From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org Received: from gabe.freedesktop.org (gabe.freedesktop.org [131.252.210.177]) (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits)) (No client certificate requested) by smtp.lore.kernel.org (Postfix) with ESMTPS id 18FDAC43334 for ; Wed, 29 Jun 2022 17:44:09 +0000 (UTC) Received: from gabe.freedesktop.org (localhost [127.0.0.1]) by gabe.freedesktop.org (Postfix) with ESMTP id 617BC10E15B; Wed, 29 Jun 2022 17:44:09 +0000 (UTC) Received: from mga11.intel.com (mga11.intel.com [192.55.52.93]) by gabe.freedesktop.org (Postfix) with ESMTPS id AB6AA10E15B for ; Wed, 29 Jun 2022 17:44:07 +0000 (UTC) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/simple; d=intel.com; i=@intel.com; q=dns/txt; s=Intel; t=1656524647; x=1688060647; h=from:to:subject:date:message-id:mime-version: content-transfer-encoding; bh=JKyYSDygxO9JtDDHdpc4a09HYkyFmmwnkwEWITVw3uk=; b=QREZDegL3SD3jre20RG8d8tdy7pywq8Jsohk9BigL6/6gIz8pbXgT0m+ jkKZ+UMoju0N68ewCbY4D0uwx4ON9oATOark+hfJLKSJtCOQE0vG8CLOJ vHUC3ED2VUgrAuXrcZBE8b+YobXlN0ceAOZ3ryVPLqRejzskFKt1c4ZV8 xdFZotZvGWwJakWa1iFYeglMRQ8NrHkRdBhcQ0l2XZ4+7HQksbECDIL9z x83aFm6Alxv1b+kSmpVzE9ekgKLY+1P0Vax7WRZoTKB5G/GVBNfMXZSwA vNvKBaEin5OUb9iUa0x/bC0/dC9joFm5B7PdZRzttarbCetzNXkVQuuzN w==; X-IronPort-AV: E=McAfee;i="6400,9594,10393"; a="279643910" X-IronPort-AV: E=Sophos;i="5.92,231,1650956400"; d="scan'208";a="279643910" Received: from fmsmga007.fm.intel.com ([10.253.24.52]) by fmsmga102.fm.intel.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 29 Jun 2022 10:44:06 -0700 X-IronPort-AV: E=Sophos;i="5.92,231,1650956400"; d="scan'208";a="595330993" Received: from nwalsh-mobl1.ger.corp.intel.com (HELO mwauld-desk1.intel.com) ([10.213.202.136]) by fmsmga007-auth.fm.intel.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 29 Jun 2022 10:44:05 -0700 From: Matthew Auld To: intel-gfx@lists.freedesktop.org Date: Wed, 29 Jun 2022 18:43:38 +0100 Message-Id: <20220629174350.384910-1-matthew.auld@intel.com> X-Mailer: git-send-email 2.36.1 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Subject: [Intel-gfx] [CI v4 01/13] drm/doc: add rfc section for small BAR uapi X-BeenThere: intel-gfx@lists.freedesktop.org X-Mailman-Version: 2.1.29 Precedence: list List-Id: Intel graphics driver community testing & development List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Errors-To: intel-gfx-bounces@lists.freedesktop.org Sender: "Intel-gfx" Add an entry for the new uapi needed for small BAR on DG2+. v2: - Some spelling fixes and other small tweaks. (Akeem & Thomas) - Rework error capture interactions, including no longer needing NEEDS_CPU_ACCESS for objects marked for capture. (Thomas) - Add probed_cpu_visible_size. (Lionel) v3: - Drop the vma query for now. - Add unallocated_cpu_visible_size as part of the region query. - Improve the docs some more, including documenting the expected behaviour on older kernels, since this came up in some offline discussion. v4: - Various improvements all over. (Tvrtko) v5: - Include newer integrated platforms when applying the non-recoverable context and error capture restriction. (Thomas) Signed-off-by: Matthew Auld Cc: Thomas Hellström Cc: Lionel Landwerlin Cc: Tvrtko Ursulin Cc: Jon Bloomfield Cc: Daniel Vetter Cc: Jordan Justen Cc: Kenneth Graunke Cc: Akeem G Abodunrin Cc: mesa-dev@lists.freedesktop.org Acked-by: Tvrtko Ursulin Acked-by: Akeem G Abodunrin Reviewed-by: Thomas Hellström Acked-by: Lionel Landwerlin Acked-by: Jordan Justen --- Documentation/gpu/rfc/i915_small_bar.h | 189 +++++++++++++++++++++++ Documentation/gpu/rfc/i915_small_bar.rst | 47 ++++++ Documentation/gpu/rfc/index.rst | 4 + 3 files changed, 240 insertions(+) create mode 100644 Documentation/gpu/rfc/i915_small_bar.h create mode 100644 Documentation/gpu/rfc/i915_small_bar.rst diff --git a/Documentation/gpu/rfc/i915_small_bar.h b/Documentation/gpu/rfc/i915_small_bar.h new file mode 100644 index 000000000000..6003c81d5aa4 --- /dev/null +++ b/Documentation/gpu/rfc/i915_small_bar.h @@ -0,0 +1,189 @@ +/** + * struct __drm_i915_memory_region_info - Describes one region as known to the + * driver. + * + * Note this is using both struct drm_i915_query_item and struct drm_i915_query. + * For this new query we are adding the new query id DRM_I915_QUERY_MEMORY_REGIONS + * at &drm_i915_query_item.query_id. + */ +struct __drm_i915_memory_region_info { + /** @region: The class:instance pair encoding */ + struct drm_i915_gem_memory_class_instance region; + + /** @rsvd0: MBZ */ + __u32 rsvd0; + + /** + * @probed_size: Memory probed by the driver + * + * Note that it should not be possible to ever encounter a zero value + * here, also note that no current region type will ever return -1 here. + * Although for future region types, this might be a possibility. The + * same applies to the other size fields. + */ + __u64 probed_size; + + /** + * @unallocated_size: Estimate of memory remaining + * + * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable accounting. + * Without this (or if this is an older kernel) the value here will + * always equal the @probed_size. Note this is only currently tracked + * for I915_MEMORY_CLASS_DEVICE regions (for other types the value here + * will always equal the @probed_size). + */ + __u64 unallocated_size; + + union { + /** @rsvd1: MBZ */ + __u64 rsvd1[8]; + struct { + /** + * @probed_cpu_visible_size: Memory probed by the driver + * that is CPU accessible. + * + * This will be always be <= @probed_size, and the + * remainder (if there is any) will not be CPU + * accessible. + * + * On systems without small BAR, the @probed_size will + * always equal the @probed_cpu_visible_size, since all + * of it will be CPU accessible. + * + * Note this is only tracked for + * I915_MEMORY_CLASS_DEVICE regions (for other types the + * value here will always equal the @probed_size). + * + * Note that if the value returned here is zero, then + * this must be an old kernel which lacks the relevant + * small-bar uAPI support (including + * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS), but on + * such systems we should never actually end up with a + * small BAR configuration, assuming we are able to load + * the kernel module. Hence it should be safe to treat + * this the same as when @probed_cpu_visible_size == + * @probed_size. + */ + __u64 probed_cpu_visible_size; + + /** + * @unallocated_cpu_visible_size: Estimate of CPU + * visible memory remaining + * + * Note this is only tracked for + * I915_MEMORY_CLASS_DEVICE regions (for other types the + * value here will always equal the + * @probed_cpu_visible_size). + * + * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable + * accounting. Without this the value here will always + * equal the @probed_cpu_visible_size. Note this is only + * currently tracked for I915_MEMORY_CLASS_DEVICE + * regions (for other types the value here will also + * always equal the @probed_cpu_visible_size). + * + * If this is an older kernel the value here will be + * zero, see also @probed_cpu_visible_size. + */ + __u64 unallocated_cpu_visible_size; + }; + }; +}; + +/** + * struct __drm_i915_gem_create_ext - Existing gem_create behaviour, with added + * extension support using struct i915_user_extension. + * + * Note that new buffer flags should be added here, at least for the stuff that + * is immutable. Previously we would have two ioctls, one to create the object + * with gem_create, and another to apply various parameters, however this + * creates some ambiguity for the params which are considered immutable. Also in + * general we're phasing out the various SET/GET ioctls. + */ +struct __drm_i915_gem_create_ext { + /** + * @size: Requested size for the object. + * + * The (page-aligned) allocated size for the object will be returned. + * + * Note that for some devices we have might have further minimum + * page-size restrictions (larger than 4K), like for device local-memory. + * However in general the final size here should always reflect any + * rounding up, if for example using the I915_GEM_CREATE_EXT_MEMORY_REGIONS + * extension to place the object in device local-memory. The kernel will + * always select the largest minimum page-size for the set of possible + * placements as the value to use when rounding up the @size. + */ + __u64 size; + + /** + * @handle: Returned handle for the object. + * + * Object handles are nonzero. + */ + __u32 handle; + + /** + * @flags: Optional flags. + * + * Supported values: + * + * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS - Signal to the kernel that + * the object will need to be accessed via the CPU. + * + * Only valid when placing objects in I915_MEMORY_CLASS_DEVICE, and only + * strictly required on configurations where some subset of the device + * memory is directly visible/mappable through the CPU (which we also + * call small BAR), like on some DG2+ systems. Note that this is quite + * undesirable, but due to various factors like the client CPU, BIOS etc + * it's something we can expect to see in the wild. See + * &__drm_i915_memory_region_info.probed_cpu_visible_size for how to + * determine if this system applies. + * + * Note that one of the placements MUST be I915_MEMORY_CLASS_SYSTEM, to + * ensure the kernel can always spill the allocation to system memory, + * if the object can't be allocated in the mappable part of + * I915_MEMORY_CLASS_DEVICE. + * + * Also note that since the kernel only supports flat-CCS on objects + * that can *only* be placed in I915_MEMORY_CLASS_DEVICE, we therefore + * don't support I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS together with + * flat-CCS. + * + * Without this hint, the kernel will assume that non-mappable + * I915_MEMORY_CLASS_DEVICE is preferred for this object. Note that the + * kernel can still migrate the object to the mappable part, as a last + * resort, if userspace ever CPU faults this object, but this might be + * expensive, and so ideally should be avoided. + * + * On older kernels which lack the relevant small-bar uAPI support (see + * also &__drm_i915_memory_region_info.probed_cpu_visible_size), + * usage of the flag will result in an error, but it should NEVER be + * possible to end up with a small BAR configuration, assuming we can + * also successfully load the i915 kernel module. In such cases the + * entire I915_MEMORY_CLASS_DEVICE region will be CPU accessible, and as + * such there are zero restrictions on where the object can be placed. + */ +#define I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS (1 << 0) + __u32 flags; + + /** + * @extensions: The chain of extensions to apply to this object. + * + * This will be useful in the future when we need to support several + * different extensions, and we need to apply more than one when + * creating the object. See struct i915_user_extension. + * + * If we don't supply any extensions then we get the same old gem_create + * behaviour. + * + * For I915_GEM_CREATE_EXT_MEMORY_REGIONS usage see + * struct drm_i915_gem_create_ext_memory_regions. + * + * For I915_GEM_CREATE_EXT_PROTECTED_CONTENT usage see + * struct drm_i915_gem_create_ext_protected_content. + */ +#define I915_GEM_CREATE_EXT_MEMORY_REGIONS 0 +#define I915_GEM_CREATE_EXT_PROTECTED_CONTENT 1 + __u64 extensions; +}; diff --git a/Documentation/gpu/rfc/i915_small_bar.rst b/Documentation/gpu/rfc/i915_small_bar.rst new file mode 100644 index 000000000000..d6c03ce3b862 --- /dev/null +++ b/Documentation/gpu/rfc/i915_small_bar.rst @@ -0,0 +1,47 @@ +========================== +I915 Small BAR RFC Section +========================== +Starting from DG2 we will have resizable BAR support for device local-memory(i.e +I915_MEMORY_CLASS_DEVICE), but in some cases the final BAR size might still be +smaller than the total probed_size. In such cases, only some subset of +I915_MEMORY_CLASS_DEVICE will be CPU accessible(for example the first 256M), +while the remainder is only accessible via the GPU. + +I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS flag +---------------------------------------------- +New gem_create_ext flag to tell the kernel that a BO will require CPU access. +This becomes important when placing an object in I915_MEMORY_CLASS_DEVICE, where +underneath the device has a small BAR, meaning only some portion of it is CPU +accessible. Without this flag the kernel will assume that CPU access is not +required, and prioritize using the non-CPU visible portion of +I915_MEMORY_CLASS_DEVICE. + +.. kernel-doc:: Documentation/gpu/rfc/i915_small_bar.h + :functions: __drm_i915_gem_create_ext + +probed_cpu_visible_size attribute +--------------------------------- +New struct__drm_i915_memory_region attribute which returns the total size of the +CPU accessible portion, for the particular region. This should only be +applicable for I915_MEMORY_CLASS_DEVICE. We also report the +unallocated_cpu_visible_size, alongside the unallocated_size. + +Vulkan will need this as part of creating a separate VkMemoryHeap with the +VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT set, to represent the CPU visible portion, +where the total size of the heap needs to be known. It also wants to be able to +give a rough estimate of how memory can potentially be allocated. + +.. kernel-doc:: Documentation/gpu/rfc/i915_small_bar.h + :functions: __drm_i915_memory_region_info + +Error Capture restrictions +-------------------------- +With error capture we have two new restrictions: + + 1) Error capture is best effort on small BAR systems; if the pages are not + CPU accessible, at the time of capture, then the kernel is free to skip + trying to capture them. + + 2) On discrete and newer integrated platforms we now reject error capture + on recoverable contexts. In the future the kernel may want to blit during + error capture, when for example something is not currently CPU accessible. diff --git a/Documentation/gpu/rfc/index.rst b/Documentation/gpu/rfc/index.rst index 91e93a705230..5a3bd3924ba6 100644 --- a/Documentation/gpu/rfc/index.rst +++ b/Documentation/gpu/rfc/index.rst @@ -23,3 +23,7 @@ host such documentation: .. toctree:: i915_scheduler.rst + +.. toctree:: + + i915_small_bar.rst -- 2.36.1