel_addr = packed_pixels_addr(dst_composer, x, y); + + pixel_addr[0] = DIV_ROUND_UP(argb_src1 & 0xffffllu, 257); + pixel_addr[1] = DIV_ROUND_UP((argb_src1 & (0xffffllu << 16)) >> 16, 257); + pixel_addr[2] = DIV_ROUND_UP((argb_src1 & (0xffffllu << 32)) >> 32, 257); + pixel_addr[3] = 0xff; +} + +void convert_to_ARGB16161616(u64 argb_src1, u64 argb_src2, int x, int y, + struct vkms_composer *dst_composer) +{ + __le64 *pixel_addr = packed_pixels_addr(dst_composer, x, y); + + *pixel_addr = cpu_to_le64(argb_src1); +} + +#endif /* _VKMS_FORMATS_H_ */ -- 2.30.2