From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org Received: from mail.kernel.org (mail.kernel.org [198.145.29.99]) by smtp.lore.kernel.org (Postfix) with ESMTP id BE7D1C433FE for ; Thu, 18 Nov 2021 11:21:30 +0000 (UTC) Received: from vger.kernel.org (vger.kernel.org [23.128.96.18]) by mail.kernel.org (Postfix) with ESMTP id A684561A3D for ; Thu, 18 Nov 2021 11:21:30 +0000 (UTC) Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1343814AbhKRLY3 (ORCPT ); Thu, 18 Nov 2021 06:24:29 -0500 Received: from relay7-d.mail.gandi.net ([217.70.183.200]:35067 "EHLO relay7-d.mail.gandi.net" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1343614AbhKRLWs (ORCPT ); Thu, 18 Nov 2021 06:22:48 -0500 Received: (Authenticated sender: miquel.raynal@bootlin.com) by relay7-d.mail.gandi.net (Postfix) with ESMTPSA id 72D0920018; Thu, 18 Nov 2021 11:19:45 +0000 (UTC) From: Miquel Raynal To: Richard Weinberger , Vignesh Raghavendra , Tudor Ambarus , Pratyush Yadav , Michael Walle , Cc: Thomas Petazzoni , Jimmy Lalande , Milan Stevanovic , Geert Uytterhoeven , linux-renesas-soc@vger.kernel.org, Magnus Damm , , Miquel Raynal Subject: [PATCH 2/3] mtd: rawnand: rzn1: Add new NAND controller driver Date: Thu, 18 Nov 2021 12:19:39 +0100 Message-Id: <20211118111940.1275351-3-miquel.raynal@bootlin.com> X-Mailer: git-send-email 2.27.0 In-Reply-To: <20211118111940.1275351-1-miquel.raynal@bootlin.com> References: <20211118111940.1275351-1-miquel.raynal@bootlin.com> MIME-Version: 1.0 Content-Type: text/plain; charset="utf-8" Content-Transfer-Encoding: 8bit Precedence: bulk List-ID: X-Mailing-List: linux-renesas-soc@vger.kernel.org Introduce Renesas RZ/N1x NAND controller driver which supports: - All ONFI timing modes - Different configurations of its internal ECC controller - On-die (not tested) and software ECC support - Several chips (not tested) - Subpage accesses - DMA and PIO Signed-off-by: Miquel Raynal --- drivers/mtd/nand/raw/Kconfig | 6 + drivers/mtd/nand/raw/Makefile | 1 + drivers/mtd/nand/raw/rzn1-nand-controller.c | 1417 +++++++++++++++++++ 3 files changed, 1424 insertions(+) create mode 100644 drivers/mtd/nand/raw/rzn1-nand-controller.c diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig index e1baed6c5b33..998339993abf 100644 --- a/drivers/mtd/nand/raw/Kconfig +++ b/drivers/mtd/nand/raw/Kconfig @@ -467,6 +467,12 @@ config MTD_NAND_PL35X Enables support for PrimeCell SMC PL351 and PL353 NAND controller found on Zynq7000. +config MTD_NAND_RZN1 + tristate "Renesas RZ/N1D, RZ/N1S, RZ/N1L NAND controller" + depends on OF || COMPILE_TEST + help + Enables support for Renesas RZ/N1x SoC family NAND controller. + comment "Misc" config MTD_SM_COMMON diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile index ee55f79e5e82..4d75d2520edf 100644 --- a/drivers/mtd/nand/raw/Makefile +++ b/drivers/mtd/nand/raw/Makefile @@ -60,6 +60,7 @@ obj-$(CONFIG_MTD_NAND_ARASAN) += arasan-nand-controller.o obj-$(CONFIG_MTD_NAND_INTEL_LGM) += intel-nand-controller.o obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o obj-$(CONFIG_MTD_NAND_PL35X) += pl35x-nand-controller.o +obj-$(CONFIG_MTD_NAND_RZN1) += rzn1-nand-controller.o nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o nand-objs += nand_onfi.o diff --git a/drivers/mtd/nand/raw/rzn1-nand-controller.c b/drivers/mtd/nand/raw/rzn1-nand-controller.c new file mode 100644 index 000000000000..cd736c05ed87 --- /dev/null +++ b/drivers/mtd/nand/raw/rzn1-nand-controller.c @@ -0,0 +1,1417 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Renesas RZ/N1D, RZ/N1S, RZ/N1L NAND flash controller driver + * + * Copyright (C) 2021 Schneider Electric + * Author: Miquel RAYNAL + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define COMMAND_REG 0x00 +#define COMMAND_SEQ(x) FIELD_PREP(GENMASK(5, 0), (x)) +#define COMMAND_SEQ_10 COMMAND_SEQ(0x2A) +#define COMMAND_SEQ_12 COMMAND_SEQ(0x0C) +#define COMMAND_SEQ_18 COMMAND_SEQ(0x32) +#define COMMAND_SEQ_19 COMMAND_SEQ(0x13) +#define COMMAND_SEQ_GEN_IN COMMAND_SEQ_18 +#define COMMAND_SEQ_GEN_OUT COMMAND_SEQ_19 +#define COMMAND_SEQ_READ_PAGE COMMAND_SEQ_10 +#define COMMAND_SEQ_WRITE_PAGE COMMAND_SEQ_12 +#define COMMAND_INPUT_SEL_AHBS 0 +#define COMMAND_INPUT_SEL_DMA BIT(6) +#define COMMAND_FIFO_SEL 0 +#define COMMAND_DATA_SEL BIT(7) +#define COMMAND_0(x) FIELD_PREP(GENMASK(15, 8), (x)) +#define COMMAND_1(x) FIELD_PREP(GENMASK(23, 16), (x)) +#define COMMAND_2(x) FIELD_PREP(GENMASK(31, 24), (x)) + +#define CONTROL_REG 0x04 +#define CONTROL_CHECK_RB_LINE 0 +#define CONTROL_ECC_BLOCK_SIZE(x) FIELD_PREP(GENMASK(2, 1), (x)) +#define CONTROL_ECC_BLOCK_SIZE_256 CONTROL_ECC_BLOCK_SIZE(0) +#define CONTROL_ECC_BLOCK_SIZE_512 CONTROL_ECC_BLOCK_SIZE(1) +#define CONTROL_ECC_BLOCK_SIZE_1024 CONTROL_ECC_BLOCK_SIZE(2) +#define CONTROL_INT_EN BIT(4) +#define CONTROL_ECC_EN BIT(5) +#define CONTROL_BLOCK_SIZE(x) FIELD_PREP(GENMASK(7, 6), (x)) +#define CONTROL_BLOCK_SIZE_32P CONTROL_BLOCK_SIZE(0) +#define CONTROL_BLOCK_SIZE_64P CONTROL_BLOCK_SIZE(1) +#define CONTROL_BLOCK_SIZE_128P CONTROL_BLOCK_SIZE(2) +#define CONTROL_BLOCK_SIZE_256P CONTROL_BLOCK_SIZE(3) + +#define STATUS_REG 0x8 +#define MEM_RDY(cs, reg) (FIELD_GET(GENMASK(3, 0), (reg)) & BIT(cs)) +#define CTRL_RDY(reg) (FIELD_GET(BIT(8), (reg)) == 0) + +#define ECC_CTRL_REG 0x18 +#define ECC_CTRL_CAP(x) FIELD_PREP(GENMASK(2, 0), (x)) +#define ECC_CTRL_CAP_2B ECC_CTRL_CAP(0) +#define ECC_CTRL_CAP_4B ECC_CTRL_CAP(1) +#define ECC_CTRL_CAP_8B ECC_CTRL_CAP(2) +#define ECC_CTRL_CAP_16B ECC_CTRL_CAP(3) +#define ECC_CTRL_CAP_24B ECC_CTRL_CAP(4) +#define ECC_CTRL_CAP_32B ECC_CTRL_CAP(5) +#define ECC_CTRL_ERR_THRESHOLD(x) FIELD_PREP(GENMASK(13, 8), (x)) + +#define INT_MASK_REG 0x10 +#define INT_STATUS_REG 0x14 +#define INT_CMD_END BIT(1) +#define INT_DMA_END BIT(3) +#define INT_MEM_RDY(cs) FIELD_PREP(GENMASK(11, 8), BIT(cs)) +#define INT_DMA_ENDED BIT(3) +#define MEM_IS_RDY(cs, reg) (FIELD_GET(GENMASK(11, 8), (reg)) & BIT(cs)) +#define DMA_HAS_ENDED(reg) FIELD_GET(BIT(3), (reg)) + +#define ECC_OFFSET_REG 0x1C +#define ECC_OFFSET(x) FIELD_PREP(GENMASK(15, 0), (x)) + +#define ECC_STAT_REG 0x20 +#define ECC_STAT_CORRECTABLE(cs, reg) (FIELD_GET(GENMASK(3, 0), (reg)) & BIT(cs)) +#define ECC_STAT_UNCORRECTABLE(cs, reg) (FIELD_GET(GENMASK(11, 8), (reg)) & BIT(cs)) + +#define ADDR0_COL_REG 0x24 +#define ADDR0_COL(x) FIELD_PREP(GENMASK(15, 0), (x)) + +#define ADDR0_ROW_REG 0x28 +#define ADDR0_ROW(x) FIELD_PREP(GENMASK(23, 0), (x)) + +#define ADDR1_COL_REG 0x2C +#define ADDR1_COL(x) FIELD_PREP(GENMASK(15, 0), (x)) + +#define ADDR1_ROW_REG 0x30 +#define ADDR1_ROW(x) FIELD_PREP(GENMASK(23, 0), (x)) + +#define FIFO_DATA_REG 0x38 + +#define DATA_REG 0x3C + +#define DATA_REG_SIZE_REG 0x40 + +#define DMA_ADDR_LOW_REG 0x64 + +#define DMA_ADDR_HIGH_REG 0x68 + +#define DMA_CNT_REG 0x6C + +#define DMA_CTRL_REG 0x70 +#define DMA_CTRL_INCREMENT_BURST_4 0 +#define DMA_CTRL_REGISTER_MANAGED_MODE 0 +#define DMA_CTRL_START BIT(7) + +#define MEM_CTRL_REG 0x80 +#define MEM_CTRL_CS(cs) FIELD_PREP(GENMASK(1, 0), (cs)) +#define MEM_CTRL_DIS_WP(cs) FIELD_PREP(GENMASK(11, 8), BIT((cs))) + +#define DATA_SIZE_REG 0x84 +#define DATA_SIZE(x) FIELD_PREP(GENMASK(14, 0), (x)) + +#define TIMINGS_ASYN_REG 0x88 +#define TIMINGS_ASYN_TRWP(x) FIELD_PREP(GENMASK(3, 0), max((x), 1U) - 1) +#define TIMINGS_ASYN_TRWH(x) FIELD_PREP(GENMASK(7, 4), max((x), 1U) - 1) + +#define TIM_SEQ0_REG 0x90 +#define TIM_SEQ0_TCCS(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_SEQ0_TADL(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_SEQ0_TRHW(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) +#define TIM_SEQ0_TWHR(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) + +#define TIM_SEQ1_REG 0x94 +#define TIM_SEQ1_TWB(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_SEQ1_TRR(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_SEQ1_TWW(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) + +#define TIM_GEN_SEQ0_REG 0x98 +#define TIM_GEN_SEQ0_D0(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_GEN_SEQ0_D1(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_GEN_SEQ0_D2(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) +#define TIM_GEN_SEQ0_D3(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) + +#define TIM_GEN_SEQ1_REG 0x9c +#define TIM_GEN_SEQ1_D4(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_GEN_SEQ1_D5(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_GEN_SEQ1_D6(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) +#define TIM_GEN_SEQ1_D7(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) + +#define TIM_GEN_SEQ2_REG 0xA0 +#define TIM_GEN_SEQ2_D8(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_GEN_SEQ2_D9(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_GEN_SEQ2_D10(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) +#define TIM_GEN_SEQ2_D11(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) + +#define FIFO_INIT_REG 0xB4 +#define FIFO_INIT BIT(0) + +#define FIFO_STATE_REG 0xB4 +#define FIFO_STATE_R_EMPTY(reg) FIELD_GET(BIT(0), (reg)) +#define FIFO_STATE_W_FULL(reg) FIELD_GET(BIT(1), (reg)) +#define FIFO_STATE_C_EMPTY(reg) FIELD_GET(BIT(2), (reg)) +#define FIFO_STATE_R_FULL(reg) FIELD_GET(BIT(6), (reg)) +#define FIFO_STATE_W_EMPTY(reg) FIELD_GET(BIT(7), (reg)) + +#define GEN_SEQ_CTRL_REG 0xB8 +#define GEN_SEQ_CMD0_EN BIT(0) +#define GEN_SEQ_CMD1_EN BIT(1) +#define GEN_SEQ_CMD2_EN BIT(2) +#define GEN_SEQ_CMD3_EN BIT(3) +#define GEN_SEQ_COL_A0(x) FIELD_PREP(GENMASK(5, 4), min((x), 2U)) +#define GEN_SEQ_COL_A1(x) FIELD_PREP(GENMASK(7, 6), min((x), 2U)) +#define GEN_SEQ_ROW_A0(x) FIELD_PREP(GENMASK(9, 8), min((x), 3U)) +#define GEN_SEQ_ROW_A1(x) FIELD_PREP(GENMASK(11, 10), min((x), 3U)) +#define GEN_SEQ_DATA_EN BIT(12) +#define GEN_SEQ_DELAY_EN(x) FIELD_PREP(GENMASK(14, 13), (x)) +#define GEN_SEQ_DELAY0_EN GEN_SEQ_DELAY_EN(1) +#define GEN_SEQ_DELAY1_EN GEN_SEQ_DELAY_EN(2) +#define GEN_SEQ_IMD_SEQ BIT(15) +#define GEN_SEQ_COMMAND_3(x) FIELD_PREP(GENMASK(26, 16), (x)) + +#define DMA_TLVL_REG 0x114 +#define DMA_TLVL(x) FIELD_PREP(GENMASK(7, 0), (x)) +#define DMA_TLVL_MAX DMA_TLVL(0xFF) + +#define TIM_GEN_SEQ3_REG 0x134 +#define TIM_GEN_SEQ3_D12(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) + +#define ECC_CNT_REG 0x14C +#define ECC_CNT(cs, reg) FIELD_GET(GENMASK(5, 0), (reg) >> ((cs) * 8)) + +#define RZN1_CS_NUM 4 + +#define TO_CYCLES64(ps, period_ns) ((unsigned int)DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ + period_ns)) + +struct rzn1_nand_chip_sel { + unsigned int cs; +}; + +struct rzn1_nand_chip { + struct nand_chip chip; + struct list_head node; + int selected_die; + u32 ctrl; + unsigned int nsels; + u32 control; + u32 ecc_ctrl; + u32 timings_asyn; + u32 tim_seq0; + u32 tim_seq1; + u32 tim_gen_seq0; + u32 tim_gen_seq1; + u32 tim_gen_seq2; + u32 tim_gen_seq3; + struct rzn1_nand_chip_sel sels[]; +}; + +struct rzn1_nfc { + struct nand_controller controller; + struct device *dev; + void __iomem *regs; + struct clk *hclk; + struct clk *eclk; + unsigned long assigned_cs; + struct list_head chips; + struct nand_chip *selected_chip; + struct completion complete; + bool use_polling; + u8 *buf; + unsigned int buf_sz; +}; + +struct rzn1_op { + u32 command; + u32 addr0_col; + u32 addr0_row; + u32 addr1_col; + u32 addr1_row; + u32 data_size; + u32 ecc_offset; + u32 gen_seq_ctrl; + u8 *buf; + bool read; + unsigned int len; +}; + +static inline struct rzn1_nfc *to_rzn1_nfc(struct nand_controller *ctrl) +{ + return container_of(ctrl, struct rzn1_nfc, controller); +} + +static inline struct rzn1_nand_chip *to_rzn1_nand(struct nand_chip *chip) +{ + return container_of(chip, struct rzn1_nand_chip, chip); +} + +static inline unsigned int to_nfc_cs(struct rzn1_nand_chip *nand) +{ + return nand->sels[nand->selected_die].cs; +} + +static void rzn1_nfc_dis_correction(struct rzn1_nfc *nfc) +{ + u32 control; + + control = readl_relaxed(nfc->regs + CONTROL_REG); + control &= ~CONTROL_ECC_EN; + writel_relaxed(control, nfc->regs + CONTROL_REG); +} + +static void rzn1_nfc_en_correction(struct rzn1_nfc *nfc) +{ + u32 control; + + control = readl_relaxed(nfc->regs + CONTROL_REG); + control |= CONTROL_ECC_EN; + writel_relaxed(control, nfc->regs + CONTROL_REG); +} + +static void rzn1_nfc_clear_status(struct rzn1_nfc *nfc) +{ + writel_relaxed(0, nfc->regs + INT_STATUS_REG); + writel_relaxed(0, nfc->regs + ECC_STAT_REG); + writel_relaxed(0, nfc->regs + ECC_CNT_REG); +} + +static void rzn1_nfc_dis_interrupts(struct rzn1_nfc *nfc) +{ + writel_relaxed(0, nfc->regs + INT_MASK_REG); +} + +static void rzn1_nfc_en_interrupts(struct rzn1_nfc *nfc, u32 val) +{ + if (!nfc->use_polling) + writel_relaxed(val, nfc->regs + INT_MASK_REG); +} + +static void rzn1_nfc_clear_fifo(struct rzn1_nfc *nfc) +{ + writel_relaxed(FIFO_INIT, nfc->regs + FIFO_INIT_REG); +} + +static void rzn1_nfc_select_target(struct nand_chip *chip, int die_nr) +{ + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + unsigned int cs = rzn1_nand->sels[die_nr].cs; + + if (chip == nfc->selected_chip && die_nr == rzn1_nand->selected_die) + return; + + rzn1_nfc_clear_status(nfc); + writel_relaxed(MEM_CTRL_CS(cs) | MEM_CTRL_DIS_WP(cs), nfc->regs + MEM_CTRL_REG); + writel_relaxed(rzn1_nand->control, nfc->regs + CONTROL_REG); + writel_relaxed(rzn1_nand->ecc_ctrl, nfc->regs + ECC_CTRL_REG); + writel_relaxed(rzn1_nand->timings_asyn, nfc->regs + TIMINGS_ASYN_REG); + writel_relaxed(rzn1_nand->tim_seq0, nfc->regs + TIM_SEQ0_REG); + writel_relaxed(rzn1_nand->tim_seq1, nfc->regs + TIM_SEQ1_REG); + writel_relaxed(rzn1_nand->tim_gen_seq0, nfc->regs + TIM_GEN_SEQ0_REG); + writel_relaxed(rzn1_nand->tim_gen_seq1, nfc->regs + TIM_GEN_SEQ1_REG); + writel_relaxed(rzn1_nand->tim_gen_seq2, nfc->regs + TIM_GEN_SEQ2_REG); + writel_relaxed(rzn1_nand->tim_gen_seq3, nfc->regs + TIM_GEN_SEQ3_REG); + + nfc->selected_chip = chip; + rzn1_nand->selected_die = die_nr; +} + +static void rzn1_nfc_trigger_op(struct rzn1_nfc *nfc, struct rzn1_op *rop) +{ + writel_relaxed(rop->addr0_col, nfc->regs + ADDR0_COL_REG); + writel_relaxed(rop->addr0_row, nfc->regs + ADDR0_ROW_REG); + writel_relaxed(rop->addr1_col, nfc->regs + ADDR1_COL_REG); + writel_relaxed(rop->addr1_row, nfc->regs + ADDR1_ROW_REG); + writel_relaxed(rop->ecc_offset, nfc->regs + ECC_OFFSET_REG); + writel_relaxed(rop->gen_seq_ctrl, nfc->regs + GEN_SEQ_CTRL_REG); + writel_relaxed(DATA_SIZE(rop->len), nfc->regs + DATA_SIZE_REG); + writel_relaxed(rop->command, nfc->regs + COMMAND_REG); +} + +static void rzn1_nfc_trigger_dma(struct rzn1_nfc *nfc) +{ + writel_relaxed(DMA_CTRL_INCREMENT_BURST_4 | + DMA_CTRL_REGISTER_MANAGED_MODE | + DMA_CTRL_START, nfc->regs + DMA_CTRL_REG); +} + +static irqreturn_t rzn1_nfc_irq_handler(int irq, void *private) +{ + struct rzn1_nfc *nfc = private; + + rzn1_nfc_dis_interrupts(nfc); + complete(&nfc->complete); + + return IRQ_HANDLED; +} + +static int rzn1_nfc_wait_end_of_op(struct rzn1_nfc *nfc, + struct nand_chip *chip) +{ + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + unsigned int cs = to_nfc_cs(rzn1_nand); + u32 status; + int ret; + + ret = readl_poll_timeout(nfc->regs + STATUS_REG, status, + MEM_RDY(cs, status) && CTRL_RDY(status), + 1, 100000); + if (ret) + dev_err(nfc->dev, "Operation timed out, status: 0x%08x\n", + status); + + return ret; +} + +static int rzn1_nfc_wait_end_of_io(struct rzn1_nfc *nfc, + struct nand_chip *chip) +{ + int timeout_ms = 1000; + int ret; + + if (nfc->use_polling) { + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + unsigned int cs = to_nfc_cs(rzn1_nand); + u32 status; + + ret = readl_poll_timeout(nfc->regs + INT_STATUS_REG, status, + MEM_IS_RDY(cs, status) & + DMA_HAS_ENDED(status), + 0, timeout_ms * 1000); + } else { + ret = wait_for_completion_timeout(&nfc->complete, + msecs_to_jiffies(timeout_ms)); + if (!ret) + ret = -ETIMEDOUT; + else + ret = 0; + } + + return ret; +} + +static int rzn1_read_page_hw_ecc(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + unsigned int cs = to_nfc_cs(rzn1_nand); + struct rzn1_op rop = { + .command = COMMAND_INPUT_SEL_DMA | COMMAND_0(NAND_CMD_READ0) | + COMMAND_2(NAND_CMD_READSTART) | COMMAND_FIFO_SEL | + COMMAND_SEQ_READ_PAGE, + .addr0_row = page, + .len = mtd->writesize, + .ecc_offset = ECC_OFFSET(mtd->writesize + 2), + }; + unsigned int max_bitflips = 0; + dma_addr_t dma_addr; + u32 ecc_stat; + int bf, ret, i; + + /* Prepare controller */ + rzn1_nfc_select_target(chip, chip->cur_cs); + rzn1_nfc_clear_status(nfc); + reinit_completion(&nfc->complete); + rzn1_nfc_en_interrupts(nfc, INT_DMA_ENDED); + rzn1_nfc_en_correction(nfc); + + /* Configure DMA */ + dma_addr = dma_map_single(nfc->dev, nfc->buf, mtd->writesize, + DMA_FROM_DEVICE); + writel(dma_addr, nfc->regs + DMA_ADDR_LOW_REG); + writel(mtd->writesize, nfc->regs + DMA_CNT_REG); + writel(DMA_TLVL_MAX, nfc->regs + DMA_TLVL_REG); + + rzn1_nfc_trigger_op(nfc, &rop); + rzn1_nfc_trigger_dma(nfc); + + ret = rzn1_nfc_wait_end_of_io(nfc, chip); + dma_unmap_single(nfc->dev, dma_addr, mtd->writesize, DMA_FROM_DEVICE); + rzn1_nfc_dis_correction(nfc); + if (ret) { + dev_err(nfc->dev, "Read page operation never ending\n"); + return ret; + } + + ecc_stat = readl_relaxed(nfc->regs + ECC_STAT_REG); + + if (oob_required || ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { + ret = nand_change_read_column_op(chip, mtd->writesize, + chip->oob_poi, mtd->oobsize, + false); + if (ret) + return ret; + } + + if (ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { + for (i = 0; i < chip->ecc.steps; i++) { + unsigned int off = i * chip->ecc.size; + unsigned int eccoff = i * chip->ecc.bytes; + + bf = nand_check_erased_ecc_chunk(nfc->buf + off, + chip->ecc.size, + chip->oob_poi + 2 + eccoff, + chip->ecc.bytes, + NULL, 0, + chip->ecc.strength); + if (bf < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += bf; + max_bitflips = max_t(unsigned int, max_bitflips, bf); + } + } + } else if (ECC_STAT_CORRECTABLE(cs, ecc_stat)) { + bf = ECC_CNT(cs, readl_relaxed(nfc->regs + ECC_CNT_REG)); + /* + * The number of bitflips is an approximation given the fact + * that this controller does not provide per-chunk details but + * only gives statistics on the entire page. + */ + mtd->ecc_stats.corrected += bf; + } + + memcpy(buf, nfc->buf, mtd->writesize); + + return 0; +} + +static int rzn1_read_subpage_hw_ecc(struct nand_chip *chip, u32 req_offset, + u32 req_len, u8 *bufpoi, int page) +{ + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + unsigned int cs = to_nfc_cs(rzn1_nand); + unsigned int page_off = round_down(req_offset, chip->ecc.size); + unsigned int real_len = round_up(req_offset + req_len - page_off, + chip->ecc.size); + unsigned int start_chunk = page_off / chip->ecc.size; + unsigned int nchunks = real_len / chip->ecc.size; + unsigned int ecc_off = 2 + (start_chunk * chip->ecc.bytes); + struct rzn1_op rop = { + .command = COMMAND_INPUT_SEL_AHBS | COMMAND_0(NAND_CMD_READ0) | + COMMAND_2(NAND_CMD_READSTART) | COMMAND_FIFO_SEL | + COMMAND_SEQ_READ_PAGE, + .addr0_row = page, + .addr0_col = page_off, + .len = real_len, + .ecc_offset = ECC_OFFSET(mtd->writesize + ecc_off), + }; + unsigned int max_bitflips = 0; + u32 ecc_stat; + int bf, ret, i; + + /* Prepare controller */ + rzn1_nfc_select_target(chip, chip->cur_cs); + rzn1_nfc_clear_status(nfc); + rzn1_nfc_en_correction(nfc); + rzn1_nfc_trigger_op(nfc, &rop); + + while (!FIFO_STATE_C_EMPTY(readl(nfc->regs + FIFO_STATE_REG))) + cpu_relax(); + + while (FIFO_STATE_R_EMPTY(readl(nfc->regs + FIFO_STATE_REG))) + cpu_relax(); + + ioread32_rep(nfc->regs + FIFO_DATA_REG, bufpoi + page_off, + real_len / 4); + + if (!FIFO_STATE_R_EMPTY(readl(nfc->regs + FIFO_STATE_REG))) { + dev_err(nfc->dev, "Clearing residual data in the read FIFO\n"); + rzn1_nfc_clear_fifo(nfc); + } + + ret = rzn1_nfc_wait_end_of_op(nfc, chip); + rzn1_nfc_dis_correction(nfc); + if (ret) { + dev_err(nfc->dev, "Read subpage operation never ending\n"); + return ret; + } + + ecc_stat = readl_relaxed(nfc->regs + ECC_STAT_REG); + + if (ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { + ret = nand_change_read_column_op(chip, mtd->writesize, + chip->oob_poi, mtd->oobsize, + false); + if (ret) + return ret; + + for (i = start_chunk; i < nchunks; i++) { + unsigned int dataoff = i * chip->ecc.size; + unsigned int eccoff = 2 + (i * chip->ecc.bytes); + + bf = nand_check_erased_ecc_chunk(bufpoi + dataoff, + chip->ecc.size, + chip->oob_poi + eccoff, + chip->ecc.bytes, + NULL, 0, + chip->ecc.strength); + if (bf < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += bf; + max_bitflips = max_t(unsigned int, max_bitflips, bf); + } + } + } else if (ECC_STAT_CORRECTABLE(cs, ecc_stat)) { + bf = ECC_CNT(cs, readl_relaxed(nfc->regs + ECC_CNT_REG)); + /* + * The number of bitflips is an approximation given the fact + * that this controller does not provide per-chunk details but + * only gives statistics on the entire page. + */ + mtd->ecc_stats.corrected += bf; + } + + return 0; +} + +static int rzn1_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + unsigned int cs = to_nfc_cs(rzn1_nand); + struct rzn1_op rop = { + .command = COMMAND_INPUT_SEL_DMA | COMMAND_0(NAND_CMD_SEQIN) | + COMMAND_1(NAND_CMD_PAGEPROG) | COMMAND_FIFO_SEL | + COMMAND_SEQ_WRITE_PAGE, + .addr0_row = page, + .len = mtd->writesize, + .ecc_offset = ECC_OFFSET(mtd->writesize + 2), + }; + dma_addr_t dma_addr; + int ret; + + memcpy(nfc->buf, buf, mtd->writesize); + + /* Prepare controller */ + rzn1_nfc_select_target(chip, chip->cur_cs); + rzn1_nfc_clear_status(nfc); + reinit_completion(&nfc->complete); + rzn1_nfc_en_interrupts(nfc, INT_MEM_RDY(cs)); + rzn1_nfc_en_correction(nfc); + + /* Configure DMA */ + dma_addr = dma_map_single(nfc->dev, (void *)nfc->buf, mtd->writesize, + DMA_TO_DEVICE); + writel(dma_addr, nfc->regs + DMA_ADDR_LOW_REG); + writel(mtd->writesize, nfc->regs + DMA_CNT_REG); + writel(DMA_TLVL_MAX, nfc->regs + DMA_TLVL_REG); + + rzn1_nfc_trigger_op(nfc, &rop); + rzn1_nfc_trigger_dma(nfc); + + ret = rzn1_nfc_wait_end_of_io(nfc, chip); + dma_unmap_single(nfc->dev, dma_addr, mtd->writesize, DMA_TO_DEVICE); + rzn1_nfc_dis_correction(nfc); + if (ret) { + dev_err(nfc->dev, "Write page operation never ending\n"); + return ret; + } + + if (oob_required) { + ret = nand_change_write_column_op(chip, mtd->writesize, + chip->oob_poi, mtd->oobsize, + false); + if (ret) + return ret; + } + + return 0; +} + +static int rzn1_write_subpage_hw_ecc(struct nand_chip *chip, u32 req_offset, + u32 req_len, const u8 *bufpoi, + int oob_required, int page) +{ + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int page_off = round_down(req_offset, chip->ecc.size); + unsigned int real_len = round_up(req_offset + req_len - page_off, + chip->ecc.size); + unsigned int start_chunk = page_off / chip->ecc.size; + unsigned int ecc_off = 2 + (start_chunk * chip->ecc.bytes); + struct rzn1_op rop = { + .command = COMMAND_INPUT_SEL_AHBS | COMMAND_0(NAND_CMD_SEQIN) | + COMMAND_1(NAND_CMD_PAGEPROG) | COMMAND_FIFO_SEL | + COMMAND_SEQ_WRITE_PAGE, + .addr0_row = page, + .addr0_col = page_off, + .len = real_len, + .ecc_offset = ECC_OFFSET(mtd->writesize + ecc_off), + }; + int ret; + + /* Prepare controller */ + rzn1_nfc_select_target(chip, chip->cur_cs); + rzn1_nfc_clear_status(nfc); + rzn1_nfc_en_correction(nfc); + rzn1_nfc_trigger_op(nfc, &rop); + + while (FIFO_STATE_W_FULL(readl(nfc->regs + FIFO_STATE_REG))) + cpu_relax(); + + iowrite32_rep(nfc->regs + FIFO_DATA_REG, bufpoi + page_off, + real_len / 4); + + while (!FIFO_STATE_W_EMPTY(readl(nfc->regs + FIFO_STATE_REG))) + cpu_relax(); + + ret = rzn1_nfc_wait_end_of_op(nfc, chip); + rzn1_nfc_dis_correction(nfc); + if (ret) { + dev_err(nfc->dev, "Write subpage operation never ending\n"); + return ret; + } + + return 0; +} + +/* + * This controller is simple enough and thus does not need to use the parser + * provided by the core, instead, handle every situation here. + */ +static int rzn1_nfc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, bool check_only) +{ + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + const struct nand_op_instr *instr = NULL; + struct rzn1_op rop = { + .command = COMMAND_INPUT_SEL_AHBS, + .gen_seq_ctrl = GEN_SEQ_IMD_SEQ, + }; + unsigned int cmd_phase = 0, addr_phase = 0, data_phase = 0, + delay_phase = 0, delays = 0; + unsigned int op_id, col_addrs, row_addrs, naddrs, remainder, words; + const u8 *addrs; + u32 last_bytes; + int i, ret; + + if (!check_only) + rzn1_nfc_select_target(chip, op->cs); + + for (op_id = 0; op_id < op->ninstrs; op_id++) { + instr = &op->instrs[op_id]; + + nand_op_trace(" ", instr); + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + switch (cmd_phase++) { + case 0: + rop.command |= COMMAND_0(instr->ctx.cmd.opcode); + rop.gen_seq_ctrl |= GEN_SEQ_CMD0_EN; + break; + case 1: + rop.gen_seq_ctrl |= GEN_SEQ_COMMAND_3(instr->ctx.cmd.opcode); + rop.gen_seq_ctrl |= GEN_SEQ_CMD3_EN; + if (addr_phase == 0) + addr_phase = 1; + break; + case 2: + rop.command |= COMMAND_2(instr->ctx.cmd.opcode); + rop.gen_seq_ctrl |= GEN_SEQ_CMD2_EN; + if (addr_phase <= 1) + addr_phase = 2; + break; + case 3: + rop.command |= COMMAND_1(instr->ctx.cmd.opcode); + rop.gen_seq_ctrl |= GEN_SEQ_CMD1_EN; + if (addr_phase <= 1) + addr_phase = 2; + if (delay_phase == 0) + delay_phase = 1; + if (data_phase == 0) + data_phase = 1; + break; + default: + return -EOPNOTSUPP; + } + break; + + case NAND_OP_ADDR_INSTR: + addrs = instr->ctx.addr.addrs; + naddrs = instr->ctx.addr.naddrs; + if (naddrs > 5) + return -EOPNOTSUPP; + + col_addrs = min(2U, naddrs); + row_addrs = naddrs > 2 ? naddrs - col_addrs : 0; + + switch (addr_phase++) { + case 0: + for (i = 0; i < col_addrs; i++) + rop.addr0_col |= addrs[i] << (i * 8); + rop.gen_seq_ctrl |= GEN_SEQ_COL_A0(col_addrs); + + for (i = 0; i < row_addrs; i++) + rop.addr0_row |= addrs[2 + i] << (i * 8); + rop.gen_seq_ctrl |= GEN_SEQ_ROW_A0(row_addrs); + + if (cmd_phase == 0) + cmd_phase = 1; + break; + case 1: + for (i = 0; i < col_addrs; i++) + rop.addr1_col |= addrs[i] << (i * 8); + rop.gen_seq_ctrl |= GEN_SEQ_COL_A1(col_addrs); + + for (i = 0; i < row_addrs; i++) + rop.addr1_row |= addrs[2 + i] << (i * 8); + rop.gen_seq_ctrl |= GEN_SEQ_ROW_A1(row_addrs); + + if (cmd_phase <= 1) + cmd_phase = 2; + break; + default: + return -EOPNOTSUPP; + } + break; + + case NAND_OP_DATA_IN_INSTR: + rop.read = true; + fallthrough; + case NAND_OP_DATA_OUT_INSTR: + rop.gen_seq_ctrl |= GEN_SEQ_DATA_EN; + rop.buf = instr->ctx.data.buf.in; + rop.len = instr->ctx.data.len; + rop.command |= COMMAND_FIFO_SEL; + + switch (data_phase++) { + case 0: + if (cmd_phase <= 2) + cmd_phase = 3; + if (addr_phase <= 1) + addr_phase = 2; + if (delay_phase == 0) + delay_phase = 1; + break; + default: + return -EOPNOTSUPP; + } + break; + + case NAND_OP_WAITRDY_INSTR: + switch (delay_phase++) { + case 0: + rop.gen_seq_ctrl |= GEN_SEQ_DELAY0_EN; + + if (cmd_phase <= 2) + cmd_phase = 3; + break; + case 1: + rop.gen_seq_ctrl |= GEN_SEQ_DELAY1_EN; + + if (cmd_phase <= 3) + cmd_phase = 4; + if (data_phase == 0) + data_phase = 1; + break; + default: + return -EOPNOTSUPP; + } + break; + } + } + + /* + * Sequence 19 is generic and dedicated to write operations. + * Sequence 18 is also generic and works for all other operations. + */ + if (rop.buf && !rop.read) + rop.command |= COMMAND_SEQ_GEN_OUT; + else + rop.command |= COMMAND_SEQ_GEN_IN; + + if (delays > 1) { + dev_err(nfc->dev, "Cannot handle more than one wait delay\n"); + return -EOPNOTSUPP; + } + + if (check_only) + return 0; + + rzn1_nfc_trigger_op(nfc, &rop); + + words = rop.len / sizeof(u32); + remainder = rop.len % sizeof(u32); + if (rop.buf && rop.read) { + while (!FIFO_STATE_C_EMPTY(readl(nfc->regs + FIFO_STATE_REG))) + cpu_relax(); + + while (FIFO_STATE_R_EMPTY(readl(nfc->regs + FIFO_STATE_REG))) + cpu_relax(); + + ioread32_rep(nfc->regs + FIFO_DATA_REG, rop.buf, words); + if (remainder) { + last_bytes = readl_relaxed(nfc->regs + FIFO_DATA_REG); + memcpy(rop.buf + (words * sizeof(u32)), &last_bytes, + remainder); + } + + if (!FIFO_STATE_R_EMPTY(readl(nfc->regs + FIFO_STATE_REG))) { + dev_warn(nfc->dev, + "Clearing residual data in the read FIFO\n"); + rzn1_nfc_clear_fifo(nfc); + } + } else if (rop.len && !rop.read) { + while (FIFO_STATE_W_FULL(readl(nfc->regs + FIFO_STATE_REG))) + cpu_relax(); + + iowrite32_rep(nfc->regs + FIFO_DATA_REG, rop.buf, + DIV_ROUND_UP(rop.len, 4)); + + if (remainder) { + last_bytes = 0; + memcpy(&last_bytes, rop.buf + (words * sizeof(u32)), remainder); + writel_relaxed(last_bytes, nfc->regs + FIFO_DATA_REG); + } + + while (!FIFO_STATE_W_EMPTY(readl(nfc->regs + FIFO_STATE_REG))) + cpu_relax(); + } + + ret = rzn1_nfc_wait_end_of_op(nfc, chip); + if (ret) + return ret; + + return 0; +} + +static int rzn1_nfc_setup_interface(struct nand_chip *chip, int chipnr, + const struct nand_interface_config *conf) +{ + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + unsigned int period_ns = 1000000000 / clk_get_rate(nfc->eclk); + const struct nand_sdr_timings *sdr; + unsigned int cyc, cle, ale, bef_dly, ca_to_data; + + sdr = nand_get_sdr_timings(conf); + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + + if (sdr->tRP_min != sdr->tWP_min || sdr->tREH_min != sdr->tWH_min) { + dev_err(nfc->dev, "Read and write hold times must be identical\n"); + return -EINVAL; + } + + if (chipnr < 0) + return 0; + + rzn1_nand->timings_asyn = + TIMINGS_ASYN_TRWP(TO_CYCLES64(sdr->tRP_min, period_ns)) | + TIMINGS_ASYN_TRWH(TO_CYCLES64(sdr->tREH_min, period_ns)); + rzn1_nand->tim_seq0 = + TIM_SEQ0_TCCS(TO_CYCLES64(sdr->tCCS_min, period_ns)) | + TIM_SEQ0_TADL(TO_CYCLES64(sdr->tADL_min, period_ns)) | + TIM_SEQ0_TRHW(TO_CYCLES64(sdr->tRHW_min, period_ns)) | + TIM_SEQ0_TWHR(TO_CYCLES64(sdr->tWHR_min, period_ns)); + rzn1_nand->tim_seq1 = + TIM_SEQ1_TWB(TO_CYCLES64(sdr->tWB_max, period_ns)) | + TIM_SEQ1_TRR(TO_CYCLES64(sdr->tRR_min, period_ns)) | + TIM_SEQ1_TWW(TO_CYCLES64(sdr->tWW_min, period_ns)); + + cyc = sdr->tDS_min + sdr->tDH_min; + cle = sdr->tCLH_min + sdr->tCLS_min; + ale = sdr->tALH_min + sdr->tALS_min; + bef_dly = sdr->tWB_max - sdr->tDH_min; + ca_to_data = sdr->tWHR_min + sdr->tREA_max - sdr->tDH_min; + + /* + * D0 = CMD -> ADDR = tCLH + tCLS - 1 cycle + * D1 = CMD -> CMD = tCLH + tCLS - 1 cycle + * D2 = CMD -> DLY = tWB - tDH + * D3 = CMD -> DATA = tWHR + tREA - tDH + */ + rzn1_nand->tim_gen_seq0 = + TIM_GEN_SEQ0_D0(TO_CYCLES64(cle - cyc, period_ns)) | + TIM_GEN_SEQ0_D1(TO_CYCLES64(cle - cyc, period_ns)) | + TIM_GEN_SEQ0_D2(TO_CYCLES64(bef_dly, period_ns)) | + TIM_GEN_SEQ0_D3(TO_CYCLES64(ca_to_data, period_ns)); + + /* + * D4 = ADDR -> CMD = tALH + tALS - 1 cyle + * D5 = ADDR -> ADDR = tALH + tALS - 1 cyle + * D6 = ADDR -> DLY = tWB - tDH + * D7 = ADDR -> DATA = tWHR + tREA - tDH + */ + rzn1_nand->tim_gen_seq1 = + TIM_GEN_SEQ1_D4(TO_CYCLES64(ale - cyc, period_ns)) | + TIM_GEN_SEQ1_D5(TO_CYCLES64(ale - cyc, period_ns)) | + TIM_GEN_SEQ1_D6(TO_CYCLES64(bef_dly, period_ns)) | + TIM_GEN_SEQ1_D7(TO_CYCLES64(ca_to_data, period_ns)); + + /* + * D8 = DLY -> DATA = tRR + tREA + * D9 = DLY -> CMD = tRR + * D10 = DATA -> CMD = tCLH + tCLS - 1 cycle + * D11 = DATA -> DLY = tWB - tDH + */ + rzn1_nand->tim_gen_seq2 = + TIM_GEN_SEQ2_D8(TO_CYCLES64(sdr->tRR_min + sdr->tREA_max, period_ns)) | + TIM_GEN_SEQ2_D9(TO_CYCLES64(sdr->tRR_min, period_ns)) | + TIM_GEN_SEQ2_D10(TO_CYCLES64(cle - cyc, period_ns)) | + TIM_GEN_SEQ2_D11(TO_CYCLES64(bef_dly, period_ns)); + + /* D12 = DATA -> END = tCLH - tDH */ + rzn1_nand->tim_gen_seq3 = + TIM_GEN_SEQ3_D12(TO_CYCLES64(sdr->tCLH_min - sdr->tDH_min, period_ns)); + + return 0; +} + +static int rzn1_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + unsigned int eccbytes = round_up(chip->ecc.bytes, 4) * chip->ecc.steps; + + if (section) + return -ERANGE; + + oobregion->offset = 2; + oobregion->length = eccbytes; + + return 0; +} + +static int rzn1_nfc_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + unsigned int eccbytes = round_up(chip->ecc.bytes, 4) * chip->ecc.steps; + + if (section) + return -ERANGE; + + oobregion->offset = 2 + eccbytes; + oobregion->length = mtd->oobsize - oobregion->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops rzn1_nfc_ooblayout_ops = { + .ecc = rzn1_nfc_ooblayout_ecc, + .free = rzn1_nfc_ooblayout_free, +}; + +static int rzn1_nfc_hw_ecc_controller_init(struct nand_chip *chip) +{ + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + + if (mtd->writesize > SZ_16K) { + dev_err(nfc->dev, "Unsupported page size\n"); + return -EINVAL; + } + + switch (chip->ecc.size) { + case SZ_256: + rzn1_nand->control |= CONTROL_ECC_BLOCK_SIZE_256; + break; + case SZ_512: + rzn1_nand->control |= CONTROL_ECC_BLOCK_SIZE_512; + break; + case SZ_1K: + rzn1_nand->control |= CONTROL_ECC_BLOCK_SIZE_1024; + break; + default: + dev_err(nfc->dev, "Unsupported ECC chunk size\n"); + return -EINVAL; + } + + switch (chip->ecc.strength) { + case 2: + chip->ecc.bytes = 4; + rzn1_nand->ecc_ctrl |= ECC_CTRL_CAP_2B; + break; + case 4: + chip->ecc.bytes = 7; + rzn1_nand->ecc_ctrl |= ECC_CTRL_CAP_4B; + break; + case 8: + chip->ecc.bytes = 14; + rzn1_nand->ecc_ctrl |= ECC_CTRL_CAP_8B; + break; + case 16: + chip->ecc.bytes = 28; + rzn1_nand->ecc_ctrl |= ECC_CTRL_CAP_16B; + break; + case 24: + chip->ecc.bytes = 42; + rzn1_nand->ecc_ctrl |= ECC_CTRL_CAP_24B; + break; + case 32: + chip->ecc.bytes = 56; + rzn1_nand->ecc_ctrl |= ECC_CTRL_CAP_32B; + break; + default: + dev_err(nfc->dev, "Unsupported ECC strength\n"); + return -EINVAL; + } + + rzn1_nand->ecc_ctrl |= ECC_CTRL_ERR_THRESHOLD(chip->ecc.strength); + + mtd_set_ooblayout(mtd, &rzn1_nfc_ooblayout_ops); + chip->ecc.steps = mtd->writesize / chip->ecc.size; + chip->ecc.read_page = rzn1_read_page_hw_ecc; + chip->ecc.read_subpage = rzn1_read_subpage_hw_ecc; + chip->ecc.write_page = rzn1_write_page_hw_ecc; + chip->ecc.write_subpage = rzn1_write_subpage_hw_ecc; + + return 0; +} + +static int rzn1_nand_ecc_init(struct nand_chip *chip) +{ + struct nand_ecc_ctrl *ecc = &chip->ecc; + const struct nand_ecc_props *requirements = + nanddev_get_ecc_requirements(&chip->base); + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + int ret; + + if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE && + (!ecc->size || !ecc->strength)) { + if (requirements->step_size && requirements->strength) { + ecc->size = requirements->step_size; + ecc->strength = requirements->strength; + } else { + dev_err(nfc->dev, "No minimum ECC strength\n"); + return -EINVAL; + } + } + + switch (ecc->engine_type) { + case NAND_ECC_ENGINE_TYPE_ON_HOST: + ret = rzn1_nfc_hw_ecc_controller_init(chip); + if (ret) + return ret; + break; + case NAND_ECC_ENGINE_TYPE_NONE: + case NAND_ECC_ENGINE_TYPE_SOFT: + case NAND_ECC_ENGINE_TYPE_ON_DIE: + break; + default: + return -EINVAL; + } + + return 0; +} + +static int rzn1_nand_attach_chip(struct nand_chip *chip) +{ + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_memory_organization *memorg = nanddev_get_memorg(&chip->base); + int ret; + + /* Do not store BBT bits in the OOB section as it is not protected */ + if (chip->bbt_options & NAND_BBT_USE_FLASH) + chip->bbt_options |= NAND_BBT_NO_OOB; + + if (mtd->writesize <= 512) { + dev_err(nfc->dev, "Small page devices not supported\n"); + return -EINVAL; + } + + rzn1_nand->control |= CONTROL_CHECK_RB_LINE | CONTROL_INT_EN; + + switch (memorg->pages_per_eraseblock) { + case 32: + rzn1_nand->control |= CONTROL_BLOCK_SIZE_32P; + break; + case 64: + rzn1_nand->control |= CONTROL_BLOCK_SIZE_64P; + break; + case 128: + rzn1_nand->control |= CONTROL_BLOCK_SIZE_128P; + break; + case 256: + rzn1_nand->control |= CONTROL_BLOCK_SIZE_256P; + break; + default: + dev_err(nfc->dev, "Unsupported memory organization\n"); + return -EINVAL; + } + + chip->options |= NAND_SUBPAGE_READ; + + ret = rzn1_nand_ecc_init(chip); + if (ret) { + dev_err(nfc->dev, "ECC initialization failed (%d)\n", ret); + return ret; + } + + /* Force an update of the configuration registers */ + rzn1_nand->selected_die = -1; + + return 0; +} + +static const struct nand_controller_ops rzn1_nfc_ops = { + .attach_chip = rzn1_nand_attach_chip, + .exec_op = rzn1_nfc_exec_op, + .setup_interface = rzn1_nfc_setup_interface, +}; + +static int rzn1_nfc_alloc_dma_buf(struct rzn1_nfc *nfc, + struct mtd_info *new_mtd) +{ + unsigned int max_len = new_mtd->writesize + new_mtd->oobsize; + struct rzn1_nand_chip *entry, *temp; + struct nand_chip *chip; + struct mtd_info *mtd; + + list_for_each_entry_safe(entry, temp, &nfc->chips, node) { + chip = &entry->chip; + mtd = nand_to_mtd(chip); + max_len = max(max_len, mtd->writesize + mtd->oobsize); + } + + if (nfc->buf && nfc->buf_sz < max_len) { + devm_kfree(nfc->dev, nfc->buf); + nfc->buf = NULL; + } + + if (!nfc->buf) { + nfc->buf_sz = max_len; + nfc->buf = devm_kmalloc(nfc->dev, max_len, GFP_KERNEL | GFP_DMA); + if (!nfc->buf) + return -ENOMEM; + } + + return 0; +} + +static int rzn1_nand_chip_init(struct rzn1_nfc *nfc, struct device_node *np) +{ + struct rzn1_nand_chip *rzn1_nand; + struct mtd_info *mtd; + struct nand_chip *chip; + int nsels, ret, i; + u32 cs; + + nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); + if (nsels <= 0) { + ret = (nsels < 0) ? nsels : -EINVAL; + dev_err(nfc->dev, "Invalid reg property (%d)\n", ret); + return ret; + } + + /* Alloc the driver's NAND chip structure */ + rzn1_nand = devm_kzalloc(nfc->dev, struct_size(rzn1_nand, sels, nsels), + GFP_KERNEL); + if (!rzn1_nand) + return -ENOMEM; + + rzn1_nand->nsels = nsels; + rzn1_nand->selected_die = -1; + + for (i = 0; i < nsels; i++) { + ret = of_property_read_u32_index(np, "reg", i, &cs); + if (ret) { + dev_err(nfc->dev, "Incomplete reg property (%d)\n", + ret); + return ret; + } + + if (test_and_set_bit(cs, &nfc->assigned_cs)) { + dev_err(nfc->dev, "CS %d already assigned\n", cs); + return -EINVAL; + } + + /* + * No need to check for RB or WP properties, there is a 1:1 + * mandatory mapping with the CS. + */ + rzn1_nand->sels[i].cs = cs; + } + + chip = &rzn1_nand->chip; + chip->controller = &nfc->controller; + nand_set_flash_node(chip, np); + + mtd = nand_to_mtd(chip); + mtd->dev.parent = nfc->dev; + if (!mtd->name) { + dev_err(nfc->dev, "Missing MTD label\n"); + return -EINVAL; + } + + ret = nand_scan(chip, rzn1_nand->nsels); + if (ret) { + dev_err(nfc->dev, "Failed to scan the NAND chip (%d)\n", ret); + return ret; + } + + ret = rzn1_nfc_alloc_dma_buf(nfc, mtd); + if (ret) + goto cleanup_nand; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(nfc->dev, "Failed to register MTD device (%d)\n", ret); + goto cleanup_nand; + } + + list_add_tail(&rzn1_nand->node, &nfc->chips); + + return 0; + +cleanup_nand: + nand_cleanup(chip); + + return ret; +} + +static void rzn1_nand_chips_cleanup(struct rzn1_nfc *nfc) +{ + struct rzn1_nand_chip *entry, *temp; + struct nand_chip *chip; + int ret; + + list_for_each_entry_safe(entry, temp, &nfc->chips, node) { + chip = &entry->chip; + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + list_del(&entry->node); + } +} + +static int rzn1_nand_chips_init(struct rzn1_nfc *nfc) +{ + struct device_node *np; + int ret; + + for_each_child_of_node(nfc->dev->of_node, np) { + ret = rzn1_nand_chip_init(nfc, np); + if (ret) { + of_node_put(np); + goto cleanup_chips; + } + } + + return 0; + +cleanup_chips: + rzn1_nand_chips_cleanup(nfc); + + return ret; +} + +static int rzn1_nfc_probe(struct platform_device *pdev) +{ + struct rzn1_nfc *nfc; + int irq, ret; + + nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nfc->dev = &pdev->dev; + nand_controller_init(&nfc->controller); + nfc->controller.ops = &rzn1_nfc_ops; + INIT_LIST_HEAD(&nfc->chips); + init_completion(&nfc->complete); + + nfc->regs = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(nfc->regs)) + return PTR_ERR(nfc->regs); + + rzn1_nfc_dis_interrupts(nfc); + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + dev_info(&pdev->dev, "Using polling\n"); + nfc->use_polling = true; + } else { + ret = devm_request_irq(&pdev->dev, irq, rzn1_nfc_irq_handler, 0, + "rzn1-nand-controller", nfc); + if (ret < 0) + return ret; + } + + ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); + if (ret) + return ret; + + nfc->hclk = devm_clk_get(&pdev->dev, "hclk"); + if (IS_ERR(nfc->hclk)) + return PTR_ERR(nfc->hclk); + + nfc->eclk = devm_clk_get(&pdev->dev, "eclk"); + if (IS_ERR(nfc->eclk)) + return PTR_ERR(nfc->eclk); + + ret = clk_prepare_enable(nfc->hclk); + if (ret) + return ret; + + ret = clk_prepare_enable(nfc->eclk); + if (ret) + goto disable_hclk; + + rzn1_nfc_clear_fifo(nfc); + + platform_set_drvdata(pdev, nfc); + + ret = rzn1_nand_chips_init(nfc); + if (ret) + goto disable_eclk; + + return 0; + +disable_eclk: + clk_disable_unprepare(nfc->eclk); +disable_hclk: + clk_disable_unprepare(nfc->hclk); + + return ret; +} + +static int rzn1_nfc_remove(struct platform_device *pdev) +{ + struct rzn1_nfc *nfc = platform_get_drvdata(pdev); + + rzn1_nand_chips_cleanup(nfc); + + clk_disable_unprepare(nfc->eclk); + clk_disable_unprepare(nfc->hclk); + + return 0; +} + +static const struct of_device_id rzn1_nfc_id_table[] = { + { .compatible = "renesas,r9a06g032-nand-controller" }, + {} /* sentinel */ +}; +MODULE_DEVICE_TABLE(of, nfc_id_table); + +static struct platform_driver rzn1_nfc_driver = { + .driver = { + .name = "renesas-nfc", + .of_match_table = of_match_ptr(rzn1_nfc_id_table), + }, + .probe = rzn1_nfc_probe, + .remove = rzn1_nfc_remove, +}; +module_platform_driver(rzn1_nfc_driver); + +MODULE_AUTHOR("Miquel Raynal "); +MODULE_DESCRIPTION("Renesas RZ/N1x NAND flash controller driver"); +MODULE_LICENSE("GPL"); -- 2.27.0 From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org Received: from mail.kernel.org (mail.kernel.org [198.145.29.99]) by smtp.lore.kernel.org (Postfix) with ESMTP id B11F6C433EF for ; Thu, 18 Nov 2021 11:22:42 +0000 (UTC) Received: from bombadil.infradead.org (bombadil.infradead.org [198.137.202.133]) (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits)) (No client certificate requested) by mail.kernel.org (Postfix) with ESMTPS id 7528261A3D for ; Thu, 18 Nov 2021 11:22:42 +0000 (UTC) DMARC-Filter: OpenDMARC Filter v1.4.1 mail.kernel.org 7528261A3D Authentication-Results: mail.kernel.org; dmarc=none (p=none dis=none) header.from=bootlin.com Authentication-Results: mail.kernel.org; spf=none smtp.mailfrom=lists.infradead.org DKIM-Signature: v=1; a=rsa-sha256; q=dns/txt; c=relaxed/relaxed; d=lists.infradead.org; s=bombadil.20210309; h=Sender: Content-Transfer-Encoding:Content-Type:List-Subscribe:List-Help:List-Post: List-Archive:List-Unsubscribe:List-Id:MIME-Version:References:In-Reply-To: Message-Id:Date:Subject:Cc:To:From:Reply-To:Content-ID:Content-Description: Resent-Date:Resent-From:Resent-Sender:Resent-To:Resent-Cc:Resent-Message-ID: List-Owner; bh=qw0GIAJJ0oLBVAV3KFFHSe3+GTIxflydve9cP6Vc8Gs=; b=rrg+fdxKcZZmGa gre5UpLKnlIr2TA2iiFNPbcTxksYRmqnmNKUHB98u0R1KTnP8EP0eic0fV0SKvT+hsrczNb5o4xaK KW+CJhawG6AKY2IvOpilO7ViZ7ykM0Q9QJ8EqTkIKAJbdjESo4ZrFWVpRB1J4VBZ1I7LV1Y+2Hd3q UZFwjP9M9VWGsJ6TZUOYVHEUa4YO6vq8XcURvuCU+D+mDUEoIOipzyjzGah03xPG99CESX/U1qcPH bt8MOv1gT9OBMXX6Pi32RUSuGSLsIvXHs+n36jM65G+oH5gmSaCrW8OmVkEGTvvbLD1+NDhNY6wnu WWc+1oyoXCu0qHlWmsVg==; Received: from localhost ([::1] helo=bombadil.infradead.org) by bombadil.infradead.org with esmtp (Exim 4.94.2 #2 (Red Hat Linux)) id 1mnfUN-007YLd-HU; Thu, 18 Nov 2021 11:21:59 +0000 Received: from relay7-d.mail.gandi.net ([217.70.183.200]) by bombadil.infradead.org with esmtps (Exim 4.94.2 #2 (Red Hat Linux)) id 1mnfSG-007XeG-Pj; Thu, 18 Nov 2021 11:19:54 +0000 Received: (Authenticated sender: miquel.raynal@bootlin.com) by relay7-d.mail.gandi.net (Postfix) with ESMTPSA id 72D0920018; Thu, 18 Nov 2021 11:19:45 +0000 (UTC) From: Miquel Raynal To: Richard Weinberger , Vignesh Raghavendra , Tudor Ambarus , Pratyush Yadav , Michael Walle , Cc: Thomas Petazzoni , Jimmy Lalande , Milan Stevanovic , Geert Uytterhoeven , linux-renesas-soc@vger.kernel.org, Magnus Damm , , Miquel Raynal Subject: [PATCH 2/3] mtd: rawnand: rzn1: Add new NAND controller driver Date: Thu, 18 Nov 2021 12:19:39 +0100 Message-Id: <20211118111940.1275351-3-miquel.raynal@bootlin.com> X-Mailer: git-send-email 2.27.0 In-Reply-To: <20211118111940.1275351-1-miquel.raynal@bootlin.com> References: <20211118111940.1275351-1-miquel.raynal@bootlin.com> MIME-Version: 1.0 X-CRM114-Version: 20100106-BlameMichelson ( TRE 0.8.0 (BSD) ) MR-646709E3 X-CRM114-CacheID: sfid-20211118_031949_313193_76ECF229 X-CRM114-Status: GOOD ( 17.60 ) X-BeenThere: linux-mtd@lists.infradead.org X-Mailman-Version: 2.1.34 Precedence: list List-Id: Linux MTD discussion mailing list List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Content-Type: text/plain; charset="us-ascii" Content-Transfer-Encoding: 7bit Sender: "linux-mtd" Errors-To: linux-mtd-bounces+linux-mtd=archiver.kernel.org@lists.infradead.org Introduce Renesas RZ/N1x NAND controller driver which supports: - All ONFI timing modes - Different configurations of its internal ECC controller - On-die (not tested) and software ECC support - Several chips (not tested) - Subpage accesses - DMA and PIO Signed-off-by: Miquel Raynal --- drivers/mtd/nand/raw/Kconfig | 6 + drivers/mtd/nand/raw/Makefile | 1 + drivers/mtd/nand/raw/rzn1-nand-controller.c | 1417 +++++++++++++++++++ 3 files changed, 1424 insertions(+) create mode 100644 drivers/mtd/nand/raw/rzn1-nand-controller.c diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig index e1baed6c5b33..998339993abf 100644 --- a/drivers/mtd/nand/raw/Kconfig +++ b/drivers/mtd/nand/raw/Kconfig @@ -467,6 +467,12 @@ config MTD_NAND_PL35X Enables support for PrimeCell SMC PL351 and PL353 NAND controller found on Zynq7000. +config MTD_NAND_RZN1 + tristate "Renesas RZ/N1D, RZ/N1S, RZ/N1L NAND controller" + depends on OF || COMPILE_TEST + help + Enables support for Renesas RZ/N1x SoC family NAND controller. + comment "Misc" config MTD_SM_COMMON diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile index ee55f79e5e82..4d75d2520edf 100644 --- a/drivers/mtd/nand/raw/Makefile +++ b/drivers/mtd/nand/raw/Makefile @@ -60,6 +60,7 @@ obj-$(CONFIG_MTD_NAND_ARASAN) += arasan-nand-controller.o obj-$(CONFIG_MTD_NAND_INTEL_LGM) += intel-nand-controller.o obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o obj-$(CONFIG_MTD_NAND_PL35X) += pl35x-nand-controller.o +obj-$(CONFIG_MTD_NAND_RZN1) += rzn1-nand-controller.o nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o nand-objs += nand_onfi.o diff --git a/drivers/mtd/nand/raw/rzn1-nand-controller.c b/drivers/mtd/nand/raw/rzn1-nand-controller.c new file mode 100644 index 000000000000..cd736c05ed87 --- /dev/null +++ b/drivers/mtd/nand/raw/rzn1-nand-controller.c @@ -0,0 +1,1417 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Renesas RZ/N1D, RZ/N1S, RZ/N1L NAND flash controller driver + * + * Copyright (C) 2021 Schneider Electric + * Author: Miquel RAYNAL + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define COMMAND_REG 0x00 +#define COMMAND_SEQ(x) FIELD_PREP(GENMASK(5, 0), (x)) +#define COMMAND_SEQ_10 COMMAND_SEQ(0x2A) +#define COMMAND_SEQ_12 COMMAND_SEQ(0x0C) +#define COMMAND_SEQ_18 COMMAND_SEQ(0x32) +#define COMMAND_SEQ_19 COMMAND_SEQ(0x13) +#define COMMAND_SEQ_GEN_IN COMMAND_SEQ_18 +#define COMMAND_SEQ_GEN_OUT COMMAND_SEQ_19 +#define COMMAND_SEQ_READ_PAGE COMMAND_SEQ_10 +#define COMMAND_SEQ_WRITE_PAGE COMMAND_SEQ_12 +#define COMMAND_INPUT_SEL_AHBS 0 +#define COMMAND_INPUT_SEL_DMA BIT(6) +#define COMMAND_FIFO_SEL 0 +#define COMMAND_DATA_SEL BIT(7) +#define COMMAND_0(x) FIELD_PREP(GENMASK(15, 8), (x)) +#define COMMAND_1(x) FIELD_PREP(GENMASK(23, 16), (x)) +#define COMMAND_2(x) FIELD_PREP(GENMASK(31, 24), (x)) + +#define CONTROL_REG 0x04 +#define CONTROL_CHECK_RB_LINE 0 +#define CONTROL_ECC_BLOCK_SIZE(x) FIELD_PREP(GENMASK(2, 1), (x)) +#define CONTROL_ECC_BLOCK_SIZE_256 CONTROL_ECC_BLOCK_SIZE(0) +#define CONTROL_ECC_BLOCK_SIZE_512 CONTROL_ECC_BLOCK_SIZE(1) +#define CONTROL_ECC_BLOCK_SIZE_1024 CONTROL_ECC_BLOCK_SIZE(2) +#define CONTROL_INT_EN BIT(4) +#define CONTROL_ECC_EN BIT(5) +#define CONTROL_BLOCK_SIZE(x) FIELD_PREP(GENMASK(7, 6), (x)) +#define CONTROL_BLOCK_SIZE_32P CONTROL_BLOCK_SIZE(0) +#define CONTROL_BLOCK_SIZE_64P CONTROL_BLOCK_SIZE(1) +#define CONTROL_BLOCK_SIZE_128P CONTROL_BLOCK_SIZE(2) +#define CONTROL_BLOCK_SIZE_256P CONTROL_BLOCK_SIZE(3) + +#define STATUS_REG 0x8 +#define MEM_RDY(cs, reg) (FIELD_GET(GENMASK(3, 0), (reg)) & BIT(cs)) +#define CTRL_RDY(reg) (FIELD_GET(BIT(8), (reg)) == 0) + +#define ECC_CTRL_REG 0x18 +#define ECC_CTRL_CAP(x) FIELD_PREP(GENMASK(2, 0), (x)) +#define ECC_CTRL_CAP_2B ECC_CTRL_CAP(0) +#define ECC_CTRL_CAP_4B ECC_CTRL_CAP(1) +#define ECC_CTRL_CAP_8B ECC_CTRL_CAP(2) +#define ECC_CTRL_CAP_16B ECC_CTRL_CAP(3) +#define ECC_CTRL_CAP_24B ECC_CTRL_CAP(4) +#define ECC_CTRL_CAP_32B ECC_CTRL_CAP(5) +#define ECC_CTRL_ERR_THRESHOLD(x) FIELD_PREP(GENMASK(13, 8), (x)) + +#define INT_MASK_REG 0x10 +#define INT_STATUS_REG 0x14 +#define INT_CMD_END BIT(1) +#define INT_DMA_END BIT(3) +#define INT_MEM_RDY(cs) FIELD_PREP(GENMASK(11, 8), BIT(cs)) +#define INT_DMA_ENDED BIT(3) +#define MEM_IS_RDY(cs, reg) (FIELD_GET(GENMASK(11, 8), (reg)) & BIT(cs)) +#define DMA_HAS_ENDED(reg) FIELD_GET(BIT(3), (reg)) + +#define ECC_OFFSET_REG 0x1C +#define ECC_OFFSET(x) FIELD_PREP(GENMASK(15, 0), (x)) + +#define ECC_STAT_REG 0x20 +#define ECC_STAT_CORRECTABLE(cs, reg) (FIELD_GET(GENMASK(3, 0), (reg)) & BIT(cs)) +#define ECC_STAT_UNCORRECTABLE(cs, reg) (FIELD_GET(GENMASK(11, 8), (reg)) & BIT(cs)) + +#define ADDR0_COL_REG 0x24 +#define ADDR0_COL(x) FIELD_PREP(GENMASK(15, 0), (x)) + +#define ADDR0_ROW_REG 0x28 +#define ADDR0_ROW(x) FIELD_PREP(GENMASK(23, 0), (x)) + +#define ADDR1_COL_REG 0x2C +#define ADDR1_COL(x) FIELD_PREP(GENMASK(15, 0), (x)) + +#define ADDR1_ROW_REG 0x30 +#define ADDR1_ROW(x) FIELD_PREP(GENMASK(23, 0), (x)) + +#define FIFO_DATA_REG 0x38 + +#define DATA_REG 0x3C + +#define DATA_REG_SIZE_REG 0x40 + +#define DMA_ADDR_LOW_REG 0x64 + +#define DMA_ADDR_HIGH_REG 0x68 + +#define DMA_CNT_REG 0x6C + +#define DMA_CTRL_REG 0x70 +#define DMA_CTRL_INCREMENT_BURST_4 0 +#define DMA_CTRL_REGISTER_MANAGED_MODE 0 +#define DMA_CTRL_START BIT(7) + +#define MEM_CTRL_REG 0x80 +#define MEM_CTRL_CS(cs) FIELD_PREP(GENMASK(1, 0), (cs)) +#define MEM_CTRL_DIS_WP(cs) FIELD_PREP(GENMASK(11, 8), BIT((cs))) + +#define DATA_SIZE_REG 0x84 +#define DATA_SIZE(x) FIELD_PREP(GENMASK(14, 0), (x)) + +#define TIMINGS_ASYN_REG 0x88 +#define TIMINGS_ASYN_TRWP(x) FIELD_PREP(GENMASK(3, 0), max((x), 1U) - 1) +#define TIMINGS_ASYN_TRWH(x) FIELD_PREP(GENMASK(7, 4), max((x), 1U) - 1) + +#define TIM_SEQ0_REG 0x90 +#define TIM_SEQ0_TCCS(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_SEQ0_TADL(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_SEQ0_TRHW(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) +#define TIM_SEQ0_TWHR(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) + +#define TIM_SEQ1_REG 0x94 +#define TIM_SEQ1_TWB(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_SEQ1_TRR(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_SEQ1_TWW(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) + +#define TIM_GEN_SEQ0_REG 0x98 +#define TIM_GEN_SEQ0_D0(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_GEN_SEQ0_D1(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_GEN_SEQ0_D2(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) +#define TIM_GEN_SEQ0_D3(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) + +#define TIM_GEN_SEQ1_REG 0x9c +#define TIM_GEN_SEQ1_D4(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_GEN_SEQ1_D5(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_GEN_SEQ1_D6(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) +#define TIM_GEN_SEQ1_D7(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) + +#define TIM_GEN_SEQ2_REG 0xA0 +#define TIM_GEN_SEQ2_D8(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_GEN_SEQ2_D9(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_GEN_SEQ2_D10(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) +#define TIM_GEN_SEQ2_D11(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) + +#define FIFO_INIT_REG 0xB4 +#define FIFO_INIT BIT(0) + +#define FIFO_STATE_REG 0xB4 +#define FIFO_STATE_R_EMPTY(reg) FIELD_GET(BIT(0), (reg)) +#define FIFO_STATE_W_FULL(reg) FIELD_GET(BIT(1), (reg)) +#define FIFO_STATE_C_EMPTY(reg) FIELD_GET(BIT(2), (reg)) +#define FIFO_STATE_R_FULL(reg) FIELD_GET(BIT(6), (reg)) +#define FIFO_STATE_W_EMPTY(reg) FIELD_GET(BIT(7), (reg)) + +#define GEN_SEQ_CTRL_REG 0xB8 +#define GEN_SEQ_CMD0_EN BIT(0) +#define GEN_SEQ_CMD1_EN BIT(1) +#define GEN_SEQ_CMD2_EN BIT(2) +#define GEN_SEQ_CMD3_EN BIT(3) +#define GEN_SEQ_COL_A0(x) FIELD_PREP(GENMASK(5, 4), min((x), 2U)) +#define GEN_SEQ_COL_A1(x) FIELD_PREP(GENMASK(7, 6), min((x), 2U)) +#define GEN_SEQ_ROW_A0(x) FIELD_PREP(GENMASK(9, 8), min((x), 3U)) +#define GEN_SEQ_ROW_A1(x) FIELD_PREP(GENMASK(11, 10), min((x), 3U)) +#define GEN_SEQ_DATA_EN BIT(12) +#define GEN_SEQ_DELAY_EN(x) FIELD_PREP(GENMASK(14, 13), (x)) +#define GEN_SEQ_DELAY0_EN GEN_SEQ_DELAY_EN(1) +#define GEN_SEQ_DELAY1_EN GEN_SEQ_DELAY_EN(2) +#define GEN_SEQ_IMD_SEQ BIT(15) +#define GEN_SEQ_COMMAND_3(x) FIELD_PREP(GENMASK(26, 16), (x)) + +#define DMA_TLVL_REG 0x114 +#define DMA_TLVL(x) FIELD_PREP(GENMASK(7, 0), (x)) +#define DMA_TLVL_MAX DMA_TLVL(0xFF) + +#define TIM_GEN_SEQ3_REG 0x134 +#define TIM_GEN_SEQ3_D12(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) + +#define ECC_CNT_REG 0x14C +#define ECC_CNT(cs, reg) FIELD_GET(GENMASK(5, 0), (reg) >> ((cs) * 8)) + +#define RZN1_CS_NUM 4 + +#define TO_CYCLES64(ps, period_ns) ((unsigned int)DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ + period_ns)) + +struct rzn1_nand_chip_sel { + unsigned int cs; +}; + +struct rzn1_nand_chip { + struct nand_chip chip; + struct list_head node; + int selected_die; + u32 ctrl; + unsigned int nsels; + u32 control; + u32 ecc_ctrl; + u32 timings_asyn; + u32 tim_seq0; + u32 tim_seq1; + u32 tim_gen_seq0; + u32 tim_gen_seq1; + u32 tim_gen_seq2; + u32 tim_gen_seq3; + struct rzn1_nand_chip_sel sels[]; +}; + +struct rzn1_nfc { + struct nand_controller controller; + struct device *dev; + void __iomem *regs; + struct clk *hclk; + struct clk *eclk; + unsigned long assigned_cs; + struct list_head chips; + struct nand_chip *selected_chip; + struct completion complete; + bool use_polling; + u8 *buf; + unsigned int buf_sz; +}; + +struct rzn1_op { + u32 command; + u32 addr0_col; + u32 addr0_row; + u32 addr1_col; + u32 addr1_row; + u32 data_size; + u32 ecc_offset; + u32 gen_seq_ctrl; + u8 *buf; + bool read; + unsigned int len; +}; + +static inline struct rzn1_nfc *to_rzn1_nfc(struct nand_controller *ctrl) +{ + return container_of(ctrl, struct rzn1_nfc, controller); +} + +static inline struct rzn1_nand_chip *to_rzn1_nand(struct nand_chip *chip) +{ + return container_of(chip, struct rzn1_nand_chip, chip); +} + +static inline unsigned int to_nfc_cs(struct rzn1_nand_chip *nand) +{ + return nand->sels[nand->selected_die].cs; +} + +static void rzn1_nfc_dis_correction(struct rzn1_nfc *nfc) +{ + u32 control; + + control = readl_relaxed(nfc->regs + CONTROL_REG); + control &= ~CONTROL_ECC_EN; + writel_relaxed(control, nfc->regs + CONTROL_REG); +} + +static void rzn1_nfc_en_correction(struct rzn1_nfc *nfc) +{ + u32 control; + + control = readl_relaxed(nfc->regs + CONTROL_REG); + control |= CONTROL_ECC_EN; + writel_relaxed(control, nfc->regs + CONTROL_REG); +} + +static void rzn1_nfc_clear_status(struct rzn1_nfc *nfc) +{ + writel_relaxed(0, nfc->regs + INT_STATUS_REG); + writel_relaxed(0, nfc->regs + ECC_STAT_REG); + writel_relaxed(0, nfc->regs + ECC_CNT_REG); +} + +static void rzn1_nfc_dis_interrupts(struct rzn1_nfc *nfc) +{ + writel_relaxed(0, nfc->regs + INT_MASK_REG); +} + +static void rzn1_nfc_en_interrupts(struct rzn1_nfc *nfc, u32 val) +{ + if (!nfc->use_polling) + writel_relaxed(val, nfc->regs + INT_MASK_REG); +} + +static void rzn1_nfc_clear_fifo(struct rzn1_nfc *nfc) +{ + writel_relaxed(FIFO_INIT, nfc->regs + FIFO_INIT_REG); +} + +static void rzn1_nfc_select_target(struct nand_chip *chip, int die_nr) +{ + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + unsigned int cs = rzn1_nand->sels[die_nr].cs; + + if (chip == nfc->selected_chip && die_nr == rzn1_nand->selected_die) + return; + + rzn1_nfc_clear_status(nfc); + writel_relaxed(MEM_CTRL_CS(cs) | MEM_CTRL_DIS_WP(cs), nfc->regs + MEM_CTRL_REG); + writel_relaxed(rzn1_nand->control, nfc->regs + CONTROL_REG); + writel_relaxed(rzn1_nand->ecc_ctrl, nfc->regs + ECC_CTRL_REG); + writel_relaxed(rzn1_nand->timings_asyn, nfc->regs + TIMINGS_ASYN_REG); + writel_relaxed(rzn1_nand->tim_seq0, nfc->regs + TIM_SEQ0_REG); + writel_relaxed(rzn1_nand->tim_seq1, nfc->regs + TIM_SEQ1_REG); + writel_relaxed(rzn1_nand->tim_gen_seq0, nfc->regs + TIM_GEN_SEQ0_REG); + writel_relaxed(rzn1_nand->tim_gen_seq1, nfc->regs + TIM_GEN_SEQ1_REG); + writel_relaxed(rzn1_nand->tim_gen_seq2, nfc->regs + TIM_GEN_SEQ2_REG); + writel_relaxed(rzn1_nand->tim_gen_seq3, nfc->regs + TIM_GEN_SEQ3_REG); + + nfc->selected_chip = chip; + rzn1_nand->selected_die = die_nr; +} + +static void rzn1_nfc_trigger_op(struct rzn1_nfc *nfc, struct rzn1_op *rop) +{ + writel_relaxed(rop->addr0_col, nfc->regs + ADDR0_COL_REG); + writel_relaxed(rop->addr0_row, nfc->regs + ADDR0_ROW_REG); + writel_relaxed(rop->addr1_col, nfc->regs + ADDR1_COL_REG); + writel_relaxed(rop->addr1_row, nfc->regs + ADDR1_ROW_REG); + writel_relaxed(rop->ecc_offset, nfc->regs + ECC_OFFSET_REG); + writel_relaxed(rop->gen_seq_ctrl, nfc->regs + GEN_SEQ_CTRL_REG); + writel_relaxed(DATA_SIZE(rop->len), nfc->regs + DATA_SIZE_REG); + writel_relaxed(rop->command, nfc->regs + COMMAND_REG); +} + +static void rzn1_nfc_trigger_dma(struct rzn1_nfc *nfc) +{ + writel_relaxed(DMA_CTRL_INCREMENT_BURST_4 | + DMA_CTRL_REGISTER_MANAGED_MODE | + DMA_CTRL_START, nfc->regs + DMA_CTRL_REG); +} + +static irqreturn_t rzn1_nfc_irq_handler(int irq, void *private) +{ + struct rzn1_nfc *nfc = private; + + rzn1_nfc_dis_interrupts(nfc); + complete(&nfc->complete); + + return IRQ_HANDLED; +} + +static int rzn1_nfc_wait_end_of_op(struct rzn1_nfc *nfc, + struct nand_chip *chip) +{ + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + unsigned int cs = to_nfc_cs(rzn1_nand); + u32 status; + int ret; + + ret = readl_poll_timeout(nfc->regs + STATUS_REG, status, + MEM_RDY(cs, status) && CTRL_RDY(status), + 1, 100000); + if (ret) + dev_err(nfc->dev, "Operation timed out, status: 0x%08x\n", + status); + + return ret; +} + +static int rzn1_nfc_wait_end_of_io(struct rzn1_nfc *nfc, + struct nand_chip *chip) +{ + int timeout_ms = 1000; + int ret; + + if (nfc->use_polling) { + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + unsigned int cs = to_nfc_cs(rzn1_nand); + u32 status; + + ret = readl_poll_timeout(nfc->regs + INT_STATUS_REG, status, + MEM_IS_RDY(cs, status) & + DMA_HAS_ENDED(status), + 0, timeout_ms * 1000); + } else { + ret = wait_for_completion_timeout(&nfc->complete, + msecs_to_jiffies(timeout_ms)); + if (!ret) + ret = -ETIMEDOUT; + else + ret = 0; + } + + return ret; +} + +static int rzn1_read_page_hw_ecc(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + unsigned int cs = to_nfc_cs(rzn1_nand); + struct rzn1_op rop = { + .command = COMMAND_INPUT_SEL_DMA | COMMAND_0(NAND_CMD_READ0) | + COMMAND_2(NAND_CMD_READSTART) | COMMAND_FIFO_SEL | + COMMAND_SEQ_READ_PAGE, + .addr0_row = page, + .len = mtd->writesize, + .ecc_offset = ECC_OFFSET(mtd->writesize + 2), + }; + unsigned int max_bitflips = 0; + dma_addr_t dma_addr; + u32 ecc_stat; + int bf, ret, i; + + /* Prepare controller */ + rzn1_nfc_select_target(chip, chip->cur_cs); + rzn1_nfc_clear_status(nfc); + reinit_completion(&nfc->complete); + rzn1_nfc_en_interrupts(nfc, INT_DMA_ENDED); + rzn1_nfc_en_correction(nfc); + + /* Configure DMA */ + dma_addr = dma_map_single(nfc->dev, nfc->buf, mtd->writesize, + DMA_FROM_DEVICE); + writel(dma_addr, nfc->regs + DMA_ADDR_LOW_REG); + writel(mtd->writesize, nfc->regs + DMA_CNT_REG); + writel(DMA_TLVL_MAX, nfc->regs + DMA_TLVL_REG); + + rzn1_nfc_trigger_op(nfc, &rop); + rzn1_nfc_trigger_dma(nfc); + + ret = rzn1_nfc_wait_end_of_io(nfc, chip); + dma_unmap_single(nfc->dev, dma_addr, mtd->writesize, DMA_FROM_DEVICE); + rzn1_nfc_dis_correction(nfc); + if (ret) { + dev_err(nfc->dev, "Read page operation never ending\n"); + return ret; + } + + ecc_stat = readl_relaxed(nfc->regs + ECC_STAT_REG); + + if (oob_required || ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { + ret = nand_change_read_column_op(chip, mtd->writesize, + chip->oob_poi, mtd->oobsize, + false); + if (ret) + return ret; + } + + if (ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { + for (i = 0; i < chip->ecc.steps; i++) { + unsigned int off = i * chip->ecc.size; + unsigned int eccoff = i * chip->ecc.bytes; + + bf = nand_check_erased_ecc_chunk(nfc->buf + off, + chip->ecc.size, + chip->oob_poi + 2 + eccoff, + chip->ecc.bytes, + NULL, 0, + chip->ecc.strength); + if (bf < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += bf; + max_bitflips = max_t(unsigned int, max_bitflips, bf); + } + } + } else if (ECC_STAT_CORRECTABLE(cs, ecc_stat)) { + bf = ECC_CNT(cs, readl_relaxed(nfc->regs + ECC_CNT_REG)); + /* + * The number of bitflips is an approximation given the fact + * that this controller does not provide per-chunk details but + * only gives statistics on the entire page. + */ + mtd->ecc_stats.corrected += bf; + } + + memcpy(buf, nfc->buf, mtd->writesize); + + return 0; +} + +static int rzn1_read_subpage_hw_ecc(struct nand_chip *chip, u32 req_offset, + u32 req_len, u8 *bufpoi, int page) +{ + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + unsigned int cs = to_nfc_cs(rzn1_nand); + unsigned int page_off = round_down(req_offset, chip->ecc.size); + unsigned int real_len = round_up(req_offset + req_len - page_off, + chip->ecc.size); + unsigned int start_chunk = page_off / chip->ecc.size; + unsigned int nchunks = real_len / chip->ecc.size; + unsigned int ecc_off = 2 + (start_chunk * chip->ecc.bytes); + struct rzn1_op rop = { + .command = COMMAND_INPUT_SEL_AHBS | COMMAND_0(NAND_CMD_READ0) | + COMMAND_2(NAND_CMD_READSTART) | COMMAND_FIFO_SEL | + COMMAND_SEQ_READ_PAGE, + .addr0_row = page, + .addr0_col = page_off, + .len = real_len, + .ecc_offset = ECC_OFFSET(mtd->writesize + ecc_off), + }; + unsigned int max_bitflips = 0; + u32 ecc_stat; + int bf, ret, i; + + /* Prepare controller */ + rzn1_nfc_select_target(chip, chip->cur_cs); + rzn1_nfc_clear_status(nfc); + rzn1_nfc_en_correction(nfc); + rzn1_nfc_trigger_op(nfc, &rop); + + while (!FIFO_STATE_C_EMPTY(readl(nfc->regs + FIFO_STATE_REG))) + cpu_relax(); + + while (FIFO_STATE_R_EMPTY(readl(nfc->regs + FIFO_STATE_REG))) + cpu_relax(); + + ioread32_rep(nfc->regs + FIFO_DATA_REG, bufpoi + page_off, + real_len / 4); + + if (!FIFO_STATE_R_EMPTY(readl(nfc->regs + FIFO_STATE_REG))) { + dev_err(nfc->dev, "Clearing residual data in the read FIFO\n"); + rzn1_nfc_clear_fifo(nfc); + } + + ret = rzn1_nfc_wait_end_of_op(nfc, chip); + rzn1_nfc_dis_correction(nfc); + if (ret) { + dev_err(nfc->dev, "Read subpage operation never ending\n"); + return ret; + } + + ecc_stat = readl_relaxed(nfc->regs + ECC_STAT_REG); + + if (ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { + ret = nand_change_read_column_op(chip, mtd->writesize, + chip->oob_poi, mtd->oobsize, + false); + if (ret) + return ret; + + for (i = start_chunk; i < nchunks; i++) { + unsigned int dataoff = i * chip->ecc.size; + unsigned int eccoff = 2 + (i * chip->ecc.bytes); + + bf = nand_check_erased_ecc_chunk(bufpoi + dataoff, + chip->ecc.size, + chip->oob_poi + eccoff, + chip->ecc.bytes, + NULL, 0, + chip->ecc.strength); + if (bf < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += bf; + max_bitflips = max_t(unsigned int, max_bitflips, bf); + } + } + } else if (ECC_STAT_CORRECTABLE(cs, ecc_stat)) { + bf = ECC_CNT(cs, readl_relaxed(nfc->regs + ECC_CNT_REG)); + /* + * The number of bitflips is an approximation given the fact + * that this controller does not provide per-chunk details but + * only gives statistics on the entire page. + */ + mtd->ecc_stats.corrected += bf; + } + + return 0; +} + +static int rzn1_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + unsigned int cs = to_nfc_cs(rzn1_nand); + struct rzn1_op rop = { + .command = COMMAND_INPUT_SEL_DMA | COMMAND_0(NAND_CMD_SEQIN) | + COMMAND_1(NAND_CMD_PAGEPROG) | COMMAND_FIFO_SEL | + COMMAND_SEQ_WRITE_PAGE, + .addr0_row = page, + .len = mtd->writesize, + .ecc_offset = ECC_OFFSET(mtd->writesize + 2), + }; + dma_addr_t dma_addr; + int ret; + + memcpy(nfc->buf, buf, mtd->writesize); + + /* Prepare controller */ + rzn1_nfc_select_target(chip, chip->cur_cs); + rzn1_nfc_clear_status(nfc); + reinit_completion(&nfc->complete); + rzn1_nfc_en_interrupts(nfc, INT_MEM_RDY(cs)); + rzn1_nfc_en_correction(nfc); + + /* Configure DMA */ + dma_addr = dma_map_single(nfc->dev, (void *)nfc->buf, mtd->writesize, + DMA_TO_DEVICE); + writel(dma_addr, nfc->regs + DMA_ADDR_LOW_REG); + writel(mtd->writesize, nfc->regs + DMA_CNT_REG); + writel(DMA_TLVL_MAX, nfc->regs + DMA_TLVL_REG); + + rzn1_nfc_trigger_op(nfc, &rop); + rzn1_nfc_trigger_dma(nfc); + + ret = rzn1_nfc_wait_end_of_io(nfc, chip); + dma_unmap_single(nfc->dev, dma_addr, mtd->writesize, DMA_TO_DEVICE); + rzn1_nfc_dis_correction(nfc); + if (ret) { + dev_err(nfc->dev, "Write page operation never ending\n"); + return ret; + } + + if (oob_required) { + ret = nand_change_write_column_op(chip, mtd->writesize, + chip->oob_poi, mtd->oobsize, + false); + if (ret) + return ret; + } + + return 0; +} + +static int rzn1_write_subpage_hw_ecc(struct nand_chip *chip, u32 req_offset, + u32 req_len, const u8 *bufpoi, + int oob_required, int page) +{ + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int page_off = round_down(req_offset, chip->ecc.size); + unsigned int real_len = round_up(req_offset + req_len - page_off, + chip->ecc.size); + unsigned int start_chunk = page_off / chip->ecc.size; + unsigned int ecc_off = 2 + (start_chunk * chip->ecc.bytes); + struct rzn1_op rop = { + .command = COMMAND_INPUT_SEL_AHBS | COMMAND_0(NAND_CMD_SEQIN) | + COMMAND_1(NAND_CMD_PAGEPROG) | COMMAND_FIFO_SEL | + COMMAND_SEQ_WRITE_PAGE, + .addr0_row = page, + .addr0_col = page_off, + .len = real_len, + .ecc_offset = ECC_OFFSET(mtd->writesize + ecc_off), + }; + int ret; + + /* Prepare controller */ + rzn1_nfc_select_target(chip, chip->cur_cs); + rzn1_nfc_clear_status(nfc); + rzn1_nfc_en_correction(nfc); + rzn1_nfc_trigger_op(nfc, &rop); + + while (FIFO_STATE_W_FULL(readl(nfc->regs + FIFO_STATE_REG))) + cpu_relax(); + + iowrite32_rep(nfc->regs + FIFO_DATA_REG, bufpoi + page_off, + real_len / 4); + + while (!FIFO_STATE_W_EMPTY(readl(nfc->regs + FIFO_STATE_REG))) + cpu_relax(); + + ret = rzn1_nfc_wait_end_of_op(nfc, chip); + rzn1_nfc_dis_correction(nfc); + if (ret) { + dev_err(nfc->dev, "Write subpage operation never ending\n"); + return ret; + } + + return 0; +} + +/* + * This controller is simple enough and thus does not need to use the parser + * provided by the core, instead, handle every situation here. + */ +static int rzn1_nfc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, bool check_only) +{ + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + const struct nand_op_instr *instr = NULL; + struct rzn1_op rop = { + .command = COMMAND_INPUT_SEL_AHBS, + .gen_seq_ctrl = GEN_SEQ_IMD_SEQ, + }; + unsigned int cmd_phase = 0, addr_phase = 0, data_phase = 0, + delay_phase = 0, delays = 0; + unsigned int op_id, col_addrs, row_addrs, naddrs, remainder, words; + const u8 *addrs; + u32 last_bytes; + int i, ret; + + if (!check_only) + rzn1_nfc_select_target(chip, op->cs); + + for (op_id = 0; op_id < op->ninstrs; op_id++) { + instr = &op->instrs[op_id]; + + nand_op_trace(" ", instr); + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + switch (cmd_phase++) { + case 0: + rop.command |= COMMAND_0(instr->ctx.cmd.opcode); + rop.gen_seq_ctrl |= GEN_SEQ_CMD0_EN; + break; + case 1: + rop.gen_seq_ctrl |= GEN_SEQ_COMMAND_3(instr->ctx.cmd.opcode); + rop.gen_seq_ctrl |= GEN_SEQ_CMD3_EN; + if (addr_phase == 0) + addr_phase = 1; + break; + case 2: + rop.command |= COMMAND_2(instr->ctx.cmd.opcode); + rop.gen_seq_ctrl |= GEN_SEQ_CMD2_EN; + if (addr_phase <= 1) + addr_phase = 2; + break; + case 3: + rop.command |= COMMAND_1(instr->ctx.cmd.opcode); + rop.gen_seq_ctrl |= GEN_SEQ_CMD1_EN; + if (addr_phase <= 1) + addr_phase = 2; + if (delay_phase == 0) + delay_phase = 1; + if (data_phase == 0) + data_phase = 1; + break; + default: + return -EOPNOTSUPP; + } + break; + + case NAND_OP_ADDR_INSTR: + addrs = instr->ctx.addr.addrs; + naddrs = instr->ctx.addr.naddrs; + if (naddrs > 5) + return -EOPNOTSUPP; + + col_addrs = min(2U, naddrs); + row_addrs = naddrs > 2 ? naddrs - col_addrs : 0; + + switch (addr_phase++) { + case 0: + for (i = 0; i < col_addrs; i++) + rop.addr0_col |= addrs[i] << (i * 8); + rop.gen_seq_ctrl |= GEN_SEQ_COL_A0(col_addrs); + + for (i = 0; i < row_addrs; i++) + rop.addr0_row |= addrs[2 + i] << (i * 8); + rop.gen_seq_ctrl |= GEN_SEQ_ROW_A0(row_addrs); + + if (cmd_phase == 0) + cmd_phase = 1; + break; + case 1: + for (i = 0; i < col_addrs; i++) + rop.addr1_col |= addrs[i] << (i * 8); + rop.gen_seq_ctrl |= GEN_SEQ_COL_A1(col_addrs); + + for (i = 0; i < row_addrs; i++) + rop.addr1_row |= addrs[2 + i] << (i * 8); + rop.gen_seq_ctrl |= GEN_SEQ_ROW_A1(row_addrs); + + if (cmd_phase <= 1) + cmd_phase = 2; + break; + default: + return -EOPNOTSUPP; + } + break; + + case NAND_OP_DATA_IN_INSTR: + rop.read = true; + fallthrough; + case NAND_OP_DATA_OUT_INSTR: + rop.gen_seq_ctrl |= GEN_SEQ_DATA_EN; + rop.buf = instr->ctx.data.buf.in; + rop.len = instr->ctx.data.len; + rop.command |= COMMAND_FIFO_SEL; + + switch (data_phase++) { + case 0: + if (cmd_phase <= 2) + cmd_phase = 3; + if (addr_phase <= 1) + addr_phase = 2; + if (delay_phase == 0) + delay_phase = 1; + break; + default: + return -EOPNOTSUPP; + } + break; + + case NAND_OP_WAITRDY_INSTR: + switch (delay_phase++) { + case 0: + rop.gen_seq_ctrl |= GEN_SEQ_DELAY0_EN; + + if (cmd_phase <= 2) + cmd_phase = 3; + break; + case 1: + rop.gen_seq_ctrl |= GEN_SEQ_DELAY1_EN; + + if (cmd_phase <= 3) + cmd_phase = 4; + if (data_phase == 0) + data_phase = 1; + break; + default: + return -EOPNOTSUPP; + } + break; + } + } + + /* + * Sequence 19 is generic and dedicated to write operations. + * Sequence 18 is also generic and works for all other operations. + */ + if (rop.buf && !rop.read) + rop.command |= COMMAND_SEQ_GEN_OUT; + else + rop.command |= COMMAND_SEQ_GEN_IN; + + if (delays > 1) { + dev_err(nfc->dev, "Cannot handle more than one wait delay\n"); + return -EOPNOTSUPP; + } + + if (check_only) + return 0; + + rzn1_nfc_trigger_op(nfc, &rop); + + words = rop.len / sizeof(u32); + remainder = rop.len % sizeof(u32); + if (rop.buf && rop.read) { + while (!FIFO_STATE_C_EMPTY(readl(nfc->regs + FIFO_STATE_REG))) + cpu_relax(); + + while (FIFO_STATE_R_EMPTY(readl(nfc->regs + FIFO_STATE_REG))) + cpu_relax(); + + ioread32_rep(nfc->regs + FIFO_DATA_REG, rop.buf, words); + if (remainder) { + last_bytes = readl_relaxed(nfc->regs + FIFO_DATA_REG); + memcpy(rop.buf + (words * sizeof(u32)), &last_bytes, + remainder); + } + + if (!FIFO_STATE_R_EMPTY(readl(nfc->regs + FIFO_STATE_REG))) { + dev_warn(nfc->dev, + "Clearing residual data in the read FIFO\n"); + rzn1_nfc_clear_fifo(nfc); + } + } else if (rop.len && !rop.read) { + while (FIFO_STATE_W_FULL(readl(nfc->regs + FIFO_STATE_REG))) + cpu_relax(); + + iowrite32_rep(nfc->regs + FIFO_DATA_REG, rop.buf, + DIV_ROUND_UP(rop.len, 4)); + + if (remainder) { + last_bytes = 0; + memcpy(&last_bytes, rop.buf + (words * sizeof(u32)), remainder); + writel_relaxed(last_bytes, nfc->regs + FIFO_DATA_REG); + } + + while (!FIFO_STATE_W_EMPTY(readl(nfc->regs + FIFO_STATE_REG))) + cpu_relax(); + } + + ret = rzn1_nfc_wait_end_of_op(nfc, chip); + if (ret) + return ret; + + return 0; +} + +static int rzn1_nfc_setup_interface(struct nand_chip *chip, int chipnr, + const struct nand_interface_config *conf) +{ + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + unsigned int period_ns = 1000000000 / clk_get_rate(nfc->eclk); + const struct nand_sdr_timings *sdr; + unsigned int cyc, cle, ale, bef_dly, ca_to_data; + + sdr = nand_get_sdr_timings(conf); + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + + if (sdr->tRP_min != sdr->tWP_min || sdr->tREH_min != sdr->tWH_min) { + dev_err(nfc->dev, "Read and write hold times must be identical\n"); + return -EINVAL; + } + + if (chipnr < 0) + return 0; + + rzn1_nand->timings_asyn = + TIMINGS_ASYN_TRWP(TO_CYCLES64(sdr->tRP_min, period_ns)) | + TIMINGS_ASYN_TRWH(TO_CYCLES64(sdr->tREH_min, period_ns)); + rzn1_nand->tim_seq0 = + TIM_SEQ0_TCCS(TO_CYCLES64(sdr->tCCS_min, period_ns)) | + TIM_SEQ0_TADL(TO_CYCLES64(sdr->tADL_min, period_ns)) | + TIM_SEQ0_TRHW(TO_CYCLES64(sdr->tRHW_min, period_ns)) | + TIM_SEQ0_TWHR(TO_CYCLES64(sdr->tWHR_min, period_ns)); + rzn1_nand->tim_seq1 = + TIM_SEQ1_TWB(TO_CYCLES64(sdr->tWB_max, period_ns)) | + TIM_SEQ1_TRR(TO_CYCLES64(sdr->tRR_min, period_ns)) | + TIM_SEQ1_TWW(TO_CYCLES64(sdr->tWW_min, period_ns)); + + cyc = sdr->tDS_min + sdr->tDH_min; + cle = sdr->tCLH_min + sdr->tCLS_min; + ale = sdr->tALH_min + sdr->tALS_min; + bef_dly = sdr->tWB_max - sdr->tDH_min; + ca_to_data = sdr->tWHR_min + sdr->tREA_max - sdr->tDH_min; + + /* + * D0 = CMD -> ADDR = tCLH + tCLS - 1 cycle + * D1 = CMD -> CMD = tCLH + tCLS - 1 cycle + * D2 = CMD -> DLY = tWB - tDH + * D3 = CMD -> DATA = tWHR + tREA - tDH + */ + rzn1_nand->tim_gen_seq0 = + TIM_GEN_SEQ0_D0(TO_CYCLES64(cle - cyc, period_ns)) | + TIM_GEN_SEQ0_D1(TO_CYCLES64(cle - cyc, period_ns)) | + TIM_GEN_SEQ0_D2(TO_CYCLES64(bef_dly, period_ns)) | + TIM_GEN_SEQ0_D3(TO_CYCLES64(ca_to_data, period_ns)); + + /* + * D4 = ADDR -> CMD = tALH + tALS - 1 cyle + * D5 = ADDR -> ADDR = tALH + tALS - 1 cyle + * D6 = ADDR -> DLY = tWB - tDH + * D7 = ADDR -> DATA = tWHR + tREA - tDH + */ + rzn1_nand->tim_gen_seq1 = + TIM_GEN_SEQ1_D4(TO_CYCLES64(ale - cyc, period_ns)) | + TIM_GEN_SEQ1_D5(TO_CYCLES64(ale - cyc, period_ns)) | + TIM_GEN_SEQ1_D6(TO_CYCLES64(bef_dly, period_ns)) | + TIM_GEN_SEQ1_D7(TO_CYCLES64(ca_to_data, period_ns)); + + /* + * D8 = DLY -> DATA = tRR + tREA + * D9 = DLY -> CMD = tRR + * D10 = DATA -> CMD = tCLH + tCLS - 1 cycle + * D11 = DATA -> DLY = tWB - tDH + */ + rzn1_nand->tim_gen_seq2 = + TIM_GEN_SEQ2_D8(TO_CYCLES64(sdr->tRR_min + sdr->tREA_max, period_ns)) | + TIM_GEN_SEQ2_D9(TO_CYCLES64(sdr->tRR_min, period_ns)) | + TIM_GEN_SEQ2_D10(TO_CYCLES64(cle - cyc, period_ns)) | + TIM_GEN_SEQ2_D11(TO_CYCLES64(bef_dly, period_ns)); + + /* D12 = DATA -> END = tCLH - tDH */ + rzn1_nand->tim_gen_seq3 = + TIM_GEN_SEQ3_D12(TO_CYCLES64(sdr->tCLH_min - sdr->tDH_min, period_ns)); + + return 0; +} + +static int rzn1_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + unsigned int eccbytes = round_up(chip->ecc.bytes, 4) * chip->ecc.steps; + + if (section) + return -ERANGE; + + oobregion->offset = 2; + oobregion->length = eccbytes; + + return 0; +} + +static int rzn1_nfc_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + unsigned int eccbytes = round_up(chip->ecc.bytes, 4) * chip->ecc.steps; + + if (section) + return -ERANGE; + + oobregion->offset = 2 + eccbytes; + oobregion->length = mtd->oobsize - oobregion->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops rzn1_nfc_ooblayout_ops = { + .ecc = rzn1_nfc_ooblayout_ecc, + .free = rzn1_nfc_ooblayout_free, +}; + +static int rzn1_nfc_hw_ecc_controller_init(struct nand_chip *chip) +{ + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + + if (mtd->writesize > SZ_16K) { + dev_err(nfc->dev, "Unsupported page size\n"); + return -EINVAL; + } + + switch (chip->ecc.size) { + case SZ_256: + rzn1_nand->control |= CONTROL_ECC_BLOCK_SIZE_256; + break; + case SZ_512: + rzn1_nand->control |= CONTROL_ECC_BLOCK_SIZE_512; + break; + case SZ_1K: + rzn1_nand->control |= CONTROL_ECC_BLOCK_SIZE_1024; + break; + default: + dev_err(nfc->dev, "Unsupported ECC chunk size\n"); + return -EINVAL; + } + + switch (chip->ecc.strength) { + case 2: + chip->ecc.bytes = 4; + rzn1_nand->ecc_ctrl |= ECC_CTRL_CAP_2B; + break; + case 4: + chip->ecc.bytes = 7; + rzn1_nand->ecc_ctrl |= ECC_CTRL_CAP_4B; + break; + case 8: + chip->ecc.bytes = 14; + rzn1_nand->ecc_ctrl |= ECC_CTRL_CAP_8B; + break; + case 16: + chip->ecc.bytes = 28; + rzn1_nand->ecc_ctrl |= ECC_CTRL_CAP_16B; + break; + case 24: + chip->ecc.bytes = 42; + rzn1_nand->ecc_ctrl |= ECC_CTRL_CAP_24B; + break; + case 32: + chip->ecc.bytes = 56; + rzn1_nand->ecc_ctrl |= ECC_CTRL_CAP_32B; + break; + default: + dev_err(nfc->dev, "Unsupported ECC strength\n"); + return -EINVAL; + } + + rzn1_nand->ecc_ctrl |= ECC_CTRL_ERR_THRESHOLD(chip->ecc.strength); + + mtd_set_ooblayout(mtd, &rzn1_nfc_ooblayout_ops); + chip->ecc.steps = mtd->writesize / chip->ecc.size; + chip->ecc.read_page = rzn1_read_page_hw_ecc; + chip->ecc.read_subpage = rzn1_read_subpage_hw_ecc; + chip->ecc.write_page = rzn1_write_page_hw_ecc; + chip->ecc.write_subpage = rzn1_write_subpage_hw_ecc; + + return 0; +} + +static int rzn1_nand_ecc_init(struct nand_chip *chip) +{ + struct nand_ecc_ctrl *ecc = &chip->ecc; + const struct nand_ecc_props *requirements = + nanddev_get_ecc_requirements(&chip->base); + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + int ret; + + if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE && + (!ecc->size || !ecc->strength)) { + if (requirements->step_size && requirements->strength) { + ecc->size = requirements->step_size; + ecc->strength = requirements->strength; + } else { + dev_err(nfc->dev, "No minimum ECC strength\n"); + return -EINVAL; + } + } + + switch (ecc->engine_type) { + case NAND_ECC_ENGINE_TYPE_ON_HOST: + ret = rzn1_nfc_hw_ecc_controller_init(chip); + if (ret) + return ret; + break; + case NAND_ECC_ENGINE_TYPE_NONE: + case NAND_ECC_ENGINE_TYPE_SOFT: + case NAND_ECC_ENGINE_TYPE_ON_DIE: + break; + default: + return -EINVAL; + } + + return 0; +} + +static int rzn1_nand_attach_chip(struct nand_chip *chip) +{ + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_memory_organization *memorg = nanddev_get_memorg(&chip->base); + int ret; + + /* Do not store BBT bits in the OOB section as it is not protected */ + if (chip->bbt_options & NAND_BBT_USE_FLASH) + chip->bbt_options |= NAND_BBT_NO_OOB; + + if (mtd->writesize <= 512) { + dev_err(nfc->dev, "Small page devices not supported\n"); + return -EINVAL; + } + + rzn1_nand->control |= CONTROL_CHECK_RB_LINE | CONTROL_INT_EN; + + switch (memorg->pages_per_eraseblock) { + case 32: + rzn1_nand->control |= CONTROL_BLOCK_SIZE_32P; + break; + case 64: + rzn1_nand->control |= CONTROL_BLOCK_SIZE_64P; + break; + case 128: + rzn1_nand->control |= CONTROL_BLOCK_SIZE_128P; + break; + case 256: + rzn1_nand->control |= CONTROL_BLOCK_SIZE_256P; + break; + default: + dev_err(nfc->dev, "Unsupported memory organization\n"); + return -EINVAL; + } + + chip->options |= NAND_SUBPAGE_READ; + + ret = rzn1_nand_ecc_init(chip); + if (ret) { + dev_err(nfc->dev, "ECC initialization failed (%d)\n", ret); + return ret; + } + + /* Force an update of the configuration registers */ + rzn1_nand->selected_die = -1; + + return 0; +} + +static const struct nand_controller_ops rzn1_nfc_ops = { + .attach_chip = rzn1_nand_attach_chip, + .exec_op = rzn1_nfc_exec_op, + .setup_interface = rzn1_nfc_setup_interface, +}; + +static int rzn1_nfc_alloc_dma_buf(struct rzn1_nfc *nfc, + struct mtd_info *new_mtd) +{ + unsigned int max_len = new_mtd->writesize + new_mtd->oobsize; + struct rzn1_nand_chip *entry, *temp; + struct nand_chip *chip; + struct mtd_info *mtd; + + list_for_each_entry_safe(entry, temp, &nfc->chips, node) { + chip = &entry->chip; + mtd = nand_to_mtd(chip); + max_len = max(max_len, mtd->writesize + mtd->oobsize); + } + + if (nfc->buf && nfc->buf_sz < max_len) { + devm_kfree(nfc->dev, nfc->buf); + nfc->buf = NULL; + } + + if (!nfc->buf) { + nfc->buf_sz = max_len; + nfc->buf = devm_kmalloc(nfc->dev, max_len, GFP_KERNEL | GFP_DMA); + if (!nfc->buf) + return -ENOMEM; + } + + return 0; +} + +static int rzn1_nand_chip_init(struct rzn1_nfc *nfc, struct device_node *np) +{ + struct rzn1_nand_chip *rzn1_nand; + struct mtd_info *mtd; + struct nand_chip *chip; + int nsels, ret, i; + u32 cs; + + nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); + if (nsels <= 0) { + ret = (nsels < 0) ? nsels : -EINVAL; + dev_err(nfc->dev, "Invalid reg property (%d)\n", ret); + return ret; + } + + /* Alloc the driver's NAND chip structure */ + rzn1_nand = devm_kzalloc(nfc->dev, struct_size(rzn1_nand, sels, nsels), + GFP_KERNEL); + if (!rzn1_nand) + return -ENOMEM; + + rzn1_nand->nsels = nsels; + rzn1_nand->selected_die = -1; + + for (i = 0; i < nsels; i++) { + ret = of_property_read_u32_index(np, "reg", i, &cs); + if (ret) { + dev_err(nfc->dev, "Incomplete reg property (%d)\n", + ret); + return ret; + } + + if (test_and_set_bit(cs, &nfc->assigned_cs)) { + dev_err(nfc->dev, "CS %d already assigned\n", cs); + return -EINVAL; + } + + /* + * No need to check for RB or WP properties, there is a 1:1 + * mandatory mapping with the CS. + */ + rzn1_nand->sels[i].cs = cs; + } + + chip = &rzn1_nand->chip; + chip->controller = &nfc->controller; + nand_set_flash_node(chip, np); + + mtd = nand_to_mtd(chip); + mtd->dev.parent = nfc->dev; + if (!mtd->name) { + dev_err(nfc->dev, "Missing MTD label\n"); + return -EINVAL; + } + + ret = nand_scan(chip, rzn1_nand->nsels); + if (ret) { + dev_err(nfc->dev, "Failed to scan the NAND chip (%d)\n", ret); + return ret; + } + + ret = rzn1_nfc_alloc_dma_buf(nfc, mtd); + if (ret) + goto cleanup_nand; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(nfc->dev, "Failed to register MTD device (%d)\n", ret); + goto cleanup_nand; + } + + list_add_tail(&rzn1_nand->node, &nfc->chips); + + return 0; + +cleanup_nand: + nand_cleanup(chip); + + return ret; +} + +static void rzn1_nand_chips_cleanup(struct rzn1_nfc *nfc) +{ + struct rzn1_nand_chip *entry, *temp; + struct nand_chip *chip; + int ret; + + list_for_each_entry_safe(entry, temp, &nfc->chips, node) { + chip = &entry->chip; + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + list_del(&entry->node); + } +} + +static int rzn1_nand_chips_init(struct rzn1_nfc *nfc) +{ + struct device_node *np; + int ret; + + for_each_child_of_node(nfc->dev->of_node, np) { + ret = rzn1_nand_chip_init(nfc, np); + if (ret) { + of_node_put(np); + goto cleanup_chips; + } + } + + return 0; + +cleanup_chips: + rzn1_nand_chips_cleanup(nfc); + + return ret; +} + +static int rzn1_nfc_probe(struct platform_device *pdev) +{ + struct rzn1_nfc *nfc; + int irq, ret; + + nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nfc->dev = &pdev->dev; + nand_controller_init(&nfc->controller); + nfc->controller.ops = &rzn1_nfc_ops; + INIT_LIST_HEAD(&nfc->chips); + init_completion(&nfc->complete); + + nfc->regs = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(nfc->regs)) + return PTR_ERR(nfc->regs); + + rzn1_nfc_dis_interrupts(nfc); + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + dev_info(&pdev->dev, "Using polling\n"); + nfc->use_polling = true; + } else { + ret = devm_request_irq(&pdev->dev, irq, rzn1_nfc_irq_handler, 0, + "rzn1-nand-controller", nfc); + if (ret < 0) + return ret; + } + + ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); + if (ret) + return ret; + + nfc->hclk = devm_clk_get(&pdev->dev, "hclk"); + if (IS_ERR(nfc->hclk)) + return PTR_ERR(nfc->hclk); + + nfc->eclk = devm_clk_get(&pdev->dev, "eclk"); + if (IS_ERR(nfc->eclk)) + return PTR_ERR(nfc->eclk); + + ret = clk_prepare_enable(nfc->hclk); + if (ret) + return ret; + + ret = clk_prepare_enable(nfc->eclk); + if (ret) + goto disable_hclk; + + rzn1_nfc_clear_fifo(nfc); + + platform_set_drvdata(pdev, nfc); + + ret = rzn1_nand_chips_init(nfc); + if (ret) + goto disable_eclk; + + return 0; + +disable_eclk: + clk_disable_unprepare(nfc->eclk); +disable_hclk: + clk_disable_unprepare(nfc->hclk); + + return ret; +} + +static int rzn1_nfc_remove(struct platform_device *pdev) +{ + struct rzn1_nfc *nfc = platform_get_drvdata(pdev); + + rzn1_nand_chips_cleanup(nfc); + + clk_disable_unprepare(nfc->eclk); + clk_disable_unprepare(nfc->hclk); + + return 0; +} + +static const struct of_device_id rzn1_nfc_id_table[] = { + { .compatible = "renesas,r9a06g032-nand-controller" }, + {} /* sentinel */ +}; +MODULE_DEVICE_TABLE(of, nfc_id_table); + +static struct platform_driver rzn1_nfc_driver = { + .driver = { + .name = "renesas-nfc", + .of_match_table = of_match_ptr(rzn1_nfc_id_table), + }, + .probe = rzn1_nfc_probe, + .remove = rzn1_nfc_remove, +}; +module_platform_driver(rzn1_nfc_driver); + +MODULE_AUTHOR("Miquel Raynal "); +MODULE_DESCRIPTION("Renesas RZ/N1x NAND flash controller driver"); +MODULE_LICENSE("GPL"); -- 2.27.0 ______________________________________________________ Linux MTD discussion mailing list http://lists.infradead.org/mailman/listinfo/linux-mtd/ From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org Received: from mail.kernel.org (mail.kernel.org [198.145.29.99]) by smtp.lore.kernel.org (Postfix) with ESMTP id E3A39C433EF for ; Thu, 18 Nov 2021 11:23:11 +0000 (UTC) Received: from bombadil.infradead.org (bombadil.infradead.org [198.137.202.133]) (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits)) (No client certificate requested) by mail.kernel.org (Postfix) with ESMTPS id AEEFE61A3D for ; Thu, 18 Nov 2021 11:23:11 +0000 (UTC) DMARC-Filter: OpenDMARC Filter v1.4.1 mail.kernel.org AEEFE61A3D Authentication-Results: mail.kernel.org; dmarc=none (p=none dis=none) header.from=bootlin.com Authentication-Results: mail.kernel.org; spf=none smtp.mailfrom=lists.infradead.org DKIM-Signature: v=1; a=rsa-sha256; q=dns/txt; c=relaxed/relaxed; d=lists.infradead.org; s=bombadil.20210309; h=Sender: Content-Transfer-Encoding:Content-Type:List-Subscribe:List-Help:List-Post: List-Archive:List-Unsubscribe:List-Id:MIME-Version:References:In-Reply-To: Message-Id:Date:Subject:Cc:To:From:Reply-To:Content-ID:Content-Description: Resent-Date:Resent-From:Resent-Sender:Resent-To:Resent-Cc:Resent-Message-ID: List-Owner; bh=MDohO6mX75l8H1CtlVFKhW9sPX6Wgzj3RtiLdwY7Cek=; b=ASlA/+vdXVpRle Xyrx0PZmmQtDPlGyGG5FUrOYz+9RnHZl1x95a4XqBtD/RFhbtyfv8t352ggeRsr8F3e56GmweUFdh X+2irqLAttnCsHCk4ct8qVGt4C3fYFlvEmh2rwkRbCVUWYhLnrd6ReRnKp8yFfnDBL3vVS+22HwNT 44jjVtaEzoGuhy7K+ugpVkXQcaQY4UzuVDkHiKPsj33p+3IEJ8W8BfvoK/h40yYJhjZ09J3Z2ZIgU FqwcSW6HEsyMAWpmFO/TmL2+vChOyI7H8oIidWuKSKKOidKhVDT5+GvlkuwkuRgw/eUTQl2gHap3z FlnrjnOu8f3bBt2/YfDg==; Received: from localhost ([::1] helo=bombadil.infradead.org) by bombadil.infradead.org with esmtp (Exim 4.94.2 #2 (Red Hat Linux)) id 1mnfTr-007Y4R-94; Thu, 18 Nov 2021 11:21:27 +0000 Received: from relay7-d.mail.gandi.net ([217.70.183.200]) by bombadil.infradead.org with esmtps (Exim 4.94.2 #2 (Red Hat Linux)) id 1mnfSG-007XeG-Pj; Thu, 18 Nov 2021 11:19:54 +0000 Received: (Authenticated sender: miquel.raynal@bootlin.com) by relay7-d.mail.gandi.net (Postfix) with ESMTPSA id 72D0920018; Thu, 18 Nov 2021 11:19:45 +0000 (UTC) From: Miquel Raynal To: Richard Weinberger , Vignesh Raghavendra , Tudor Ambarus , Pratyush Yadav , Michael Walle , Cc: Thomas Petazzoni , Jimmy Lalande , Milan Stevanovic , Geert Uytterhoeven , linux-renesas-soc@vger.kernel.org, Magnus Damm , , Miquel Raynal Subject: [PATCH 2/3] mtd: rawnand: rzn1: Add new NAND controller driver Date: Thu, 18 Nov 2021 12:19:39 +0100 Message-Id: <20211118111940.1275351-3-miquel.raynal@bootlin.com> X-Mailer: git-send-email 2.27.0 In-Reply-To: <20211118111940.1275351-1-miquel.raynal@bootlin.com> References: <20211118111940.1275351-1-miquel.raynal@bootlin.com> MIME-Version: 1.0 X-CRM114-Version: 20100106-BlameMichelson ( TRE 0.8.0 (BSD) ) MR-646709E3 X-CRM114-CacheID: sfid-20211118_031949_313193_76ECF229 X-CRM114-Status: GOOD ( 17.60 ) X-BeenThere: linux-arm-kernel@lists.infradead.org X-Mailman-Version: 2.1.34 Precedence: list List-Id: List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Content-Type: text/plain; charset="us-ascii" Content-Transfer-Encoding: 7bit Sender: "linux-arm-kernel" Errors-To: linux-arm-kernel-bounces+linux-arm-kernel=archiver.kernel.org@lists.infradead.org Introduce Renesas RZ/N1x NAND controller driver which supports: - All ONFI timing modes - Different configurations of its internal ECC controller - On-die (not tested) and software ECC support - Several chips (not tested) - Subpage accesses - DMA and PIO Signed-off-by: Miquel Raynal --- drivers/mtd/nand/raw/Kconfig | 6 + drivers/mtd/nand/raw/Makefile | 1 + drivers/mtd/nand/raw/rzn1-nand-controller.c | 1417 +++++++++++++++++++ 3 files changed, 1424 insertions(+) create mode 100644 drivers/mtd/nand/raw/rzn1-nand-controller.c diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig index e1baed6c5b33..998339993abf 100644 --- a/drivers/mtd/nand/raw/Kconfig +++ b/drivers/mtd/nand/raw/Kconfig @@ -467,6 +467,12 @@ config MTD_NAND_PL35X Enables support for PrimeCell SMC PL351 and PL353 NAND controller found on Zynq7000. +config MTD_NAND_RZN1 + tristate "Renesas RZ/N1D, RZ/N1S, RZ/N1L NAND controller" + depends on OF || COMPILE_TEST + help + Enables support for Renesas RZ/N1x SoC family NAND controller. + comment "Misc" config MTD_SM_COMMON diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile index ee55f79e5e82..4d75d2520edf 100644 --- a/drivers/mtd/nand/raw/Makefile +++ b/drivers/mtd/nand/raw/Makefile @@ -60,6 +60,7 @@ obj-$(CONFIG_MTD_NAND_ARASAN) += arasan-nand-controller.o obj-$(CONFIG_MTD_NAND_INTEL_LGM) += intel-nand-controller.o obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o obj-$(CONFIG_MTD_NAND_PL35X) += pl35x-nand-controller.o +obj-$(CONFIG_MTD_NAND_RZN1) += rzn1-nand-controller.o nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o nand-objs += nand_onfi.o diff --git a/drivers/mtd/nand/raw/rzn1-nand-controller.c b/drivers/mtd/nand/raw/rzn1-nand-controller.c new file mode 100644 index 000000000000..cd736c05ed87 --- /dev/null +++ b/drivers/mtd/nand/raw/rzn1-nand-controller.c @@ -0,0 +1,1417 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Renesas RZ/N1D, RZ/N1S, RZ/N1L NAND flash controller driver + * + * Copyright (C) 2021 Schneider Electric + * Author: Miquel RAYNAL + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define COMMAND_REG 0x00 +#define COMMAND_SEQ(x) FIELD_PREP(GENMASK(5, 0), (x)) +#define COMMAND_SEQ_10 COMMAND_SEQ(0x2A) +#define COMMAND_SEQ_12 COMMAND_SEQ(0x0C) +#define COMMAND_SEQ_18 COMMAND_SEQ(0x32) +#define COMMAND_SEQ_19 COMMAND_SEQ(0x13) +#define COMMAND_SEQ_GEN_IN COMMAND_SEQ_18 +#define COMMAND_SEQ_GEN_OUT COMMAND_SEQ_19 +#define COMMAND_SEQ_READ_PAGE COMMAND_SEQ_10 +#define COMMAND_SEQ_WRITE_PAGE COMMAND_SEQ_12 +#define COMMAND_INPUT_SEL_AHBS 0 +#define COMMAND_INPUT_SEL_DMA BIT(6) +#define COMMAND_FIFO_SEL 0 +#define COMMAND_DATA_SEL BIT(7) +#define COMMAND_0(x) FIELD_PREP(GENMASK(15, 8), (x)) +#define COMMAND_1(x) FIELD_PREP(GENMASK(23, 16), (x)) +#define COMMAND_2(x) FIELD_PREP(GENMASK(31, 24), (x)) + +#define CONTROL_REG 0x04 +#define CONTROL_CHECK_RB_LINE 0 +#define CONTROL_ECC_BLOCK_SIZE(x) FIELD_PREP(GENMASK(2, 1), (x)) +#define CONTROL_ECC_BLOCK_SIZE_256 CONTROL_ECC_BLOCK_SIZE(0) +#define CONTROL_ECC_BLOCK_SIZE_512 CONTROL_ECC_BLOCK_SIZE(1) +#define CONTROL_ECC_BLOCK_SIZE_1024 CONTROL_ECC_BLOCK_SIZE(2) +#define CONTROL_INT_EN BIT(4) +#define CONTROL_ECC_EN BIT(5) +#define CONTROL_BLOCK_SIZE(x) FIELD_PREP(GENMASK(7, 6), (x)) +#define CONTROL_BLOCK_SIZE_32P CONTROL_BLOCK_SIZE(0) +#define CONTROL_BLOCK_SIZE_64P CONTROL_BLOCK_SIZE(1) +#define CONTROL_BLOCK_SIZE_128P CONTROL_BLOCK_SIZE(2) +#define CONTROL_BLOCK_SIZE_256P CONTROL_BLOCK_SIZE(3) + +#define STATUS_REG 0x8 +#define MEM_RDY(cs, reg) (FIELD_GET(GENMASK(3, 0), (reg)) & BIT(cs)) +#define CTRL_RDY(reg) (FIELD_GET(BIT(8), (reg)) == 0) + +#define ECC_CTRL_REG 0x18 +#define ECC_CTRL_CAP(x) FIELD_PREP(GENMASK(2, 0), (x)) +#define ECC_CTRL_CAP_2B ECC_CTRL_CAP(0) +#define ECC_CTRL_CAP_4B ECC_CTRL_CAP(1) +#define ECC_CTRL_CAP_8B ECC_CTRL_CAP(2) +#define ECC_CTRL_CAP_16B ECC_CTRL_CAP(3) +#define ECC_CTRL_CAP_24B ECC_CTRL_CAP(4) +#define ECC_CTRL_CAP_32B ECC_CTRL_CAP(5) +#define ECC_CTRL_ERR_THRESHOLD(x) FIELD_PREP(GENMASK(13, 8), (x)) + +#define INT_MASK_REG 0x10 +#define INT_STATUS_REG 0x14 +#define INT_CMD_END BIT(1) +#define INT_DMA_END BIT(3) +#define INT_MEM_RDY(cs) FIELD_PREP(GENMASK(11, 8), BIT(cs)) +#define INT_DMA_ENDED BIT(3) +#define MEM_IS_RDY(cs, reg) (FIELD_GET(GENMASK(11, 8), (reg)) & BIT(cs)) +#define DMA_HAS_ENDED(reg) FIELD_GET(BIT(3), (reg)) + +#define ECC_OFFSET_REG 0x1C +#define ECC_OFFSET(x) FIELD_PREP(GENMASK(15, 0), (x)) + +#define ECC_STAT_REG 0x20 +#define ECC_STAT_CORRECTABLE(cs, reg) (FIELD_GET(GENMASK(3, 0), (reg)) & BIT(cs)) +#define ECC_STAT_UNCORRECTABLE(cs, reg) (FIELD_GET(GENMASK(11, 8), (reg)) & BIT(cs)) + +#define ADDR0_COL_REG 0x24 +#define ADDR0_COL(x) FIELD_PREP(GENMASK(15, 0), (x)) + +#define ADDR0_ROW_REG 0x28 +#define ADDR0_ROW(x) FIELD_PREP(GENMASK(23, 0), (x)) + +#define ADDR1_COL_REG 0x2C +#define ADDR1_COL(x) FIELD_PREP(GENMASK(15, 0), (x)) + +#define ADDR1_ROW_REG 0x30 +#define ADDR1_ROW(x) FIELD_PREP(GENMASK(23, 0), (x)) + +#define FIFO_DATA_REG 0x38 + +#define DATA_REG 0x3C + +#define DATA_REG_SIZE_REG 0x40 + +#define DMA_ADDR_LOW_REG 0x64 + +#define DMA_ADDR_HIGH_REG 0x68 + +#define DMA_CNT_REG 0x6C + +#define DMA_CTRL_REG 0x70 +#define DMA_CTRL_INCREMENT_BURST_4 0 +#define DMA_CTRL_REGISTER_MANAGED_MODE 0 +#define DMA_CTRL_START BIT(7) + +#define MEM_CTRL_REG 0x80 +#define MEM_CTRL_CS(cs) FIELD_PREP(GENMASK(1, 0), (cs)) +#define MEM_CTRL_DIS_WP(cs) FIELD_PREP(GENMASK(11, 8), BIT((cs))) + +#define DATA_SIZE_REG 0x84 +#define DATA_SIZE(x) FIELD_PREP(GENMASK(14, 0), (x)) + +#define TIMINGS_ASYN_REG 0x88 +#define TIMINGS_ASYN_TRWP(x) FIELD_PREP(GENMASK(3, 0), max((x), 1U) - 1) +#define TIMINGS_ASYN_TRWH(x) FIELD_PREP(GENMASK(7, 4), max((x), 1U) - 1) + +#define TIM_SEQ0_REG 0x90 +#define TIM_SEQ0_TCCS(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_SEQ0_TADL(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_SEQ0_TRHW(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) +#define TIM_SEQ0_TWHR(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) + +#define TIM_SEQ1_REG 0x94 +#define TIM_SEQ1_TWB(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_SEQ1_TRR(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_SEQ1_TWW(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) + +#define TIM_GEN_SEQ0_REG 0x98 +#define TIM_GEN_SEQ0_D0(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_GEN_SEQ0_D1(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_GEN_SEQ0_D2(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) +#define TIM_GEN_SEQ0_D3(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) + +#define TIM_GEN_SEQ1_REG 0x9c +#define TIM_GEN_SEQ1_D4(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_GEN_SEQ1_D5(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_GEN_SEQ1_D6(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) +#define TIM_GEN_SEQ1_D7(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) + +#define TIM_GEN_SEQ2_REG 0xA0 +#define TIM_GEN_SEQ2_D8(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_GEN_SEQ2_D9(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_GEN_SEQ2_D10(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) +#define TIM_GEN_SEQ2_D11(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) + +#define FIFO_INIT_REG 0xB4 +#define FIFO_INIT BIT(0) + +#define FIFO_STATE_REG 0xB4 +#define FIFO_STATE_R_EMPTY(reg) FIELD_GET(BIT(0), (reg)) +#define FIFO_STATE_W_FULL(reg) FIELD_GET(BIT(1), (reg)) +#define FIFO_STATE_C_EMPTY(reg) FIELD_GET(BIT(2), (reg)) +#define FIFO_STATE_R_FULL(reg) FIELD_GET(BIT(6), (reg)) +#define FIFO_STATE_W_EMPTY(reg) FIELD_GET(BIT(7), (reg)) + +#define GEN_SEQ_CTRL_REG 0xB8 +#define GEN_SEQ_CMD0_EN BIT(0) +#define GEN_SEQ_CMD1_EN BIT(1) +#define GEN_SEQ_CMD2_EN BIT(2) +#define GEN_SEQ_CMD3_EN BIT(3) +#define GEN_SEQ_COL_A0(x) FIELD_PREP(GENMASK(5, 4), min((x), 2U)) +#define GEN_SEQ_COL_A1(x) FIELD_PREP(GENMASK(7, 6), min((x), 2U)) +#define GEN_SEQ_ROW_A0(x) FIELD_PREP(GENMASK(9, 8), min((x), 3U)) +#define GEN_SEQ_ROW_A1(x) FIELD_PREP(GENMASK(11, 10), min((x), 3U)) +#define GEN_SEQ_DATA_EN BIT(12) +#define GEN_SEQ_DELAY_EN(x) FIELD_PREP(GENMASK(14, 13), (x)) +#define GEN_SEQ_DELAY0_EN GEN_SEQ_DELAY_EN(1) +#define GEN_SEQ_DELAY1_EN GEN_SEQ_DELAY_EN(2) +#define GEN_SEQ_IMD_SEQ BIT(15) +#define GEN_SEQ_COMMAND_3(x) FIELD_PREP(GENMASK(26, 16), (x)) + +#define DMA_TLVL_REG 0x114 +#define DMA_TLVL(x) FIELD_PREP(GENMASK(7, 0), (x)) +#define DMA_TLVL_MAX DMA_TLVL(0xFF) + +#define TIM_GEN_SEQ3_REG 0x134 +#define TIM_GEN_SEQ3_D12(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) + +#define ECC_CNT_REG 0x14C +#define ECC_CNT(cs, reg) FIELD_GET(GENMASK(5, 0), (reg) >> ((cs) * 8)) + +#define RZN1_CS_NUM 4 + +#define TO_CYCLES64(ps, period_ns) ((unsigned int)DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ + period_ns)) + +struct rzn1_nand_chip_sel { + unsigned int cs; +}; + +struct rzn1_nand_chip { + struct nand_chip chip; + struct list_head node; + int selected_die; + u32 ctrl; + unsigned int nsels; + u32 control; + u32 ecc_ctrl; + u32 timings_asyn; + u32 tim_seq0; + u32 tim_seq1; + u32 tim_gen_seq0; + u32 tim_gen_seq1; + u32 tim_gen_seq2; + u32 tim_gen_seq3; + struct rzn1_nand_chip_sel sels[]; +}; + +struct rzn1_nfc { + struct nand_controller controller; + struct device *dev; + void __iomem *regs; + struct clk *hclk; + struct clk *eclk; + unsigned long assigned_cs; + struct list_head chips; + struct nand_chip *selected_chip; + struct completion complete; + bool use_polling; + u8 *buf; + unsigned int buf_sz; +}; + +struct rzn1_op { + u32 command; + u32 addr0_col; + u32 addr0_row; + u32 addr1_col; + u32 addr1_row; + u32 data_size; + u32 ecc_offset; + u32 gen_seq_ctrl; + u8 *buf; + bool read; + unsigned int len; +}; + +static inline struct rzn1_nfc *to_rzn1_nfc(struct nand_controller *ctrl) +{ + return container_of(ctrl, struct rzn1_nfc, controller); +} + +static inline struct rzn1_nand_chip *to_rzn1_nand(struct nand_chip *chip) +{ + return container_of(chip, struct rzn1_nand_chip, chip); +} + +static inline unsigned int to_nfc_cs(struct rzn1_nand_chip *nand) +{ + return nand->sels[nand->selected_die].cs; +} + +static void rzn1_nfc_dis_correction(struct rzn1_nfc *nfc) +{ + u32 control; + + control = readl_relaxed(nfc->regs + CONTROL_REG); + control &= ~CONTROL_ECC_EN; + writel_relaxed(control, nfc->regs + CONTROL_REG); +} + +static void rzn1_nfc_en_correction(struct rzn1_nfc *nfc) +{ + u32 control; + + control = readl_relaxed(nfc->regs + CONTROL_REG); + control |= CONTROL_ECC_EN; + writel_relaxed(control, nfc->regs + CONTROL_REG); +} + +static void rzn1_nfc_clear_status(struct rzn1_nfc *nfc) +{ + writel_relaxed(0, nfc->regs + INT_STATUS_REG); + writel_relaxed(0, nfc->regs + ECC_STAT_REG); + writel_relaxed(0, nfc->regs + ECC_CNT_REG); +} + +static void rzn1_nfc_dis_interrupts(struct rzn1_nfc *nfc) +{ + writel_relaxed(0, nfc->regs + INT_MASK_REG); +} + +static void rzn1_nfc_en_interrupts(struct rzn1_nfc *nfc, u32 val) +{ + if (!nfc->use_polling) + writel_relaxed(val, nfc->regs + INT_MASK_REG); +} + +static void rzn1_nfc_clear_fifo(struct rzn1_nfc *nfc) +{ + writel_relaxed(FIFO_INIT, nfc->regs + FIFO_INIT_REG); +} + +static void rzn1_nfc_select_target(struct nand_chip *chip, int die_nr) +{ + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + unsigned int cs = rzn1_nand->sels[die_nr].cs; + + if (chip == nfc->selected_chip && die_nr == rzn1_nand->selected_die) + return; + + rzn1_nfc_clear_status(nfc); + writel_relaxed(MEM_CTRL_CS(cs) | MEM_CTRL_DIS_WP(cs), nfc->regs + MEM_CTRL_REG); + writel_relaxed(rzn1_nand->control, nfc->regs + CONTROL_REG); + writel_relaxed(rzn1_nand->ecc_ctrl, nfc->regs + ECC_CTRL_REG); + writel_relaxed(rzn1_nand->timings_asyn, nfc->regs + TIMINGS_ASYN_REG); + writel_relaxed(rzn1_nand->tim_seq0, nfc->regs + TIM_SEQ0_REG); + writel_relaxed(rzn1_nand->tim_seq1, nfc->regs + TIM_SEQ1_REG); + writel_relaxed(rzn1_nand->tim_gen_seq0, nfc->regs + TIM_GEN_SEQ0_REG); + writel_relaxed(rzn1_nand->tim_gen_seq1, nfc->regs + TIM_GEN_SEQ1_REG); + writel_relaxed(rzn1_nand->tim_gen_seq2, nfc->regs + TIM_GEN_SEQ2_REG); + writel_relaxed(rzn1_nand->tim_gen_seq3, nfc->regs + TIM_GEN_SEQ3_REG); + + nfc->selected_chip = chip; + rzn1_nand->selected_die = die_nr; +} + +static void rzn1_nfc_trigger_op(struct rzn1_nfc *nfc, struct rzn1_op *rop) +{ + writel_relaxed(rop->addr0_col, nfc->regs + ADDR0_COL_REG); + writel_relaxed(rop->addr0_row, nfc->regs + ADDR0_ROW_REG); + writel_relaxed(rop->addr1_col, nfc->regs + ADDR1_COL_REG); + writel_relaxed(rop->addr1_row, nfc->regs + ADDR1_ROW_REG); + writel_relaxed(rop->ecc_offset, nfc->regs + ECC_OFFSET_REG); + writel_relaxed(rop->gen_seq_ctrl, nfc->regs + GEN_SEQ_CTRL_REG); + writel_relaxed(DATA_SIZE(rop->len), nfc->regs + DATA_SIZE_REG); + writel_relaxed(rop->command, nfc->regs + COMMAND_REG); +} + +static void rzn1_nfc_trigger_dma(struct rzn1_nfc *nfc) +{ + writel_relaxed(DMA_CTRL_INCREMENT_BURST_4 | + DMA_CTRL_REGISTER_MANAGED_MODE | + DMA_CTRL_START, nfc->regs + DMA_CTRL_REG); +} + +static irqreturn_t rzn1_nfc_irq_handler(int irq, void *private) +{ + struct rzn1_nfc *nfc = private; + + rzn1_nfc_dis_interrupts(nfc); + complete(&nfc->complete); + + return IRQ_HANDLED; +} + +static int rzn1_nfc_wait_end_of_op(struct rzn1_nfc *nfc, + struct nand_chip *chip) +{ + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + unsigned int cs = to_nfc_cs(rzn1_nand); + u32 status; + int ret; + + ret = readl_poll_timeout(nfc->regs + STATUS_REG, status, + MEM_RDY(cs, status) && CTRL_RDY(status), + 1, 100000); + if (ret) + dev_err(nfc->dev, "Operation timed out, status: 0x%08x\n", + status); + + return ret; +} + +static int rzn1_nfc_wait_end_of_io(struct rzn1_nfc *nfc, + struct nand_chip *chip) +{ + int timeout_ms = 1000; + int ret; + + if (nfc->use_polling) { + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + unsigned int cs = to_nfc_cs(rzn1_nand); + u32 status; + + ret = readl_poll_timeout(nfc->regs + INT_STATUS_REG, status, + MEM_IS_RDY(cs, status) & + DMA_HAS_ENDED(status), + 0, timeout_ms * 1000); + } else { + ret = wait_for_completion_timeout(&nfc->complete, + msecs_to_jiffies(timeout_ms)); + if (!ret) + ret = -ETIMEDOUT; + else + ret = 0; + } + + return ret; +} + +static int rzn1_read_page_hw_ecc(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + unsigned int cs = to_nfc_cs(rzn1_nand); + struct rzn1_op rop = { + .command = COMMAND_INPUT_SEL_DMA | COMMAND_0(NAND_CMD_READ0) | + COMMAND_2(NAND_CMD_READSTART) | COMMAND_FIFO_SEL | + COMMAND_SEQ_READ_PAGE, + .addr0_row = page, + .len = mtd->writesize, + .ecc_offset = ECC_OFFSET(mtd->writesize + 2), + }; + unsigned int max_bitflips = 0; + dma_addr_t dma_addr; + u32 ecc_stat; + int bf, ret, i; + + /* Prepare controller */ + rzn1_nfc_select_target(chip, chip->cur_cs); + rzn1_nfc_clear_status(nfc); + reinit_completion(&nfc->complete); + rzn1_nfc_en_interrupts(nfc, INT_DMA_ENDED); + rzn1_nfc_en_correction(nfc); + + /* Configure DMA */ + dma_addr = dma_map_single(nfc->dev, nfc->buf, mtd->writesize, + DMA_FROM_DEVICE); + writel(dma_addr, nfc->regs + DMA_ADDR_LOW_REG); + writel(mtd->writesize, nfc->regs + DMA_CNT_REG); + writel(DMA_TLVL_MAX, nfc->regs + DMA_TLVL_REG); + + rzn1_nfc_trigger_op(nfc, &rop); + rzn1_nfc_trigger_dma(nfc); + + ret = rzn1_nfc_wait_end_of_io(nfc, chip); + dma_unmap_single(nfc->dev, dma_addr, mtd->writesize, DMA_FROM_DEVICE); + rzn1_nfc_dis_correction(nfc); + if (ret) { + dev_err(nfc->dev, "Read page operation never ending\n"); + return ret; + } + + ecc_stat = readl_relaxed(nfc->regs + ECC_STAT_REG); + + if (oob_required || ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { + ret = nand_change_read_column_op(chip, mtd->writesize, + chip->oob_poi, mtd->oobsize, + false); + if (ret) + return ret; + } + + if (ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { + for (i = 0; i < chip->ecc.steps; i++) { + unsigned int off = i * chip->ecc.size; + unsigned int eccoff = i * chip->ecc.bytes; + + bf = nand_check_erased_ecc_chunk(nfc->buf + off, + chip->ecc.size, + chip->oob_poi + 2 + eccoff, + chip->ecc.bytes, + NULL, 0, + chip->ecc.strength); + if (bf < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += bf; + max_bitflips = max_t(unsigned int, max_bitflips, bf); + } + } + } else if (ECC_STAT_CORRECTABLE(cs, ecc_stat)) { + bf = ECC_CNT(cs, readl_relaxed(nfc->regs + ECC_CNT_REG)); + /* + * The number of bitflips is an approximation given the fact + * that this controller does not provide per-chunk details but + * only gives statistics on the entire page. + */ + mtd->ecc_stats.corrected += bf; + } + + memcpy(buf, nfc->buf, mtd->writesize); + + return 0; +} + +static int rzn1_read_subpage_hw_ecc(struct nand_chip *chip, u32 req_offset, + u32 req_len, u8 *bufpoi, int page) +{ + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + unsigned int cs = to_nfc_cs(rzn1_nand); + unsigned int page_off = round_down(req_offset, chip->ecc.size); + unsigned int real_len = round_up(req_offset + req_len - page_off, + chip->ecc.size); + unsigned int start_chunk = page_off / chip->ecc.size; + unsigned int nchunks = real_len / chip->ecc.size; + unsigned int ecc_off = 2 + (start_chunk * chip->ecc.bytes); + struct rzn1_op rop = { + .command = COMMAND_INPUT_SEL_AHBS | COMMAND_0(NAND_CMD_READ0) | + COMMAND_2(NAND_CMD_READSTART) | COMMAND_FIFO_SEL | + COMMAND_SEQ_READ_PAGE, + .addr0_row = page, + .addr0_col = page_off, + .len = real_len, + .ecc_offset = ECC_OFFSET(mtd->writesize + ecc_off), + }; + unsigned int max_bitflips = 0; + u32 ecc_stat; + int bf, ret, i; + + /* Prepare controller */ + rzn1_nfc_select_target(chip, chip->cur_cs); + rzn1_nfc_clear_status(nfc); + rzn1_nfc_en_correction(nfc); + rzn1_nfc_trigger_op(nfc, &rop); + + while (!FIFO_STATE_C_EMPTY(readl(nfc->regs + FIFO_STATE_REG))) + cpu_relax(); + + while (FIFO_STATE_R_EMPTY(readl(nfc->regs + FIFO_STATE_REG))) + cpu_relax(); + + ioread32_rep(nfc->regs + FIFO_DATA_REG, bufpoi + page_off, + real_len / 4); + + if (!FIFO_STATE_R_EMPTY(readl(nfc->regs + FIFO_STATE_REG))) { + dev_err(nfc->dev, "Clearing residual data in the read FIFO\n"); + rzn1_nfc_clear_fifo(nfc); + } + + ret = rzn1_nfc_wait_end_of_op(nfc, chip); + rzn1_nfc_dis_correction(nfc); + if (ret) { + dev_err(nfc->dev, "Read subpage operation never ending\n"); + return ret; + } + + ecc_stat = readl_relaxed(nfc->regs + ECC_STAT_REG); + + if (ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { + ret = nand_change_read_column_op(chip, mtd->writesize, + chip->oob_poi, mtd->oobsize, + false); + if (ret) + return ret; + + for (i = start_chunk; i < nchunks; i++) { + unsigned int dataoff = i * chip->ecc.size; + unsigned int eccoff = 2 + (i * chip->ecc.bytes); + + bf = nand_check_erased_ecc_chunk(bufpoi + dataoff, + chip->ecc.size, + chip->oob_poi + eccoff, + chip->ecc.bytes, + NULL, 0, + chip->ecc.strength); + if (bf < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += bf; + max_bitflips = max_t(unsigned int, max_bitflips, bf); + } + } + } else if (ECC_STAT_CORRECTABLE(cs, ecc_stat)) { + bf = ECC_CNT(cs, readl_relaxed(nfc->regs + ECC_CNT_REG)); + /* + * The number of bitflips is an approximation given the fact + * that this controller does not provide per-chunk details but + * only gives statistics on the entire page. + */ + mtd->ecc_stats.corrected += bf; + } + + return 0; +} + +static int rzn1_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + unsigned int cs = to_nfc_cs(rzn1_nand); + struct rzn1_op rop = { + .command = COMMAND_INPUT_SEL_DMA | COMMAND_0(NAND_CMD_SEQIN) | + COMMAND_1(NAND_CMD_PAGEPROG) | COMMAND_FIFO_SEL | + COMMAND_SEQ_WRITE_PAGE, + .addr0_row = page, + .len = mtd->writesize, + .ecc_offset = ECC_OFFSET(mtd->writesize + 2), + }; + dma_addr_t dma_addr; + int ret; + + memcpy(nfc->buf, buf, mtd->writesize); + + /* Prepare controller */ + rzn1_nfc_select_target(chip, chip->cur_cs); + rzn1_nfc_clear_status(nfc); + reinit_completion(&nfc->complete); + rzn1_nfc_en_interrupts(nfc, INT_MEM_RDY(cs)); + rzn1_nfc_en_correction(nfc); + + /* Configure DMA */ + dma_addr = dma_map_single(nfc->dev, (void *)nfc->buf, mtd->writesize, + DMA_TO_DEVICE); + writel(dma_addr, nfc->regs + DMA_ADDR_LOW_REG); + writel(mtd->writesize, nfc->regs + DMA_CNT_REG); + writel(DMA_TLVL_MAX, nfc->regs + DMA_TLVL_REG); + + rzn1_nfc_trigger_op(nfc, &rop); + rzn1_nfc_trigger_dma(nfc); + + ret = rzn1_nfc_wait_end_of_io(nfc, chip); + dma_unmap_single(nfc->dev, dma_addr, mtd->writesize, DMA_TO_DEVICE); + rzn1_nfc_dis_correction(nfc); + if (ret) { + dev_err(nfc->dev, "Write page operation never ending\n"); + return ret; + } + + if (oob_required) { + ret = nand_change_write_column_op(chip, mtd->writesize, + chip->oob_poi, mtd->oobsize, + false); + if (ret) + return ret; + } + + return 0; +} + +static int rzn1_write_subpage_hw_ecc(struct nand_chip *chip, u32 req_offset, + u32 req_len, const u8 *bufpoi, + int oob_required, int page) +{ + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int page_off = round_down(req_offset, chip->ecc.size); + unsigned int real_len = round_up(req_offset + req_len - page_off, + chip->ecc.size); + unsigned int start_chunk = page_off / chip->ecc.size; + unsigned int ecc_off = 2 + (start_chunk * chip->ecc.bytes); + struct rzn1_op rop = { + .command = COMMAND_INPUT_SEL_AHBS | COMMAND_0(NAND_CMD_SEQIN) | + COMMAND_1(NAND_CMD_PAGEPROG) | COMMAND_FIFO_SEL | + COMMAND_SEQ_WRITE_PAGE, + .addr0_row = page, + .addr0_col = page_off, + .len = real_len, + .ecc_offset = ECC_OFFSET(mtd->writesize + ecc_off), + }; + int ret; + + /* Prepare controller */ + rzn1_nfc_select_target(chip, chip->cur_cs); + rzn1_nfc_clear_status(nfc); + rzn1_nfc_en_correction(nfc); + rzn1_nfc_trigger_op(nfc, &rop); + + while (FIFO_STATE_W_FULL(readl(nfc->regs + FIFO_STATE_REG))) + cpu_relax(); + + iowrite32_rep(nfc->regs + FIFO_DATA_REG, bufpoi + page_off, + real_len / 4); + + while (!FIFO_STATE_W_EMPTY(readl(nfc->regs + FIFO_STATE_REG))) + cpu_relax(); + + ret = rzn1_nfc_wait_end_of_op(nfc, chip); + rzn1_nfc_dis_correction(nfc); + if (ret) { + dev_err(nfc->dev, "Write subpage operation never ending\n"); + return ret; + } + + return 0; +} + +/* + * This controller is simple enough and thus does not need to use the parser + * provided by the core, instead, handle every situation here. + */ +static int rzn1_nfc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, bool check_only) +{ + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + const struct nand_op_instr *instr = NULL; + struct rzn1_op rop = { + .command = COMMAND_INPUT_SEL_AHBS, + .gen_seq_ctrl = GEN_SEQ_IMD_SEQ, + }; + unsigned int cmd_phase = 0, addr_phase = 0, data_phase = 0, + delay_phase = 0, delays = 0; + unsigned int op_id, col_addrs, row_addrs, naddrs, remainder, words; + const u8 *addrs; + u32 last_bytes; + int i, ret; + + if (!check_only) + rzn1_nfc_select_target(chip, op->cs); + + for (op_id = 0; op_id < op->ninstrs; op_id++) { + instr = &op->instrs[op_id]; + + nand_op_trace(" ", instr); + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + switch (cmd_phase++) { + case 0: + rop.command |= COMMAND_0(instr->ctx.cmd.opcode); + rop.gen_seq_ctrl |= GEN_SEQ_CMD0_EN; + break; + case 1: + rop.gen_seq_ctrl |= GEN_SEQ_COMMAND_3(instr->ctx.cmd.opcode); + rop.gen_seq_ctrl |= GEN_SEQ_CMD3_EN; + if (addr_phase == 0) + addr_phase = 1; + break; + case 2: + rop.command |= COMMAND_2(instr->ctx.cmd.opcode); + rop.gen_seq_ctrl |= GEN_SEQ_CMD2_EN; + if (addr_phase <= 1) + addr_phase = 2; + break; + case 3: + rop.command |= COMMAND_1(instr->ctx.cmd.opcode); + rop.gen_seq_ctrl |= GEN_SEQ_CMD1_EN; + if (addr_phase <= 1) + addr_phase = 2; + if (delay_phase == 0) + delay_phase = 1; + if (data_phase == 0) + data_phase = 1; + break; + default: + return -EOPNOTSUPP; + } + break; + + case NAND_OP_ADDR_INSTR: + addrs = instr->ctx.addr.addrs; + naddrs = instr->ctx.addr.naddrs; + if (naddrs > 5) + return -EOPNOTSUPP; + + col_addrs = min(2U, naddrs); + row_addrs = naddrs > 2 ? naddrs - col_addrs : 0; + + switch (addr_phase++) { + case 0: + for (i = 0; i < col_addrs; i++) + rop.addr0_col |= addrs[i] << (i * 8); + rop.gen_seq_ctrl |= GEN_SEQ_COL_A0(col_addrs); + + for (i = 0; i < row_addrs; i++) + rop.addr0_row |= addrs[2 + i] << (i * 8); + rop.gen_seq_ctrl |= GEN_SEQ_ROW_A0(row_addrs); + + if (cmd_phase == 0) + cmd_phase = 1; + break; + case 1: + for (i = 0; i < col_addrs; i++) + rop.addr1_col |= addrs[i] << (i * 8); + rop.gen_seq_ctrl |= GEN_SEQ_COL_A1(col_addrs); + + for (i = 0; i < row_addrs; i++) + rop.addr1_row |= addrs[2 + i] << (i * 8); + rop.gen_seq_ctrl |= GEN_SEQ_ROW_A1(row_addrs); + + if (cmd_phase <= 1) + cmd_phase = 2; + break; + default: + return -EOPNOTSUPP; + } + break; + + case NAND_OP_DATA_IN_INSTR: + rop.read = true; + fallthrough; + case NAND_OP_DATA_OUT_INSTR: + rop.gen_seq_ctrl |= GEN_SEQ_DATA_EN; + rop.buf = instr->ctx.data.buf.in; + rop.len = instr->ctx.data.len; + rop.command |= COMMAND_FIFO_SEL; + + switch (data_phase++) { + case 0: + if (cmd_phase <= 2) + cmd_phase = 3; + if (addr_phase <= 1) + addr_phase = 2; + if (delay_phase == 0) + delay_phase = 1; + break; + default: + return -EOPNOTSUPP; + } + break; + + case NAND_OP_WAITRDY_INSTR: + switch (delay_phase++) { + case 0: + rop.gen_seq_ctrl |= GEN_SEQ_DELAY0_EN; + + if (cmd_phase <= 2) + cmd_phase = 3; + break; + case 1: + rop.gen_seq_ctrl |= GEN_SEQ_DELAY1_EN; + + if (cmd_phase <= 3) + cmd_phase = 4; + if (data_phase == 0) + data_phase = 1; + break; + default: + return -EOPNOTSUPP; + } + break; + } + } + + /* + * Sequence 19 is generic and dedicated to write operations. + * Sequence 18 is also generic and works for all other operations. + */ + if (rop.buf && !rop.read) + rop.command |= COMMAND_SEQ_GEN_OUT; + else + rop.command |= COMMAND_SEQ_GEN_IN; + + if (delays > 1) { + dev_err(nfc->dev, "Cannot handle more than one wait delay\n"); + return -EOPNOTSUPP; + } + + if (check_only) + return 0; + + rzn1_nfc_trigger_op(nfc, &rop); + + words = rop.len / sizeof(u32); + remainder = rop.len % sizeof(u32); + if (rop.buf && rop.read) { + while (!FIFO_STATE_C_EMPTY(readl(nfc->regs + FIFO_STATE_REG))) + cpu_relax(); + + while (FIFO_STATE_R_EMPTY(readl(nfc->regs + FIFO_STATE_REG))) + cpu_relax(); + + ioread32_rep(nfc->regs + FIFO_DATA_REG, rop.buf, words); + if (remainder) { + last_bytes = readl_relaxed(nfc->regs + FIFO_DATA_REG); + memcpy(rop.buf + (words * sizeof(u32)), &last_bytes, + remainder); + } + + if (!FIFO_STATE_R_EMPTY(readl(nfc->regs + FIFO_STATE_REG))) { + dev_warn(nfc->dev, + "Clearing residual data in the read FIFO\n"); + rzn1_nfc_clear_fifo(nfc); + } + } else if (rop.len && !rop.read) { + while (FIFO_STATE_W_FULL(readl(nfc->regs + FIFO_STATE_REG))) + cpu_relax(); + + iowrite32_rep(nfc->regs + FIFO_DATA_REG, rop.buf, + DIV_ROUND_UP(rop.len, 4)); + + if (remainder) { + last_bytes = 0; + memcpy(&last_bytes, rop.buf + (words * sizeof(u32)), remainder); + writel_relaxed(last_bytes, nfc->regs + FIFO_DATA_REG); + } + + while (!FIFO_STATE_W_EMPTY(readl(nfc->regs + FIFO_STATE_REG))) + cpu_relax(); + } + + ret = rzn1_nfc_wait_end_of_op(nfc, chip); + if (ret) + return ret; + + return 0; +} + +static int rzn1_nfc_setup_interface(struct nand_chip *chip, int chipnr, + const struct nand_interface_config *conf) +{ + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + unsigned int period_ns = 1000000000 / clk_get_rate(nfc->eclk); + const struct nand_sdr_timings *sdr; + unsigned int cyc, cle, ale, bef_dly, ca_to_data; + + sdr = nand_get_sdr_timings(conf); + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + + if (sdr->tRP_min != sdr->tWP_min || sdr->tREH_min != sdr->tWH_min) { + dev_err(nfc->dev, "Read and write hold times must be identical\n"); + return -EINVAL; + } + + if (chipnr < 0) + return 0; + + rzn1_nand->timings_asyn = + TIMINGS_ASYN_TRWP(TO_CYCLES64(sdr->tRP_min, period_ns)) | + TIMINGS_ASYN_TRWH(TO_CYCLES64(sdr->tREH_min, period_ns)); + rzn1_nand->tim_seq0 = + TIM_SEQ0_TCCS(TO_CYCLES64(sdr->tCCS_min, period_ns)) | + TIM_SEQ0_TADL(TO_CYCLES64(sdr->tADL_min, period_ns)) | + TIM_SEQ0_TRHW(TO_CYCLES64(sdr->tRHW_min, period_ns)) | + TIM_SEQ0_TWHR(TO_CYCLES64(sdr->tWHR_min, period_ns)); + rzn1_nand->tim_seq1 = + TIM_SEQ1_TWB(TO_CYCLES64(sdr->tWB_max, period_ns)) | + TIM_SEQ1_TRR(TO_CYCLES64(sdr->tRR_min, period_ns)) | + TIM_SEQ1_TWW(TO_CYCLES64(sdr->tWW_min, period_ns)); + + cyc = sdr->tDS_min + sdr->tDH_min; + cle = sdr->tCLH_min + sdr->tCLS_min; + ale = sdr->tALH_min + sdr->tALS_min; + bef_dly = sdr->tWB_max - sdr->tDH_min; + ca_to_data = sdr->tWHR_min + sdr->tREA_max - sdr->tDH_min; + + /* + * D0 = CMD -> ADDR = tCLH + tCLS - 1 cycle + * D1 = CMD -> CMD = tCLH + tCLS - 1 cycle + * D2 = CMD -> DLY = tWB - tDH + * D3 = CMD -> DATA = tWHR + tREA - tDH + */ + rzn1_nand->tim_gen_seq0 = + TIM_GEN_SEQ0_D0(TO_CYCLES64(cle - cyc, period_ns)) | + TIM_GEN_SEQ0_D1(TO_CYCLES64(cle - cyc, period_ns)) | + TIM_GEN_SEQ0_D2(TO_CYCLES64(bef_dly, period_ns)) | + TIM_GEN_SEQ0_D3(TO_CYCLES64(ca_to_data, period_ns)); + + /* + * D4 = ADDR -> CMD = tALH + tALS - 1 cyle + * D5 = ADDR -> ADDR = tALH + tALS - 1 cyle + * D6 = ADDR -> DLY = tWB - tDH + * D7 = ADDR -> DATA = tWHR + tREA - tDH + */ + rzn1_nand->tim_gen_seq1 = + TIM_GEN_SEQ1_D4(TO_CYCLES64(ale - cyc, period_ns)) | + TIM_GEN_SEQ1_D5(TO_CYCLES64(ale - cyc, period_ns)) | + TIM_GEN_SEQ1_D6(TO_CYCLES64(bef_dly, period_ns)) | + TIM_GEN_SEQ1_D7(TO_CYCLES64(ca_to_data, period_ns)); + + /* + * D8 = DLY -> DATA = tRR + tREA + * D9 = DLY -> CMD = tRR + * D10 = DATA -> CMD = tCLH + tCLS - 1 cycle + * D11 = DATA -> DLY = tWB - tDH + */ + rzn1_nand->tim_gen_seq2 = + TIM_GEN_SEQ2_D8(TO_CYCLES64(sdr->tRR_min + sdr->tREA_max, period_ns)) | + TIM_GEN_SEQ2_D9(TO_CYCLES64(sdr->tRR_min, period_ns)) | + TIM_GEN_SEQ2_D10(TO_CYCLES64(cle - cyc, period_ns)) | + TIM_GEN_SEQ2_D11(TO_CYCLES64(bef_dly, period_ns)); + + /* D12 = DATA -> END = tCLH - tDH */ + rzn1_nand->tim_gen_seq3 = + TIM_GEN_SEQ3_D12(TO_CYCLES64(sdr->tCLH_min - sdr->tDH_min, period_ns)); + + return 0; +} + +static int rzn1_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + unsigned int eccbytes = round_up(chip->ecc.bytes, 4) * chip->ecc.steps; + + if (section) + return -ERANGE; + + oobregion->offset = 2; + oobregion->length = eccbytes; + + return 0; +} + +static int rzn1_nfc_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + unsigned int eccbytes = round_up(chip->ecc.bytes, 4) * chip->ecc.steps; + + if (section) + return -ERANGE; + + oobregion->offset = 2 + eccbytes; + oobregion->length = mtd->oobsize - oobregion->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops rzn1_nfc_ooblayout_ops = { + .ecc = rzn1_nfc_ooblayout_ecc, + .free = rzn1_nfc_ooblayout_free, +}; + +static int rzn1_nfc_hw_ecc_controller_init(struct nand_chip *chip) +{ + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + + if (mtd->writesize > SZ_16K) { + dev_err(nfc->dev, "Unsupported page size\n"); + return -EINVAL; + } + + switch (chip->ecc.size) { + case SZ_256: + rzn1_nand->control |= CONTROL_ECC_BLOCK_SIZE_256; + break; + case SZ_512: + rzn1_nand->control |= CONTROL_ECC_BLOCK_SIZE_512; + break; + case SZ_1K: + rzn1_nand->control |= CONTROL_ECC_BLOCK_SIZE_1024; + break; + default: + dev_err(nfc->dev, "Unsupported ECC chunk size\n"); + return -EINVAL; + } + + switch (chip->ecc.strength) { + case 2: + chip->ecc.bytes = 4; + rzn1_nand->ecc_ctrl |= ECC_CTRL_CAP_2B; + break; + case 4: + chip->ecc.bytes = 7; + rzn1_nand->ecc_ctrl |= ECC_CTRL_CAP_4B; + break; + case 8: + chip->ecc.bytes = 14; + rzn1_nand->ecc_ctrl |= ECC_CTRL_CAP_8B; + break; + case 16: + chip->ecc.bytes = 28; + rzn1_nand->ecc_ctrl |= ECC_CTRL_CAP_16B; + break; + case 24: + chip->ecc.bytes = 42; + rzn1_nand->ecc_ctrl |= ECC_CTRL_CAP_24B; + break; + case 32: + chip->ecc.bytes = 56; + rzn1_nand->ecc_ctrl |= ECC_CTRL_CAP_32B; + break; + default: + dev_err(nfc->dev, "Unsupported ECC strength\n"); + return -EINVAL; + } + + rzn1_nand->ecc_ctrl |= ECC_CTRL_ERR_THRESHOLD(chip->ecc.strength); + + mtd_set_ooblayout(mtd, &rzn1_nfc_ooblayout_ops); + chip->ecc.steps = mtd->writesize / chip->ecc.size; + chip->ecc.read_page = rzn1_read_page_hw_ecc; + chip->ecc.read_subpage = rzn1_read_subpage_hw_ecc; + chip->ecc.write_page = rzn1_write_page_hw_ecc; + chip->ecc.write_subpage = rzn1_write_subpage_hw_ecc; + + return 0; +} + +static int rzn1_nand_ecc_init(struct nand_chip *chip) +{ + struct nand_ecc_ctrl *ecc = &chip->ecc; + const struct nand_ecc_props *requirements = + nanddev_get_ecc_requirements(&chip->base); + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + int ret; + + if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE && + (!ecc->size || !ecc->strength)) { + if (requirements->step_size && requirements->strength) { + ecc->size = requirements->step_size; + ecc->strength = requirements->strength; + } else { + dev_err(nfc->dev, "No minimum ECC strength\n"); + return -EINVAL; + } + } + + switch (ecc->engine_type) { + case NAND_ECC_ENGINE_TYPE_ON_HOST: + ret = rzn1_nfc_hw_ecc_controller_init(chip); + if (ret) + return ret; + break; + case NAND_ECC_ENGINE_TYPE_NONE: + case NAND_ECC_ENGINE_TYPE_SOFT: + case NAND_ECC_ENGINE_TYPE_ON_DIE: + break; + default: + return -EINVAL; + } + + return 0; +} + +static int rzn1_nand_attach_chip(struct nand_chip *chip) +{ + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip); + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_memory_organization *memorg = nanddev_get_memorg(&chip->base); + int ret; + + /* Do not store BBT bits in the OOB section as it is not protected */ + if (chip->bbt_options & NAND_BBT_USE_FLASH) + chip->bbt_options |= NAND_BBT_NO_OOB; + + if (mtd->writesize <= 512) { + dev_err(nfc->dev, "Small page devices not supported\n"); + return -EINVAL; + } + + rzn1_nand->control |= CONTROL_CHECK_RB_LINE | CONTROL_INT_EN; + + switch (memorg->pages_per_eraseblock) { + case 32: + rzn1_nand->control |= CONTROL_BLOCK_SIZE_32P; + break; + case 64: + rzn1_nand->control |= CONTROL_BLOCK_SIZE_64P; + break; + case 128: + rzn1_nand->control |= CONTROL_BLOCK_SIZE_128P; + break; + case 256: + rzn1_nand->control |= CONTROL_BLOCK_SIZE_256P; + break; + default: + dev_err(nfc->dev, "Unsupported memory organization\n"); + return -EINVAL; + } + + chip->options |= NAND_SUBPAGE_READ; + + ret = rzn1_nand_ecc_init(chip); + if (ret) { + dev_err(nfc->dev, "ECC initialization failed (%d)\n", ret); + return ret; + } + + /* Force an update of the configuration registers */ + rzn1_nand->selected_die = -1; + + return 0; +} + +static const struct nand_controller_ops rzn1_nfc_ops = { + .attach_chip = rzn1_nand_attach_chip, + .exec_op = rzn1_nfc_exec_op, + .setup_interface = rzn1_nfc_setup_interface, +}; + +static int rzn1_nfc_alloc_dma_buf(struct rzn1_nfc *nfc, + struct mtd_info *new_mtd) +{ + unsigned int max_len = new_mtd->writesize + new_mtd->oobsize; + struct rzn1_nand_chip *entry, *temp; + struct nand_chip *chip; + struct mtd_info *mtd; + + list_for_each_entry_safe(entry, temp, &nfc->chips, node) { + chip = &entry->chip; + mtd = nand_to_mtd(chip); + max_len = max(max_len, mtd->writesize + mtd->oobsize); + } + + if (nfc->buf && nfc->buf_sz < max_len) { + devm_kfree(nfc->dev, nfc->buf); + nfc->buf = NULL; + } + + if (!nfc->buf) { + nfc->buf_sz = max_len; + nfc->buf = devm_kmalloc(nfc->dev, max_len, GFP_KERNEL | GFP_DMA); + if (!nfc->buf) + return -ENOMEM; + } + + return 0; +} + +static int rzn1_nand_chip_init(struct rzn1_nfc *nfc, struct device_node *np) +{ + struct rzn1_nand_chip *rzn1_nand; + struct mtd_info *mtd; + struct nand_chip *chip; + int nsels, ret, i; + u32 cs; + + nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); + if (nsels <= 0) { + ret = (nsels < 0) ? nsels : -EINVAL; + dev_err(nfc->dev, "Invalid reg property (%d)\n", ret); + return ret; + } + + /* Alloc the driver's NAND chip structure */ + rzn1_nand = devm_kzalloc(nfc->dev, struct_size(rzn1_nand, sels, nsels), + GFP_KERNEL); + if (!rzn1_nand) + return -ENOMEM; + + rzn1_nand->nsels = nsels; + rzn1_nand->selected_die = -1; + + for (i = 0; i < nsels; i++) { + ret = of_property_read_u32_index(np, "reg", i, &cs); + if (ret) { + dev_err(nfc->dev, "Incomplete reg property (%d)\n", + ret); + return ret; + } + + if (test_and_set_bit(cs, &nfc->assigned_cs)) { + dev_err(nfc->dev, "CS %d already assigned\n", cs); + return -EINVAL; + } + + /* + * No need to check for RB or WP properties, there is a 1:1 + * mandatory mapping with the CS. + */ + rzn1_nand->sels[i].cs = cs; + } + + chip = &rzn1_nand->chip; + chip->controller = &nfc->controller; + nand_set_flash_node(chip, np); + + mtd = nand_to_mtd(chip); + mtd->dev.parent = nfc->dev; + if (!mtd->name) { + dev_err(nfc->dev, "Missing MTD label\n"); + return -EINVAL; + } + + ret = nand_scan(chip, rzn1_nand->nsels); + if (ret) { + dev_err(nfc->dev, "Failed to scan the NAND chip (%d)\n", ret); + return ret; + } + + ret = rzn1_nfc_alloc_dma_buf(nfc, mtd); + if (ret) + goto cleanup_nand; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(nfc->dev, "Failed to register MTD device (%d)\n", ret); + goto cleanup_nand; + } + + list_add_tail(&rzn1_nand->node, &nfc->chips); + + return 0; + +cleanup_nand: + nand_cleanup(chip); + + return ret; +} + +static void rzn1_nand_chips_cleanup(struct rzn1_nfc *nfc) +{ + struct rzn1_nand_chip *entry, *temp; + struct nand_chip *chip; + int ret; + + list_for_each_entry_safe(entry, temp, &nfc->chips, node) { + chip = &entry->chip; + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + list_del(&entry->node); + } +} + +static int rzn1_nand_chips_init(struct rzn1_nfc *nfc) +{ + struct device_node *np; + int ret; + + for_each_child_of_node(nfc->dev->of_node, np) { + ret = rzn1_nand_chip_init(nfc, np); + if (ret) { + of_node_put(np); + goto cleanup_chips; + } + } + + return 0; + +cleanup_chips: + rzn1_nand_chips_cleanup(nfc); + + return ret; +} + +static int rzn1_nfc_probe(struct platform_device *pdev) +{ + struct rzn1_nfc *nfc; + int irq, ret; + + nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nfc->dev = &pdev->dev; + nand_controller_init(&nfc->controller); + nfc->controller.ops = &rzn1_nfc_ops; + INIT_LIST_HEAD(&nfc->chips); + init_completion(&nfc->complete); + + nfc->regs = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(nfc->regs)) + return PTR_ERR(nfc->regs); + + rzn1_nfc_dis_interrupts(nfc); + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + dev_info(&pdev->dev, "Using polling\n"); + nfc->use_polling = true; + } else { + ret = devm_request_irq(&pdev->dev, irq, rzn1_nfc_irq_handler, 0, + "rzn1-nand-controller", nfc); + if (ret < 0) + return ret; + } + + ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); + if (ret) + return ret; + + nfc->hclk = devm_clk_get(&pdev->dev, "hclk"); + if (IS_ERR(nfc->hclk)) + return PTR_ERR(nfc->hclk); + + nfc->eclk = devm_clk_get(&pdev->dev, "eclk"); + if (IS_ERR(nfc->eclk)) + return PTR_ERR(nfc->eclk); + + ret = clk_prepare_enable(nfc->hclk); + if (ret) + return ret; + + ret = clk_prepare_enable(nfc->eclk); + if (ret) + goto disable_hclk; + + rzn1_nfc_clear_fifo(nfc); + + platform_set_drvdata(pdev, nfc); + + ret = rzn1_nand_chips_init(nfc); + if (ret) + goto disable_eclk; + + return 0; + +disable_eclk: + clk_disable_unprepare(nfc->eclk); +disable_hclk: + clk_disable_unprepare(nfc->hclk); + + return ret; +} + +static int rzn1_nfc_remove(struct platform_device *pdev) +{ + struct rzn1_nfc *nfc = platform_get_drvdata(pdev); + + rzn1_nand_chips_cleanup(nfc); + + clk_disable_unprepare(nfc->eclk); + clk_disable_unprepare(nfc->hclk); + + return 0; +} + +static const struct of_device_id rzn1_nfc_id_table[] = { + { .compatible = "renesas,r9a06g032-nand-controller" }, + {} /* sentinel */ +}; +MODULE_DEVICE_TABLE(of, nfc_id_table); + +static struct platform_driver rzn1_nfc_driver = { + .driver = { + .name = "renesas-nfc", + .of_match_table = of_match_ptr(rzn1_nfc_id_table), + }, + .probe = rzn1_nfc_probe, + .remove = rzn1_nfc_remove, +}; +module_platform_driver(rzn1_nfc_driver); + +MODULE_AUTHOR("Miquel Raynal "); +MODULE_DESCRIPTION("Renesas RZ/N1x NAND flash controller driver"); +MODULE_LICENSE("GPL"); -- 2.27.0 _______________________________________________ linux-arm-kernel mailing list linux-arm-kernel@lists.infradead.org http://lists.infradead.org/mailman/listinfo/linux-arm-kernel