All of lore.kernel.org
 help / color / mirror / Atom feed
From: Eric Biggers <ebiggers@kernel.org>
To: linux-block@vger.kernel.org, Jens Axboe <axboe@kernel.dk>
Cc: linux-doc@vger.kernel.org,
	Greg Kroah-Hartman <gregkh@linuxfoundation.org>,
	linux-kernel@vger.kernel.org, Hannes Reinecke <hare@suse.de>
Subject: [PATCH v2 4/8] docs: sysfs-block: fill in missing documentation from queue-sysfs.rst
Date: Tue,  7 Dec 2021 16:56:36 -0800	[thread overview]
Message-ID: <20211208005640.102814-5-ebiggers@kernel.org> (raw)
In-Reply-To: <20211208005640.102814-1-ebiggers@kernel.org>

From: Eric Biggers <ebiggers@google.com>

sysfs documentation is supposed to go in Documentation/ABI/.
However, /sys/block/<disk>/queue/* are documented in
Documentation/block/queue-sysfs.rst, and sometimes redundantly in
Documentation/ABI/stable/sysfs-block too.

Let's consolidate this documentation into Documentation/ABI/.

Therefore, copy the relevant docs from queue-sysfs.rst into sysfs-block.

This primarily means adding the 25 missing files that were documented in
queue-sysfs.rst only, as well as mentioning the RO/RW status of files.

Documentation/ABI/ requires "Date" and "Contact" fields.  For the Date
fields, I used the date of the commit which added support for each file.
For the "Contact" fields, I used linux-block.

Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Eric Biggers <ebiggers@google.com>
---
 Documentation/ABI/stable/sysfs-block | 482 +++++++++++++++++++++------
 1 file changed, 381 insertions(+), 101 deletions(-)

diff --git a/Documentation/ABI/stable/sysfs-block b/Documentation/ABI/stable/sysfs-block
index c70fce6b76c17..de3b86a3dfa55 100644
--- a/Documentation/ABI/stable/sysfs-block
+++ b/Documentation/ABI/stable/sysfs-block
@@ -46,7 +46,7 @@ Description:
 		The value type is unsigned int.
 		Cf. Documentation/block/stat.rst which contains a single value for
 		requests in flight.
-		This is related to nr_requests in Documentation/block/queue-sysfs.rst
+		This is related to /sys/block/<disk>/queue/nr_requests
 		and for SCSI device also its queue_depth.
 
 
@@ -134,207 +134,487 @@ Description:
 		same as the format of /sys/block/<disk>/stat.
 
 
+What:		/sys/block/<disk>/queue/add_random
+Date:		June 2010
+Contact:	linux-block@vger.kernel.org
+Description:
+		[RW] This file allows to turn off the disk entropy contribution.
+		Default value of this file is '1'(on).
+
+
 What:		/sys/block/<disk>/queue/chunk_sectors
 Date:		September 2016
 Contact:	Hannes Reinecke <hare@suse.com>
 Description:
-		chunk_sectors has different meaning depending on the type
+		[RO] chunk_sectors has different meaning depending on the type
 		of the disk. For a RAID device (dm-raid), chunk_sectors
-		indicates the size in 512B sectors of the RAID volume
-		stripe segment. For a zoned block device, either
-		host-aware or host-managed, chunk_sectors indicates the
-		size in 512B sectors of the zones of the device, with
-		the eventual exception of the last zone of the device
-		which may be smaller.
+		indicates the size in 512B sectors of the RAID volume stripe
+		segment. For a zoned block device, either host-aware or
+		host-managed, chunk_sectors indicates the size in 512B sectors
+		of the zones of the device, with the eventual exception of the
+		last zone of the device which may be smaller.
+
+
+What:		/sys/block/<disk>/queue/dax
+Date:		June 2016
+Contact:	linux-block@vger.kernel.org
+Description:
+		[RO] This file indicates whether the device supports Direct
+		Access (DAX), used by CPU-addressable storage to bypass the
+		pagecache.  It shows '1' if true, '0' if not.
 
 
 What:		/sys/block/<disk>/queue/discard_granularity
 Date:		May 2011
 Contact:	Martin K. Petersen <martin.petersen@oracle.com>
 Description:
-		Devices that support discard functionality may
-		internally allocate space using units that are bigger
-		than the logical block size. The discard_granularity
-		parameter indicates the size of the internal allocation
-		unit in bytes if reported by the device. Otherwise the
-		discard_granularity will be set to match the device's
-		physical block size. A discard_granularity of 0 means
-		that the device does not support discard functionality.
+		[RO] Devices that support discard functionality may internally
+		allocate space using units that are bigger than the logical
+		block size. The discard_granularity parameter indicates the size
+		of the internal allocation unit in bytes if reported by the
+		device. Otherwise the discard_granularity will be set to match
+		the device's physical block size. A discard_granularity of 0
+		means that the device does not support discard functionality.
 
 
 What:		/sys/block/<disk>/queue/discard_max_bytes
 Date:		May 2011
 Contact:	Martin K. Petersen <martin.petersen@oracle.com>
 Description:
-		Devices that support discard functionality may have
-		internal limits on the number of bytes that can be
-		trimmed or unmapped in a single operation. Some storage
-		protocols also have inherent limits on the number of
-		blocks that can be described in a single command. The
-		discard_max_bytes parameter is set by the device driver
-		to the maximum number of bytes that can be discarded in
-		a single operation. Discard requests issued to the
-		device must not exceed this limit. A discard_max_bytes
-		value of 0 means that the device does not support
-		discard functionality.
+		[RW] While discard_max_hw_bytes is the hardware limit for the
+		device, this setting is the software limit. Some devices exhibit
+		large latencies when large discards are issued, setting this
+		value lower will make Linux issue smaller discards and
+		potentially help reduce latencies induced by large discard
+		operations.
+
+
+What:		/sys/block/<disk>/queue/discard_max_hw_bytes
+Date:		July 2015
+Contact:	linux-block@vger.kernel.org
+Description:
+		[RO] Devices that support discard functionality may have
+		internal limits on the number of bytes that can be trimmed or
+		unmapped in a single operation.  The `discard_max_hw_bytes`
+		parameter is set by the device driver to the maximum number of
+		bytes that can be discarded in a single operation.  Discard
+		requests issued to the device must not exceed this limit.  A
+		`discard_max_hw_bytes` value of 0 means that the device does not
+		support discard functionality.
 
 
 What:		/sys/block/<disk>/queue/discard_zeroes_data
 Date:		May 2011
 Contact:	Martin K. Petersen <martin.petersen@oracle.com>
 Description:
-		Will always return 0.  Don't rely on any specific behavior
+		[RO] Will always return 0.  Don't rely on any specific behavior
 		for discards, and don't read this file.
 
 
+What:		/sys/block/<disk>/queue/fua
+Date:		May 2018
+Contact:	linux-block@vger.kernel.org
+Description:
+		[RO] Whether or not the block driver supports the FUA flag for
+		write requests.  FUA stands for Force Unit Access. If the FUA
+		flag is set that means that write requests must bypass the
+		volatile cache of the storage device.
+
+
+What:		/sys/block/<disk>/queue/hw_sector_size
+Date:		January 2008
+Contact:	linux-block@vger.kernel.org
+Description:
+		[RO] This is the hardware sector size of the device, in bytes.
+
+
+What:		/sys/block/<disk>/queue/independent_access_ranges/
+Date:		October 2021
+Contact:	linux-block@vger.kernel.org
+Description:
+		[RO] The presence of this sub-directory of the
+		/sys/block/xxx/queue/ directory indicates that the device is
+		capable of executing requests targeting different sector ranges
+		in parallel. For instance, single LUN multi-actuator hard-disks
+		will have an independent_access_ranges directory if the device
+		correctly advertizes the sector ranges of its actuators.
+
+		The independent_access_ranges directory contains one directory
+		per access range, with each range described using the sector
+		(RO) attribute file to indicate the first sector of the range
+		and the nr_sectors (RO) attribute file to indicate the total
+		number of sectors in the range starting from the first sector of
+		the range.  For example, a dual-actuator hard-disk will have the
+		following independent_access_ranges entries.::
+
+			$ tree /sys/block/<disk>/queue/independent_access_ranges/
+			/sys/block/<disk>/queue/independent_access_ranges/
+			|-- 0
+			|   |-- nr_sectors
+			|   `-- sector
+			`-- 1
+			    |-- nr_sectors
+			    `-- sector
+
+		The sector and nr_sectors attributes use 512B sector unit,
+		regardless of the actual block size of the device. Independent
+		access ranges do not overlap and include all sectors within the
+		device capacity. The access ranges are numbered in increasing
+		order of the range start sector, that is, the sector attribute
+		of range 0 always has the value 0.
+
+
+What:		/sys/block/<disk>/queue/io_poll
+Date:		November 2015
+Contact:	linux-block@vger.kernel.org
+Description:
+		[RW] When read, this file shows whether polling is enabled (1)
+		or disabled (0).  Writing '0' to this file will disable polling
+		for this device.  Writing any non-zero value will enable this
+		feature.
+
+
+What:		/sys/block/<disk>/queue/io_poll_delay
+Date:		November 2016
+Contact:	linux-block@vger.kernel.org
+Description:
+		[RW] If polling is enabled, this controls what kind of polling
+		will be performed. It defaults to -1, which is classic polling.
+		In this mode, the CPU will repeatedly ask for completions
+		without giving up any time.  If set to 0, a hybrid polling mode
+		is used, where the kernel will attempt to make an educated guess
+		at when the IO will complete. Based on this guess, the kernel
+		will put the process issuing IO to sleep for an amount of time,
+		before entering a classic poll loop. This mode might be a little
+		slower than pure classic polling, but it will be more efficient.
+		If set to a value larger than 0, the kernel will put the process
+		issuing IO to sleep for this amount of microseconds before
+		entering classic polling.
+
+
 What:		/sys/block/<disk>/queue/io_timeout
 Date:		November 2018
 Contact:	Weiping Zhang <zhangweiping@didiglobal.com>
 Description:
-		io_timeout is the request timeout in milliseconds. If a request
-		does not complete in this time then the block driver timeout
-		handler is invoked. That timeout handler can decide to retry
-		the request, to fail it or to start a device recovery strategy.
+		[RW] io_timeout is the request timeout in milliseconds. If a
+		request does not complete in this time then the block driver
+		timeout handler is invoked. That timeout handler can decide to
+		retry the request, to fail it or to start a device recovery
+		strategy.
+
+
+What:		/sys/block/<disk>/queue/iostats
+Date:		January 2009
+Contact:	linux-block@vger.kernel.org
+Description:
+		[RW] This file is used to control (on/off) the iostats
+		accounting of the disk.
 
 
 What:		/sys/block/<disk>/queue/logical_block_size
 Date:		May 2009
 Contact:	Martin K. Petersen <martin.petersen@oracle.com>
 Description:
-		This is the smallest unit the storage device can
-		address.  It is typically 512 bytes.
+		[RO] This is the smallest unit the storage device can address.
+		It is typically 512 bytes.
 
 
 What:		/sys/block/<disk>/queue/max_active_zones
 Date:		July 2020
 Contact:	Niklas Cassel <niklas.cassel@wdc.com>
 Description:
-		For zoned block devices (zoned attribute indicating
+		[RO] For zoned block devices (zoned attribute indicating
 		"host-managed" or "host-aware"), the sum of zones belonging to
 		any of the zone states: EXPLICIT OPEN, IMPLICIT OPEN or CLOSED,
 		is limited by this value. If this value is 0, there is no limit.
 
+		If the host attempts to exceed this limit, the driver should
+		report this error with BLK_STS_ZONE_ACTIVE_RESOURCE, which user
+		space may see as the EOVERFLOW errno.
+
+
+What:		/sys/block/<disk>/queue/max_discard_segments
+Date:		February 2017
+Contact:	linux-block@vger.kernel.org
+Description:
+		[RO] The maximum number of DMA scatter/gather entries in a
+		discard request.
+
+
+What:		/sys/block/<disk>/queue/max_hw_sectors_kb
+Date:		September 2004
+Contact:	linux-block@vger.kernel.org
+Description:
+		[RO] This is the maximum number of kilobytes supported in a
+		single data transfer.
+
+
+What:		/sys/block/<disk>/queue/max_integrity_segments
+Date:		September 2010
+Contact:	linux-block@vger.kernel.org
+Description:
+		[RO] Maximum number of elements in a DMA scatter/gather list
+		with integrity data that will be submitted by the block layer
+		core to the associated block driver.
+
 
 What:		/sys/block/<disk>/queue/max_open_zones
 Date:		July 2020
 Contact:	Niklas Cassel <niklas.cassel@wdc.com>
 Description:
-		For zoned block devices (zoned attribute indicating
+		[RO] For zoned block devices (zoned attribute indicating
 		"host-managed" or "host-aware"), the sum of zones belonging to
-		any of the zone states: EXPLICIT OPEN or IMPLICIT OPEN,
-		is limited by this value. If this value is 0, there is no limit.
+		any of the zone states: EXPLICIT OPEN or IMPLICIT OPEN, is
+		limited by this value. If this value is 0, there is no limit.
+
+
+What:		/sys/block/<disk>/queue/max_sectors_kb
+Date:		September 2004
+Contact:	linux-block@vger.kernel.org
+Description:
+		[RW] This is the maximum number of kilobytes that the block
+		layer will allow for a filesystem request. Must be smaller than
+		or equal to the maximum size allowed by the hardware.
+
+
+What:		/sys/block/<disk>/queue/max_segment_size
+Date:		March 2010
+Contact:	linux-block@vger.kernel.org
+Description:
+		[RO] Maximum size in bytes of a single element in a DMA
+		scatter/gather list.
+
+
+What:		/sys/block/<disk>/queue/max_segments
+Date:		March 2010
+Contact:	linux-block@vger.kernel.org
+Description:
+		[RO] Maximum number of elements in a DMA scatter/gather list
+		that is submitted to the associated block driver.
 
 
 What:		/sys/block/<disk>/queue/minimum_io_size
 Date:		April 2009
 Contact:	Martin K. Petersen <martin.petersen@oracle.com>
 Description:
-		Storage devices may report a granularity or preferred
-		minimum I/O size which is the smallest request the
-		device can perform without incurring a performance
-		penalty.  For disk drives this is often the physical
-		block size.  For RAID arrays it is often the stripe
-		chunk size.  A properly aligned multiple of
-		minimum_io_size is the preferred request size for
-		workloads where a high number of I/O operations is
-		desired.
+		[RO] Storage devices may report a granularity or preferred
+		minimum I/O size which is the smallest request the device can
+		perform without incurring a performance penalty.  For disk
+		drives this is often the physical block size.  For RAID arrays
+		it is often the stripe chunk size.  A properly aligned multiple
+		of minimum_io_size is the preferred request size for workloads
+		where a high number of I/O operations is desired.
 
 
 What:		/sys/block/<disk>/queue/nomerges
 Date:		January 2010
 Contact:	linux-block@vger.kernel.org
 Description:
-		Standard I/O elevator operations include attempts to
-		merge contiguous I/Os. For known random I/O loads these
-		attempts will always fail and result in extra cycles
-		being spent in the kernel. This allows one to turn off
-		this behavior on one of two ways: When set to 1, complex
-		merge checks are disabled, but the simple one-shot merges
-		with the previous I/O request are enabled. When set to 2,
-		all merge tries are disabled. The default value is 0 -
-		which enables all types of merge tries.
+		[RW] Standard I/O elevator operations include attempts to merge
+		contiguous I/Os. For known random I/O loads these attempts will
+		always fail and result in extra cycles being spent in the
+		kernel. This allows one to turn off this behavior on one of two
+		ways: When set to 1, complex merge checks are disabled, but the
+		simple one-shot merges with the previous I/O request are
+		enabled. When set to 2, all merge tries are disabled. The
+		default value is 0 - which enables all types of merge tries.
+
+
+What:		/sys/block/<disk>/queue/nr_requests
+Date:		July 2003
+Contact:	linux-block@vger.kernel.org
+Description:
+		[RW] This controls how many requests may be allocated in the
+		block layer for read or write requests. Note that the total
+		allocated number may be twice this amount, since it applies only
+		to reads or writes (not the accumulated sum).
+
+		To avoid priority inversion through request starvation, a
+		request queue maintains a separate request pool per each cgroup
+		when CONFIG_BLK_CGROUP is enabled, and this parameter applies to
+		each such per-block-cgroup request pool.  IOW, if there are N
+		block cgroups, each request queue may have up to N request
+		pools, each independently regulated by nr_requests.
 
 
 What:		/sys/block/<disk>/queue/nr_zones
 Date:		November 2018
 Contact:	Damien Le Moal <damien.lemoal@wdc.com>
 Description:
-		nr_zones indicates the total number of zones of a zoned block
-		device ("host-aware" or "host-managed" zone model). For regular
-		block devices, the value is always 0.
+		[RO] nr_zones indicates the total number of zones of a zoned
+		block device ("host-aware" or "host-managed" zone model). For
+		regular block devices, the value is always 0.
 
 
 What:		/sys/block/<disk>/queue/optimal_io_size
 Date:		April 2009
 Contact:	Martin K. Petersen <martin.petersen@oracle.com>
 Description:
-		Storage devices may report an optimal I/O size, which is
-		the device's preferred unit for sustained I/O.  This is
-		rarely reported for disk drives.  For RAID arrays it is
-		usually the stripe width or the internal track size.  A
-		properly aligned multiple of optimal_io_size is the
-		preferred request size for workloads where sustained
-		throughput is desired.  If no optimal I/O size is
-		reported this file contains 0.
+		[RO] Storage devices may report an optimal I/O size, which is
+		the device's preferred unit for sustained I/O.  This is rarely
+		reported for disk drives.  For RAID arrays it is usually the
+		stripe width or the internal track size.  A properly aligned
+		multiple of optimal_io_size is the preferred request size for
+		workloads where sustained throughput is desired.  If no optimal
+		I/O size is reported this file contains 0.
 
 
 What:		/sys/block/<disk>/queue/physical_block_size
 Date:		May 2009
 Contact:	Martin K. Petersen <martin.petersen@oracle.com>
 Description:
-		This is the smallest unit a physical storage device can
-		write atomically.  It is usually the same as the logical
-		block size but may be bigger.  One example is SATA
-		drives with 4KB sectors that expose a 512-byte logical
-		block size to the operating system.  For stacked block
-		devices the physical_block_size variable contains the
-		maximum physical_block_size of the component devices.
+		[RO] This is the smallest unit a physical storage device can
+		write atomically.  It is usually the same as the logical block
+		size but may be bigger.  One example is SATA drives with 4KB
+		sectors that expose a 512-byte logical block size to the
+		operating system.  For stacked block devices the
+		physical_block_size variable contains the maximum
+		physical_block_size of the component devices.
+
+
+What:		/sys/block/<disk>/queue/read_ahead_kb
+Date:		May 2004
+Contact:	linux-block@vger.kernel.org
+Description:
+		[RW] Maximum number of kilobytes to read-ahead for filesystems
+		on this block device.
+
+
+What:		/sys/block/<disk>/queue/rotational
+Date:		January 2009
+Contact:	linux-block@vger.kernel.org
+Description:
+		[RW] This file is used to stat if the device is of rotational
+		type or non-rotational type.
+
+
+What:		/sys/block/<disk>/queue/rq_affinity
+Date:		September 2008
+Contact:	linux-block@vger.kernel.org
+Description:
+		[RW] If this option is '1', the block layer will migrate request
+		completions to the cpu "group" that originally submitted the
+		request. For some workloads this provides a significant
+		reduction in CPU cycles due to caching effects.
+
+		For storage configurations that need to maximize distribution of
+		completion processing setting this option to '2' forces the
+		completion to run on the requesting cpu (bypassing the "group"
+		aggregation logic).
+
+
+What:		/sys/block/<disk>/queue/scheduler
+Date:		October 2004
+Contact:	linux-block@vger.kernel.org
+Description:
+		[RW] When read, this file will display the current and available
+		IO schedulers for this block device. The currently active IO
+		scheduler will be enclosed in [] brackets. Writing an IO
+		scheduler name to this file will switch control of this block
+		device to that new IO scheduler. Note that writing an IO
+		scheduler name to this file will attempt to load that IO
+		scheduler module, if it isn't already present in the system.
+
+
+What:		/sys/block/<disk>/queue/throttle_sample_time
+Date:		March 2017
+Contact:	linux-block@vger.kernel.org
+Description:
+		[RW] This is the time window that blk-throttle samples data, in
+		millisecond.  blk-throttle makes decision based on the
+		samplings. Lower time means cgroups have more smooth throughput,
+		but higher CPU overhead. This exists only when
+		CONFIG_BLK_DEV_THROTTLING_LOW is enabled.
+
+
+What:		/sys/block/<disk>/queue/wbt_lat_usec
+Date:		November 2016
+Contact:	linux-block@vger.kernel.org
+Description:
+		[RW] If the device is registered for writeback throttling, then
+		this file shows the target minimum read latency. If this latency
+		is exceeded in a given window of time (see wb_window_usec), then
+		the writeback throttling will start scaling back writes. Writing
+		a value of '0' to this file disables the feature. Writing a
+		value of '-1' to this file resets the value to the default
+		setting.
+
+
+What:		/sys/block/<disk>/queue/write_cache
+Date:		April 2016
+Contact:	linux-block@vger.kernel.org
+Description:
+		[RW] When read, this file will display whether the device has
+		write back caching enabled or not. It will return "write back"
+		for the former case, and "write through" for the latter. Writing
+		to this file can change the kernels view of the device, but it
+		doesn't alter the device state. This means that it might not be
+		safe to toggle the setting from "write back" to "write through",
+		since that will also eliminate cache flushes issued by the
+		kernel.
 
 
 What:		/sys/block/<disk>/queue/write_same_max_bytes
 Date:		January 2012
 Contact:	Martin K. Petersen <martin.petersen@oracle.com>
 Description:
-		Some devices support a write same operation in which a
+		[RO] Some devices support a write same operation in which a
 		single data block can be written to a range of several
-		contiguous blocks on storage. This can be used to wipe
-		areas on disk or to initialize drives in a RAID
-		configuration. write_same_max_bytes indicates how many
-		bytes can be written in a single write same command. If
-		write_same_max_bytes is 0, write same is not supported
-		by the device.
+		contiguous blocks on storage. This can be used to wipe areas on
+		disk or to initialize drives in a RAID configuration.
+		write_same_max_bytes indicates how many bytes can be written in
+		a single write same command. If write_same_max_bytes is 0, write
+		same is not supported by the device.
 
 
 What:		/sys/block/<disk>/queue/write_zeroes_max_bytes
 Date:		November 2016
 Contact:	Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
 Description:
-		Devices that support write zeroes operation in which a
-		single request can be issued to zero out the range of
-		contiguous blocks on storage without having any payload
-		in the request. This can be used to optimize writing zeroes
-		to the devices. write_zeroes_max_bytes indicates how many
-		bytes can be written in a single write zeroes command. If
-		write_zeroes_max_bytes is 0, write zeroes is not supported
-		by the device.
+		[RO] Devices that support write zeroes operation in which a
+		single request can be issued to zero out the range of contiguous
+		blocks on storage without having any payload in the request.
+		This can be used to optimize writing zeroes to the devices.
+		write_zeroes_max_bytes indicates how many bytes can be written
+		in a single write zeroes command. If write_zeroes_max_bytes is
+		0, write zeroes is not supported by the device.
+
+
+What:		/sys/block/<disk>/queue/zone_append_max_bytes
+Date:		May 2020
+Contact:	linux-block@vger.kernel.org
+Description:
+		[RO] This is the maximum number of bytes that can be written to
+		a sequential zone of a zoned block device using a zone append
+		write operation (REQ_OP_ZONE_APPEND). This value is always 0 for
+		regular block devices.
+
+
+What:		/sys/block/<disk>/queue/zone_write_granularity
+Date:		January 2021
+Contact:	linux-block@vger.kernel.org
+Description:
+		[RO] This indicates the alignment constraint, in bytes, for
+		write operations in sequential zones of zoned block devices
+		(devices with a zoned attributed that reports "host-managed" or
+		"host-aware"). This value is always 0 for regular block devices.
 
 
 What:		/sys/block/<disk>/queue/zoned
 Date:		September 2016
 Contact:	Damien Le Moal <damien.lemoal@wdc.com>
 Description:
-		zoned indicates if the device is a zoned block device
-		and the zone model of the device if it is indeed zoned.
-		The possible values indicated by zoned are "none" for
-		regular block devices and "host-aware" or "host-managed"
-		for zoned block devices. The characteristics of
-		host-aware and host-managed zoned block devices are
-		described in the ZBC (Zoned Block Commands) and ZAC
-		(Zoned Device ATA Command Set) standards. These standards
-		also define the "drive-managed" zone model. However,
-		since drive-managed zoned block devices do not support
-		zone commands, they will be treated as regular block
-		devices and zoned will report "none".
+		[RO] zoned indicates if the device is a zoned block device and
+		the zone model of the device if it is indeed zoned.  The
+		possible values indicated by zoned are "none" for regular block
+		devices and "host-aware" or "host-managed" for zoned block
+		devices. The characteristics of host-aware and host-managed
+		zoned block devices are described in the ZBC (Zoned Block
+		Commands) and ZAC (Zoned Device ATA Command Set) standards.
+		These standards also define the "drive-managed" zone model.
+		However, since drive-managed zoned block devices do not support
+		zone commands, they will be treated as regular block devices and
+		zoned will report "none".
 
 
 What:		/sys/block/<disk>/stat
-- 
2.34.1


  parent reply	other threads:[~2021-12-08  0:57 UTC|newest]

Thread overview: 17+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2021-12-08  0:56 [PATCH v2 0/8] docs: consolidate sysfs-block into Documentation/ABI/ Eric Biggers
2021-12-08  0:56 ` [PATCH v2 1/8] docs: sysfs-block: move to stable directory Eric Biggers
2021-12-08  0:56 ` [PATCH v2 2/8] docs: sysfs-block: sort alphabetically Eric Biggers
2021-12-08  0:56 ` [PATCH v2 3/8] docs: sysfs-block: add contact for nomerges Eric Biggers
2021-12-08  0:56 ` Eric Biggers [this message]
2021-12-08  0:56 ` [PATCH v2 5/8] docs: sysfs-block: document stable_writes Eric Biggers
2021-12-08 18:01   ` Bart Van Assche
2021-12-08 22:34     ` Eric Biggers
2021-12-08 22:59       ` Bart Van Assche
2021-12-08  0:56 ` [PATCH v2 6/8] docs: sysfs-block: document virt_boundary_mask Eric Biggers
2021-12-08 18:33   ` Bart Van Assche
2021-12-08 22:38     ` Eric Biggers
2021-12-08 22:59       ` Bart Van Assche
2021-12-08  0:56 ` [PATCH v2 7/8] docs: block: remove queue-sysfs.rst Eric Biggers
2021-12-08  0:56 ` [PATCH v2 8/8] MAINTAINERS: add entries for block layer documentation Eric Biggers
2021-12-08  3:01 ` [PATCH v2 0/8] docs: consolidate sysfs-block into Documentation/ABI/ Martin K. Petersen
2021-12-08 18:35 ` Bart Van Assche

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=20211208005640.102814-5-ebiggers@kernel.org \
    --to=ebiggers@kernel.org \
    --cc=axboe@kernel.dk \
    --cc=gregkh@linuxfoundation.org \
    --cc=hare@suse.de \
    --cc=linux-block@vger.kernel.org \
    --cc=linux-doc@vger.kernel.org \
    --cc=linux-kernel@vger.kernel.org \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.