From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: Received: from lists.gnu.org (lists.gnu.org [209.51.188.17]) (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits)) (No client certificate requested) by smtp.lore.kernel.org (Postfix) with ESMTPS id 801A4C54EBD for ; Mon, 9 Jan 2023 22:44:59 +0000 (UTC) Received: from localhost ([::1] helo=lists1p.gnu.org) by lists.gnu.org with esmtp (Exim 4.90_1) (envelope-from ) id 1pF0rB-00048C-Fo; Mon, 09 Jan 2023 17:43:05 -0500 Received: from eggs.gnu.org ([2001:470:142:3::10]) by lists.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from ) id 1pF0r8-00046f-OL; Mon, 09 Jan 2023 17:43:02 -0500 Received: from smtp-out1.suse.de ([2001:67c:2178:6::1c]) by eggs.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_128_GCM_SHA256:128) (Exim 4.90_1) (envelope-from ) id 1pF0r2-0003zW-5r; Mon, 09 Jan 2023 17:43:02 -0500 Received: from imap2.suse-dmz.suse.de (imap2.suse-dmz.suse.de [192.168.254.74]) (using TLSv1.3 with cipher TLS_AES_256_GCM_SHA384 (256/256 bits) key-exchange X25519 server-signature ECDSA (P-521) server-digest SHA512) (No client certificate requested) by smtp-out1.suse.de (Postfix) with ESMTPS id 886534039E; Mon, 9 Jan 2023 22:42:53 +0000 (UTC) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=suse.de; s=susede2_rsa; t=1673304173; h=from:from:reply-to:date:date:message-id:message-id:to:to:cc:cc: mime-version:mime-version: content-transfer-encoding:content-transfer-encoding: in-reply-to:in-reply-to:references:references; bh=MJwG2qJhZLBd6/SRDBYGioYmK7lhgk4d0aK1OOo/P7c=; b=F6HeCpbybvzdYB4xxxe+u/6xLkyNlF9tqDi5NKeuX4utEdmD/+q9qT5vnY7YNOhv9o/z+Q BAeSdplUm6zTtoT49XHVd5yPyfolXuRldIGLOHj/hYCgUVQQ6zI9B2RvS1Z9Gdvoccnkex jvN2Coc+5oLo87LRgDYow4zxkroQPcA= DKIM-Signature: v=1; a=ed25519-sha256; c=relaxed/relaxed; d=suse.de; s=susede2_ed25519; t=1673304173; h=from:from:reply-to:date:date:message-id:message-id:to:to:cc:cc: mime-version:mime-version: content-transfer-encoding:content-transfer-encoding: in-reply-to:in-reply-to:references:references; bh=MJwG2qJhZLBd6/SRDBYGioYmK7lhgk4d0aK1OOo/P7c=; b=53a3//TdPPqMuAGXgXa3p0TtLcNb7Phnwg02SQqEKWx3dylgPMmPBV1a1REeFK7FHjsxcp ZLbA7NhSobL/huDQ== Received: from imap2.suse-dmz.suse.de (imap2.suse-dmz.suse.de [192.168.254.74]) (using TLSv1.3 with cipher TLS_AES_256_GCM_SHA384 (256/256 bits) key-exchange X25519 server-signature ECDSA (P-521) server-digest SHA512) (No client certificate requested) by imap2.suse-dmz.suse.de (Postfix) with ESMTPS id CB92813583; Mon, 9 Jan 2023 22:42:49 +0000 (UTC) Received: from dovecot-director2.suse.de ([192.168.254.65]) by imap2.suse-dmz.suse.de with ESMTPSA id oBfxJGmYvGMdIQAAMHmgww (envelope-from ); Mon, 09 Jan 2023 22:42:49 +0000 From: Fabiano Rosas To: qemu-devel@nongnu.org Cc: qemu-arm@nongnu.org, Peter Maydell , =?UTF-8?q?Philippe=20Mathieu-Daud=C3=A9?= , Richard Henderson , =?UTF-8?q?Alex=20Benn=C3=A9e?= , Paolo Bonzini , Claudio Fontana , Eduardo Habkost , Alexander Graf Subject: [RFC PATCH v2 05/19] target/arm: Move cpregs code into cpregs.c Date: Mon, 9 Jan 2023 19:42:18 -0300 Message-Id: <20230109224232.11661-6-farosas@suse.de> X-Mailer: git-send-email 2.35.3 In-Reply-To: <20230109224232.11661-1-farosas@suse.de> References: <20230109224232.11661-1-farosas@suse.de> MIME-Version: 1.0 Content-Transfer-Encoding: 8bit Received-SPF: pass client-ip=2001:67c:2178:6::1c; envelope-from=farosas@suse.de; helo=smtp-out1.suse.de X-Spam_score_int: -43 X-Spam_score: -4.4 X-Spam_bar: ---- X-Spam_report: (-4.4 / 5.0 requ) BAYES_00=-1.9, DKIM_SIGNED=0.1, DKIM_VALID=-0.1, DKIM_VALID_AU=-0.1, DKIM_VALID_EF=-0.1, RCVD_IN_DNSWL_MED=-2.3, SPF_HELO_NONE=0.001, SPF_PASS=-0.001 autolearn=ham autolearn_force=no X-Spam_action: no action X-BeenThere: qemu-devel@nongnu.org X-Mailman-Version: 2.1.29 Precedence: list List-Id: List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Errors-To: qemu-devel-bounces+qemu-devel=archiver.kernel.org@nongnu.org Sender: qemu-devel-bounces+qemu-devel=archiver.kernel.org@nongnu.org Code moved verbatim. Signed-off-by: Fabiano Rosas --- target/arm/cpregs.c | 9089 ++++++++++++++++++++++++++++++++++++ target/arm/cpu.c | 1 + target/arm/helper.c | 9067 ----------------------------------- target/arm/machine.c | 1 + target/arm/meson.build | 1 + target/arm/op_helper.c | 1 + target/arm/trace-events | 2 +- target/arm/translate-a64.c | 1 + target/arm/translate.c | 1 + 9 files changed, 9096 insertions(+), 9068 deletions(-) create mode 100644 target/arm/cpregs.c diff --git a/target/arm/cpregs.c b/target/arm/cpregs.c new file mode 100644 index 0000000000..9f15337b68 --- /dev/null +++ b/target/arm/cpregs.c @@ -0,0 +1,9089 @@ +/* + * ARM CP registers + * + * This code is licensed under the GNU GPL v2 or later. + * + * SPDX-License-Identifier: GPL-2.0-or-later + */ + +#include "qemu/osdep.h" +#include "qemu/log.h" +#include "trace.h" +#include "cpu.h" +#include "internals.h" +#include "exec/helper-proto.h" +#include "qemu/main-loop.h" +#include "exec/exec-all.h" +#include "hw/irq.h" +#include "sysemu/cpu-timers.h" +#include "qapi/error.h" +#include "qemu/guest-random.h" +#include "cpregs.h" + +#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ + +static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + assert(ri->fieldoffset); + if (cpreg_field_is_64bit(ri)) { + return CPREG_FIELD64(env, ri); + } else { + return CPREG_FIELD32(env, ri); + } +} + +void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) +{ + assert(ri->fieldoffset); + if (cpreg_field_is_64bit(ri)) { + CPREG_FIELD64(env, ri) = value; + } else { + CPREG_FIELD32(env, ri) = value; + } +} + +static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return (char *)env + ri->fieldoffset; +} + +uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) +{ + /* Raw read of a coprocessor register (as needed for migration, etc). */ + if (ri->type & ARM_CP_CONST) { + return ri->resetvalue; + } else if (ri->raw_readfn) { + return ri->raw_readfn(env, ri); + } else if (ri->readfn) { + return ri->readfn(env, ri); + } else { + return raw_read(env, ri); + } +} + +static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t v) +{ + /* + * Raw write of a coprocessor register (as needed for migration, etc). + * Note that constant registers are treated as write-ignored; the + * caller should check for success by whether a readback gives the + * value written. + */ + if (ri->type & ARM_CP_CONST) { + return; + } else if (ri->raw_writefn) { + ri->raw_writefn(env, ri, v); + } else if (ri->writefn) { + ri->writefn(env, ri, v); + } else { + raw_write(env, ri, v); + } +} + +static bool raw_accessors_invalid(const ARMCPRegInfo *ri) +{ + /* + * Return true if the regdef would cause an assertion if you called + * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a + * program bug for it not to have the NO_RAW flag). + * NB that returning false here doesn't necessarily mean that calling + * read/write_raw_cp_reg() is safe, because we can't distinguish "has + * read/write access functions which are safe for raw use" from "has + * read/write access functions which have side effects but has forgotten + * to provide raw access functions". + * The tests here line up with the conditions in read/write_raw_cp_reg() + * and assertions in raw_read()/raw_write(). + */ + if ((ri->type & ARM_CP_CONST) || + ri->fieldoffset || + ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { + return false; + } + return true; +} + +bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) +{ + /* Write the coprocessor state from cpu->env to the (index,value) list. */ + int i; + bool ok = true; + + for (i = 0; i < cpu->cpreg_array_len; i++) { + uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); + const ARMCPRegInfo *ri; + uint64_t newval; + + ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); + if (!ri) { + ok = false; + continue; + } + if (ri->type & ARM_CP_NO_RAW) { + continue; + } + + newval = read_raw_cp_reg(&cpu->env, ri); + if (kvm_sync) { + /* + * Only sync if the previous list->cpustate sync succeeded. + * Rather than tracking the success/failure state for every + * item in the list, we just recheck "does the raw write we must + * have made in write_list_to_cpustate() read back OK" here. + */ + uint64_t oldval = cpu->cpreg_values[i]; + + if (oldval == newval) { + continue; + } + + write_raw_cp_reg(&cpu->env, ri, oldval); + if (read_raw_cp_reg(&cpu->env, ri) != oldval) { + continue; + } + + write_raw_cp_reg(&cpu->env, ri, newval); + } + cpu->cpreg_values[i] = newval; + } + return ok; +} + +bool write_list_to_cpustate(ARMCPU *cpu) +{ + int i; + bool ok = true; + + for (i = 0; i < cpu->cpreg_array_len; i++) { + uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); + uint64_t v = cpu->cpreg_values[i]; + const ARMCPRegInfo *ri; + + ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); + if (!ri) { + ok = false; + continue; + } + if (ri->type & ARM_CP_NO_RAW) { + continue; + } + /* + * Write value and confirm it reads back as written + * (to catch read-only registers and partially read-only + * registers where the incoming migration value doesn't match) + */ + write_raw_cp_reg(&cpu->env, ri, v); + if (read_raw_cp_reg(&cpu->env, ri) != v) { + ok = false; + } + } + return ok; +} + +static void add_cpreg_to_list(gpointer key, gpointer opaque) +{ + ARMCPU *cpu = opaque; + uint32_t regidx = (uintptr_t)key; + const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); + + if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { + cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); + /* The value array need not be initialized at this point */ + cpu->cpreg_array_len++; + } +} + +static void count_cpreg(gpointer key, gpointer opaque) +{ + ARMCPU *cpu = opaque; + const ARMCPRegInfo *ri; + + ri = g_hash_table_lookup(cpu->cp_regs, key); + + if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { + cpu->cpreg_array_len++; + } +} + +static gint cpreg_key_compare(gconstpointer a, gconstpointer b) +{ + uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); + uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); + + if (aidx > bidx) { + return 1; + } + if (aidx < bidx) { + return -1; + } + return 0; +} + +void init_cpreg_list(ARMCPU *cpu) +{ + /* + * Initialise the cpreg_tuples[] array based on the cp_regs hash. + * Note that we require cpreg_tuples[] to be sorted by key ID. + */ + GList *keys; + int arraylen; + + keys = g_hash_table_get_keys(cpu->cp_regs); + keys = g_list_sort(keys, cpreg_key_compare); + + cpu->cpreg_array_len = 0; + + g_list_foreach(keys, count_cpreg, cpu); + + arraylen = cpu->cpreg_array_len; + cpu->cpreg_indexes = g_new(uint64_t, arraylen); + cpu->cpreg_values = g_new(uint64_t, arraylen); + cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); + cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); + cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; + cpu->cpreg_array_len = 0; + + g_list_foreach(keys, add_cpreg_to_list, cpu); + + assert(cpu->cpreg_array_len == arraylen); + + g_list_free(keys); +} + +/* + * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. + */ +static CPAccessResult access_el3_aa32ns(CPUARMState *env, + const ARMCPRegInfo *ri, + bool isread) +{ + if (!is_a64(env) && arm_current_el(env) == 3 && + arm_is_secure_below_el3(env)) { + return CP_ACCESS_TRAP_UNCATEGORIZED; + } + return CP_ACCESS_OK; +} + +/* + * Some secure-only AArch32 registers trap to EL3 if used from + * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). + * Note that an access from Secure EL1 can only happen if EL3 is AArch64. + * We assume that the .access field is set to PL1_RW. + */ +static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, + const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) == 3) { + return CP_ACCESS_OK; + } + if (arm_is_secure_below_el3(env)) { + if (env->cp15.scr_el3 & SCR_EEL2) { + return CP_ACCESS_TRAP_EL2; + } + return CP_ACCESS_TRAP_EL3; + } + /* This will be EL1 NS and EL2 NS, which just UNDEF */ + return CP_ACCESS_TRAP_UNCATEGORIZED; +} + +/* + * Check for traps to performance monitor registers, which are controlled + * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. + */ +static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + int el = arm_current_el(env); + uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); + + if (el < 2 && (mdcr_el2 & MDCR_TPM)) { + return CP_ACCESS_TRAP_EL2; + } + if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { + return CP_ACCESS_TRAP_EL3; + } + return CP_ACCESS_OK; +} + +/* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ +static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) == 1) { + uint64_t trap = isread ? HCR_TRVM : HCR_TVM; + if (arm_hcr_el2_eff(env) & trap) { + return CP_ACCESS_TRAP_EL2; + } + } + return CP_ACCESS_OK; +} + +/* Check for traps from EL1 due to HCR_EL2.TSW. */ +static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { + return CP_ACCESS_TRAP_EL2; + } + return CP_ACCESS_OK; +} + +/* Check for traps from EL1 due to HCR_EL2.TACR. */ +static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { + return CP_ACCESS_TRAP_EL2; + } + return CP_ACCESS_OK; +} + +/* Check for traps from EL1 due to HCR_EL2.TTLB. */ +static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { + return CP_ACCESS_TRAP_EL2; + } + return CP_ACCESS_OK; +} + +/* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */ +static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) == 1 && + (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) { + return CP_ACCESS_TRAP_EL2; + } + return CP_ACCESS_OK; +} + +#ifdef TARGET_AARCH64 +/* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */ +static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) == 1 && + (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) { + return CP_ACCESS_TRAP_EL2; + } + return CP_ACCESS_OK; +} +#endif + +static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + + raw_write(env, ri, value); + tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ +} + +static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + + if (raw_read(env, ri) != value) { + /* + * Unlike real hardware the qemu TLB uses virtual addresses, + * not modified virtual addresses, so this causes a TLB flush. + */ + tlb_flush(CPU(cpu)); + raw_write(env, ri, value); + } +} + +static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + + if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) + && !extended_addresses_enabled(env)) { + /* + * For VMSA (when not using the LPAE long descriptor page table + * format) this register includes the ASID, so do a TLB flush. + * For PMSA it is purely a process ID and no action is needed. + */ + tlb_flush(CPU(cpu)); + } + raw_write(env, ri, value); +} + +static int alle1_tlbmask(CPUARMState *env) +{ + /* + * Note that the 'ALL' scope must invalidate both stage 1 and + * stage 2 translations, whereas most other scopes only invalidate + * stage 1 translations. + */ + return (ARMMMUIdxBit_E10_1 | + ARMMMUIdxBit_E10_1_PAN | + ARMMMUIdxBit_E10_0 | + ARMMMUIdxBit_Stage2 | + ARMMMUIdxBit_Stage2_S); +} + + +/* IS variants of TLB operations must affect all cores */ +static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + + tlb_flush_all_cpus_synced(cs); +} + +static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + + tlb_flush_all_cpus_synced(cs); +} + +static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + + tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); +} + +static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + + tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); +} + +/* + * Non-IS variants of TLB operations are upgraded to + * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to + * force broadcast of these operations. + */ +static bool tlb_force_broadcast(CPUARMState *env) +{ + return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); +} + +static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* Invalidate all (TLBIALL) */ + CPUState *cs = env_cpu(env); + + if (tlb_force_broadcast(env)) { + tlb_flush_all_cpus_synced(cs); + } else { + tlb_flush(cs); + } +} + +static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ + CPUState *cs = env_cpu(env); + + value &= TARGET_PAGE_MASK; + if (tlb_force_broadcast(env)) { + tlb_flush_page_all_cpus_synced(cs, value); + } else { + tlb_flush_page(cs, value); + } +} + +static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* Invalidate by ASID (TLBIASID) */ + CPUState *cs = env_cpu(env); + + if (tlb_force_broadcast(env)) { + tlb_flush_all_cpus_synced(cs); + } else { + tlb_flush(cs); + } +} + +static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ + CPUState *cs = env_cpu(env); + + value &= TARGET_PAGE_MASK; + if (tlb_force_broadcast(env)) { + tlb_flush_page_all_cpus_synced(cs, value); + } else { + tlb_flush_page(cs, value); + } +} + +static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + + tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); +} + +static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + + tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); +} + + +static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + + tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); +} + +static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + + tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); +} + +static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); + + tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); +} + +static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); + + tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, + ARMMMUIdxBit_E2); +} + +static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; + + tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); +} + +static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; + + tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); +} + +static const ARMCPRegInfo cp_reginfo[] = { + /* + * Define the secure and non-secure FCSE identifier CP registers + * separately because there is no secure bank in V8 (no _EL3). This allows + * the secure register to be properly reset and migrated. There is also no + * v8 EL1 version of the register so the non-secure instance stands alone. + */ + { .name = "FCSEIDR", + .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, + .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, + .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), + .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, + { .name = "FCSEIDR_S", + .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, + .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, + .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), + .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, + /* + * Define the secure and non-secure context identifier CP registers + * separately because there is no secure bank in V8 (no _EL3). This allows + * the secure register to be properly reset and migrated. In the + * non-secure case, the 32-bit register will have reset and migration + * disabled during registration as it is handled by the 64-bit instance. + */ + { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .secure = ARM_CP_SECSTATE_NS, + .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), + .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, + { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .secure = ARM_CP_SECSTATE_S, + .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), + .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, +}; + +static const ARMCPRegInfo not_v8_cp_reginfo[] = { + /* + * NB: Some of these registers exist in v8 but with more precise + * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). + */ + /* MMU Domain access control / MPU write buffer control */ + { .name = "DACR", + .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, + .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, + .writefn = dacr_write, .raw_writefn = raw_write, + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), + offsetoflow32(CPUARMState, cp15.dacr_ns) } }, + /* + * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. + * For v6 and v5, these mappings are overly broad. + */ + { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, + .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, + { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, + .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, + { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, + .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, + { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, + .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, + /* Cache maintenance ops; some of this space may be overridden later. */ + { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, + .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, + .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, +}; + +static const ARMCPRegInfo not_v6_cp_reginfo[] = { + /* + * Not all pre-v6 cores implemented this WFI, so this is slightly + * over-broad. + */ + { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, + .access = PL1_W, .type = ARM_CP_WFI }, +}; + +static const ARMCPRegInfo not_v7_cp_reginfo[] = { + /* + * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which + * is UNPREDICTABLE; we choose to NOP as most implementations do). + */ + { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, + .access = PL1_W, .type = ARM_CP_WFI }, + /* + * L1 cache lockdown. Not architectural in v6 and earlier but in practice + * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and + * OMAPCP will override this space. + */ + { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), + .resetvalue = 0 }, + { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, + .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), + .resetvalue = 0 }, + /* v6 doesn't have the cache ID registers but Linux reads them anyway */ + { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, + .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, + .resetvalue = 0 }, + /* + * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; + * implementing it as RAZ means the "debug architecture version" bits + * will read as a reserved value, which should cause Linux to not try + * to use the debug hardware. + */ + { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, + .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, + /* + * MMU TLB control. Note that the wildcarding means we cover not just + * the unified TLB ops but also the dside/iside/inner-shareable variants. + */ + { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, + .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, + .type = ARM_CP_NO_RAW }, + { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, + .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, + .type = ARM_CP_NO_RAW }, + { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, + .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, + .type = ARM_CP_NO_RAW }, + { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, + .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, + .type = ARM_CP_NO_RAW }, + { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, + .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, + { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, + .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, +}; + +static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + uint32_t mask = 0; + + /* In ARMv8 most bits of CPACR_EL1 are RES0. */ + if (!arm_feature(env, ARM_FEATURE_V8)) { + /* + * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. + * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. + * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. + */ + if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { + /* VFP coprocessor: cp10 & cp11 [23:20] */ + mask |= R_CPACR_ASEDIS_MASK | + R_CPACR_D32DIS_MASK | + R_CPACR_CP11_MASK | + R_CPACR_CP10_MASK; + + if (!arm_feature(env, ARM_FEATURE_NEON)) { + /* ASEDIS [31] bit is RAO/WI */ + value |= R_CPACR_ASEDIS_MASK; + } + + /* + * VFPv3 and upwards with NEON implement 32 double precision + * registers (D0-D31). + */ + if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { + /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ + value |= R_CPACR_D32DIS_MASK; + } + } + value &= mask; + } + + /* + * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 + * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. + */ + if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && + !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { + mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; + value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); + } + + env->cp15.cpacr_el1 = value; +} + +static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + /* + * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 + * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. + */ + uint64_t value = env->cp15.cpacr_el1; + + if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && + !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { + value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); + } + return value; +} + + +static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) +{ + /* + * Call cpacr_write() so that we reset with the correct RAO bits set + * for our CPU features. + */ + cpacr_write(env, ri, 0); +} + +static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_feature(env, ARM_FEATURE_V8)) { + /* Check if CPACR accesses are to be trapped to EL2 */ + if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && + FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { + return CP_ACCESS_TRAP_EL2; + /* Check if CPACR accesses are to be trapped to EL3 */ + } else if (arm_current_el(env) < 3 && + FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { + return CP_ACCESS_TRAP_EL3; + } + } + + return CP_ACCESS_OK; +} + +static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + /* Check if CPTR accesses are set to trap to EL3 */ + if (arm_current_el(env) == 2 && + FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { + return CP_ACCESS_TRAP_EL3; + } + + return CP_ACCESS_OK; +} + +static const ARMCPRegInfo v6_cp_reginfo[] = { + /* prefetch by MVA in v6, NOP in v7 */ + { .name = "MVA_prefetch", + .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, + .access = PL1_W, .type = ARM_CP_NOP }, + /* + * We need to break the TB after ISB to execute self-modifying code + * correctly and also to take any pending interrupts immediately. + * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. + */ + { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, + .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, + { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, + .access = PL0_W, .type = ARM_CP_NOP }, + { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, + .access = PL0_W, .type = ARM_CP_NOP }, + { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), + offsetof(CPUARMState, cp15.ifar_ns) }, + .resetvalue = 0, }, + /* + * Watchpoint Fault Address Register : should actually only be present + * for 1136, 1176, 11MPCore. + */ + { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, + .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, + { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, + .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, + .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), + .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, +}; + +typedef struct pm_event { + uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ + /* If the event is supported on this CPU (used to generate PMCEID[01]) */ + bool (*supported)(CPUARMState *); + /* + * Retrieve the current count of the underlying event. The programmed + * counters hold a difference from the return value from this function + */ + uint64_t (*get_count)(CPUARMState *); + /* + * Return how many nanoseconds it will take (at a minimum) for count events + * to occur. A negative value indicates the counter will never overflow, or + * that the counter has otherwise arranged for the overflow bit to be set + * and the PMU interrupt to be raised on overflow. + */ + int64_t (*ns_per_count)(uint64_t); +} pm_event; + +static bool event_always_supported(CPUARMState *env) +{ + return true; +} + +static uint64_t swinc_get_count(CPUARMState *env) +{ + /* + * SW_INCR events are written directly to the pmevcntr's by writes to + * PMSWINC, so there is no underlying count maintained by the PMU itself + */ + return 0; +} + +static int64_t swinc_ns_per(uint64_t ignored) +{ + return -1; +} + +/* + * Return the underlying cycle count for the PMU cycle counters. If we're in + * usermode, simply return 0. + */ +static uint64_t cycles_get_count(CPUARMState *env) +{ +#ifndef CONFIG_USER_ONLY + return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), + ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); +#else + return cpu_get_host_ticks(); +#endif +} + +#ifndef CONFIG_USER_ONLY +static int64_t cycles_ns_per(uint64_t cycles) +{ + return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; +} + +static bool instructions_supported(CPUARMState *env) +{ + return icount_enabled() == 1; /* Precise instruction counting */ +} + +static uint64_t instructions_get_count(CPUARMState *env) +{ + return (uint64_t)icount_get_raw(); +} + +static int64_t instructions_ns_per(uint64_t icount) +{ + return icount_to_ns((int64_t)icount); +} +#endif + +static bool pmuv3p1_events_supported(CPUARMState *env) +{ + /* For events which are supported in any v8.1 PMU */ + return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); +} + +static bool pmuv3p4_events_supported(CPUARMState *env) +{ + /* For events which are supported in any v8.1 PMU */ + return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); +} + +static uint64_t zero_event_get_count(CPUARMState *env) +{ + /* For events which on QEMU never fire, so their count is always zero */ + return 0; +} + +static int64_t zero_event_ns_per(uint64_t cycles) +{ + /* An event which never fires can never overflow */ + return -1; +} + +static const pm_event pm_events[] = { + { .number = 0x000, /* SW_INCR */ + .supported = event_always_supported, + .get_count = swinc_get_count, + .ns_per_count = swinc_ns_per, + }, +#ifndef CONFIG_USER_ONLY + { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ + .supported = instructions_supported, + .get_count = instructions_get_count, + .ns_per_count = instructions_ns_per, + }, + { .number = 0x011, /* CPU_CYCLES, Cycle */ + .supported = event_always_supported, + .get_count = cycles_get_count, + .ns_per_count = cycles_ns_per, + }, +#endif + { .number = 0x023, /* STALL_FRONTEND */ + .supported = pmuv3p1_events_supported, + .get_count = zero_event_get_count, + .ns_per_count = zero_event_ns_per, + }, + { .number = 0x024, /* STALL_BACKEND */ + .supported = pmuv3p1_events_supported, + .get_count = zero_event_get_count, + .ns_per_count = zero_event_ns_per, + }, + { .number = 0x03c, /* STALL */ + .supported = pmuv3p4_events_supported, + .get_count = zero_event_get_count, + .ns_per_count = zero_event_ns_per, + }, +}; + +/* + * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of + * events (i.e. the statistical profiling extension), this implementation + * should first be updated to something sparse instead of the current + * supported_event_map[] array. + */ +#define MAX_EVENT_ID 0x3c +#define UNSUPPORTED_EVENT UINT16_MAX +static uint16_t supported_event_map[MAX_EVENT_ID + 1]; + +/* + * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map + * of ARM event numbers to indices in our pm_events array. + * + * Note: Events in the 0x40XX range are not currently supported. + */ +void pmu_init(ARMCPU *cpu) +{ + unsigned int i; + + /* + * Empty supported_event_map and cpu->pmceid[01] before adding supported + * events to them + */ + for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { + supported_event_map[i] = UNSUPPORTED_EVENT; + } + cpu->pmceid0 = 0; + cpu->pmceid1 = 0; + + for (i = 0; i < ARRAY_SIZE(pm_events); i++) { + const pm_event *cnt = &pm_events[i]; + assert(cnt->number <= MAX_EVENT_ID); + /* We do not currently support events in the 0x40xx range */ + assert(cnt->number <= 0x3f); + + if (cnt->supported(&cpu->env)) { + supported_event_map[cnt->number] = i; + uint64_t event_mask = 1ULL << (cnt->number & 0x1f); + if (cnt->number & 0x20) { + cpu->pmceid1 |= event_mask; + } else { + cpu->pmceid0 |= event_mask; + } + } + } +} + +/* + * Check at runtime whether a PMU event is supported for the current machine + */ +static bool event_supported(uint16_t number) +{ + if (number > MAX_EVENT_ID) { + return false; + } + return supported_event_map[number] != UNSUPPORTED_EVENT; +} + +static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + /* + * Performance monitor registers user accessibility is controlled + * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable + * trapping to EL2 or EL3 for other accesses. + */ + int el = arm_current_el(env); + uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); + + if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { + return CP_ACCESS_TRAP; + } + if (el < 2 && (mdcr_el2 & MDCR_TPM)) { + return CP_ACCESS_TRAP_EL2; + } + if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { + return CP_ACCESS_TRAP_EL3; + } + + return CP_ACCESS_OK; +} + +static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, + const ARMCPRegInfo *ri, + bool isread) +{ + /* ER: event counter read trap control */ + if (arm_feature(env, ARM_FEATURE_V8) + && arm_current_el(env) == 0 + && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 + && isread) { + return CP_ACCESS_OK; + } + + return pmreg_access(env, ri, isread); +} + +static CPAccessResult pmreg_access_swinc(CPUARMState *env, + const ARMCPRegInfo *ri, + bool isread) +{ + /* SW: software increment write trap control */ + if (arm_feature(env, ARM_FEATURE_V8) + && arm_current_el(env) == 0 + && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 + && !isread) { + return CP_ACCESS_OK; + } + + return pmreg_access(env, ri, isread); +} + +static CPAccessResult pmreg_access_selr(CPUARMState *env, + const ARMCPRegInfo *ri, + bool isread) +{ + /* ER: event counter read trap control */ + if (arm_feature(env, ARM_FEATURE_V8) + && arm_current_el(env) == 0 + && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { + return CP_ACCESS_OK; + } + + return pmreg_access(env, ri, isread); +} + +static CPAccessResult pmreg_access_ccntr(CPUARMState *env, + const ARMCPRegInfo *ri, + bool isread) +{ + /* CR: cycle counter read trap control */ + if (arm_feature(env, ARM_FEATURE_V8) + && arm_current_el(env) == 0 + && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 + && isread) { + return CP_ACCESS_OK; + } + + return pmreg_access(env, ri, isread); +} + +/* + * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. + * We use these to decide whether we need to wrap a write to MDCR_EL2 + * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. + */ +#define MDCR_EL2_PMU_ENABLE_BITS \ + (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) +#define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) + +/* + * Returns true if the counter (pass 31 for PMCCNTR) should count events using + * the current EL, security state, and register configuration. + */ +static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) +{ + uint64_t filter; + bool e, p, u, nsk, nsu, nsh, m; + bool enabled, prohibited = false, filtered; + bool secure = arm_is_secure(env); + int el = arm_current_el(env); + uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); + uint8_t hpmn = mdcr_el2 & MDCR_HPMN; + + if (!arm_feature(env, ARM_FEATURE_PMU)) { + return false; + } + + if (!arm_feature(env, ARM_FEATURE_EL2) || + (counter < hpmn || counter == 31)) { + e = env->cp15.c9_pmcr & PMCRE; + } else { + e = mdcr_el2 & MDCR_HPME; + } + enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); + + /* Is event counting prohibited? */ + if (el == 2 && (counter < hpmn || counter == 31)) { + prohibited = mdcr_el2 & MDCR_HPMD; + } + if (secure) { + prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); + } + + if (counter == 31) { + /* + * The cycle counter defaults to running. PMCR.DP says "disable + * the cycle counter when event counting is prohibited". + * Some MDCR bits disable the cycle counter specifically. + */ + prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; + if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { + if (secure) { + prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); + } + if (el == 2) { + prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); + } + } + } + + if (counter == 31) { + filter = env->cp15.pmccfiltr_el0; + } else { + filter = env->cp15.c14_pmevtyper[counter]; + } + + p = filter & PMXEVTYPER_P; + u = filter & PMXEVTYPER_U; + nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); + nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); + nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); + m = arm_el_is_aa64(env, 1) && + arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); + + if (el == 0) { + filtered = secure ? u : u != nsu; + } else if (el == 1) { + filtered = secure ? p : p != nsk; + } else if (el == 2) { + filtered = !nsh; + } else { /* EL3 */ + filtered = m != p; + } + + if (counter != 31) { + /* + * If not checking PMCCNTR, ensure the counter is setup to an event we + * support + */ + uint16_t event = filter & PMXEVTYPER_EVTCOUNT; + if (!event_supported(event)) { + return false; + } + } + + return enabled && !prohibited && !filtered; +} + +static void pmu_update_irq(CPUARMState *env) +{ + ARMCPU *cpu = env_archcpu(env); + qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && + (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); +} + +static bool pmccntr_clockdiv_enabled(CPUARMState *env) +{ + /* + * Return true if the clock divider is enabled and the cycle counter + * is supposed to tick only once every 64 clock cycles. This is + * controlled by PMCR.D, but if PMCR.LC is set to enable the long + * (64-bit) cycle counter PMCR.D has no effect. + */ + return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; +} + +static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) +{ + /* Return true if the specified event counter is configured to be 64 bit */ + + /* This isn't intended to be used with the cycle counter */ + assert(counter < 31); + + if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { + return false; + } + + if (arm_feature(env, ARM_FEATURE_EL2)) { + /* + * MDCR_EL2.HLP still applies even when EL2 is disabled in the + * current security state, so we don't use arm_mdcr_el2_eff() here. + */ + bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; + int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; + + if (hpmn != 0 && counter >= hpmn) { + return hlp; + } + } + return env->cp15.c9_pmcr & PMCRLP; +} + +/* + * Ensure c15_ccnt is the guest-visible count so that operations such as + * enabling/disabling the counter or filtering, modifying the count itself, + * etc. can be done logically. This is essentially a no-op if the counter is + * not enabled at the time of the call. + */ +static void pmccntr_op_start(CPUARMState *env) +{ + uint64_t cycles = cycles_get_count(env); + + if (pmu_counter_enabled(env, 31)) { + uint64_t eff_cycles = cycles; + if (pmccntr_clockdiv_enabled(env)) { + eff_cycles /= 64; + } + + uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; + + uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ + 1ull << 63 : 1ull << 31; + if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { + env->cp15.c9_pmovsr |= (1ULL << 31); + pmu_update_irq(env); + } + + env->cp15.c15_ccnt = new_pmccntr; + } + env->cp15.c15_ccnt_delta = cycles; +} + +/* + * If PMCCNTR is enabled, recalculate the delta between the clock and the + * guest-visible count. A call to pmccntr_op_finish should follow every call to + * pmccntr_op_start. + */ +static void pmccntr_op_finish(CPUARMState *env) +{ + if (pmu_counter_enabled(env, 31)) { +#ifndef CONFIG_USER_ONLY + /* Calculate when the counter will next overflow */ + uint64_t remaining_cycles = -env->cp15.c15_ccnt; + if (!(env->cp15.c9_pmcr & PMCRLC)) { + remaining_cycles = (uint32_t)remaining_cycles; + } + int64_t overflow_in = cycles_ns_per(remaining_cycles); + + if (overflow_in > 0) { + int64_t overflow_at; + + if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), + overflow_in, &overflow_at)) { + ARMCPU *cpu = env_archcpu(env); + timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); + } + } +#endif + + uint64_t prev_cycles = env->cp15.c15_ccnt_delta; + if (pmccntr_clockdiv_enabled(env)) { + prev_cycles /= 64; + } + env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; + } +} + +static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) +{ + + uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; + uint64_t count = 0; + if (event_supported(event)) { + uint16_t event_idx = supported_event_map[event]; + count = pm_events[event_idx].get_count(env); + } + + if (pmu_counter_enabled(env, counter)) { + uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; + uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? + 1ULL << 63 : 1ULL << 31; + + if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { + env->cp15.c9_pmovsr |= (1 << counter); + pmu_update_irq(env); + } + env->cp15.c14_pmevcntr[counter] = new_pmevcntr; + } + env->cp15.c14_pmevcntr_delta[counter] = count; +} + +static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) +{ + if (pmu_counter_enabled(env, counter)) { +#ifndef CONFIG_USER_ONLY + uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; + uint16_t event_idx = supported_event_map[event]; + uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); + int64_t overflow_in; + + if (!pmevcntr_is_64_bit(env, counter)) { + delta = (uint32_t)delta; + } + overflow_in = pm_events[event_idx].ns_per_count(delta); + + if (overflow_in > 0) { + int64_t overflow_at; + + if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), + overflow_in, &overflow_at)) { + ARMCPU *cpu = env_archcpu(env); + timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); + } + } +#endif + + env->cp15.c14_pmevcntr_delta[counter] -= + env->cp15.c14_pmevcntr[counter]; + } +} + +void pmu_op_start(CPUARMState *env) +{ + unsigned int i; + pmccntr_op_start(env); + for (i = 0; i < pmu_num_counters(env); i++) { + pmevcntr_op_start(env, i); + } +} + +void pmu_op_finish(CPUARMState *env) +{ + unsigned int i; + pmccntr_op_finish(env); + for (i = 0; i < pmu_num_counters(env); i++) { + pmevcntr_op_finish(env, i); + } +} + +void pmu_pre_el_change(ARMCPU *cpu, void *ignored) +{ + pmu_op_start(&cpu->env); +} + +void pmu_post_el_change(ARMCPU *cpu, void *ignored) +{ + pmu_op_finish(&cpu->env); +} + +void arm_pmu_timer_cb(void *opaque) +{ + ARMCPU *cpu = opaque; + + /* + * Update all the counter values based on the current underlying counts, + * triggering interrupts to be raised, if necessary. pmu_op_finish() also + * has the effect of setting the cpu->pmu_timer to the next earliest time a + * counter may expire. + */ + pmu_op_start(&cpu->env); + pmu_op_finish(&cpu->env); +} + +static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + pmu_op_start(env); + + if (value & PMCRC) { + /* The counter has been reset */ + env->cp15.c15_ccnt = 0; + } + + if (value & PMCRP) { + unsigned int i; + for (i = 0; i < pmu_num_counters(env); i++) { + env->cp15.c14_pmevcntr[i] = 0; + } + } + + env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; + env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); + + pmu_op_finish(env); +} + +static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + unsigned int i; + uint64_t overflow_mask, new_pmswinc; + + for (i = 0; i < pmu_num_counters(env); i++) { + /* Increment a counter's count iff: */ + if ((value & (1 << i)) && /* counter's bit is set */ + /* counter is enabled and not filtered */ + pmu_counter_enabled(env, i) && + /* counter is SW_INCR */ + (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { + pmevcntr_op_start(env, i); + + /* + * Detect if this write causes an overflow since we can't predict + * PMSWINC overflows like we can for other events + */ + new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; + + overflow_mask = pmevcntr_is_64_bit(env, i) ? + 1ULL << 63 : 1ULL << 31; + + if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { + env->cp15.c9_pmovsr |= (1 << i); + pmu_update_irq(env); + } + + env->cp15.c14_pmevcntr[i] = new_pmswinc; + + pmevcntr_op_finish(env, i); + } + } +} + +static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + uint64_t ret; + pmccntr_op_start(env); + ret = env->cp15.c15_ccnt; + pmccntr_op_finish(env); + return ret; +} + +static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* + * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and + * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the + * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are + * accessed. + */ + env->cp15.c9_pmselr = value & 0x1f; +} + +static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + pmccntr_op_start(env); + env->cp15.c15_ccnt = value; + pmccntr_op_finish(env); +} + +static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + uint64_t cur_val = pmccntr_read(env, NULL); + + pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); +} + +static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + pmccntr_op_start(env); + env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; + pmccntr_op_finish(env); +} + +static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + pmccntr_op_start(env); + /* M is not accessible from AArch32 */ + env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | + (value & PMCCFILTR); + pmccntr_op_finish(env); +} + +static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) +{ + /* M is not visible in AArch32 */ + return env->cp15.pmccfiltr_el0 & PMCCFILTR; +} + +static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + pmu_op_start(env); + value &= pmu_counter_mask(env); + env->cp15.c9_pmcnten |= value; + pmu_op_finish(env); +} + +static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + pmu_op_start(env); + value &= pmu_counter_mask(env); + env->cp15.c9_pmcnten &= ~value; + pmu_op_finish(env); +} + +static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + value &= pmu_counter_mask(env); + env->cp15.c9_pmovsr &= ~value; + pmu_update_irq(env); +} + +static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + value &= pmu_counter_mask(env); + env->cp15.c9_pmovsr |= value; + pmu_update_irq(env); +} + +static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value, const uint8_t counter) +{ + if (counter == 31) { + pmccfiltr_write(env, ri, value); + } else if (counter < pmu_num_counters(env)) { + pmevcntr_op_start(env, counter); + + /* + * If this counter's event type is changing, store the current + * underlying count for the new type in c14_pmevcntr_delta[counter] so + * pmevcntr_op_finish has the correct baseline when it converts back to + * a delta. + */ + uint16_t old_event = env->cp15.c14_pmevtyper[counter] & + PMXEVTYPER_EVTCOUNT; + uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; + if (old_event != new_event) { + uint64_t count = 0; + if (event_supported(new_event)) { + uint16_t event_idx = supported_event_map[new_event]; + count = pm_events[event_idx].get_count(env); + } + env->cp15.c14_pmevcntr_delta[counter] = count; + } + + env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; + pmevcntr_op_finish(env, counter); + } + /* + * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when + * PMSELR value is equal to or greater than the number of implemented + * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. + */ +} + +static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, + const uint8_t counter) +{ + if (counter == 31) { + return env->cp15.pmccfiltr_el0; + } else if (counter < pmu_num_counters(env)) { + return env->cp15.c14_pmevtyper[counter]; + } else { + /* + * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER + * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). + */ + return 0; + } +} + +static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); + pmevtyper_write(env, ri, value, counter); +} + +static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); + env->cp15.c14_pmevtyper[counter] = value; + + /* + * pmevtyper_rawwrite is called between a pair of pmu_op_start and + * pmu_op_finish calls when loading saved state for a migration. Because + * we're potentially updating the type of event here, the value written to + * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a + * different counter type. Therefore, we need to set this value to the + * current count for the counter type we're writing so that pmu_op_finish + * has the correct count for its calculation. + */ + uint16_t event = value & PMXEVTYPER_EVTCOUNT; + if (event_supported(event)) { + uint16_t event_idx = supported_event_map[event]; + env->cp15.c14_pmevcntr_delta[counter] = + pm_events[event_idx].get_count(env); + } +} + +static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) +{ + uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); + return pmevtyper_read(env, ri, counter); +} + +static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); +} + +static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); +} + +static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value, uint8_t counter) +{ + if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { + /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ + value &= MAKE_64BIT_MASK(0, 32); + } + if (counter < pmu_num_counters(env)) { + pmevcntr_op_start(env, counter); + env->cp15.c14_pmevcntr[counter] = value; + pmevcntr_op_finish(env, counter); + } + /* + * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR + * are CONSTRAINED UNPREDICTABLE. + */ +} + +static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, + uint8_t counter) +{ + if (counter < pmu_num_counters(env)) { + uint64_t ret; + pmevcntr_op_start(env, counter); + ret = env->cp15.c14_pmevcntr[counter]; + pmevcntr_op_finish(env, counter); + if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { + /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ + ret &= MAKE_64BIT_MASK(0, 32); + } + return ret; + } else { + /* + * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR + * are CONSTRAINED UNPREDICTABLE. + */ + return 0; + } +} + +static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); + pmevcntr_write(env, ri, value, counter); +} + +static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) +{ + uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); + return pmevcntr_read(env, ri, counter); +} + +static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); + assert(counter < pmu_num_counters(env)); + env->cp15.c14_pmevcntr[counter] = value; + pmevcntr_write(env, ri, value, counter); +} + +static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) +{ + uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); + assert(counter < pmu_num_counters(env)); + return env->cp15.c14_pmevcntr[counter]; +} + +static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); +} + +static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); +} + +static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + if (arm_feature(env, ARM_FEATURE_V8)) { + env->cp15.c9_pmuserenr = value & 0xf; + } else { + env->cp15.c9_pmuserenr = value & 1; + } +} + +static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* We have no event counters so only the C bit can be changed */ + value &= pmu_counter_mask(env); + env->cp15.c9_pminten |= value; + pmu_update_irq(env); +} + +static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + value &= pmu_counter_mask(env); + env->cp15.c9_pminten &= ~value; + pmu_update_irq(env); +} + +static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* + * Note that even though the AArch64 view of this register has bits + * [10:0] all RES0 we can only mask the bottom 5, to comply with the + * architectural requirements for bits which are RES0 only in some + * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 + * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) + */ + raw_write(env, ri, value & ~0x1FULL); +} + +static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) +{ + /* Begin with base v8.0 state. */ + uint64_t valid_mask = 0x3fff; + ARMCPU *cpu = env_archcpu(env); + uint64_t changed; + + /* + * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always + * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. + * Instead, choose the format based on the mode of EL3. + */ + if (arm_el_is_aa64(env, 3)) { + value |= SCR_FW | SCR_AW; /* RES1 */ + valid_mask &= ~SCR_NET; /* RES0 */ + + if (!cpu_isar_feature(aa64_aa32_el1, cpu) && + !cpu_isar_feature(aa64_aa32_el2, cpu)) { + value |= SCR_RW; /* RAO/WI */ + } + if (cpu_isar_feature(aa64_ras, cpu)) { + valid_mask |= SCR_TERR; + } + if (cpu_isar_feature(aa64_lor, cpu)) { + valid_mask |= SCR_TLOR; + } + if (cpu_isar_feature(aa64_pauth, cpu)) { + valid_mask |= SCR_API | SCR_APK; + } + if (cpu_isar_feature(aa64_sel2, cpu)) { + valid_mask |= SCR_EEL2; + } + if (cpu_isar_feature(aa64_mte, cpu)) { + valid_mask |= SCR_ATA; + } + if (cpu_isar_feature(aa64_scxtnum, cpu)) { + valid_mask |= SCR_ENSCXT; + } + if (cpu_isar_feature(aa64_doublefault, cpu)) { + valid_mask |= SCR_EASE | SCR_NMEA; + } + if (cpu_isar_feature(aa64_sme, cpu)) { + valid_mask |= SCR_ENTP2; + } + } else { + valid_mask &= ~(SCR_RW | SCR_ST); + if (cpu_isar_feature(aa32_ras, cpu)) { + valid_mask |= SCR_TERR; + } + } + + if (!arm_feature(env, ARM_FEATURE_EL2)) { + valid_mask &= ~SCR_HCE; + + /* + * On ARMv7, SMD (or SCD as it is called in v7) is only + * supported if EL2 exists. The bit is UNK/SBZP when + * EL2 is unavailable. In QEMU ARMv7, we force it to always zero + * when EL2 is unavailable. + * On ARMv8, this bit is always available. + */ + if (arm_feature(env, ARM_FEATURE_V7) && + !arm_feature(env, ARM_FEATURE_V8)) { + valid_mask &= ~SCR_SMD; + } + } + + /* Clear all-context RES0 bits. */ + value &= valid_mask; + changed = env->cp15.scr_el3 ^ value; + env->cp15.scr_el3 = value; + + /* + * If SCR_EL3.NS changes, i.e. arm_is_secure_below_el3, then + * we must invalidate all TLBs below EL3. + */ + if (changed & SCR_NS) { + tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | + ARMMMUIdxBit_E20_0 | + ARMMMUIdxBit_E10_1 | + ARMMMUIdxBit_E20_2 | + ARMMMUIdxBit_E10_1_PAN | + ARMMMUIdxBit_E20_2_PAN | + ARMMMUIdxBit_E2)); + } +} + +static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) +{ + /* + * scr_write will set the RES1 bits on an AArch64-only CPU. + * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. + */ + scr_write(env, ri, 0); +} + +static CPAccessResult access_tid4(CPUARMState *env, + const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) == 1 && + (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { + return CP_ACCESS_TRAP_EL2; + } + + return CP_ACCESS_OK; +} + +static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + ARMCPU *cpu = env_archcpu(env); + + /* + * Acquire the CSSELR index from the bank corresponding to the CCSIDR + * bank + */ + uint32_t index = A32_BANKED_REG_GET(env, csselr, + ri->secure & ARM_CP_SECSTATE_S); + + return cpu->ccsidr[index]; +} + +static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + raw_write(env, ri, value & 0xf); +} + +static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + CPUState *cs = env_cpu(env); + bool el1 = arm_current_el(env) == 1; + uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; + uint64_t ret = 0; + + if (hcr_el2 & HCR_IMO) { + if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { + ret |= CPSR_I; + } + } else { + if (cs->interrupt_request & CPU_INTERRUPT_HARD) { + ret |= CPSR_I; + } + } + + if (hcr_el2 & HCR_FMO) { + if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { + ret |= CPSR_F; + } + } else { + if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { + ret |= CPSR_F; + } + } + + if (hcr_el2 & HCR_AMO) { + if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { + ret |= CPSR_A; + } + } + + return ret; +} + +static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { + return CP_ACCESS_TRAP_EL2; + } + + return CP_ACCESS_OK; +} + +static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_feature(env, ARM_FEATURE_V8)) { + return access_aa64_tid1(env, ri, isread); + } + + return CP_ACCESS_OK; +} + +static const ARMCPRegInfo v7_cp_reginfo[] = { + /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ + { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, + .access = PL1_W, .type = ARM_CP_NOP }, + /* + * Performance monitors are implementation defined in v7, + * but with an ARM recommended set of registers, which we + * follow. + * + * Performance registers fall into three categories: + * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) + * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) + * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) + * For the cases controlled by PMUSERENR we must set .access to PL0_RW + * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. + */ + { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, + .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, + .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), + .writefn = pmcntenset_write, + .accessfn = pmreg_access, + .raw_writefn = raw_write }, + { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, + .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, + .access = PL0_RW, .accessfn = pmreg_access, + .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, + .writefn = pmcntenset_write, .raw_writefn = raw_write }, + { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, + .access = PL0_RW, + .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), + .accessfn = pmreg_access, + .writefn = pmcntenclr_write, + .type = ARM_CP_ALIAS | ARM_CP_IO }, + { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, + .access = PL0_RW, .accessfn = pmreg_access, + .type = ARM_CP_ALIAS | ARM_CP_IO, + .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), + .writefn = pmcntenclr_write }, + { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, + .access = PL0_RW, .type = ARM_CP_IO, + .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), + .accessfn = pmreg_access, + .writefn = pmovsr_write, + .raw_writefn = raw_write }, + { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, + .access = PL0_RW, .accessfn = pmreg_access, + .type = ARM_CP_ALIAS | ARM_CP_IO, + .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), + .writefn = pmovsr_write, + .raw_writefn = raw_write }, + { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, + .access = PL0_W, .accessfn = pmreg_access_swinc, + .type = ARM_CP_NO_RAW | ARM_CP_IO, + .writefn = pmswinc_write }, + { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, + .access = PL0_W, .accessfn = pmreg_access_swinc, + .type = ARM_CP_NO_RAW | ARM_CP_IO, + .writefn = pmswinc_write }, + { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, + .access = PL0_RW, .type = ARM_CP_ALIAS, + .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), + .accessfn = pmreg_access_selr, .writefn = pmselr_write, + .raw_writefn = raw_write}, + { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, + .access = PL0_RW, .accessfn = pmreg_access_selr, + .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), + .writefn = pmselr_write, .raw_writefn = raw_write, }, + { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, + .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, + .readfn = pmccntr_read, .writefn = pmccntr_write32, + .accessfn = pmreg_access_ccntr }, + { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, + .access = PL0_RW, .accessfn = pmreg_access_ccntr, + .type = ARM_CP_IO, + .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), + .readfn = pmccntr_read, .writefn = pmccntr_write, + .raw_readfn = raw_read, .raw_writefn = raw_write, }, + { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, + .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, + .access = PL0_RW, .accessfn = pmreg_access, + .type = ARM_CP_ALIAS | ARM_CP_IO, + .resetvalue = 0, }, + { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, + .writefn = pmccfiltr_write, .raw_writefn = raw_write, + .access = PL0_RW, .accessfn = pmreg_access, + .type = ARM_CP_IO, + .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), + .resetvalue = 0, }, + { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, + .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, + .accessfn = pmreg_access, + .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, + { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, + .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, + .accessfn = pmreg_access, + .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, + { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, + .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, + .accessfn = pmreg_access_xevcntr, + .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, + { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, + .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, + .accessfn = pmreg_access_xevcntr, + .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, + { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, + .access = PL0_R | PL1_RW, .accessfn = access_tpm, + .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), + .resetvalue = 0, + .writefn = pmuserenr_write, .raw_writefn = raw_write }, + { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, + .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, + .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), + .resetvalue = 0, + .writefn = pmuserenr_write, .raw_writefn = raw_write }, + { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, + .access = PL1_RW, .accessfn = access_tpm, + .type = ARM_CP_ALIAS | ARM_CP_IO, + .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), + .resetvalue = 0, + .writefn = pmintenset_write, .raw_writefn = raw_write }, + { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, + .access = PL1_RW, .accessfn = access_tpm, + .type = ARM_CP_IO, + .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), + .writefn = pmintenset_write, .raw_writefn = raw_write, + .resetvalue = 0x0 }, + { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, + .access = PL1_RW, .accessfn = access_tpm, + .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, + .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), + .writefn = pmintenclr_write, }, + { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, + .access = PL1_RW, .accessfn = access_tpm, + .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, + .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), + .writefn = pmintenclr_write }, + { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, + .access = PL1_R, + .accessfn = access_tid4, + .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, + { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, + .access = PL1_RW, + .accessfn = access_tid4, + .writefn = csselr_write, .resetvalue = 0, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), + offsetof(CPUARMState, cp15.csselr_ns) } }, + /* + * Auxiliary ID register: this actually has an IMPDEF value but for now + * just RAZ for all cores: + */ + { .name = "AIDR", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid1, + .resetvalue = 0 }, + /* + * Auxiliary fault status registers: these also are IMPDEF, and we + * choose to RAZ/WI for all cores. + */ + { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .type = ARM_CP_CONST, .resetvalue = 0 }, + /* + * MAIR can just read-as-written because we don't implement caches + * and so don't need to care about memory attributes. + */ + { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), + .resetvalue = 0 }, + { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, + .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), + .resetvalue = 0 }, + /* + * For non-long-descriptor page tables these are PRRR and NMRR; + * regardless they still act as reads-as-written for QEMU. + */ + /* + * MAIR0/1 are defined separately from their 64-bit counterpart which + * allows them to assign the correct fieldoffset based on the endianness + * handled in the field definitions. + */ + { .name = "MAIR0", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), + offsetof(CPUARMState, cp15.mair0_ns) }, + .resetfn = arm_cp_reset_ignore }, + { .name = "MAIR1", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), + offsetof(CPUARMState, cp15.mair1_ns) }, + .resetfn = arm_cp_reset_ignore }, + { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, + .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, + /* 32 bit ITLB invalidates */ + { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbiall_write }, + { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbimva_write }, + { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbiasid_write }, + /* 32 bit DTLB invalidates */ + { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbiall_write }, + { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbimva_write }, + { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbiasid_write }, + /* 32 bit TLB invalidates */ + { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbiall_write }, + { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbimva_write }, + { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbiasid_write }, + { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbimvaa_write }, +}; + +static const ARMCPRegInfo v7mp_cp_reginfo[] = { + /* 32 bit TLB invalidates, Inner Shareable */ + { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, + .writefn = tlbiall_is_write }, + { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, + .writefn = tlbimva_is_write }, + { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, + .writefn = tlbiasid_is_write }, + { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, + .writefn = tlbimvaa_is_write }, +}; + +static const ARMCPRegInfo pmovsset_cp_reginfo[] = { + /* PMOVSSET is not implemented in v7 before v7ve */ + { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, + .access = PL0_RW, .accessfn = pmreg_access, + .type = ARM_CP_ALIAS | ARM_CP_IO, + .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), + .writefn = pmovsset_write, + .raw_writefn = raw_write }, + { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, + .access = PL0_RW, .accessfn = pmreg_access, + .type = ARM_CP_ALIAS | ARM_CP_IO, + .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), + .writefn = pmovsset_write, + .raw_writefn = raw_write }, +}; + +static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + value &= 1; + env->teecr = value; +} + +static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + /* + * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE + * at all, so we don't need to check whether we're v8A. + */ + if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && + (env->cp15.hstr_el2 & HSTR_TTEE)) { + return CP_ACCESS_TRAP_EL2; + } + return CP_ACCESS_OK; +} + +static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) == 0 && (env->teecr & 1)) { + return CP_ACCESS_TRAP; + } + return teecr_access(env, ri, isread); +} + +static const ARMCPRegInfo t2ee_cp_reginfo[] = { + { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, + .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), + .resetvalue = 0, + .writefn = teecr_write, .accessfn = teecr_access }, + { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, + .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), + .accessfn = teehbr_access, .resetvalue = 0 }, +}; + +static const ARMCPRegInfo v6k_cp_reginfo[] = { + { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, + .access = PL0_RW, + .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, + { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, + .access = PL0_RW, + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), + offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, + .resetfn = arm_cp_reset_ignore }, + { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, + .access = PL0_R | PL1_W, + .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), + .resetvalue = 0}, + { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, + .access = PL0_R | PL1_W, + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), + offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, + .resetfn = arm_cp_reset_ignore }, + { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, + .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, + { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, + .access = PL1_RW, + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), + offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, + .resetvalue = 0 }, +}; + +#ifndef CONFIG_USER_ONLY + +static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + /* + * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. + * Writable only at the highest implemented exception level. + */ + int el = arm_current_el(env); + uint64_t hcr; + uint32_t cntkctl; + + switch (el) { + case 0: + hcr = arm_hcr_el2_eff(env); + if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { + cntkctl = env->cp15.cnthctl_el2; + } else { + cntkctl = env->cp15.c14_cntkctl; + } + if (!extract32(cntkctl, 0, 2)) { + return CP_ACCESS_TRAP; + } + break; + case 1: + if (!isread && ri->state == ARM_CP_STATE_AA32 && + arm_is_secure_below_el3(env)) { + /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ + return CP_ACCESS_TRAP_UNCATEGORIZED; + } + break; + case 2: + case 3: + break; + } + + if (!isread && el < arm_highest_el(env)) { + return CP_ACCESS_TRAP_UNCATEGORIZED; + } + + return CP_ACCESS_OK; +} + +static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, + bool isread) +{ + unsigned int cur_el = arm_current_el(env); + bool has_el2 = arm_is_el2_enabled(env); + uint64_t hcr = arm_hcr_el2_eff(env); + + switch (cur_el) { + case 0: + /* If HCR_EL2. == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ + if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { + return (extract32(env->cp15.cnthctl_el2, timeridx, 1) + ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); + } + + /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ + if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { + return CP_ACCESS_TRAP; + } + + /* If HCR_EL2. == '10': check CNTHCTL_EL2.EL1PCTEN. */ + if (hcr & HCR_E2H) { + if (timeridx == GTIMER_PHYS && + !extract32(env->cp15.cnthctl_el2, 10, 1)) { + return CP_ACCESS_TRAP_EL2; + } + } else { + /* If HCR_EL2. == 0: check CNTHCTL_EL2.EL1PCEN. */ + if (has_el2 && timeridx == GTIMER_PHYS && + !extract32(env->cp15.cnthctl_el2, 1, 1)) { + return CP_ACCESS_TRAP_EL2; + } + } + break; + + case 1: + /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ + if (has_el2 && timeridx == GTIMER_PHYS && + (hcr & HCR_E2H + ? !extract32(env->cp15.cnthctl_el2, 10, 1) + : !extract32(env->cp15.cnthctl_el2, 0, 1))) { + return CP_ACCESS_TRAP_EL2; + } + break; + } + return CP_ACCESS_OK; +} + +static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, + bool isread) +{ + unsigned int cur_el = arm_current_el(env); + bool has_el2 = arm_is_el2_enabled(env); + uint64_t hcr = arm_hcr_el2_eff(env); + + switch (cur_el) { + case 0: + if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { + /* If HCR_EL2. == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ + return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) + ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); + } + + /* + * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from + * EL0 if EL0[PV]TEN is zero. + */ + if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { + return CP_ACCESS_TRAP; + } + /* fall through */ + + case 1: + if (has_el2 && timeridx == GTIMER_PHYS) { + if (hcr & HCR_E2H) { + /* If HCR_EL2. == '10': check CNTHCTL_EL2.EL1PTEN. */ + if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { + return CP_ACCESS_TRAP_EL2; + } + } else { + /* If HCR_EL2. == 0: check CNTHCTL_EL2.EL1PCEN. */ + if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { + return CP_ACCESS_TRAP_EL2; + } + } + } + break; + } + return CP_ACCESS_OK; +} + +static CPAccessResult gt_pct_access(CPUARMState *env, + const ARMCPRegInfo *ri, + bool isread) +{ + return gt_counter_access(env, GTIMER_PHYS, isread); +} + +static CPAccessResult gt_vct_access(CPUARMState *env, + const ARMCPRegInfo *ri, + bool isread) +{ + return gt_counter_access(env, GTIMER_VIRT, isread); +} + +static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + return gt_timer_access(env, GTIMER_PHYS, isread); +} + +static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + return gt_timer_access(env, GTIMER_VIRT, isread); +} + +static CPAccessResult gt_stimer_access(CPUARMState *env, + const ARMCPRegInfo *ri, + bool isread) +{ + /* + * The AArch64 register view of the secure physical timer is + * always accessible from EL3, and configurably accessible from + * Secure EL1. + */ + switch (arm_current_el(env)) { + case 1: + if (!arm_is_secure(env)) { + return CP_ACCESS_TRAP; + } + if (!(env->cp15.scr_el3 & SCR_ST)) { + return CP_ACCESS_TRAP_EL3; + } + return CP_ACCESS_OK; + case 0: + case 2: + return CP_ACCESS_TRAP; + case 3: + return CP_ACCESS_OK; + default: + g_assert_not_reached(); + } +} + +static uint64_t gt_get_countervalue(CPUARMState *env) +{ + ARMCPU *cpu = env_archcpu(env); + + return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); +} + +static void gt_recalc_timer(ARMCPU *cpu, int timeridx) +{ + ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; + + if (gt->ctl & 1) { + /* + * Timer enabled: calculate and set current ISTATUS, irq, and + * reset timer to when ISTATUS next has to change + */ + uint64_t offset = timeridx == GTIMER_VIRT ? + cpu->env.cp15.cntvoff_el2 : 0; + uint64_t count = gt_get_countervalue(&cpu->env); + /* Note that this must be unsigned 64 bit arithmetic: */ + int istatus = count - offset >= gt->cval; + uint64_t nexttick; + int irqstate; + + gt->ctl = deposit32(gt->ctl, 2, 1, istatus); + + irqstate = (istatus && !(gt->ctl & 2)); + qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); + + if (istatus) { + /* Next transition is when count rolls back over to zero */ + nexttick = UINT64_MAX; + } else { + /* Next transition is when we hit cval */ + nexttick = gt->cval + offset; + } + /* + * Note that the desired next expiry time might be beyond the + * signed-64-bit range of a QEMUTimer -- in this case we just + * set the timer for as far in the future as possible. When the + * timer expires we will reset the timer for any remaining period. + */ + if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { + timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); + } else { + timer_mod(cpu->gt_timer[timeridx], nexttick); + } + trace_arm_gt_recalc(timeridx, irqstate, nexttick); + } else { + /* Timer disabled: ISTATUS and timer output always clear */ + gt->ctl &= ~4; + qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); + timer_del(cpu->gt_timer[timeridx]); + trace_arm_gt_recalc_disabled(timeridx); + } +} + +static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, + int timeridx) +{ + ARMCPU *cpu = env_archcpu(env); + + timer_del(cpu->gt_timer[timeridx]); +} + +static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return gt_get_countervalue(env); +} + +static uint64_t gt_virt_cnt_offset(CPUARMState *env) +{ + uint64_t hcr; + + switch (arm_current_el(env)) { + case 2: + hcr = arm_hcr_el2_eff(env); + if (hcr & HCR_E2H) { + return 0; + } + break; + case 0: + hcr = arm_hcr_el2_eff(env); + if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { + return 0; + } + break; + } + + return env->cp15.cntvoff_el2; +} + +static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return gt_get_countervalue(env) - gt_virt_cnt_offset(env); +} + +static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, + int timeridx, + uint64_t value) +{ + trace_arm_gt_cval_write(timeridx, value); + env->cp15.c14_timer[timeridx].cval = value; + gt_recalc_timer(env_archcpu(env), timeridx); +} + +static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, + int timeridx) +{ + uint64_t offset = 0; + + switch (timeridx) { + case GTIMER_VIRT: + case GTIMER_HYPVIRT: + offset = gt_virt_cnt_offset(env); + break; + } + + return (uint32_t)(env->cp15.c14_timer[timeridx].cval - + (gt_get_countervalue(env) - offset)); +} + +static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, + int timeridx, + uint64_t value) +{ + uint64_t offset = 0; + + switch (timeridx) { + case GTIMER_VIRT: + case GTIMER_HYPVIRT: + offset = gt_virt_cnt_offset(env); + break; + } + + trace_arm_gt_tval_write(timeridx, value); + env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + + sextract64(value, 0, 32); + gt_recalc_timer(env_archcpu(env), timeridx); +} + +static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, + int timeridx, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; + + trace_arm_gt_ctl_write(timeridx, value); + env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); + if ((oldval ^ value) & 1) { + /* Enable toggled */ + gt_recalc_timer(cpu, timeridx); + } else if ((oldval ^ value) & 2) { + /* + * IMASK toggled: don't need to recalculate, + * just set the interrupt line based on ISTATUS + */ + int irqstate = (oldval & 4) && !(value & 2); + + trace_arm_gt_imask_toggle(timeridx, irqstate); + qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); + } +} + +static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) +{ + gt_timer_reset(env, ri, GTIMER_PHYS); +} + +static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_cval_write(env, ri, GTIMER_PHYS, value); +} + +static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return gt_tval_read(env, ri, GTIMER_PHYS); +} + +static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_tval_write(env, ri, GTIMER_PHYS, value); +} + +static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_ctl_write(env, ri, GTIMER_PHYS, value); +} + +static int gt_phys_redir_timeridx(CPUARMState *env) +{ + switch (arm_mmu_idx(env)) { + case ARMMMUIdx_E20_0: + case ARMMMUIdx_E20_2: + case ARMMMUIdx_E20_2_PAN: + return GTIMER_HYP; + default: + return GTIMER_PHYS; + } +} + +static int gt_virt_redir_timeridx(CPUARMState *env) +{ + switch (arm_mmu_idx(env)) { + case ARMMMUIdx_E20_0: + case ARMMMUIdx_E20_2: + case ARMMMUIdx_E20_2_PAN: + return GTIMER_HYPVIRT; + default: + return GTIMER_VIRT; + } +} + +static uint64_t gt_phys_redir_cval_read(CPUARMState *env, + const ARMCPRegInfo *ri) +{ + int timeridx = gt_phys_redir_timeridx(env); + return env->cp15.c14_timer[timeridx].cval; +} + +static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + int timeridx = gt_phys_redir_timeridx(env); + gt_cval_write(env, ri, timeridx, value); +} + +static uint64_t gt_phys_redir_tval_read(CPUARMState *env, + const ARMCPRegInfo *ri) +{ + int timeridx = gt_phys_redir_timeridx(env); + return gt_tval_read(env, ri, timeridx); +} + +static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + int timeridx = gt_phys_redir_timeridx(env); + gt_tval_write(env, ri, timeridx, value); +} + +static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, + const ARMCPRegInfo *ri) +{ + int timeridx = gt_phys_redir_timeridx(env); + return env->cp15.c14_timer[timeridx].ctl; +} + +static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + int timeridx = gt_phys_redir_timeridx(env); + gt_ctl_write(env, ri, timeridx, value); +} + +static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) +{ + gt_timer_reset(env, ri, GTIMER_VIRT); +} + +static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_cval_write(env, ri, GTIMER_VIRT, value); +} + +static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return gt_tval_read(env, ri, GTIMER_VIRT); +} + +static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_tval_write(env, ri, GTIMER_VIRT, value); +} + +static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_ctl_write(env, ri, GTIMER_VIRT, value); +} + +static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + + trace_arm_gt_cntvoff_write(value); + raw_write(env, ri, value); + gt_recalc_timer(cpu, GTIMER_VIRT); +} + +static uint64_t gt_virt_redir_cval_read(CPUARMState *env, + const ARMCPRegInfo *ri) +{ + int timeridx = gt_virt_redir_timeridx(env); + return env->cp15.c14_timer[timeridx].cval; +} + +static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + int timeridx = gt_virt_redir_timeridx(env); + gt_cval_write(env, ri, timeridx, value); +} + +static uint64_t gt_virt_redir_tval_read(CPUARMState *env, + const ARMCPRegInfo *ri) +{ + int timeridx = gt_virt_redir_timeridx(env); + return gt_tval_read(env, ri, timeridx); +} + +static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + int timeridx = gt_virt_redir_timeridx(env); + gt_tval_write(env, ri, timeridx, value); +} + +static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, + const ARMCPRegInfo *ri) +{ + int timeridx = gt_virt_redir_timeridx(env); + return env->cp15.c14_timer[timeridx].ctl; +} + +static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + int timeridx = gt_virt_redir_timeridx(env); + gt_ctl_write(env, ri, timeridx, value); +} + +static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) +{ + gt_timer_reset(env, ri, GTIMER_HYP); +} + +static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_cval_write(env, ri, GTIMER_HYP, value); +} + +static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return gt_tval_read(env, ri, GTIMER_HYP); +} + +static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_tval_write(env, ri, GTIMER_HYP, value); +} + +static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_ctl_write(env, ri, GTIMER_HYP, value); +} + +static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) +{ + gt_timer_reset(env, ri, GTIMER_SEC); +} + +static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_cval_write(env, ri, GTIMER_SEC, value); +} + +static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return gt_tval_read(env, ri, GTIMER_SEC); +} + +static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_tval_write(env, ri, GTIMER_SEC, value); +} + +static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_ctl_write(env, ri, GTIMER_SEC, value); +} + +static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) +{ + gt_timer_reset(env, ri, GTIMER_HYPVIRT); +} + +static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_cval_write(env, ri, GTIMER_HYPVIRT, value); +} + +static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return gt_tval_read(env, ri, GTIMER_HYPVIRT); +} + +static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_tval_write(env, ri, GTIMER_HYPVIRT, value); +} + +static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); +} + +void arm_gt_ptimer_cb(void *opaque) +{ + ARMCPU *cpu = opaque; + + gt_recalc_timer(cpu, GTIMER_PHYS); +} + +void arm_gt_vtimer_cb(void *opaque) +{ + ARMCPU *cpu = opaque; + + gt_recalc_timer(cpu, GTIMER_VIRT); +} + +void arm_gt_htimer_cb(void *opaque) +{ + ARMCPU *cpu = opaque; + + gt_recalc_timer(cpu, GTIMER_HYP); +} + +void arm_gt_stimer_cb(void *opaque) +{ + ARMCPU *cpu = opaque; + + gt_recalc_timer(cpu, GTIMER_SEC); +} + +void arm_gt_hvtimer_cb(void *opaque) +{ + ARMCPU *cpu = opaque; + + gt_recalc_timer(cpu, GTIMER_HYPVIRT); +} + +static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) +{ + ARMCPU *cpu = env_archcpu(env); + + cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; +} + +static const ARMCPRegInfo generic_timer_cp_reginfo[] = { + /* + * Note that CNTFRQ is purely reads-as-written for the benefit + * of software; writing it doesn't actually change the timer frequency. + * Our reset value matches the fixed frequency we implement the timer at. + */ + { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, + .type = ARM_CP_ALIAS, + .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, + .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), + }, + { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, + .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, + .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), + .resetfn = arm_gt_cntfrq_reset, + }, + /* overall control: mostly access permissions */ + { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, + .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), + .resetvalue = 0, + }, + /* per-timer control */ + { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, + .secure = ARM_CP_SECSTATE_NS, + .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, + .accessfn = gt_ptimer_access, + .fieldoffset = offsetoflow32(CPUARMState, + cp15.c14_timer[GTIMER_PHYS].ctl), + .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, + .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, + }, + { .name = "CNTP_CTL_S", + .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, + .secure = ARM_CP_SECSTATE_S, + .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, + .accessfn = gt_ptimer_access, + .fieldoffset = offsetoflow32(CPUARMState, + cp15.c14_timer[GTIMER_SEC].ctl), + .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, + }, + { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, + .type = ARM_CP_IO, .access = PL0_RW, + .accessfn = gt_ptimer_access, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), + .resetvalue = 0, + .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, + .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, + }, + { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, + .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, + .accessfn = gt_vtimer_access, + .fieldoffset = offsetoflow32(CPUARMState, + cp15.c14_timer[GTIMER_VIRT].ctl), + .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, + .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, + }, + { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, + .type = ARM_CP_IO, .access = PL0_RW, + .accessfn = gt_vtimer_access, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), + .resetvalue = 0, + .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, + .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, + }, + /* TimerValue views: a 32 bit downcounting view of the underlying state */ + { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, + .secure = ARM_CP_SECSTATE_NS, + .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, + .accessfn = gt_ptimer_access, + .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, + }, + { .name = "CNTP_TVAL_S", + .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, + .secure = ARM_CP_SECSTATE_S, + .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, + .accessfn = gt_ptimer_access, + .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, + }, + { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, + .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, + .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, + .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, + }, + { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, + .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, + .accessfn = gt_vtimer_access, + .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, + }, + { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, + .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, + .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, + .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, + }, + /* The counter itself */ + { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, + .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, + .accessfn = gt_pct_access, + .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, + }, + { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, + .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, + .accessfn = gt_pct_access, .readfn = gt_cnt_read, + }, + { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, + .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, + .accessfn = gt_vct_access, + .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, + }, + { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, + .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, + .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, + }, + /* Comparison value, indicating when the timer goes off */ + { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, + .secure = ARM_CP_SECSTATE_NS, + .access = PL0_RW, + .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), + .accessfn = gt_ptimer_access, + .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, + .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, + }, + { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, + .secure = ARM_CP_SECSTATE_S, + .access = PL0_RW, + .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), + .accessfn = gt_ptimer_access, + .writefn = gt_sec_cval_write, .raw_writefn = raw_write, + }, + { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, + .access = PL0_RW, + .type = ARM_CP_IO, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), + .resetvalue = 0, .accessfn = gt_ptimer_access, + .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, + .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, + }, + { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, + .access = PL0_RW, + .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), + .accessfn = gt_vtimer_access, + .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, + .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, + }, + { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, + .access = PL0_RW, + .type = ARM_CP_IO, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), + .resetvalue = 0, .accessfn = gt_vtimer_access, + .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, + .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, + }, + /* + * Secure timer -- this is actually restricted to only EL3 + * and configurably Secure-EL1 via the accessfn. + */ + { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, + .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, + .accessfn = gt_stimer_access, + .readfn = gt_sec_tval_read, + .writefn = gt_sec_tval_write, + .resetfn = gt_sec_timer_reset, + }, + { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, + .type = ARM_CP_IO, .access = PL1_RW, + .accessfn = gt_stimer_access, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), + .resetvalue = 0, + .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, + }, + { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, + .type = ARM_CP_IO, .access = PL1_RW, + .accessfn = gt_stimer_access, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), + .writefn = gt_sec_cval_write, .raw_writefn = raw_write, + }, +}; + +static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { + return CP_ACCESS_TRAP; + } + return CP_ACCESS_OK; +} + +#else + +/* + * In user-mode most of the generic timer registers are inaccessible + * however modern kernels (4.12+) allow access to cntvct_el0 + */ + +static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + ARMCPU *cpu = env_archcpu(env); + + /* + * Currently we have no support for QEMUTimer in linux-user so we + * can't call gt_get_countervalue(env), instead we directly + * call the lower level functions. + */ + return cpu_get_clock() / gt_cntfrq_period_ns(cpu); +} + +static const ARMCPRegInfo generic_timer_cp_reginfo[] = { + { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, + .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, + .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), + .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, + }, + { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, + .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, + .readfn = gt_virt_cnt_read, + }, +}; + +#endif + +static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) +{ + if (arm_feature(env, ARM_FEATURE_LPAE)) { + raw_write(env, ri, value); + } else if (arm_feature(env, ARM_FEATURE_V7)) { + raw_write(env, ri, value & 0xfffff6ff); + } else { + raw_write(env, ri, value & 0xfffff1ff); + } +} + +#ifndef CONFIG_USER_ONLY +/* get_phys_addr() isn't present for user-mode-only targets */ + +static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (ri->opc2 & 4) { + /* + * The ATS12NSO* operations must trap to EL3 or EL2 if executed in + * Secure EL1 (which can only happen if EL3 is AArch64). + * They are simply UNDEF if executed from NS EL1. + * They function normally from EL2 or EL3. + */ + if (arm_current_el(env) == 1) { + if (arm_is_secure_below_el3(env)) { + if (env->cp15.scr_el3 & SCR_EEL2) { + return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; + } + return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; + } + return CP_ACCESS_TRAP_UNCATEGORIZED; + } + } + return CP_ACCESS_OK; +} + +#ifdef CONFIG_TCG +static uint64_t do_ats_write(CPUARMState *env, uint64_t value, + MMUAccessType access_type, ARMMMUIdx mmu_idx, + bool is_secure) +{ + bool ret; + uint64_t par64; + bool format64 = false; + ARMMMUFaultInfo fi = {}; + GetPhysAddrResult res = {}; + + ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx, + is_secure, &res, &fi); + + /* + * ATS operations only do S1 or S1+S2 translations, so we never + * have to deal with the ARMCacheAttrs format for S2 only. + */ + assert(!res.cacheattrs.is_s2_format); + + if (ret) { + /* + * Some kinds of translation fault must cause exceptions rather + * than being reported in the PAR. + */ + int current_el = arm_current_el(env); + int target_el; + uint32_t syn, fsr, fsc; + bool take_exc = false; + + if (fi.s1ptw && current_el == 1 + && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { + /* + * Synchronous stage 2 fault on an access made as part of the + * translation table walk for AT S1E0* or AT S1E1* insn + * executed from NS EL1. If this is a synchronous external abort + * and SCR_EL3.EA == 1, then we take a synchronous external abort + * to EL3. Otherwise the fault is taken as an exception to EL2, + * and HPFAR_EL2 holds the faulting IPA. + */ + if (fi.type == ARMFault_SyncExternalOnWalk && + (env->cp15.scr_el3 & SCR_EA)) { + target_el = 3; + } else { + env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; + if (arm_is_secure_below_el3(env) && fi.s1ns) { + env->cp15.hpfar_el2 |= HPFAR_NS; + } + target_el = 2; + } + take_exc = true; + } else if (fi.type == ARMFault_SyncExternalOnWalk) { + /* + * Synchronous external aborts during a translation table walk + * are taken as Data Abort exceptions. + */ + if (fi.stage2) { + if (current_el == 3) { + target_el = 3; + } else { + target_el = 2; + } + } else { + target_el = exception_target_el(env); + } + take_exc = true; + } + + if (take_exc) { + /* Construct FSR and FSC using same logic as arm_deliver_fault() */ + if (target_el == 2 || arm_el_is_aa64(env, target_el) || + arm_s1_regime_using_lpae_format(env, mmu_idx)) { + fsr = arm_fi_to_lfsc(&fi); + fsc = extract32(fsr, 0, 6); + } else { + fsr = arm_fi_to_sfsc(&fi); + fsc = 0x3f; + } + /* + * Report exception with ESR indicating a fault due to a + * translation table walk for a cache maintenance instruction. + */ + syn = syn_data_abort_no_iss(current_el == target_el, 0, + fi.ea, 1, fi.s1ptw, 1, fsc); + env->exception.vaddress = value; + env->exception.fsr = fsr; + raise_exception(env, EXCP_DATA_ABORT, syn, target_el); + } + } + + if (is_a64(env)) { + format64 = true; + } else if (arm_feature(env, ARM_FEATURE_LPAE)) { + /* + * ATS1Cxx: + * * TTBCR.EAE determines whether the result is returned using the + * 32-bit or the 64-bit PAR format + * * Instructions executed in Hyp mode always use the 64bit format + * + * ATS1S2NSOxx uses the 64bit format if any of the following is true: + * * The Non-secure TTBCR.EAE bit is set to 1 + * * The implementation includes EL2, and the value of HCR.VM is 1 + * + * (Note that HCR.DC makes HCR.VM behave as if it is 1.) + * + * ATS1Hx always uses the 64bit format. + */ + format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); + + if (arm_feature(env, ARM_FEATURE_EL2)) { + if (mmu_idx == ARMMMUIdx_E10_0 || + mmu_idx == ARMMMUIdx_E10_1 || + mmu_idx == ARMMMUIdx_E10_1_PAN) { + format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); + } else { + format64 |= arm_current_el(env) == 2; + } + } + } + + if (format64) { + /* Create a 64-bit PAR */ + par64 = (1 << 11); /* LPAE bit always set */ + if (!ret) { + par64 |= res.f.phys_addr & ~0xfffULL; + if (!res.f.attrs.secure) { + par64 |= (1 << 9); /* NS */ + } + par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ + par64 |= res.cacheattrs.shareability << 7; /* SH */ + } else { + uint32_t fsr = arm_fi_to_lfsc(&fi); + + par64 |= 1; /* F */ + par64 |= (fsr & 0x3f) << 1; /* FS */ + if (fi.stage2) { + par64 |= (1 << 9); /* S */ + } + if (fi.s1ptw) { + par64 |= (1 << 8); /* PTW */ + } + } + } else { + /* + * fsr is a DFSR/IFSR value for the short descriptor + * translation table format (with WnR always clear). + * Convert it to a 32-bit PAR. + */ + if (!ret) { + /* We do not set any attribute bits in the PAR */ + if (res.f.lg_page_size == 24 + && arm_feature(env, ARM_FEATURE_V7)) { + par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); + } else { + par64 = res.f.phys_addr & 0xfffff000; + } + if (!res.f.attrs.secure) { + par64 |= (1 << 9); /* NS */ + } + } else { + uint32_t fsr = arm_fi_to_sfsc(&fi); + + par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | + ((fsr & 0xf) << 1) | 1; + } + } + return par64; +} +#endif /* CONFIG_TCG */ + +static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) +{ +#ifdef CONFIG_TCG + MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; + uint64_t par64; + ARMMMUIdx mmu_idx; + int el = arm_current_el(env); + bool secure = arm_is_secure_below_el3(env); + + switch (ri->opc2 & 6) { + case 0: + /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ + switch (el) { + case 3: + mmu_idx = ARMMMUIdx_E3; + secure = true; + break; + case 2: + g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ + /* fall through */ + case 1: + if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { + mmu_idx = ARMMMUIdx_Stage1_E1_PAN; + } else { + mmu_idx = ARMMMUIdx_Stage1_E1; + } + break; + default: + g_assert_not_reached(); + } + break; + case 2: + /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ + switch (el) { + case 3: + mmu_idx = ARMMMUIdx_E10_0; + secure = true; + break; + case 2: + g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ + mmu_idx = ARMMMUIdx_Stage1_E0; + break; + case 1: + mmu_idx = ARMMMUIdx_Stage1_E0; + break; + default: + g_assert_not_reached(); + } + break; + case 4: + /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ + mmu_idx = ARMMMUIdx_E10_1; + secure = false; + break; + case 6: + /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ + mmu_idx = ARMMMUIdx_E10_0; + secure = false; + break; + default: + g_assert_not_reached(); + } + + par64 = do_ats_write(env, value, access_type, mmu_idx, secure); + + A32_BANKED_CURRENT_REG_SET(env, par, par64); +#else + /* Handled by hardware accelerator. */ + g_assert_not_reached(); +#endif /* CONFIG_TCG */ +} + +static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ +#ifdef CONFIG_TCG + MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; + uint64_t par64; + + /* There is no SecureEL2 for AArch32. */ + par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false); + + A32_BANKED_CURRENT_REG_SET(env, par, par64); +#else + /* Handled by hardware accelerator. */ + g_assert_not_reached(); +#endif /* CONFIG_TCG */ +} + +static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) == 3 && + !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { + return CP_ACCESS_TRAP; + } + return CP_ACCESS_OK; +} + +static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ +#ifdef CONFIG_TCG + MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; + ARMMMUIdx mmu_idx; + int secure = arm_is_secure_below_el3(env); + uint64_t hcr_el2 = arm_hcr_el2_eff(env); + bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); + + switch (ri->opc2 & 6) { + case 0: + switch (ri->opc1) { + case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ + if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { + mmu_idx = regime_e20 ? + ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; + } else { + mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; + } + break; + case 4: /* AT S1E2R, AT S1E2W */ + mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; + break; + case 6: /* AT S1E3R, AT S1E3W */ + mmu_idx = ARMMMUIdx_E3; + secure = true; + break; + default: + g_assert_not_reached(); + } + break; + case 2: /* AT S1E0R, AT S1E0W */ + mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; + break; + case 4: /* AT S12E1R, AT S12E1W */ + mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; + break; + case 6: /* AT S12E0R, AT S12E0W */ + mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; + break; + default: + g_assert_not_reached(); + } + + env->cp15.par_el[1] = do_ats_write(env, value, access_type, + mmu_idx, secure); +#else + /* Handled by hardware accelerator. */ + g_assert_not_reached(); +#endif /* CONFIG_TCG */ +} +#endif + +static const ARMCPRegInfo vapa_cp_reginfo[] = { + { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, .resetvalue = 0, + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), + offsetoflow32(CPUARMState, cp15.par_ns) }, + .writefn = par_write }, +#ifndef CONFIG_USER_ONLY + /* This underdecoding is safe because the reginfo is NO_RAW. */ + { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, + .access = PL1_W, .accessfn = ats_access, + .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, +#endif +}; + +/* Return basic MPU access permission bits. */ +static uint32_t simple_mpu_ap_bits(uint32_t val) +{ + uint32_t ret; + uint32_t mask; + int i; + ret = 0; + mask = 3; + for (i = 0; i < 16; i += 2) { + ret |= (val >> i) & mask; + mask <<= 2; + } + return ret; +} + +/* Pad basic MPU access permission bits to extended format. */ +static uint32_t extended_mpu_ap_bits(uint32_t val) +{ + uint32_t ret; + uint32_t mask; + int i; + ret = 0; + mask = 3; + for (i = 0; i < 16; i += 2) { + ret |= (val & mask) << i; + mask <<= 2; + } + return ret; +} + +static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); +} + +static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); +} + +static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); +} + +static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); +} + +static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); + + if (!u32p) { + return 0; + } + + u32p += env->pmsav7.rnr[M_REG_NS]; + return *u32p; +} + +static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); + + if (!u32p) { + return; + } + + u32p += env->pmsav7.rnr[M_REG_NS]; + tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ + *u32p = value; +} + +static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + uint32_t nrgs = cpu->pmsav7_dregion; + + if (value >= nrgs) { + qemu_log_mask(LOG_GUEST_ERROR, + "PMSAv7 RGNR write >= # supported regions, %" PRIu32 + " > %" PRIu32 "\n", (uint32_t)value, nrgs); + return; + } + + raw_write(env, ri, value); +} + +static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + + tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ + env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; +} + +static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; +} + +static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + + tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ + env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; +} + +static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; +} + +static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + + /* + * Ignore writes that would select not implemented region. + * This is architecturally UNPREDICTABLE. + */ + if (value >= cpu->pmsav7_dregion) { + return; + } + + env->pmsav7.rnr[M_REG_NS] = value; +} + +static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + + tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ + env->pmsav8.hprbar[env->pmsav8.hprselr] = value; +} + +static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return env->pmsav8.hprbar[env->pmsav8.hprselr]; +} + +static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + + tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ + env->pmsav8.hprlar[env->pmsav8.hprselr] = value; +} + +static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return env->pmsav8.hprlar[env->pmsav8.hprselr]; +} + +static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + uint32_t n; + uint32_t bit; + ARMCPU *cpu = env_archcpu(env); + + /* Ignore writes to unimplemented regions */ + int rmax = MIN(cpu->pmsav8r_hdregion, 32); + value &= MAKE_64BIT_MASK(0, rmax); + + tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ + + /* Register alias is only valid for first 32 indexes */ + for (n = 0; n < rmax; ++n) { + bit = extract32(value, n, 1); + env->pmsav8.hprlar[n] = deposit32( + env->pmsav8.hprlar[n], 0, 1, bit); + } +} + +static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + uint32_t n; + uint32_t result = 0x0; + ARMCPU *cpu = env_archcpu(env); + + /* Register alias is only valid for first 32 indexes */ + for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { + if (env->pmsav8.hprlar[n] & 0x1) { + result |= (0x1 << n); + } + } + return result; +} + +static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + + /* + * Ignore writes that would select not implemented region. + * This is architecturally UNPREDICTABLE. + */ + if (value >= cpu->pmsav8r_hdregion) { + return; + } + + env->pmsav8.hprselr = value; +} + +static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | + (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); + + tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ + + if (ri->opc1 & 4) { + if (index >= cpu->pmsav8r_hdregion) { + return; + } + if (ri->opc2 & 0x1) { + env->pmsav8.hprlar[index] = value; + } else { + env->pmsav8.hprbar[index] = value; + } + } else { + if (index >= cpu->pmsav7_dregion) { + return; + } + if (ri->opc2 & 0x1) { + env->pmsav8.rlar[M_REG_NS][index] = value; + } else { + env->pmsav8.rbar[M_REG_NS][index] = value; + } + } +} + +static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + ARMCPU *cpu = env_archcpu(env); + uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | + (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); + + if (ri->opc1 & 4) { + if (index >= cpu->pmsav8r_hdregion) { + return 0x0; + } + if (ri->opc2 & 0x1) { + return env->pmsav8.hprlar[index]; + } else { + return env->pmsav8.hprbar[index]; + } + } else { + if (index >= cpu->pmsav7_dregion) { + return 0x0; + } + if (ri->opc2 & 0x1) { + return env->pmsav8.rlar[M_REG_NS][index]; + } else { + return env->pmsav8.rbar[M_REG_NS][index]; + } + } +} + +static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { + { .name = "PRBAR", + .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, + .access = PL1_RW, .type = ARM_CP_NO_RAW, + .accessfn = access_tvm_trvm, + .readfn = prbar_read, .writefn = prbar_write }, + { .name = "PRLAR", + .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, + .access = PL1_RW, .type = ARM_CP_NO_RAW, + .accessfn = access_tvm_trvm, + .readfn = prlar_read, .writefn = prlar_write }, + { .name = "PRSELR", .resetvalue = 0, + .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .writefn = prselr_write, + .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, + { .name = "HPRBAR", .resetvalue = 0, + .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, + .access = PL2_RW, .type = ARM_CP_NO_RAW, + .readfn = hprbar_read, .writefn = hprbar_write }, + { .name = "HPRLAR", + .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, + .access = PL2_RW, .type = ARM_CP_NO_RAW, + .readfn = hprlar_read, .writefn = hprlar_write }, + { .name = "HPRSELR", .resetvalue = 0, + .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, + .access = PL2_RW, + .writefn = hprselr_write, + .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, + { .name = "HPRENR", + .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, + .access = PL2_RW, .type = ARM_CP_NO_RAW, + .readfn = hprenr_read, .writefn = hprenr_write }, +}; + +static const ARMCPRegInfo pmsav7_cp_reginfo[] = { + /* + * Reset for all these registers is handled in arm_cpu_reset(), + * because the PMSAv7 is also used by M-profile CPUs, which do + * not register cpregs but still need the state to be reset. + */ + { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, + .access = PL1_RW, .type = ARM_CP_NO_RAW, + .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), + .readfn = pmsav7_read, .writefn = pmsav7_write, + .resetfn = arm_cp_reset_ignore }, + { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, + .access = PL1_RW, .type = ARM_CP_NO_RAW, + .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), + .readfn = pmsav7_read, .writefn = pmsav7_write, + .resetfn = arm_cp_reset_ignore }, + { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, + .access = PL1_RW, .type = ARM_CP_NO_RAW, + .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), + .readfn = pmsav7_read, .writefn = pmsav7_write, + .resetfn = arm_cp_reset_ignore }, + { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, + .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), + .writefn = pmsav7_rgnr_write, + .resetfn = arm_cp_reset_ignore }, +}; + +static const ARMCPRegInfo pmsav5_cp_reginfo[] = { + { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, .type = ARM_CP_ALIAS, + .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), + .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, + { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, + .access = PL1_RW, .type = ARM_CP_ALIAS, + .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), + .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, + { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, + .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), + .resetvalue = 0, }, + { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, + .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), + .resetvalue = 0, }, + { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, + { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, + .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, + /* Protection region base and size registers */ + { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, + .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, + { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, + .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, + { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, + .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, + { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, + .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, + { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, + .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, + { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, + .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, + { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, + .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, + { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, + .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, +}; + +static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + + if (!arm_feature(env, ARM_FEATURE_V8)) { + if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { + /* + * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when + * using Long-descriptor translation table format + */ + value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); + } else if (arm_feature(env, ARM_FEATURE_EL3)) { + /* + * In an implementation that includes the Security Extensions + * TTBCR has additional fields PD0 [4] and PD1 [5] for + * Short-descriptor translation table format. + */ + value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; + } else { + value &= TTBCR_N; + } + } + + if (arm_feature(env, ARM_FEATURE_LPAE)) { + /* + * With LPAE the TTBCR could result in a change of ASID + * via the TTBCR.A1 bit, so do a TLB flush. + */ + tlb_flush(CPU(cpu)); + } + raw_write(env, ri, value); +} + +static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + + /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ + tlb_flush(CPU(cpu)); + raw_write(env, ri, value); +} + +static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ + if (cpreg_field_is_64bit(ri) && + extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { + ARMCPU *cpu = env_archcpu(env); + tlb_flush(CPU(cpu)); + } + raw_write(env, ri, value); +} + +static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* + * If we are running with E2&0 regime, then an ASID is active. + * Flush if that might be changing. Note we're not checking + * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that + * holds the active ASID, only checking the field that might. + */ + if (extract64(raw_read(env, ri) ^ value, 48, 16) && + (arm_hcr_el2_eff(env) & HCR_E2H)) { + uint16_t mask = ARMMMUIdxBit_E20_2 | + ARMMMUIdxBit_E20_2_PAN | + ARMMMUIdxBit_E20_0; + tlb_flush_by_mmuidx(env_cpu(env), mask); + } + raw_write(env, ri, value); +} + +static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + CPUState *cs = CPU(cpu); + + /* + * A change in VMID to the stage2 page table (Stage2) invalidates + * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). + */ + if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { + tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); + } + raw_write(env, ri, value); +} + +static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { + { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), + offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, + { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, + .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), + offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, + { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, + .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), + offsetof(CPUARMState, cp15.dfar_ns) } }, + { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), + .resetvalue = 0, }, +}; + +static const ARMCPRegInfo vmsa_cp_reginfo[] = { + { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, + { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .writefn = vmsa_ttbr_write, .resetvalue = 0, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), + offsetof(CPUARMState, cp15.ttbr0_ns) } }, + { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .writefn = vmsa_ttbr_write, .resetvalue = 0, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), + offsetof(CPUARMState, cp15.ttbr1_ns) } }, + { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .writefn = vmsa_tcr_el12_write, + .raw_writefn = raw_write, + .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, + { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, + .raw_writefn = raw_write, + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), + offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, +}; + +/* + * Note that unlike TTBCR, writing to TTBCR2 does not require flushing + * qemu tlbs nor adjusting cached masks. + */ +static const ARMCPRegInfo ttbcr2_reginfo = { + .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .type = ARM_CP_ALIAS, + .bank_fieldoffsets = { + offsetofhigh32(CPUARMState, cp15.tcr_el[3]), + offsetofhigh32(CPUARMState, cp15.tcr_el[1]), + }, +}; + +static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + env->cp15.c15_ticonfig = value & 0xe7; + /* The OS_TYPE bit in this register changes the reported CPUID! */ + env->cp15.c0_cpuid = (value & (1 << 5)) ? + ARM_CPUID_TI915T : ARM_CPUID_TI925T; +} + +static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + env->cp15.c15_threadid = value & 0xffff; +} + +static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* Wait-for-interrupt (deprecated) */ + cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); +} + +static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* + * On OMAP there are registers indicating the max/min index of dcache lines + * containing a dirty line; cache flush operations have to reset these. + */ + env->cp15.c15_i_max = 0x000; + env->cp15.c15_i_min = 0xff0; +} + +static const ARMCPRegInfo omap_cp_reginfo[] = { + { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, + .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, + .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), + .resetvalue = 0, }, + { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, .type = ARM_CP_NOP }, + { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, + .writefn = omap_ticonfig_write }, + { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, + { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, .resetvalue = 0xff0, + .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, + { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, + .writefn = omap_threadid_write }, + { .name = "TI925T_STATUS", .cp = 15, .crn = 15, + .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, + .type = ARM_CP_NO_RAW, + .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, + /* + * TODO: Peripheral port remap register: + * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller + * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), + * when MMU is off. + */ + { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, + .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, + .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, + .writefn = omap_cachemaint_write }, + { .name = "C9", .cp = 15, .crn = 9, + .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, + .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, +}; + +static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + env->cp15.c15_cpar = value & 0x3fff; +} + +static const ARMCPRegInfo xscale_cp_reginfo[] = { + { .name = "XSCALE_CPAR", + .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, + .writefn = xscale_cpar_write, }, + { .name = "XSCALE_AUXCR", + .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), + .resetvalue = 0, }, + /* + * XScale specific cache-lockdown: since we have no cache we NOP these + * and hope the guest does not really rely on cache behaviour. + */ + { .name = "XSCALE_LOCK_ICACHE_LINE", + .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, + .access = PL1_W, .type = ARM_CP_NOP }, + { .name = "XSCALE_UNLOCK_ICACHE", + .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, + .access = PL1_W, .type = ARM_CP_NOP }, + { .name = "XSCALE_DCACHE_LOCK", + .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, + .access = PL1_RW, .type = ARM_CP_NOP }, + { .name = "XSCALE_UNLOCK_DCACHE", + .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, + .access = PL1_W, .type = ARM_CP_NOP }, +}; + +static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { + /* + * RAZ/WI the whole crn=15 space, when we don't have a more specific + * implementation of this implementation-defined space. + * Ideally this should eventually disappear in favour of actually + * implementing the correct behaviour for all cores. + */ + { .name = "C15_IMPDEF", .cp = 15, .crn = 15, + .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, + .access = PL1_RW, + .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, + .resetvalue = 0 }, +}; + +static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { + /* Cache status: RAZ because we have no cache so it's always clean */ + { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, + .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, + .resetvalue = 0 }, +}; + +static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { + /* We never have a block transfer operation in progress */ + { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, + .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, + .resetvalue = 0 }, + /* The cache ops themselves: these all NOP for QEMU */ + { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, + .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, + { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, + .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, + { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, + .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, + { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, + .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, + { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, + .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, + { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, + .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, +}; + +static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { + /* + * The cache test-and-clean instructions always return (1 << 30) + * to indicate that there are no dirty cache lines. + */ + { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, + .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, + .resetvalue = (1 << 30) }, + { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, + .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, + .resetvalue = (1 << 30) }, +}; + +static const ARMCPRegInfo strongarm_cp_reginfo[] = { + /* Ignore ReadBuffer accesses */ + { .name = "C9_READBUFFER", .cp = 15, .crn = 9, + .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, + .access = PL1_RW, .resetvalue = 0, + .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, +}; + +static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + unsigned int cur_el = arm_current_el(env); + + if (arm_is_el2_enabled(env) && cur_el == 1) { + return env->cp15.vpidr_el2; + } + return raw_read(env, ri); +} + +static uint64_t mpidr_read_val(CPUARMState *env) +{ + ARMCPU *cpu = env_archcpu(env); + uint64_t mpidr = cpu->mp_affinity; + + if (arm_feature(env, ARM_FEATURE_V7MP)) { + mpidr |= (1U << 31); + /* + * Cores which are uniprocessor (non-coherent) + * but still implement the MP extensions set + * bit 30. (For instance, Cortex-R5). + */ + if (cpu->mp_is_up) { + mpidr |= (1u << 30); + } + } + return mpidr; +} + +static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + unsigned int cur_el = arm_current_el(env); + + if (arm_is_el2_enabled(env) && cur_el == 1) { + return env->cp15.vmpidr_el2; + } + return mpidr_read_val(env); +} + +static const ARMCPRegInfo lpae_cp_reginfo[] = { + /* NOP AMAIR0/1 */ + { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .type = ARM_CP_CONST, .resetvalue = 0 }, + /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ + { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, + .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), + offsetof(CPUARMState, cp15.par_ns)} }, + { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .type = ARM_CP_64BIT | ARM_CP_ALIAS, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), + offsetof(CPUARMState, cp15.ttbr0_ns) }, + .writefn = vmsa_ttbr_write, }, + { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .type = ARM_CP_64BIT | ARM_CP_ALIAS, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), + offsetof(CPUARMState, cp15.ttbr1_ns) }, + .writefn = vmsa_ttbr_write, }, +}; + +static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return vfp_get_fpcr(env); +} + +static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + vfp_set_fpcr(env, value); +} + +static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return vfp_get_fpsr(env); +} + +static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + vfp_set_fpsr(env, value); +} + +static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { + return CP_ACCESS_TRAP; + } + return CP_ACCESS_OK; +} + +static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + env->daif = value & PSTATE_DAIF; +} + +static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return env->pstate & PSTATE_PAN; +} + +static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); +} + +static const ARMCPRegInfo pan_reginfo = { + .name = "PAN", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, + .type = ARM_CP_NO_RAW, .access = PL1_RW, + .readfn = aa64_pan_read, .writefn = aa64_pan_write +}; + +static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return env->pstate & PSTATE_UAO; +} + +static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); +} + +static const ARMCPRegInfo uao_reginfo = { + .name = "UAO", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, + .type = ARM_CP_NO_RAW, .access = PL1_RW, + .readfn = aa64_uao_read, .writefn = aa64_uao_write +}; + +static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return env->pstate & PSTATE_DIT; +} + +static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); +} + +static const ARMCPRegInfo dit_reginfo = { + .name = "DIT", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, + .type = ARM_CP_NO_RAW, .access = PL0_RW, + .readfn = aa64_dit_read, .writefn = aa64_dit_write +}; + +static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return env->pstate & PSTATE_SSBS; +} + +static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); +} + +static const ARMCPRegInfo ssbs_reginfo = { + .name = "SSBS", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, + .type = ARM_CP_NO_RAW, .access = PL0_RW, + .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write +}; + +static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, + const ARMCPRegInfo *ri, + bool isread) +{ + /* Cache invalidate/clean to Point of Coherency or Persistence... */ + switch (arm_current_el(env)) { + case 0: + /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ + if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { + return CP_ACCESS_TRAP; + } + /* fall through */ + case 1: + /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ + if (arm_hcr_el2_eff(env) & HCR_TPCP) { + return CP_ACCESS_TRAP_EL2; + } + break; + } + return CP_ACCESS_OK; +} + +static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) +{ + /* Cache invalidate/clean to Point of Unification... */ + switch (arm_current_el(env)) { + case 0: + /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ + if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { + return CP_ACCESS_TRAP; + } + /* fall through */ + case 1: + /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ + if (arm_hcr_el2_eff(env) & hcrflags) { + return CP_ACCESS_TRAP_EL2; + } + break; + } + return CP_ACCESS_OK; +} + +static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); +} + +static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); +} + +/* + * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions + * Page D4-1736 (DDI0487A.b) + */ + +static int vae1_tlbmask(CPUARMState *env) +{ + uint64_t hcr = arm_hcr_el2_eff(env); + uint16_t mask; + + if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { + mask = ARMMMUIdxBit_E20_2 | + ARMMMUIdxBit_E20_2_PAN | + ARMMMUIdxBit_E20_0; + } else { + mask = ARMMMUIdxBit_E10_1 | + ARMMMUIdxBit_E10_1_PAN | + ARMMMUIdxBit_E10_0; + } + return mask; +} + +/* Return 56 if TBI is enabled, 64 otherwise. */ +static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, + uint64_t addr) +{ + uint64_t tcr = regime_tcr(env, mmu_idx); + int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); + int select = extract64(addr, 55, 1); + + return (tbi >> select) & 1 ? 56 : 64; +} + +static int vae1_tlbbits(CPUARMState *env, uint64_t addr) +{ + uint64_t hcr = arm_hcr_el2_eff(env); + ARMMMUIdx mmu_idx; + + /* Only the regime of the mmu_idx below is significant. */ + if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { + mmu_idx = ARMMMUIdx_E20_0; + } else { + mmu_idx = ARMMMUIdx_E10_0; + } + + return tlbbits_for_regime(env, mmu_idx, addr); +} + +static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + int mask = vae1_tlbmask(env); + + tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); +} + +static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + int mask = vae1_tlbmask(env); + + if (tlb_force_broadcast(env)) { + tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); + } else { + tlb_flush_by_mmuidx(cs, mask); + } +} + +static int e2_tlbmask(CPUARMState *env) +{ + return (ARMMMUIdxBit_E20_0 | + ARMMMUIdxBit_E20_2 | + ARMMMUIdxBit_E20_2_PAN | + ARMMMUIdxBit_E2); +} + +static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + int mask = alle1_tlbmask(env); + + tlb_flush_by_mmuidx(cs, mask); +} + +static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + int mask = e2_tlbmask(env); + + tlb_flush_by_mmuidx(cs, mask); +} + +static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + CPUState *cs = CPU(cpu); + + tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); +} + +static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + int mask = alle1_tlbmask(env); + + tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); +} + +static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + int mask = e2_tlbmask(env); + + tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); +} + +static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + + tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); +} + +static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* + * Invalidate by VA, EL2 + * Currently handles both VAE2 and VALE2, since we don't support + * flush-last-level-only. + */ + CPUState *cs = env_cpu(env); + int mask = e2_tlbmask(env); + uint64_t pageaddr = sextract64(value << 12, 0, 56); + + tlb_flush_page_by_mmuidx(cs, pageaddr, mask); +} + +static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* + * Invalidate by VA, EL3 + * Currently handles both VAE3 and VALE3, since we don't support + * flush-last-level-only. + */ + ARMCPU *cpu = env_archcpu(env); + CPUState *cs = CPU(cpu); + uint64_t pageaddr = sextract64(value << 12, 0, 56); + + tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); +} + +static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + int mask = vae1_tlbmask(env); + uint64_t pageaddr = sextract64(value << 12, 0, 56); + int bits = vae1_tlbbits(env, pageaddr); + + tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); +} + +static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* + * Invalidate by VA, EL1&0 (AArch64 version). + * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, + * since we don't support flush-for-specific-ASID-only or + * flush-last-level-only. + */ + CPUState *cs = env_cpu(env); + int mask = vae1_tlbmask(env); + uint64_t pageaddr = sextract64(value << 12, 0, 56); + int bits = vae1_tlbbits(env, pageaddr); + + if (tlb_force_broadcast(env)) { + tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); + } else { + tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); + } +} + +static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + uint64_t pageaddr = sextract64(value << 12, 0, 56); + int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr); + + tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, + ARMMMUIdxBit_E2, bits); +} + +static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + uint64_t pageaddr = sextract64(value << 12, 0, 56); + int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); + + tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, + ARMMMUIdxBit_E3, bits); +} + +static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) +{ + /* + * The MSB of value is the NS field, which only applies if SEL2 + * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). + */ + return (value >= 0 + && cpu_isar_feature(aa64_sel2, env_archcpu(env)) + && arm_is_secure_below_el3(env) + ? ARMMMUIdxBit_Stage2_S + : ARMMMUIdxBit_Stage2); +} + +static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + int mask = ipas2e1_tlbmask(env, value); + uint64_t pageaddr = sextract64(value << 12, 0, 56); + + if (tlb_force_broadcast(env)) { + tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); + } else { + tlb_flush_page_by_mmuidx(cs, pageaddr, mask); + } +} + +static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPUState *cs = env_cpu(env); + int mask = ipas2e1_tlbmask(env, value); + uint64_t pageaddr = sextract64(value << 12, 0, 56); + + tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); +} + +#ifdef TARGET_AARCH64 +typedef struct { + uint64_t base; + uint64_t length; +} TLBIRange; + +static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) +{ + /* + * Note that the TLBI range TG field encoding differs from both + * TG0 and TG1 encodings. + */ + switch (tg) { + case 1: + return Gran4K; + case 2: + return Gran16K; + case 3: + return Gran64K; + default: + return GranInvalid; + } +} + +static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, + uint64_t value) +{ + unsigned int page_size_granule, page_shift, num, scale, exponent; + /* Extract one bit to represent the va selector in use. */ + uint64_t select = sextract64(value, 36, 1); + ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); + TLBIRange ret = { }; + ARMGranuleSize gran; + + page_size_granule = extract64(value, 46, 2); + gran = tlbi_range_tg_to_gran_size(page_size_granule); + + /* The granule encoded in value must match the granule in use. */ + if (gran != param.gran) { + qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", + page_size_granule); + return ret; + } + + page_shift = arm_granule_bits(gran); + num = extract64(value, 39, 5); + scale = extract64(value, 44, 2); + exponent = (5 * scale) + 1; + + ret.length = (num + 1) << (exponent + page_shift); + + if (param.select) { + ret.base = sextract64(value, 0, 37); + } else { + ret.base = extract64(value, 0, 37); + } + if (param.ds) { + /* + * With DS=1, BaseADDR is always shifted 16 so that it is able + * to address all 52 va bits. The input address is perforce + * aligned on a 64k boundary regardless of translation granule. + */ + page_shift = 16; + } + ret.base <<= page_shift; + + return ret; +} + +static void do_rvae_write(CPUARMState *env, uint64_t value, + int idxmap, bool synced) +{ + ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); + TLBIRange range; + int bits; + + range = tlbi_aa64_get_range(env, one_idx, value); + bits = tlbbits_for_regime(env, one_idx, range.base); + + if (synced) { + tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), + range.base, + range.length, + idxmap, + bits); + } else { + tlb_flush_range_by_mmuidx(env_cpu(env), range.base, + range.length, idxmap, bits); + } +} + +static void tlbi_aa64_rvae1_write(CPUARMState *env, + const ARMCPRegInfo *ri, + uint64_t value) +{ + /* + * Invalidate by VA range, EL1&0. + * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, + * since we don't support flush-for-specific-ASID-only or + * flush-last-level-only. + */ + + do_rvae_write(env, value, vae1_tlbmask(env), + tlb_force_broadcast(env)); +} + +static void tlbi_aa64_rvae1is_write(CPUARMState *env, + const ARMCPRegInfo *ri, + uint64_t value) +{ + /* + * Invalidate by VA range, Inner/Outer Shareable EL1&0. + * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, + * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support + * flush-for-specific-ASID-only, flush-last-level-only or inner/outer + * shareable specific flushes. + */ + + do_rvae_write(env, value, vae1_tlbmask(env), true); +} + +static int vae2_tlbmask(CPUARMState *env) +{ + return ARMMMUIdxBit_E2; +} + +static void tlbi_aa64_rvae2_write(CPUARMState *env, + const ARMCPRegInfo *ri, + uint64_t value) +{ + /* + * Invalidate by VA range, EL2. + * Currently handles all of RVAE2 and RVALE2, + * since we don't support flush-for-specific-ASID-only or + * flush-last-level-only. + */ + + do_rvae_write(env, value, vae2_tlbmask(env), + tlb_force_broadcast(env)); + + +} + +static void tlbi_aa64_rvae2is_write(CPUARMState *env, + const ARMCPRegInfo *ri, + uint64_t value) +{ + /* + * Invalidate by VA range, Inner/Outer Shareable, EL2. + * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, + * since we don't support flush-for-specific-ASID-only, + * flush-last-level-only or inner/outer shareable specific flushes. + */ + + do_rvae_write(env, value, vae2_tlbmask(env), true); + +} + +static void tlbi_aa64_rvae3_write(CPUARMState *env, + const ARMCPRegInfo *ri, + uint64_t value) +{ + /* + * Invalidate by VA range, EL3. + * Currently handles all of RVAE3 and RVALE3, + * since we don't support flush-for-specific-ASID-only or + * flush-last-level-only. + */ + + do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); +} + +static void tlbi_aa64_rvae3is_write(CPUARMState *env, + const ARMCPRegInfo *ri, + uint64_t value) +{ + /* + * Invalidate by VA range, EL3, Inner/Outer Shareable. + * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, + * since we don't support flush-for-specific-ASID-only, + * flush-last-level-only or inner/outer specific flushes. + */ + + do_rvae_write(env, value, ARMMMUIdxBit_E3, true); +} + +static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + do_rvae_write(env, value, ipas2e1_tlbmask(env, value), + tlb_force_broadcast(env)); +} + +static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, + const ARMCPRegInfo *ri, + uint64_t value) +{ + do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); +} +#endif + +static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + int cur_el = arm_current_el(env); + + if (cur_el < 2) { + uint64_t hcr = arm_hcr_el2_eff(env); + + if (cur_el == 0) { + if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { + if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { + return CP_ACCESS_TRAP_EL2; + } + } else { + if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { + return CP_ACCESS_TRAP; + } + if (hcr & HCR_TDZ) { + return CP_ACCESS_TRAP_EL2; + } + } + } else if (hcr & HCR_TDZ) { + return CP_ACCESS_TRAP_EL2; + } + } + return CP_ACCESS_OK; +} + +static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + ARMCPU *cpu = env_archcpu(env); + int dzp_bit = 1 << 4; + + /* DZP indicates whether DC ZVA access is allowed */ + if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { + dzp_bit = 0; + } + return cpu->dcz_blocksize | dzp_bit; +} + +static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (!(env->pstate & PSTATE_SP)) { + /* + * Access to SP_EL0 is undefined if it's being used as + * the stack pointer. + */ + return CP_ACCESS_TRAP_UNCATEGORIZED; + } + return CP_ACCESS_OK; +} + +static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return env->pstate & PSTATE_SP; +} + +static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) +{ + update_spsel(env, val); +} + +static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + + if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { + /* M bit is RAZ/WI for PMSA with no MPU implemented */ + value &= ~SCTLR_M; + } + + /* ??? Lots of these bits are not implemented. */ + + if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { + if (ri->opc1 == 6) { /* SCTLR_EL3 */ + value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); + } else { + value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | + SCTLR_ATA0 | SCTLR_ATA); + } + } + + if (raw_read(env, ri) == value) { + /* + * Skip the TLB flush if nothing actually changed; Linux likes + * to do a lot of pointless SCTLR writes. + */ + return; + } + + raw_write(env, ri, value); + + /* This may enable/disable the MMU, so do a TLB flush. */ + tlb_flush(CPU(cpu)); + + if (ri->type & ARM_CP_SUPPRESS_TB_END) { + /* + * Normally we would always end the TB on an SCTLR write; see the + * comment in ARMCPRegInfo sctlr initialization below for why Xscale + * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild + * of hflags from the translator, so do it here. + */ + arm_rebuild_hflags(env); + } +} + +static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* + * Some MDCR_EL3 bits affect whether PMU counters are running: + * if we are trying to change any of those then we must + * bracket this update with PMU start/finish calls. + */ + bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; + + if (pmu_op) { + pmu_op_start(env); + } + env->cp15.mdcr_el3 = value; + if (pmu_op) { + pmu_op_finish(env); + } +} + +static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ + mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); +} + +static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* + * Some MDCR_EL2 bits affect whether PMU counters are running: + * if we are trying to change any of those then we must + * bracket this update with PMU start/finish calls. + */ + bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; + + if (pmu_op) { + pmu_op_start(env); + } + env->cp15.mdcr_el2 = value; + if (pmu_op) { + pmu_op_finish(env); + } +} + +static const ARMCPRegInfo v8_cp_reginfo[] = { + /* + * Minimal set of EL0-visible registers. This will need to be expanded + * significantly for system emulation of AArch64 CPUs. + */ + { .name = "NZCV", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, + .access = PL0_RW, .type = ARM_CP_NZCV }, + { .name = "DAIF", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, + .type = ARM_CP_NO_RAW, + .access = PL0_RW, .accessfn = aa64_daif_access, + .fieldoffset = offsetof(CPUARMState, daif), + .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, + { .name = "FPCR", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, + .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, + .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, + { .name = "FPSR", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, + .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, + .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, + { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, + .access = PL0_R, .type = ARM_CP_NO_RAW, + .readfn = aa64_dczid_read }, + { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, + .access = PL0_W, .type = ARM_CP_DC_ZVA, +#ifndef CONFIG_USER_ONLY + /* Avoid overhead of an access check that always passes in user-mode */ + .accessfn = aa64_zva_access, +#endif + }, + { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, + .access = PL1_R, .type = ARM_CP_CURRENTEL }, + /* Cache ops: all NOPs since we don't emulate caches */ + { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, + .access = PL1_W, .type = ARM_CP_NOP, + .accessfn = access_ticab }, + { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, + .access = PL1_W, .type = ARM_CP_NOP, + .accessfn = access_tocu }, + { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, + .access = PL0_W, .type = ARM_CP_NOP, + .accessfn = access_tocu }, + { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, + .access = PL1_W, .accessfn = aa64_cacheop_poc_access, + .type = ARM_CP_NOP }, + { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, + .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, + { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, + .access = PL0_W, .type = ARM_CP_NOP, + .accessfn = aa64_cacheop_poc_access }, + { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, + .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, + { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, + .access = PL0_W, .type = ARM_CP_NOP, + .accessfn = access_tocu }, + { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, + .access = PL0_W, .type = ARM_CP_NOP, + .accessfn = aa64_cacheop_poc_access }, + { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, + .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, + /* TLBI operations */ + { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, + .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vmalle1is_write }, + { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, + .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae1is_write }, + { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, + .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vmalle1is_write }, + { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, + .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae1is_write }, + { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, + .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae1is_write }, + { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, + .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae1is_write }, + { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, + .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vmalle1_write }, + { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, + .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae1_write }, + { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, + .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vmalle1_write }, + { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, + .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae1_write }, + { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, + .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae1_write }, + { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, + .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae1_write }, + { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, + .access = PL2_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_ipas2e1is_write }, + { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, + .access = PL2_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_ipas2e1is_write }, + { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, + .access = PL2_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_alle1is_write }, + { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, + .access = PL2_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_alle1is_write }, + { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, + .access = PL2_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_ipas2e1_write }, + { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, + .access = PL2_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_ipas2e1_write }, + { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, + .access = PL2_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_alle1_write }, + { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, + .access = PL2_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_alle1is_write }, +#ifndef CONFIG_USER_ONLY + /* 64 bit address translation operations */ + { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, + .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write64 }, + { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, + .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write64 }, + { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, + .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write64 }, + { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, + .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write64 }, + { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, + .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write64 }, + { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, + .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write64 }, + { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, + .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write64 }, + { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, + .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write64 }, + /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ + { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, + .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write64 }, + { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, + .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write64 }, + { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_ALIAS, + .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, + .access = PL1_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), + .writefn = par_write }, +#endif + /* TLB invalidate last level of translation table walk */ + { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, + .writefn = tlbimva_is_write }, + { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, + .writefn = tlbimvaa_is_write }, + { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbimva_write }, + { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, + .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, + .writefn = tlbimvaa_write }, + { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, + .type = ARM_CP_NO_RAW, .access = PL2_W, + .writefn = tlbimva_hyp_write }, + { .name = "TLBIMVALHIS", + .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, + .type = ARM_CP_NO_RAW, .access = PL2_W, + .writefn = tlbimva_hyp_is_write }, + { .name = "TLBIIPAS2", + .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, + .type = ARM_CP_NO_RAW, .access = PL2_W, + .writefn = tlbiipas2_hyp_write }, + { .name = "TLBIIPAS2IS", + .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, + .type = ARM_CP_NO_RAW, .access = PL2_W, + .writefn = tlbiipas2is_hyp_write }, + { .name = "TLBIIPAS2L", + .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, + .type = ARM_CP_NO_RAW, .access = PL2_W, + .writefn = tlbiipas2_hyp_write }, + { .name = "TLBIIPAS2LIS", + .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, + .type = ARM_CP_NO_RAW, .access = PL2_W, + .writefn = tlbiipas2is_hyp_write }, + /* 32 bit cache operations */ + { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, + { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, + .type = ARM_CP_NOP, .access = PL1_W }, + { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, + { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, + { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, + .type = ARM_CP_NOP, .access = PL1_W }, + { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, + .type = ARM_CP_NOP, .access = PL1_W }, + { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, + { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, + { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, + { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, + { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, + { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, + { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, + /* MMU Domain access control / MPU write buffer control */ + { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, + .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, + .writefn = dacr_write, .raw_writefn = raw_write, + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), + offsetoflow32(CPUARMState, cp15.dacr_ns) } }, + { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_ALIAS, + .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, + .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, + { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_ALIAS, + .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, + .access = PL1_RW, + .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, + /* + * We rely on the access checks not allowing the guest to write to the + * state field when SPSel indicates that it's being used as the stack + * pointer. + */ + { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, + .access = PL1_RW, .accessfn = sp_el0_access, + .type = ARM_CP_ALIAS, + .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, + { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, + .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, + .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, + { .name = "SPSel", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, + .type = ARM_CP_NO_RAW, + .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, + { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, + .access = PL2_RW, + .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, + .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, + { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, + .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, + .writefn = dacr_write, .raw_writefn = raw_write, + .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, + { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, + .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, + .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, + { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_ALIAS, + .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, + .access = PL2_RW, + .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, + { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_ALIAS, + .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, + .access = PL2_RW, + .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, + { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_ALIAS, + .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, + .access = PL2_RW, + .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, + { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_ALIAS, + .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, + .access = PL2_RW, + .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, + { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_IO, + .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, + .resetvalue = 0, + .access = PL3_RW, + .writefn = mdcr_el3_write, + .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, + { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, + .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, + .access = PL1_RW, .accessfn = access_trap_aa32s_el1, + .writefn = sdcr_write, + .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, +}; + +static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) +{ + ARMCPU *cpu = env_archcpu(env); + + if (arm_feature(env, ARM_FEATURE_V8)) { + valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ + } else { + valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ + } + + if (arm_feature(env, ARM_FEATURE_EL3)) { + valid_mask &= ~HCR_HCD; + } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { + /* + * Architecturally HCR.TSC is RES0 if EL3 is not implemented. + * However, if we're using the SMC PSCI conduit then QEMU is + * effectively acting like EL3 firmware and so the guest at + * EL2 should retain the ability to prevent EL1 from being + * able to make SMC calls into the ersatz firmware, so in + * that case HCR.TSC should be read/write. + */ + valid_mask &= ~HCR_TSC; + } + + if (arm_feature(env, ARM_FEATURE_AARCH64)) { + if (cpu_isar_feature(aa64_vh, cpu)) { + valid_mask |= HCR_E2H; + } + if (cpu_isar_feature(aa64_ras, cpu)) { + valid_mask |= HCR_TERR | HCR_TEA; + } + if (cpu_isar_feature(aa64_lor, cpu)) { + valid_mask |= HCR_TLOR; + } + if (cpu_isar_feature(aa64_pauth, cpu)) { + valid_mask |= HCR_API | HCR_APK; + } + if (cpu_isar_feature(aa64_mte, cpu)) { + valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; + } + if (cpu_isar_feature(aa64_scxtnum, cpu)) { + valid_mask |= HCR_ENSCXT; + } + if (cpu_isar_feature(aa64_fwb, cpu)) { + valid_mask |= HCR_FWB; + } + } + + if (cpu_isar_feature(any_evt, cpu)) { + valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; + } else if (cpu_isar_feature(any_half_evt, cpu)) { + valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; + } + + /* Clear RES0 bits. */ + value &= valid_mask; + + /* + * These bits change the MMU setup: + * HCR_VM enables stage 2 translation + * HCR_PTW forbids certain page-table setups + * HCR_DC disables stage1 and enables stage2 translation + * HCR_DCT enables tagging on (disabled) stage1 translation + * HCR_FWB changes the interpretation of stage2 descriptor bits + */ + if ((env->cp15.hcr_el2 ^ value) & + (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { + tlb_flush(CPU(cpu)); + } + env->cp15.hcr_el2 = value; + + /* + * Updates to VI and VF require us to update the status of + * virtual interrupts, which are the logical OR of these bits + * and the state of the input lines from the GIC. (This requires + * that we have the iothread lock, which is done by marking the + * reginfo structs as ARM_CP_IO.) + * Note that if a write to HCR pends a VIRQ or VFIQ it is never + * possible for it to be taken immediately, because VIRQ and + * VFIQ are masked unless running at EL0 or EL1, and HCR + * can only be written at EL2. + */ + g_assert(qemu_mutex_iothread_locked()); + arm_cpu_update_virq(cpu); + arm_cpu_update_vfiq(cpu); + arm_cpu_update_vserr(cpu); +} + +static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) +{ + do_hcr_write(env, value, 0); +} + +static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ + value = deposit64(env->cp15.hcr_el2, 32, 32, value); + do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); +} + +static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* Handle HCR write, i.e. write to low half of HCR_EL2 */ + value = deposit64(env->cp15.hcr_el2, 0, 32, value); + do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); +} + +static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + uint64_t valid_mask = 0; + + /* No features adding bits to HCRX are implemented. */ + + /* Clear RES0 bits. */ + env->cp15.hcrx_el2 = value & valid_mask; +} + +static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) < 3 + && arm_feature(env, ARM_FEATURE_EL3) + && !(env->cp15.scr_el3 & SCR_HXEN)) { + return CP_ACCESS_TRAP_EL3; + } + return CP_ACCESS_OK; +} + +static const ARMCPRegInfo hcrx_el2_reginfo = { + .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, + .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, + .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), +}; + +/* Return the effective value of HCRX_EL2. */ +uint64_t arm_hcrx_el2_eff(CPUARMState *env) +{ + /* + * The bits in this register behave as 0 for all purposes other than + * direct reads of the register if: + * - EL2 is not enabled in the current security state, + * - SCR_EL3.HXEn is 0. + */ + if (!arm_is_el2_enabled(env) + || (arm_feature(env, ARM_FEATURE_EL3) + && !(env->cp15.scr_el3 & SCR_HXEN))) { + return 0; + } + return env->cp15.hcrx_el2; +} + +static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* + * For A-profile AArch32 EL3, if NSACR.CP10 + * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. + */ + if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && + !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { + uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; + value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); + } + env->cp15.cptr_el[2] = value; +} + +static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + /* + * For A-profile AArch32 EL3, if NSACR.CP10 + * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. + */ + uint64_t value = env->cp15.cptr_el[2]; + + if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && + !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { + value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; + } + return value; +} + +static const ARMCPRegInfo el2_cp_reginfo[] = { + { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_IO, + .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, + .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), + .writefn = hcr_write }, + { .name = "HCR", .state = ARM_CP_STATE_AA32, + .type = ARM_CP_ALIAS | ARM_CP_IO, + .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, + .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), + .writefn = hcr_writelow }, + { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, + .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_ALIAS, + .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, + .access = PL2_RW, + .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, + { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, + .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, + { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, + .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, + { .name = "HIFAR", .state = ARM_CP_STATE_AA32, + .type = ARM_CP_ALIAS, + .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, + .access = PL2_RW, + .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, + { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_ALIAS, + .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, + .access = PL2_RW, + .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, + { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, + .access = PL2_RW, .writefn = vbar_write, + .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), + .resetvalue = 0 }, + { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, + .access = PL3_RW, .type = ARM_CP_ALIAS, + .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, + { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, + .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), + .readfn = cptr_el2_read, .writefn = cptr_el2_write }, + { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, + .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), + .resetvalue = 0 }, + { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, + .access = PL2_RW, .type = ARM_CP_ALIAS, + .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, + { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, + .access = PL2_RW, .type = ARM_CP_CONST, + .resetvalue = 0 }, + /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ + { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, + .access = PL2_RW, .type = ARM_CP_CONST, + .resetvalue = 0 }, + { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, + .access = PL2_RW, .type = ARM_CP_CONST, + .resetvalue = 0 }, + { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, + .access = PL2_RW, .type = ARM_CP_CONST, + .resetvalue = 0 }, + { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, + .access = PL2_RW, .writefn = vmsa_tcr_el12_write, + .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, + { .name = "VTCR", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, + .type = ARM_CP_ALIAS, + .access = PL2_RW, .accessfn = access_el3_aa32ns, + .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, + { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, + .access = PL2_RW, + /* no .writefn needed as this can't cause an ASID change */ + .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, + { .name = "VTTBR", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 6, .crm = 2, + .type = ARM_CP_64BIT | ARM_CP_ALIAS, + .access = PL2_RW, .accessfn = access_el3_aa32ns, + .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), + .writefn = vttbr_write }, + { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, + .access = PL2_RW, .writefn = vttbr_write, + .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, + { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, + .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, + .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, + { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, + .access = PL2_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, + { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, + .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, + .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, + { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, + .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, + .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, + { .name = "TLBIALLNSNH", + .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, + .type = ARM_CP_NO_RAW, .access = PL2_W, + .writefn = tlbiall_nsnh_write }, + { .name = "TLBIALLNSNHIS", + .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, + .type = ARM_CP_NO_RAW, .access = PL2_W, + .writefn = tlbiall_nsnh_is_write }, + { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, + .type = ARM_CP_NO_RAW, .access = PL2_W, + .writefn = tlbiall_hyp_write }, + { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, + .type = ARM_CP_NO_RAW, .access = PL2_W, + .writefn = tlbiall_hyp_is_write }, + { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, + .type = ARM_CP_NO_RAW, .access = PL2_W, + .writefn = tlbimva_hyp_write }, + { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, + .type = ARM_CP_NO_RAW, .access = PL2_W, + .writefn = tlbimva_hyp_is_write }, + { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, + .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, + .writefn = tlbi_aa64_alle2_write }, + { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, + .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, + .writefn = tlbi_aa64_vae2_write }, + { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, + .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, + .writefn = tlbi_aa64_vae2_write }, + { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, + .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, + .writefn = tlbi_aa64_alle2is_write }, + { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, + .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, + .writefn = tlbi_aa64_vae2is_write }, + { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, + .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, + .writefn = tlbi_aa64_vae2is_write }, +#ifndef CONFIG_USER_ONLY + /* + * Unlike the other EL2-related AT operations, these must + * UNDEF from EL3 if EL2 is not implemented, which is why we + * define them here rather than with the rest of the AT ops. + */ + { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, + .access = PL2_W, .accessfn = at_s1e2_access, + .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, + .writefn = ats_write64 }, + { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, + .access = PL2_W, .accessfn = at_s1e2_access, + .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, + .writefn = ats_write64 }, + /* + * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE + * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 + * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose + * to behave as if SCR.NS was 1. + */ + { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, + .access = PL2_W, + .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, + { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, + .access = PL2_W, + .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, + { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, + /* + * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the + * reset values as IMPDEF. We choose to reset to 3 to comply with + * both ARMv7 and ARMv8. + */ + .access = PL2_RW, .resetvalue = 3, + .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, + { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, + .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, + .writefn = gt_cntvoff_write, + .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, + { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, + .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, + .writefn = gt_cntvoff_write, + .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, + { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), + .type = ARM_CP_IO, .access = PL2_RW, + .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, + { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), + .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, + .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, + { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, + .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, + .resetfn = gt_hyp_timer_reset, + .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, + { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, + .type = ARM_CP_IO, + .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, + .access = PL2_RW, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), + .resetvalue = 0, + .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, +#endif + { .name = "HPFAR", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, + .access = PL2_RW, .accessfn = access_el3_aa32ns, + .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, + { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, + .access = PL2_RW, + .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, + { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, + .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, + .access = PL2_RW, + .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, +}; + +static const ARMCPRegInfo el2_v8_cp_reginfo[] = { + { .name = "HCR2", .state = ARM_CP_STATE_AA32, + .type = ARM_CP_ALIAS | ARM_CP_IO, + .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, + .access = PL2_RW, + .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), + .writefn = hcr_writehigh }, +}; + +static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { + return CP_ACCESS_OK; + } + return CP_ACCESS_TRAP_UNCATEGORIZED; +} + +static const ARMCPRegInfo el2_sec_cp_reginfo[] = { + { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, + .access = PL2_RW, .accessfn = sel2_access, + .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, + { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, + .access = PL2_RW, .accessfn = sel2_access, + .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, +}; + +static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + /* + * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. + * At Secure EL1 it traps to EL3 or EL2. + */ + if (arm_current_el(env) == 3) { + return CP_ACCESS_OK; + } + if (arm_is_secure_below_el3(env)) { + if (env->cp15.scr_el3 & SCR_EEL2) { + return CP_ACCESS_TRAP_EL2; + } + return CP_ACCESS_TRAP_EL3; + } + /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ + if (isread) { + return CP_ACCESS_OK; + } + return CP_ACCESS_TRAP_UNCATEGORIZED; +} + +static const ARMCPRegInfo el3_cp_reginfo[] = { + { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, + .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), + .resetfn = scr_reset, .writefn = scr_write }, + { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, + .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, + .access = PL1_RW, .accessfn = access_trap_aa32s_el1, + .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), + .writefn = scr_write }, + { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, + .access = PL3_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.sder) }, + { .name = "SDER", + .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, + .access = PL3_RW, .resetvalue = 0, + .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, + { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, + .access = PL1_RW, .accessfn = access_trap_aa32s_el1, + .writefn = vbar_write, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, + { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, + .access = PL3_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, + { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, + .access = PL3_RW, + /* no .writefn needed as this can't cause an ASID change */ + .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, + { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_ALIAS, + .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, + .access = PL3_RW, + .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, + { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, + .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, + { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, + .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, + { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_ALIAS, + .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, + .access = PL3_RW, + .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, + { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, + .access = PL3_RW, .writefn = vbar_write, + .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), + .resetvalue = 0 }, + { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, + .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, + { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, + .access = PL3_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, + { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, + .access = PL3_RW, .type = ARM_CP_CONST, + .resetvalue = 0 }, + { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, + .access = PL3_RW, .type = ARM_CP_CONST, + .resetvalue = 0 }, + { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, + .access = PL3_RW, .type = ARM_CP_CONST, + .resetvalue = 0 }, + { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, + .access = PL3_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_alle3is_write }, + { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, + .access = PL3_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae3is_write }, + { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, + .access = PL3_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae3is_write }, + { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, + .access = PL3_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_alle3_write }, + { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, + .access = PL3_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae3_write }, + { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, + .access = PL3_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae3_write }, +}; + +#ifndef CONFIG_USER_ONLY +/* Test if system register redirection is to occur in the current state. */ +static bool redirect_for_e2h(CPUARMState *env) +{ + return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); +} + +static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + CPReadFn *readfn; + + if (redirect_for_e2h(env)) { + /* Switch to the saved EL2 version of the register. */ + ri = ri->opaque; + readfn = ri->readfn; + } else { + readfn = ri->orig_readfn; + } + if (readfn == NULL) { + readfn = raw_read; + } + return readfn(env, ri); +} + +static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + CPWriteFn *writefn; + + if (redirect_for_e2h(env)) { + /* Switch to the saved EL2 version of the register. */ + ri = ri->opaque; + writefn = ri->writefn; + } else { + writefn = ri->orig_writefn; + } + if (writefn == NULL) { + writefn = raw_write; + } + writefn(env, ri, value); +} + +static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) +{ + struct E2HAlias { + uint32_t src_key, dst_key, new_key; + const char *src_name, *dst_name, *new_name; + bool (*feature)(const ARMISARegisters *id); + }; + +#define K(op0, op1, crn, crm, op2) \ + ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) + + static const struct E2HAlias aliases[] = { + { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), + "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, + { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), + "CPACR", "CPTR_EL2", "CPACR_EL12" }, + { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), + "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, + { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), + "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, + { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), + "TCR_EL1", "TCR_EL2", "TCR_EL12" }, + { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), + "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, + { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), + "ELR_EL1", "ELR_EL2", "ELR_EL12" }, + { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), + "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, + { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), + "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, + { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), + "ESR_EL1", "ESR_EL2", "ESR_EL12" }, + { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), + "FAR_EL1", "FAR_EL2", "FAR_EL12" }, + { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), + "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, + { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), + "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, + { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), + "VBAR", "VBAR_EL2", "VBAR_EL12" }, + { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), + "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, + { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), + "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, + + /* + * Note that redirection of ZCR is mentioned in the description + * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but + * not in the summary table. + */ + { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), + "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, + { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), + "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, + + { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), + "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, + + { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), + "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", + isar_feature_aa64_scxtnum }, + + /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ + /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ + }; +#undef K + + size_t i; + + for (i = 0; i < ARRAY_SIZE(aliases); i++) { + const struct E2HAlias *a = &aliases[i]; + ARMCPRegInfo *src_reg, *dst_reg, *new_reg; + bool ok; + + if (a->feature && !a->feature(&cpu->isar)) { + continue; + } + + src_reg = g_hash_table_lookup(cpu->cp_regs, + (gpointer)(uintptr_t)a->src_key); + dst_reg = g_hash_table_lookup(cpu->cp_regs, + (gpointer)(uintptr_t)a->dst_key); + g_assert(src_reg != NULL); + g_assert(dst_reg != NULL); + + /* Cross-compare names to detect typos in the keys. */ + g_assert(strcmp(src_reg->name, a->src_name) == 0); + g_assert(strcmp(dst_reg->name, a->dst_name) == 0); + + /* None of the core system registers use opaque; we will. */ + g_assert(src_reg->opaque == NULL); + + /* Create alias before redirection so we dup the right data. */ + new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); + + new_reg->name = a->new_name; + new_reg->type |= ARM_CP_ALIAS; + /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ + new_reg->access &= PL2_RW | PL3_RW; + + ok = g_hash_table_insert(cpu->cp_regs, + (gpointer)(uintptr_t)a->new_key, new_reg); + g_assert(ok); + + src_reg->opaque = dst_reg; + src_reg->orig_readfn = src_reg->readfn ?: raw_read; + src_reg->orig_writefn = src_reg->writefn ?: raw_write; + if (!src_reg->raw_readfn) { + src_reg->raw_readfn = raw_read; + } + if (!src_reg->raw_writefn) { + src_reg->raw_writefn = raw_write; + } + src_reg->readfn = el2_e2h_read; + src_reg->writefn = el2_e2h_write; + } +} +#endif + +static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + int cur_el = arm_current_el(env); + + if (cur_el < 2) { + uint64_t hcr = arm_hcr_el2_eff(env); + + if (cur_el == 0) { + if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { + if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { + return CP_ACCESS_TRAP_EL2; + } + } else { + if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { + return CP_ACCESS_TRAP; + } + if (hcr & HCR_TID2) { + return CP_ACCESS_TRAP_EL2; + } + } + } else if (hcr & HCR_TID2) { + return CP_ACCESS_TRAP_EL2; + } + } + + if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { + return CP_ACCESS_TRAP_EL2; + } + + return CP_ACCESS_OK; +} + +/* + * Check for traps to RAS registers, which are controlled + * by HCR_EL2.TERR and SCR_EL3.TERR. + */ +static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + int el = arm_current_el(env); + + if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { + return CP_ACCESS_TRAP_EL2; + } + if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { + return CP_ACCESS_TRAP_EL3; + } + return CP_ACCESS_OK; +} + +static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + int el = arm_current_el(env); + + if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { + return env->cp15.vdisr_el2; + } + if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { + return 0; /* RAZ/WI */ + } + return env->cp15.disr_el1; +} + +static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) +{ + int el = arm_current_el(env); + + if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { + env->cp15.vdisr_el2 = val; + return; + } + if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { + return; /* RAZ/WI */ + } + env->cp15.disr_el1 = val; +} + +/* + * Minimal RAS implementation with no Error Records. + * Which means that all of the Error Record registers: + * ERXADDR_EL1 + * ERXCTLR_EL1 + * ERXFR_EL1 + * ERXMISC0_EL1 + * ERXMISC1_EL1 + * ERXMISC2_EL1 + * ERXMISC3_EL1 + * ERXPFGCDN_EL1 (RASv1p1) + * ERXPFGCTL_EL1 (RASv1p1) + * ERXPFGF_EL1 (RASv1p1) + * ERXSTATUS_EL1 + * and + * ERRSELR_EL1 + * may generate UNDEFINED, which is the effect we get by not + * listing them at all. + */ +static const ARMCPRegInfo minimal_ras_reginfo[] = { + { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, + .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), + .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, + { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, + .access = PL1_R, .accessfn = access_terr, + .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, + .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, + { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, + .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, +}; + +static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + int cur_el = arm_current_el(env); + int old_len = sve_vqm1_for_el(env, cur_el); + int new_len; + + /* Bits other than [3:0] are RAZ/WI. */ + QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); + raw_write(env, ri, value & 0xf); + + /* + * Because we arrived here, we know both FP and SVE are enabled; + * otherwise we would have trapped access to the ZCR_ELn register. + */ + new_len = sve_vqm1_for_el(env, cur_el); + if (new_len < old_len) { + aarch64_sve_narrow_vq(env, new_len + 1); + } +} + +static const ARMCPRegInfo zcr_reginfo[] = { + { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, + .access = PL1_RW, .type = ARM_CP_SVE, + .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), + .writefn = zcr_write, .raw_writefn = raw_write }, + { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, + .access = PL2_RW, .type = ARM_CP_SVE, + .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), + .writefn = zcr_write, .raw_writefn = raw_write }, + { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, + .access = PL3_RW, .type = ARM_CP_SVE, + .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), + .writefn = zcr_write, .raw_writefn = raw_write }, +}; + +#ifdef TARGET_AARCH64 +static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + int el = arm_current_el(env); + + if (el == 0) { + uint64_t sctlr = arm_sctlr(env, el); + if (!(sctlr & SCTLR_EnTP2)) { + return CP_ACCESS_TRAP; + } + } + /* TODO: FEAT_FGT */ + if (el < 3 + && arm_feature(env, ARM_FEATURE_EL3) + && !(env->cp15.scr_el3 & SCR_ENTP2)) { + return CP_ACCESS_TRAP_EL3; + } + return CP_ACCESS_OK; +} + +static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */ + if (arm_current_el(env) < 3 + && arm_feature(env, ARM_FEATURE_EL3) + && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { + return CP_ACCESS_TRAP_EL3; + } + return CP_ACCESS_OK; +} + +static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + helper_set_pstate_sm(env, FIELD_EX64(value, SVCR, SM)); + helper_set_pstate_za(env, FIELD_EX64(value, SVCR, ZA)); + arm_rebuild_hflags(env); +} + +static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + int cur_el = arm_current_el(env); + int old_len = sve_vqm1_for_el(env, cur_el); + int new_len; + + QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); + value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; + raw_write(env, ri, value); + + /* + * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage + * when SVL is widened (old values kept, or zeros). Choose to keep the + * current values for simplicity. But for QEMU internals, we must still + * apply the narrower SVL to the Zregs and Pregs -- see the comment + * above aarch64_sve_narrow_vq. + */ + new_len = sve_vqm1_for_el(env, cur_el); + if (new_len < old_len) { + aarch64_sve_narrow_vq(env, new_len + 1); + } +} + +static const ARMCPRegInfo sme_reginfo[] = { + { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, + .access = PL0_RW, .accessfn = access_tpidr2, + .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, + { .name = "SVCR", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, + .access = PL0_RW, .type = ARM_CP_SME, + .fieldoffset = offsetof(CPUARMState, svcr), + .writefn = svcr_write, .raw_writefn = raw_write }, + { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, + .access = PL1_RW, .type = ARM_CP_SME, + .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), + .writefn = smcr_write, .raw_writefn = raw_write }, + { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, + .access = PL2_RW, .type = ARM_CP_SME, + .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), + .writefn = smcr_write, .raw_writefn = raw_write }, + { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, + .access = PL3_RW, .type = ARM_CP_SME, + .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), + .writefn = smcr_write, .raw_writefn = raw_write }, + { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, + .access = PL1_R, .accessfn = access_aa64_tid1, + /* + * IMPLEMENTOR = 0 (software) + * REVISION = 0 (implementation defined) + * SMPS = 0 (no streaming execution priority in QEMU) + * AFFINITY = 0 (streaming sve mode not shared with other PEs) + */ + .type = ARM_CP_CONST, .resetvalue = 0, }, + /* + * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. + */ + { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, + .access = PL1_RW, .accessfn = access_esm, + .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, + .access = PL2_RW, .accessfn = access_esm, + .type = ARM_CP_CONST, .resetvalue = 0 }, +}; +#endif /* TARGET_AARCH64 */ + +static void define_pmu_regs(ARMCPU *cpu) +{ + /* + * v7 performance monitor control register: same implementor + * field as main ID register, and we implement four counters in + * addition to the cycle count register. + */ + unsigned int i, pmcrn = pmu_num_counters(&cpu->env); + ARMCPRegInfo pmcr = { + .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, + .access = PL0_RW, + .type = ARM_CP_IO | ARM_CP_ALIAS, + .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), + .accessfn = pmreg_access, .writefn = pmcr_write, + .raw_writefn = raw_write, + }; + ARMCPRegInfo pmcr64 = { + .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, + .access = PL0_RW, .accessfn = pmreg_access, + .type = ARM_CP_IO, + .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), + .resetvalue = cpu->isar.reset_pmcr_el0, + .writefn = pmcr_write, .raw_writefn = raw_write, + }; + + define_one_arm_cp_reg(cpu, &pmcr); + define_one_arm_cp_reg(cpu, &pmcr64); + for (i = 0; i < pmcrn; i++) { + char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); + char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); + char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); + char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); + ARMCPRegInfo pmev_regs[] = { + { .name = pmevcntr_name, .cp = 15, .crn = 14, + .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, + .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, + .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, + .accessfn = pmreg_access_xevcntr }, + { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), + .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, + .type = ARM_CP_IO, + .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, + .raw_readfn = pmevcntr_rawread, + .raw_writefn = pmevcntr_rawwrite }, + { .name = pmevtyper_name, .cp = 15, .crn = 14, + .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, + .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, + .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, + .accessfn = pmreg_access }, + { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), + .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, + .type = ARM_CP_IO, + .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, + .raw_writefn = pmevtyper_rawwrite }, + }; + define_arm_cp_regs(cpu, pmev_regs); + g_free(pmevcntr_name); + g_free(pmevcntr_el0_name); + g_free(pmevtyper_name); + g_free(pmevtyper_el0_name); + } + if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { + ARMCPRegInfo v81_pmu_regs[] = { + { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, + .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, + .resetvalue = extract64(cpu->pmceid0, 32, 32) }, + { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, + .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, + .resetvalue = extract64(cpu->pmceid1, 32, 32) }, + }; + define_arm_cp_regs(cpu, v81_pmu_regs); + } + if (cpu_isar_feature(any_pmuv3p4, cpu)) { + static const ARMCPRegInfo v84_pmmir = { + .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, + .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, + .resetvalue = 0 + }; + define_one_arm_cp_reg(cpu, &v84_pmmir); + } +} + +/* + * We don't know until after realize whether there's a GICv3 + * attached, and that is what registers the gicv3 sysregs. + * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 + * at runtime. + */ +static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + ARMCPU *cpu = env_archcpu(env); + uint64_t pfr1 = cpu->isar.id_pfr1; + + if (env->gicv3state) { + pfr1 |= 1 << 28; + } + return pfr1; +} + +#ifndef CONFIG_USER_ONLY +static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + ARMCPU *cpu = env_archcpu(env); + uint64_t pfr0 = cpu->isar.id_aa64pfr0; + + if (env->gicv3state) { + pfr0 |= 1 << 24; + } + return pfr0; +} +#endif + +/* + * Shared logic between LORID and the rest of the LOR* registers. + * Secure state exclusion has already been dealt with. + */ +static CPAccessResult access_lor_ns(CPUARMState *env, + const ARMCPRegInfo *ri, bool isread) +{ + int el = arm_current_el(env); + + if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { + return CP_ACCESS_TRAP_EL2; + } + if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { + return CP_ACCESS_TRAP_EL3; + } + return CP_ACCESS_OK; +} + +static CPAccessResult access_lor_other(CPUARMState *env, + const ARMCPRegInfo *ri, bool isread) +{ + if (arm_is_secure_below_el3(env)) { + /* Access denied in secure mode. */ + return CP_ACCESS_TRAP; + } + return access_lor_ns(env, ri, isread); +} + +/* + * A trivial implementation of ARMv8.1-LOR leaves all of these + * registers fixed at 0, which indicates that there are zero + * supported Limited Ordering regions. + */ +static const ARMCPRegInfo lor_reginfo[] = { + { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, + .access = PL1_RW, .accessfn = access_lor_other, + .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, + .access = PL1_RW, .accessfn = access_lor_other, + .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, + .access = PL1_RW, .accessfn = access_lor_other, + .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, + .access = PL1_RW, .accessfn = access_lor_other, + .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, + .access = PL1_R, .accessfn = access_lor_ns, + .type = ARM_CP_CONST, .resetvalue = 0 }, +}; + +#ifdef TARGET_AARCH64 +static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + int el = arm_current_el(env); + + if (el < 2 && + arm_is_el2_enabled(env) && + !(arm_hcr_el2_eff(env) & HCR_APK)) { + return CP_ACCESS_TRAP_EL2; + } + if (el < 3 && + arm_feature(env, ARM_FEATURE_EL3) && + !(env->cp15.scr_el3 & SCR_APK)) { + return CP_ACCESS_TRAP_EL3; + } + return CP_ACCESS_OK; +} + +static const ARMCPRegInfo pauth_reginfo[] = { + { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, + .access = PL1_RW, .accessfn = access_pauth, + .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, + { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, + .access = PL1_RW, .accessfn = access_pauth, + .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, + { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, + .access = PL1_RW, .accessfn = access_pauth, + .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, + { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, + .access = PL1_RW, .accessfn = access_pauth, + .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, + { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, + .access = PL1_RW, .accessfn = access_pauth, + .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, + { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, + .access = PL1_RW, .accessfn = access_pauth, + .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, + { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, + .access = PL1_RW, .accessfn = access_pauth, + .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, + { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, + .access = PL1_RW, .accessfn = access_pauth, + .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, + { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, + .access = PL1_RW, .accessfn = access_pauth, + .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, + { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, + .access = PL1_RW, .accessfn = access_pauth, + .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, +}; + +static const ARMCPRegInfo tlbirange_reginfo[] = { + { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, + .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_rvae1is_write }, + { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, + .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_rvae1is_write }, + { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, + .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_rvae1is_write }, + { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, + .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_rvae1is_write }, + { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, + .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_rvae1is_write }, + { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, + .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_rvae1is_write }, + { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, + .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_rvae1is_write }, + { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, + .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_rvae1is_write }, + { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, + .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_rvae1_write }, + { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, + .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_rvae1_write }, + { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, + .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_rvae1_write }, + { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, + .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_rvae1_write }, + { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, + .access = PL2_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_ripas2e1is_write }, + { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, + .access = PL2_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_ripas2e1is_write }, + { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, + .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, + .writefn = tlbi_aa64_rvae2is_write }, + { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, + .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, + .writefn = tlbi_aa64_rvae2is_write }, + { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, + .access = PL2_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_ripas2e1_write }, + { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, + .access = PL2_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_ripas2e1_write }, + { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, + .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, + .writefn = tlbi_aa64_rvae2is_write }, + { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, + .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, + .writefn = tlbi_aa64_rvae2is_write }, + { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, + .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, + .writefn = tlbi_aa64_rvae2_write }, + { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, + .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, + .writefn = tlbi_aa64_rvae2_write }, + { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, + .access = PL3_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_rvae3is_write }, + { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, + .access = PL3_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_rvae3is_write }, + { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, + .access = PL3_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_rvae3is_write }, + { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, + .access = PL3_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_rvae3is_write }, + { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, + .access = PL3_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_rvae3_write }, + { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, + .access = PL3_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_rvae3_write }, +}; + +static const ARMCPRegInfo tlbios_reginfo[] = { + { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, + .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vmalle1is_write }, + { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, + .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae1is_write }, + { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, + .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vmalle1is_write }, + { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, + .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae1is_write }, + { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, + .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae1is_write }, + { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, + .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae1is_write }, + { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, + .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, + .writefn = tlbi_aa64_alle2is_write }, + { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, + .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, + .writefn = tlbi_aa64_vae2is_write }, + { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, + .access = PL2_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_alle1is_write }, + { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, + .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, + .writefn = tlbi_aa64_vae2is_write }, + { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, + .access = PL2_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_alle1is_write }, + { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, + .access = PL2_W, .type = ARM_CP_NOP }, + { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, + .access = PL2_W, .type = ARM_CP_NOP }, + { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, + .access = PL2_W, .type = ARM_CP_NOP }, + { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, + .access = PL2_W, .type = ARM_CP_NOP }, + { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, + .access = PL3_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_alle3is_write }, + { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, + .access = PL3_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae3is_write }, + { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, + .access = PL3_W, .type = ARM_CP_NO_RAW, + .writefn = tlbi_aa64_vae3is_write }, +}; + +static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) +{ + Error *err = NULL; + uint64_t ret; + + /* Success sets NZCV = 0000. */ + env->NF = env->CF = env->VF = 0, env->ZF = 1; + + if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { + /* + * ??? Failed, for unknown reasons in the crypto subsystem. + * The best we can do is log the reason and return the + * timed-out indication to the guest. There is no reason + * we know to expect this failure to be transitory, so the + * guest may well hang retrying the operation. + */ + qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", + ri->name, error_get_pretty(err)); + error_free(err); + + env->ZF = 0; /* NZCF = 0100 */ + return 0; + } + return ret; +} + +/* We do not support re-seeding, so the two registers operate the same. */ +static const ARMCPRegInfo rndr_reginfo[] = { + { .name = "RNDR", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, + .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, + .access = PL0_R, .readfn = rndr_readfn }, + { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, + .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, + .access = PL0_R, .readfn = rndr_readfn }, +}; + +#ifndef CONFIG_USER_ONLY +static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, + uint64_t value) +{ + ARMCPU *cpu = env_archcpu(env); + /* CTR_EL0 System register -> DminLine, bits [19:16] */ + uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); + uint64_t vaddr_in = (uint64_t) value; + uint64_t vaddr = vaddr_in & ~(dline_size - 1); + void *haddr; + int mem_idx = cpu_mmu_index(env, false); + + /* This won't be crossing page boundaries */ + haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); + if (haddr) { + + ram_addr_t offset; + MemoryRegion *mr; + + /* RCU lock is already being held */ + mr = memory_region_from_host(haddr, &offset); + + if (mr) { + memory_region_writeback(mr, offset, dline_size); + } + } +} + +static const ARMCPRegInfo dcpop_reg[] = { + { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, + .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, + .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, +}; + +static const ARMCPRegInfo dcpodp_reg[] = { + { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, + .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, + .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, +}; +#endif /*CONFIG_USER_ONLY*/ + +static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { + return CP_ACCESS_TRAP_EL2; + } + + return CP_ACCESS_OK; +} + +static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + int el = arm_current_el(env); + + if (el < 2 && arm_is_el2_enabled(env)) { + uint64_t hcr = arm_hcr_el2_eff(env); + if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { + return CP_ACCESS_TRAP_EL2; + } + } + if (el < 3 && + arm_feature(env, ARM_FEATURE_EL3) && + !(env->cp15.scr_el3 & SCR_ATA)) { + return CP_ACCESS_TRAP_EL3; + } + return CP_ACCESS_OK; +} + +static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return env->pstate & PSTATE_TCO; +} + +static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) +{ + env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); +} + +static const ARMCPRegInfo mte_reginfo[] = { + { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, + .access = PL1_RW, .accessfn = access_mte, + .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, + { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, + .access = PL1_RW, .accessfn = access_mte, + .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, + { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, + .access = PL2_RW, .accessfn = access_mte, + .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, + { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, + .access = PL3_RW, + .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, + { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, + .access = PL1_RW, .accessfn = access_mte, + .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, + { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, + .access = PL1_RW, .accessfn = access_mte, + .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, + { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, + .access = PL1_R, .accessfn = access_aa64_tid5, + .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, + { .name = "TCO", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, + .type = ARM_CP_NO_RAW, + .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, + { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, + .type = ARM_CP_NOP, .access = PL1_W, + .accessfn = aa64_cacheop_poc_access }, + { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, + { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, + .type = ARM_CP_NOP, .access = PL1_W, + .accessfn = aa64_cacheop_poc_access }, + { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, + { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, + { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, + { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, + { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, + .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, +}; + +static const ARMCPRegInfo mte_tco_ro_reginfo[] = { + { .name = "TCO", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, + .type = ARM_CP_CONST, .access = PL0_RW, }, +}; + +static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { + { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, + .type = ARM_CP_NOP, .access = PL0_W, + .accessfn = aa64_cacheop_poc_access }, + { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, + .type = ARM_CP_NOP, .access = PL0_W, + .accessfn = aa64_cacheop_poc_access }, + { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, + .type = ARM_CP_NOP, .access = PL0_W, + .accessfn = aa64_cacheop_poc_access }, + { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, + .type = ARM_CP_NOP, .access = PL0_W, + .accessfn = aa64_cacheop_poc_access }, + { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, + .type = ARM_CP_NOP, .access = PL0_W, + .accessfn = aa64_cacheop_poc_access }, + { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, + .type = ARM_CP_NOP, .access = PL0_W, + .accessfn = aa64_cacheop_poc_access }, + { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, + .type = ARM_CP_NOP, .access = PL0_W, + .accessfn = aa64_cacheop_poc_access }, + { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, + .type = ARM_CP_NOP, .access = PL0_W, + .accessfn = aa64_cacheop_poc_access }, + { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, + .access = PL0_W, .type = ARM_CP_DC_GVA, +#ifndef CONFIG_USER_ONLY + /* Avoid overhead of an access check that always passes in user-mode */ + .accessfn = aa64_zva_access, +#endif + }, + { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, + .access = PL0_W, .type = ARM_CP_DC_GZVA, +#ifndef CONFIG_USER_ONLY + /* Avoid overhead of an access check that always passes in user-mode */ + .accessfn = aa64_zva_access, +#endif + }, +}; + +static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + uint64_t hcr = arm_hcr_el2_eff(env); + int el = arm_current_el(env); + + if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { + if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { + if (hcr & HCR_TGE) { + return CP_ACCESS_TRAP_EL2; + } + return CP_ACCESS_TRAP; + } + } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { + return CP_ACCESS_TRAP_EL2; + } + if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { + return CP_ACCESS_TRAP_EL2; + } + if (el < 3 + && arm_feature(env, ARM_FEATURE_EL3) + && !(env->cp15.scr_el3 & SCR_ENSCXT)) { + return CP_ACCESS_TRAP_EL3; + } + return CP_ACCESS_OK; +} + +static const ARMCPRegInfo scxtnum_reginfo[] = { + { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, + .access = PL0_RW, .accessfn = access_scxtnum, + .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, + { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, + .access = PL1_RW, .accessfn = access_scxtnum, + .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, + { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, + .access = PL2_RW, .accessfn = access_scxtnum, + .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, + { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, + .access = PL3_RW, + .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, +}; +#endif /* TARGET_AARCH64 */ + +static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + int el = arm_current_el(env); + + if (el == 0) { + uint64_t sctlr = arm_sctlr(env, el); + if (!(sctlr & SCTLR_EnRCTX)) { + return CP_ACCESS_TRAP; + } + } else if (el == 1) { + uint64_t hcr = arm_hcr_el2_eff(env); + if (hcr & HCR_NV) { + return CP_ACCESS_TRAP_EL2; + } + } + return CP_ACCESS_OK; +} + +static const ARMCPRegInfo predinv_reginfo[] = { + { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, + .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, + { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, + .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, + { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, + .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, + /* + * Note the AArch32 opcodes have a different OPC1. + */ + { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, + .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, + { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, + .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, + { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, + .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, +}; + +static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + /* Read the high 32 bits of the current CCSIDR */ + return extract64(ccsidr_read(env, ri), 32, 32); +} + +static const ARMCPRegInfo ccsidr2_reginfo[] = { + { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, + .access = PL1_R, + .accessfn = access_tid4, + .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, +}; + +static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { + return CP_ACCESS_TRAP_EL2; + } + + return CP_ACCESS_OK; +} + +static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_feature(env, ARM_FEATURE_V8)) { + return access_aa64_tid3(env, ri, isread); + } + + return CP_ACCESS_OK; +} + +static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, + bool isread) +{ + if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { + return CP_ACCESS_TRAP_EL2; + } + + return CP_ACCESS_OK; +} + +static CPAccessResult access_joscr_jmcr(CPUARMState *env, + const ARMCPRegInfo *ri, bool isread) +{ + /* + * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only + * in v7A, not in v8A. + */ + if (!arm_feature(env, ARM_FEATURE_V8) && + arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && + (env->cp15.hstr_el2 & HSTR_TJDBX)) { + return CP_ACCESS_TRAP_EL2; + } + return CP_ACCESS_OK; +} + +static const ARMCPRegInfo jazelle_regs[] = { + { .name = "JIDR", + .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, + .access = PL1_R, .accessfn = access_jazelle, + .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "JOSCR", + .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, + .accessfn = access_joscr_jmcr, + .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "JMCR", + .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, + .accessfn = access_joscr_jmcr, + .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, +}; + +static const ARMCPRegInfo contextidr_el2 = { + .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, + .access = PL2_RW, + .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) +}; + +static const ARMCPRegInfo vhe_reginfo[] = { + { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, + .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, + .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, +#ifndef CONFIG_USER_ONLY + { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, + .fieldoffset = + offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), + .type = ARM_CP_IO, .access = PL2_RW, + .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, + { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, + .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, + .resetfn = gt_hv_timer_reset, + .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, + { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, + .type = ARM_CP_IO, + .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, + .access = PL2_RW, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), + .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, + { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, + .type = ARM_CP_IO | ARM_CP_ALIAS, + .access = PL2_RW, .accessfn = e2h_access, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), + .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, + { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, + .type = ARM_CP_IO | ARM_CP_ALIAS, + .access = PL2_RW, .accessfn = e2h_access, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), + .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, + { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, + .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, + .access = PL2_RW, .accessfn = e2h_access, + .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, + { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, + .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, + .access = PL2_RW, .accessfn = e2h_access, + .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, + { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, + .type = ARM_CP_IO | ARM_CP_ALIAS, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), + .access = PL2_RW, .accessfn = e2h_access, + .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, + { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, + .type = ARM_CP_IO | ARM_CP_ALIAS, + .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), + .access = PL2_RW, .accessfn = e2h_access, + .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, +#endif +}; + +#ifndef CONFIG_USER_ONLY +static const ARMCPRegInfo ats1e1_reginfo[] = { + { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, + .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write64 }, + { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, + .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, + .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write64 }, +}; + +static const ARMCPRegInfo ats1cp_reginfo[] = { + { .name = "ATS1CPRP", + .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, + .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write }, + { .name = "ATS1CPWP", + .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, + .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, + .writefn = ats_write }, +}; +#endif + +/* + * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and + * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field + * is non-zero, which is never for ARMv7, optionally in ARMv8 + * and mandatorily for ARMv8.2 and up. + * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's + * implementation is RAZ/WI we can ignore this detail, as we + * do for ACTLR. + */ +static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { + { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, + .access = PL1_RW, .accessfn = access_tacr, + .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, + .access = PL2_RW, .type = ARM_CP_CONST, + .resetvalue = 0 }, +}; + +void register_cp_regs_for_features(ARMCPU *cpu) +{ + /* Register all the coprocessor registers based on feature bits */ + CPUARMState *env = &cpu->env; + if (arm_feature(env, ARM_FEATURE_M)) { + /* M profile has no coprocessor registers */ + return; + } + + define_arm_cp_regs(cpu, cp_reginfo); + if (!arm_feature(env, ARM_FEATURE_V8)) { + /* + * Must go early as it is full of wildcards that may be + * overridden by later definitions. + */ + define_arm_cp_regs(cpu, not_v8_cp_reginfo); + } + + if (arm_feature(env, ARM_FEATURE_V6)) { + /* The ID registers all have impdef reset values */ + ARMCPRegInfo v6_idregs[] = { + { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_pfr0 }, + /* + * ID_PFR1 is not a plain ARM_CP_CONST because we don't know + * the value of the GIC field until after we define these regs. + */ + { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, + .access = PL1_R, .type = ARM_CP_NO_RAW, + .accessfn = access_aa32_tid3, + .readfn = id_pfr1_read, + .writefn = arm_cp_write_ignore }, + { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_dfr0 }, + { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->id_afr0 }, + { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_mmfr0 }, + { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_mmfr1 }, + { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_mmfr2 }, + { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_mmfr3 }, + { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_isar0 }, + { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_isar1 }, + { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_isar2 }, + { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_isar3 }, + { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_isar4 }, + { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_isar5 }, + { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_mmfr4 }, + { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa32_tid3, + .resetvalue = cpu->isar.id_isar6 }, + }; + define_arm_cp_regs(cpu, v6_idregs); + define_arm_cp_regs(cpu, v6_cp_reginfo); + } else { + define_arm_cp_regs(cpu, not_v6_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_V6K)) { + define_arm_cp_regs(cpu, v6k_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_V7MP) && + !arm_feature(env, ARM_FEATURE_PMSA)) { + define_arm_cp_regs(cpu, v7mp_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_V7VE)) { + define_arm_cp_regs(cpu, pmovsset_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_V7)) { + ARMCPRegInfo clidr = { + .name = "CLIDR", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_tid4, + .resetvalue = cpu->clidr + }; + define_one_arm_cp_reg(cpu, &clidr); + define_arm_cp_regs(cpu, v7_cp_reginfo); + define_debug_regs(cpu); + define_pmu_regs(cpu); + } else { + define_arm_cp_regs(cpu, not_v7_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_V8)) { + /* + * v8 ID registers, which all have impdef reset values. + * Note that within the ID register ranges the unused slots + * must all RAZ, not UNDEF; future architecture versions may + * define new registers here. + * ID registers which are AArch64 views of the AArch32 ID registers + * which already existed in v6 and v7 are handled elsewhere, + * in v6_idregs[]. + */ + int i; + ARMCPRegInfo v8_idregs[] = { + /* + * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system + * emulation because we don't know the right value for the + * GIC field until after we define these regs. + */ + { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, + .access = PL1_R, +#ifdef CONFIG_USER_ONLY + .type = ARM_CP_CONST, + .resetvalue = cpu->isar.id_aa64pfr0 +#else + .type = ARM_CP_NO_RAW, + .accessfn = access_aa64_tid3, + .readfn = id_aa64pfr0_read, + .writefn = arm_cp_write_ignore +#endif + }, + { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.id_aa64pfr1}, + { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.id_aa64zfr0 }, + { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.id_aa64smfr0 }, + { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.id_aa64dfr0 }, + { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.id_aa64dfr1 }, + { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->id_aa64afr0 }, + { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->id_aa64afr1 }, + { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.id_aa64isar0 }, + { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.id_aa64isar1 }, + { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.id_aa64mmfr0 }, + { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.id_aa64mmfr1 }, + { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.id_aa64mmfr2 }, + { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.mvfr0 }, + { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.mvfr1 }, + { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.mvfr2 }, + /* + * "0, c0, c3, {0,1,2}" are the encodings corresponding to + * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding + * as RAZ, since it is in the "reserved for future ID + * registers, RAZ" part of the AArch32 encoding space. + */ + { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + /* + * Other encodings in "0, c0, c3, ..." are STATE_BOTH because + * they're also RAZ for AArch64, and in v8 are gradually + * being filled with AArch64-view-of-AArch32-ID-register + * for new ID registers. + */ + { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.id_pfr2 }, + { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.id_dfr1 }, + { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = cpu->isar.id_mmfr5 }, + { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }, + { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, + .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, + .resetvalue = extract64(cpu->pmceid0, 0, 32) }, + { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, + .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, + .resetvalue = cpu->pmceid0 }, + { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, + .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, + .resetvalue = extract64(cpu->pmceid1, 0, 32) }, + { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, + .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, + .resetvalue = cpu->pmceid1 }, + }; +#ifdef CONFIG_USER_ONLY + static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { + { .name = "ID_AA64PFR0_EL1", + .exported_bits = R_ID_AA64PFR0_FP_MASK | + R_ID_AA64PFR0_ADVSIMD_MASK | + R_ID_AA64PFR0_SVE_MASK | + R_ID_AA64PFR0_DIT_MASK, + .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | + (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, + { .name = "ID_AA64PFR1_EL1", + .exported_bits = R_ID_AA64PFR1_BT_MASK | + R_ID_AA64PFR1_SSBS_MASK | + R_ID_AA64PFR1_MTE_MASK | + R_ID_AA64PFR1_SME_MASK }, + { .name = "ID_AA64PFR*_EL1_RESERVED", + .is_glob = true }, + { .name = "ID_AA64ZFR0_EL1", + .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | + R_ID_AA64ZFR0_AES_MASK | + R_ID_AA64ZFR0_BITPERM_MASK | + R_ID_AA64ZFR0_BFLOAT16_MASK | + R_ID_AA64ZFR0_SHA3_MASK | + R_ID_AA64ZFR0_SM4_MASK | + R_ID_AA64ZFR0_I8MM_MASK | + R_ID_AA64ZFR0_F32MM_MASK | + R_ID_AA64ZFR0_F64MM_MASK }, + { .name = "ID_AA64SMFR0_EL1", + .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | + R_ID_AA64SMFR0_B16F32_MASK | + R_ID_AA64SMFR0_F16F32_MASK | + R_ID_AA64SMFR0_I8I32_MASK | + R_ID_AA64SMFR0_F64F64_MASK | + R_ID_AA64SMFR0_I16I64_MASK | + R_ID_AA64SMFR0_FA64_MASK }, + { .name = "ID_AA64MMFR0_EL1", + .exported_bits = R_ID_AA64MMFR0_ECV_MASK, + .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | + (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, + { .name = "ID_AA64MMFR1_EL1", + .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, + { .name = "ID_AA64MMFR2_EL1", + .exported_bits = R_ID_AA64MMFR2_AT_MASK }, + { .name = "ID_AA64MMFR*_EL1_RESERVED", + .is_glob = true }, + { .name = "ID_AA64DFR0_EL1", + .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, + { .name = "ID_AA64DFR1_EL1" }, + { .name = "ID_AA64DFR*_EL1_RESERVED", + .is_glob = true }, + { .name = "ID_AA64AFR*", + .is_glob = true }, + { .name = "ID_AA64ISAR0_EL1", + .exported_bits = R_ID_AA64ISAR0_AES_MASK | + R_ID_AA64ISAR0_SHA1_MASK | + R_ID_AA64ISAR0_SHA2_MASK | + R_ID_AA64ISAR0_CRC32_MASK | + R_ID_AA64ISAR0_ATOMIC_MASK | + R_ID_AA64ISAR0_RDM_MASK | + R_ID_AA64ISAR0_SHA3_MASK | + R_ID_AA64ISAR0_SM3_MASK | + R_ID_AA64ISAR0_SM4_MASK | + R_ID_AA64ISAR0_DP_MASK | + R_ID_AA64ISAR0_FHM_MASK | + R_ID_AA64ISAR0_TS_MASK | + R_ID_AA64ISAR0_RNDR_MASK }, + { .name = "ID_AA64ISAR1_EL1", + .exported_bits = R_ID_AA64ISAR1_DPB_MASK | + R_ID_AA64ISAR1_APA_MASK | + R_ID_AA64ISAR1_API_MASK | + R_ID_AA64ISAR1_JSCVT_MASK | + R_ID_AA64ISAR1_FCMA_MASK | + R_ID_AA64ISAR1_LRCPC_MASK | + R_ID_AA64ISAR1_GPA_MASK | + R_ID_AA64ISAR1_GPI_MASK | + R_ID_AA64ISAR1_FRINTTS_MASK | + R_ID_AA64ISAR1_SB_MASK | + R_ID_AA64ISAR1_BF16_MASK | + R_ID_AA64ISAR1_DGH_MASK | + R_ID_AA64ISAR1_I8MM_MASK }, + { .name = "ID_AA64ISAR2_EL1", + .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | + R_ID_AA64ISAR2_RPRES_MASK | + R_ID_AA64ISAR2_GPA3_MASK | + R_ID_AA64ISAR2_APA3_MASK }, + { .name = "ID_AA64ISAR*_EL1_RESERVED", + .is_glob = true }, + }; + modify_arm_cp_regs(v8_idregs, v8_user_idregs); +#endif + /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ + if (!arm_feature(env, ARM_FEATURE_EL3) && + !arm_feature(env, ARM_FEATURE_EL2)) { + ARMCPRegInfo rvbar = { + .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, + .access = PL1_R, + .fieldoffset = offsetof(CPUARMState, cp15.rvbar), + }; + define_one_arm_cp_reg(cpu, &rvbar); + } + define_arm_cp_regs(cpu, v8_idregs); + define_arm_cp_regs(cpu, v8_cp_reginfo); + + for (i = 4; i < 16; i++) { + /* + * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. + * For pre-v8 cores there are RAZ patterns for these in + * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. + * v8 extends the "must RAZ" part of the ID register space + * to also cover c0, 0, c{8-15}, {0-7}. + * These are STATE_AA32 because in the AArch64 sysreg space + * c4-c7 is where the AArch64 ID registers live (and we've + * already defined those in v8_idregs[]), and c8-c15 are not + * "must RAZ" for AArch64. + */ + g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); + ARMCPRegInfo v8_aa32_raz_idregs = { + .name = name, + .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, + .access = PL1_R, .type = ARM_CP_CONST, + .accessfn = access_aa64_tid3, + .resetvalue = 0 }; + define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); + } + } + + /* + * Register the base EL2 cpregs. + * Pre v8, these registers are implemented only as part of the + * Virtualization Extensions (EL2 present). Beginning with v8, + * if EL2 is missing but EL3 is enabled, mostly these become + * RES0 from EL3, with some specific exceptions. + */ + if (arm_feature(env, ARM_FEATURE_EL2) + || (arm_feature(env, ARM_FEATURE_EL3) + && arm_feature(env, ARM_FEATURE_V8))) { + uint64_t vmpidr_def = mpidr_read_val(env); + ARMCPRegInfo vpidr_regs[] = { + { .name = "VPIDR", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, + .access = PL2_RW, .accessfn = access_el3_aa32ns, + .resetvalue = cpu->midr, + .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, + .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, + { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, + .access = PL2_RW, .resetvalue = cpu->midr, + .type = ARM_CP_EL3_NO_EL2_C_NZ, + .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, + { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, + .access = PL2_RW, .accessfn = access_el3_aa32ns, + .resetvalue = vmpidr_def, + .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, + .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, + { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, + .access = PL2_RW, .resetvalue = vmpidr_def, + .type = ARM_CP_EL3_NO_EL2_C_NZ, + .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, + }; + /* + * The only field of MDCR_EL2 that has a defined architectural reset + * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. + */ + ARMCPRegInfo mdcr_el2 = { + .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, + .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, + .writefn = mdcr_el2_write, + .access = PL2_RW, .resetvalue = pmu_num_counters(env), + .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), + }; + define_one_arm_cp_reg(cpu, &mdcr_el2); + define_arm_cp_regs(cpu, vpidr_regs); + define_arm_cp_regs(cpu, el2_cp_reginfo); + if (arm_feature(env, ARM_FEATURE_V8)) { + define_arm_cp_regs(cpu, el2_v8_cp_reginfo); + } + if (cpu_isar_feature(aa64_sel2, cpu)) { + define_arm_cp_regs(cpu, el2_sec_cp_reginfo); + } + /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ + if (!arm_feature(env, ARM_FEATURE_EL3)) { + ARMCPRegInfo rvbar[] = { + { + .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, + .access = PL2_R, + .fieldoffset = offsetof(CPUARMState, cp15.rvbar), + }, + { .name = "RVBAR", .type = ARM_CP_ALIAS, + .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, + .access = PL2_R, + .fieldoffset = offsetof(CPUARMState, cp15.rvbar), + }, + }; + define_arm_cp_regs(cpu, rvbar); + } + } + + /* Register the base EL3 cpregs. */ + if (arm_feature(env, ARM_FEATURE_EL3)) { + define_arm_cp_regs(cpu, el3_cp_reginfo); + ARMCPRegInfo el3_regs[] = { + { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, + .access = PL3_R, + .fieldoffset = offsetof(CPUARMState, cp15.rvbar), + }, + { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, + .access = PL3_RW, + .raw_writefn = raw_write, .writefn = sctlr_write, + .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), + .resetvalue = cpu->reset_sctlr }, + }; + + define_arm_cp_regs(cpu, el3_regs); + } + /* + * The behaviour of NSACR is sufficiently various that we don't + * try to describe it in a single reginfo: + * if EL3 is 64 bit, then trap to EL3 from S EL1, + * reads as constant 0xc00 from NS EL1 and NS EL2 + * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 + * if v7 without EL3, register doesn't exist + * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 + */ + if (arm_feature(env, ARM_FEATURE_EL3)) { + if (arm_feature(env, ARM_FEATURE_AARCH64)) { + static const ARMCPRegInfo nsacr = { + .name = "NSACR", .type = ARM_CP_CONST, + .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, + .access = PL1_RW, .accessfn = nsacr_access, + .resetvalue = 0xc00 + }; + define_one_arm_cp_reg(cpu, &nsacr); + } else { + static const ARMCPRegInfo nsacr = { + .name = "NSACR", + .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, + .access = PL3_RW | PL1_R, + .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.nsacr) + }; + define_one_arm_cp_reg(cpu, &nsacr); + } + } else { + if (arm_feature(env, ARM_FEATURE_V8)) { + static const ARMCPRegInfo nsacr = { + .name = "NSACR", .type = ARM_CP_CONST, + .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, + .access = PL1_R, + .resetvalue = 0xc00 + }; + define_one_arm_cp_reg(cpu, &nsacr); + } + } + + if (arm_feature(env, ARM_FEATURE_PMSA)) { + if (arm_feature(env, ARM_FEATURE_V6)) { + /* PMSAv6 not implemented */ + assert(arm_feature(env, ARM_FEATURE_V7)); + define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); + define_arm_cp_regs(cpu, pmsav7_cp_reginfo); + } else { + define_arm_cp_regs(cpu, pmsav5_cp_reginfo); + } + } else { + define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); + define_arm_cp_regs(cpu, vmsa_cp_reginfo); + /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ + if (cpu_isar_feature(aa32_hpd, cpu)) { + define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); + } + } + if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { + define_arm_cp_regs(cpu, t2ee_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { + define_arm_cp_regs(cpu, generic_timer_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_VAPA)) { + define_arm_cp_regs(cpu, vapa_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { + define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { + define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { + define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_OMAPCP)) { + define_arm_cp_regs(cpu, omap_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_STRONGARM)) { + define_arm_cp_regs(cpu, strongarm_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_XSCALE)) { + define_arm_cp_regs(cpu, xscale_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { + define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); + } + if (arm_feature(env, ARM_FEATURE_LPAE)) { + define_arm_cp_regs(cpu, lpae_cp_reginfo); + } + if (cpu_isar_feature(aa32_jazelle, cpu)) { + define_arm_cp_regs(cpu, jazelle_regs); + } + /* + * Slightly awkwardly, the OMAP and StrongARM cores need all of + * cp15 crn=0 to be writes-ignored, whereas for other cores they should + * be read-only (ie write causes UNDEF exception). + */ + { + ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { + /* + * Pre-v8 MIDR space. + * Note that the MIDR isn't a simple constant register because + * of the TI925 behaviour where writes to another register can + * cause the MIDR value to change. + * + * Unimplemented registers in the c15 0 0 0 space default to + * MIDR. Define MIDR first as this entire space, then CTR, TCMTR + * and friends override accordingly. + */ + { .name = "MIDR", + .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, + .access = PL1_R, .resetvalue = cpu->midr, + .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, + .readfn = midr_read, + .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), + .type = ARM_CP_OVERRIDE }, + /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ + { .name = "DUMMY", + .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, + .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "DUMMY", + .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, + .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "DUMMY", + .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, + .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "DUMMY", + .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, + .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, + { .name = "DUMMY", + .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, + .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, + }; + ARMCPRegInfo id_v8_midr_cp_reginfo[] = { + { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, + .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, + .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), + .readfn = midr_read }, + /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ + { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, + .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, + .access = PL1_R, .resetvalue = cpu->midr }, + { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, + .access = PL1_R, + .accessfn = access_aa64_tid1, + .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, + }; + ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { + .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, + .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, + .access = PL1_R, .resetvalue = cpu->midr + }; + ARMCPRegInfo id_cp_reginfo[] = { + /* These are common to v8 and pre-v8 */ + { .name = "CTR", + .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, + .access = PL1_R, .accessfn = ctr_el0_access, + .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, + { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, + .access = PL0_R, .accessfn = ctr_el0_access, + .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, + /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ + { .name = "TCMTR", + .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, + .access = PL1_R, + .accessfn = access_aa32_tid1, + .type = ARM_CP_CONST, .resetvalue = 0 }, + }; + /* TLBTR is specific to VMSA */ + ARMCPRegInfo id_tlbtr_reginfo = { + .name = "TLBTR", + .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, + .access = PL1_R, + .accessfn = access_aa32_tid1, + .type = ARM_CP_CONST, .resetvalue = 0, + }; + /* MPUIR is specific to PMSA V6+ */ + ARMCPRegInfo id_mpuir_reginfo = { + .name = "MPUIR", + .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, + .access = PL1_R, .type = ARM_CP_CONST, + .resetvalue = cpu->pmsav7_dregion << 8 + }; + /* HMPUIR is specific to PMSA V8 */ + ARMCPRegInfo id_hmpuir_reginfo = { + .name = "HMPUIR", + .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, + .access = PL2_R, .type = ARM_CP_CONST, + .resetvalue = cpu->pmsav8r_hdregion + }; + static const ARMCPRegInfo crn0_wi_reginfo = { + .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, + .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, + .type = ARM_CP_NOP | ARM_CP_OVERRIDE + }; +#ifdef CONFIG_USER_ONLY + static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { + { .name = "MIDR_EL1", + .exported_bits = R_MIDR_EL1_REVISION_MASK | + R_MIDR_EL1_PARTNUM_MASK | + R_MIDR_EL1_ARCHITECTURE_MASK | + R_MIDR_EL1_VARIANT_MASK | + R_MIDR_EL1_IMPLEMENTER_MASK }, + { .name = "REVIDR_EL1" }, + }; + modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); +#endif + if (arm_feature(env, ARM_FEATURE_OMAPCP) || + arm_feature(env, ARM_FEATURE_STRONGARM)) { + size_t i; + /* + * Register the blanket "writes ignored" value first to cover the + * whole space. Then update the specific ID registers to allow write + * access, so that they ignore writes rather than causing them to + * UNDEF. + */ + define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); + for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { + id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; + } + for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { + id_cp_reginfo[i].access = PL1_RW; + } + id_mpuir_reginfo.access = PL1_RW; + id_tlbtr_reginfo.access = PL1_RW; + } + if (arm_feature(env, ARM_FEATURE_V8)) { + define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); + if (!arm_feature(env, ARM_FEATURE_PMSA)) { + define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); + } + } else { + define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); + } + define_arm_cp_regs(cpu, id_cp_reginfo); + if (!arm_feature(env, ARM_FEATURE_PMSA)) { + define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); + } else if (arm_feature(env, ARM_FEATURE_PMSA) && + arm_feature(env, ARM_FEATURE_V8)) { + uint32_t i = 0; + char *tmp_string; + + define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); + define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); + define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); + + /* Register alias is only valid for first 32 indexes */ + for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { + uint8_t crm = 0b1000 | extract32(i, 1, 3); + uint8_t opc1 = extract32(i, 4, 1); + uint8_t opc2 = extract32(i, 0, 1) << 2; + + tmp_string = g_strdup_printf("PRBAR%u", i); + ARMCPRegInfo tmp_prbarn_reginfo = { + .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, + .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, + .access = PL1_RW, .resetvalue = 0, + .accessfn = access_tvm_trvm, + .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read + }; + define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); + g_free(tmp_string); + + opc2 = extract32(i, 0, 1) << 2 | 0x1; + tmp_string = g_strdup_printf("PRLAR%u", i); + ARMCPRegInfo tmp_prlarn_reginfo = { + .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, + .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, + .access = PL1_RW, .resetvalue = 0, + .accessfn = access_tvm_trvm, + .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read + }; + define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); + g_free(tmp_string); + } + + /* Register alias is only valid for first 32 indexes */ + for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { + uint8_t crm = 0b1000 | extract32(i, 1, 3); + uint8_t opc1 = 0b100 | extract32(i, 4, 1); + uint8_t opc2 = extract32(i, 0, 1) << 2; + + tmp_string = g_strdup_printf("HPRBAR%u", i); + ARMCPRegInfo tmp_hprbarn_reginfo = { + .name = tmp_string, + .type = ARM_CP_NO_RAW, + .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, + .access = PL2_RW, .resetvalue = 0, + .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read + }; + define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); + g_free(tmp_string); + + opc2 = extract32(i, 0, 1) << 2 | 0x1; + tmp_string = g_strdup_printf("HPRLAR%u", i); + ARMCPRegInfo tmp_hprlarn_reginfo = { + .name = tmp_string, + .type = ARM_CP_NO_RAW, + .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, + .access = PL2_RW, .resetvalue = 0, + .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read + }; + define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); + g_free(tmp_string); + } + } else if (arm_feature(env, ARM_FEATURE_V7)) { + define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); + } + } + + if (arm_feature(env, ARM_FEATURE_MPIDR)) { + ARMCPRegInfo mpidr_cp_reginfo[] = { + { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, + .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, + }; +#ifdef CONFIG_USER_ONLY + static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { + { .name = "MPIDR_EL1", + .fixed_bits = 0x0000000080000000 }, + }; + modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); +#endif + define_arm_cp_regs(cpu, mpidr_cp_reginfo); + } + + if (arm_feature(env, ARM_FEATURE_AUXCR)) { + ARMCPRegInfo auxcr_reginfo[] = { + { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, + .access = PL1_RW, .accessfn = access_tacr, + .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, + { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, + .access = PL2_RW, .type = ARM_CP_CONST, + .resetvalue = 0 }, + { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, + .access = PL3_RW, .type = ARM_CP_CONST, + .resetvalue = 0 }, + }; + define_arm_cp_regs(cpu, auxcr_reginfo); + if (cpu_isar_feature(aa32_ac2, cpu)) { + define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); + } + } + + if (arm_feature(env, ARM_FEATURE_CBAR)) { + /* + * CBAR is IMPDEF, but common on Arm Cortex-A implementations. + * There are two flavours: + * (1) older 32-bit only cores have a simple 32-bit CBAR + * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a + * 32-bit register visible to AArch32 at a different encoding + * to the "flavour 1" register and with the bits rearranged to + * be able to squash a 64-bit address into the 32-bit view. + * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but + * in future if we support AArch32-only configs of some of the + * AArch64 cores we might need to add a specific feature flag + * to indicate cores with "flavour 2" CBAR. + */ + if (arm_feature(env, ARM_FEATURE_AARCH64)) { + /* 32 bit view is [31:18] 0...0 [43:32]. */ + uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) + | extract64(cpu->reset_cbar, 32, 12); + ARMCPRegInfo cbar_reginfo[] = { + { .name = "CBAR", + .type = ARM_CP_CONST, + .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, + .access = PL1_R, .resetvalue = cbar32 }, + { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, + .type = ARM_CP_CONST, + .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, + .access = PL1_R, .resetvalue = cpu->reset_cbar }, + }; + /* We don't implement a r/w 64 bit CBAR currently */ + assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); + define_arm_cp_regs(cpu, cbar_reginfo); + } else { + ARMCPRegInfo cbar = { + .name = "CBAR", + .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, + .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, + .fieldoffset = offsetof(CPUARMState, + cp15.c15_config_base_address) + }; + if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { + cbar.access = PL1_R; + cbar.fieldoffset = 0; + cbar.type = ARM_CP_CONST; + } + define_one_arm_cp_reg(cpu, &cbar); + } + } + + if (arm_feature(env, ARM_FEATURE_VBAR)) { + static const ARMCPRegInfo vbar_cp_reginfo[] = { + { .name = "VBAR", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, + .access = PL1_RW, .writefn = vbar_write, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), + offsetof(CPUARMState, cp15.vbar_ns) }, + .resetvalue = 0 }, + }; + define_arm_cp_regs(cpu, vbar_cp_reginfo); + } + + /* Generic registers whose values depend on the implementation */ + { + ARMCPRegInfo sctlr = { + .name = "SCTLR", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, + .access = PL1_RW, .accessfn = access_tvm_trvm, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), + offsetof(CPUARMState, cp15.sctlr_ns) }, + .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, + .raw_writefn = raw_write, + }; + if (arm_feature(env, ARM_FEATURE_XSCALE)) { + /* + * Normally we would always end the TB on an SCTLR write, but Linux + * arch/arm/mach-pxa/sleep.S expects two instructions following + * an MMU enable to execute from cache. Imitate this behaviour. + */ + sctlr.type |= ARM_CP_SUPPRESS_TB_END; + } + define_one_arm_cp_reg(cpu, &sctlr); + + if (arm_feature(env, ARM_FEATURE_PMSA) && + arm_feature(env, ARM_FEATURE_V8)) { + ARMCPRegInfo vsctlr = { + .name = "VSCTLR", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, + .access = PL2_RW, .resetvalue = 0x0, + .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), + }; + define_one_arm_cp_reg(cpu, &vsctlr); + } + } + + if (cpu_isar_feature(aa64_lor, cpu)) { + define_arm_cp_regs(cpu, lor_reginfo); + } + if (cpu_isar_feature(aa64_pan, cpu)) { + define_one_arm_cp_reg(cpu, &pan_reginfo); + } +#ifndef CONFIG_USER_ONLY + if (cpu_isar_feature(aa64_ats1e1, cpu)) { + define_arm_cp_regs(cpu, ats1e1_reginfo); + } + if (cpu_isar_feature(aa32_ats1e1, cpu)) { + define_arm_cp_regs(cpu, ats1cp_reginfo); + } +#endif + if (cpu_isar_feature(aa64_uao, cpu)) { + define_one_arm_cp_reg(cpu, &uao_reginfo); + } + + if (cpu_isar_feature(aa64_dit, cpu)) { + define_one_arm_cp_reg(cpu, &dit_reginfo); + } + if (cpu_isar_feature(aa64_ssbs, cpu)) { + define_one_arm_cp_reg(cpu, &ssbs_reginfo); + } + if (cpu_isar_feature(any_ras, cpu)) { + define_arm_cp_regs(cpu, minimal_ras_reginfo); + } + + if (cpu_isar_feature(aa64_vh, cpu) || + cpu_isar_feature(aa64_debugv8p2, cpu)) { + define_one_arm_cp_reg(cpu, &contextidr_el2); + } + if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { + define_arm_cp_regs(cpu, vhe_reginfo); + } + + if (cpu_isar_feature(aa64_sve, cpu)) { + define_arm_cp_regs(cpu, zcr_reginfo); + } + + if (cpu_isar_feature(aa64_hcx, cpu)) { + define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); + } + +#ifdef TARGET_AARCH64 + if (cpu_isar_feature(aa64_sme, cpu)) { + define_arm_cp_regs(cpu, sme_reginfo); + } + if (cpu_isar_feature(aa64_pauth, cpu)) { + define_arm_cp_regs(cpu, pauth_reginfo); + } + if (cpu_isar_feature(aa64_rndr, cpu)) { + define_arm_cp_regs(cpu, rndr_reginfo); + } + if (cpu_isar_feature(aa64_tlbirange, cpu)) { + define_arm_cp_regs(cpu, tlbirange_reginfo); + } + if (cpu_isar_feature(aa64_tlbios, cpu)) { + define_arm_cp_regs(cpu, tlbios_reginfo); + } +#ifndef CONFIG_USER_ONLY + /* Data Cache clean instructions up to PoP */ + if (cpu_isar_feature(aa64_dcpop, cpu)) { + define_one_arm_cp_reg(cpu, dcpop_reg); + + if (cpu_isar_feature(aa64_dcpodp, cpu)) { + define_one_arm_cp_reg(cpu, dcpodp_reg); + } + } +#endif /*CONFIG_USER_ONLY*/ + + /* + * If full MTE is enabled, add all of the system registers. + * If only "instructions available at EL0" are enabled, + * then define only a RAZ/WI version of PSTATE.TCO. + */ + if (cpu_isar_feature(aa64_mte, cpu)) { + define_arm_cp_regs(cpu, mte_reginfo); + define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); + } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { + define_arm_cp_regs(cpu, mte_tco_ro_reginfo); + define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); + } + + if (cpu_isar_feature(aa64_scxtnum, cpu)) { + define_arm_cp_regs(cpu, scxtnum_reginfo); + } +#endif + + if (cpu_isar_feature(any_predinv, cpu)) { + define_arm_cp_regs(cpu, predinv_reginfo); + } + + if (cpu_isar_feature(any_ccidx, cpu)) { + define_arm_cp_regs(cpu, ccsidr2_reginfo); + } + +#ifndef CONFIG_USER_ONLY + /* + * Register redirections and aliases must be done last, + * after the registers from the other extensions have been defined. + */ + if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { + define_arm_vh_e2h_redirects_aliases(cpu); + } +#endif +} + +/* + * Private utility function for define_one_arm_cp_reg_with_opaque(): + * add a single reginfo struct to the hash table. + */ +static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, + void *opaque, CPState state, + CPSecureState secstate, + int crm, int opc1, int opc2, + const char *name) +{ + CPUARMState *env = &cpu->env; + uint32_t key; + ARMCPRegInfo *r2; + bool is64 = r->type & ARM_CP_64BIT; + bool ns = secstate & ARM_CP_SECSTATE_NS; + int cp = r->cp; + size_t name_len; + bool make_const; + + switch (state) { + case ARM_CP_STATE_AA32: + /* We assume it is a cp15 register if the .cp field is left unset. */ + if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { + cp = 15; + } + key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); + break; + case ARM_CP_STATE_AA64: + /* + * To allow abbreviation of ARMCPRegInfo definitions, we treat + * cp == 0 as equivalent to the value for "standard guest-visible + * sysreg". STATE_BOTH definitions are also always "standard sysreg" + * in their AArch64 view (the .cp value may be non-zero for the + * benefit of the AArch32 view). + */ + if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { + cp = CP_REG_ARM64_SYSREG_CP; + } + key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); + break; + default: + g_assert_not_reached(); + } + + /* Overriding of an existing definition must be explicitly requested. */ + if (!(r->type & ARM_CP_OVERRIDE)) { + const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); + if (oldreg) { + assert(oldreg->type & ARM_CP_OVERRIDE); + } + } + + /* + * Eliminate registers that are not present because the EL is missing. + * Doing this here makes it easier to put all registers for a given + * feature into the same ARMCPRegInfo array and define them all at once. + */ + make_const = false; + if (arm_feature(env, ARM_FEATURE_EL3)) { + /* + * An EL2 register without EL2 but with EL3 is (usually) RES0. + * See rule RJFFP in section D1.1.3 of DDI0487H.a. + */ + int min_el = ctz32(r->access) / 2; + if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { + if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { + return; + } + make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); + } + } else { + CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) + ? PL2_RW : PL1_RW); + if ((r->access & max_el) == 0) { + return; + } + } + + /* Combine cpreg and name into one allocation. */ + name_len = strlen(name) + 1; + r2 = g_malloc(sizeof(*r2) + name_len); + *r2 = *r; + r2->name = memcpy(r2 + 1, name, name_len); + + /* + * Update fields to match the instantiation, overwiting wildcards + * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. + */ + r2->cp = cp; + r2->crm = crm; + r2->opc1 = opc1; + r2->opc2 = opc2; + r2->state = state; + r2->secure = secstate; + if (opaque) { + r2->opaque = opaque; + } + + if (make_const) { + /* This should not have been a very special register to begin. */ + int old_special = r2->type & ARM_CP_SPECIAL_MASK; + assert(old_special == 0 || old_special == ARM_CP_NOP); + /* + * Set the special function to CONST, retaining the other flags. + * This is important for e.g. ARM_CP_SVE so that we still + * take the SVE trap if CPTR_EL3.EZ == 0. + */ + r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; + /* + * Usually, these registers become RES0, but there are a few + * special cases like VPIDR_EL2 which have a constant non-zero + * value with writes ignored. + */ + if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { + r2->resetvalue = 0; + } + /* + * ARM_CP_CONST has precedence, so removing the callbacks and + * offsets are not strictly necessary, but it is potentially + * less confusing to debug later. + */ + r2->readfn = NULL; + r2->writefn = NULL; + r2->raw_readfn = NULL; + r2->raw_writefn = NULL; + r2->resetfn = NULL; + r2->fieldoffset = 0; + r2->bank_fieldoffsets[0] = 0; + r2->bank_fieldoffsets[1] = 0; + } else { + bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; + + if (isbanked) { + /* + * Register is banked (using both entries in array). + * Overwriting fieldoffset as the array is only used to define + * banked registers but later only fieldoffset is used. + */ + r2->fieldoffset = r->bank_fieldoffsets[ns]; + } + if (state == ARM_CP_STATE_AA32) { + if (isbanked) { + /* + * If the register is banked then we don't need to migrate or + * reset the 32-bit instance in certain cases: + * + * 1) If the register has both 32-bit and 64-bit instances + * then we can count on the 64-bit instance taking care + * of the non-secure bank. + * 2) If ARMv8 is enabled then we can count on a 64-bit + * version taking care of the secure bank. This requires + * that separate 32 and 64-bit definitions are provided. + */ + if ((r->state == ARM_CP_STATE_BOTH && ns) || + (arm_feature(env, ARM_FEATURE_V8) && !ns)) { + r2->type |= ARM_CP_ALIAS; + } + } else if ((secstate != r->secure) && !ns) { + /* + * The register is not banked so we only want to allow + * migration of the non-secure instance. + */ + r2->type |= ARM_CP_ALIAS; + } + + if (HOST_BIG_ENDIAN && + r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { + r2->fieldoffset += sizeof(uint32_t); + } + } + } + + /* + * By convention, for wildcarded registers only the first + * entry is used for migration; the others are marked as + * ALIAS so we don't try to transfer the register + * multiple times. Special registers (ie NOP/WFI) are + * never migratable and not even raw-accessible. + */ + if (r2->type & ARM_CP_SPECIAL_MASK) { + r2->type |= ARM_CP_NO_RAW; + } + if (((r->crm == CP_ANY) && crm != 0) || + ((r->opc1 == CP_ANY) && opc1 != 0) || + ((r->opc2 == CP_ANY) && opc2 != 0)) { + r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; + } + + /* + * Check that raw accesses are either forbidden or handled. Note that + * we can't assert this earlier because the setup of fieldoffset for + * banked registers has to be done first. + */ + if (!(r2->type & ARM_CP_NO_RAW)) { + assert(!raw_accessors_invalid(r2)); + } + + g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); +} + + +void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, + const ARMCPRegInfo *r, void *opaque) +{ + /* + * Define implementations of coprocessor registers. + * We store these in a hashtable because typically + * there are less than 150 registers in a space which + * is 16*16*16*8*8 = 262144 in size. + * Wildcarding is supported for the crm, opc1 and opc2 fields. + * If a register is defined twice then the second definition is + * used, so this can be used to define some generic registers and + * then override them with implementation specific variations. + * At least one of the original and the second definition should + * include ARM_CP_OVERRIDE in its type bits -- this is just a guard + * against accidental use. + * + * The state field defines whether the register is to be + * visible in the AArch32 or AArch64 execution state. If the + * state is set to ARM_CP_STATE_BOTH then we synthesise a + * reginfo structure for the AArch32 view, which sees the lower + * 32 bits of the 64 bit register. + * + * Only registers visible in AArch64 may set r->opc0; opc0 cannot + * be wildcarded. AArch64 registers are always considered to be 64 + * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of + * the register, if any. + */ + int crm, opc1, opc2; + int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; + int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; + int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; + int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; + int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; + int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; + CPState state; + + /* 64 bit registers have only CRm and Opc1 fields */ + assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); + /* op0 only exists in the AArch64 encodings */ + assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); + /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ + assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); + /* + * This API is only for Arm's system coprocessors (14 and 15) or + * (M-profile or v7A-and-earlier only) for implementation defined + * coprocessors in the range 0..7. Our decode assumes this, since + * 8..13 can be used for other insns including VFP and Neon. See + * valid_cp() in translate.c. Assert here that we haven't tried + * to use an invalid coprocessor number. + */ + switch (r->state) { + case ARM_CP_STATE_BOTH: + /* 0 has a special meaning, but otherwise the same rules as AA32. */ + if (r->cp == 0) { + break; + } + /* fall through */ + case ARM_CP_STATE_AA32: + if (arm_feature(&cpu->env, ARM_FEATURE_V8) && + !arm_feature(&cpu->env, ARM_FEATURE_M)) { + assert(r->cp >= 14 && r->cp <= 15); + } else { + assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); + } + break; + case ARM_CP_STATE_AA64: + assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); + break; + default: + g_assert_not_reached(); + } + /* + * The AArch64 pseudocode CheckSystemAccess() specifies that op1 + * encodes a minimum access level for the register. We roll this + * runtime check into our general permission check code, so check + * here that the reginfo's specified permissions are strict enough + * to encompass the generic architectural permission check. + */ + if (r->state != ARM_CP_STATE_AA32) { + CPAccessRights mask; + switch (r->opc1) { + case 0: + /* min_EL EL1, but some accessible to EL0 via kernel ABI */ + mask = PL0U_R | PL1_RW; + break; + case 1: case 2: + /* min_EL EL1 */ + mask = PL1_RW; + break; + case 3: + /* min_EL EL0 */ + mask = PL0_RW; + break; + case 4: + case 5: + /* min_EL EL2 */ + mask = PL2_RW; + break; + case 6: + /* min_EL EL3 */ + mask = PL3_RW; + break; + case 7: + /* min_EL EL1, secure mode only (we don't check the latter) */ + mask = PL1_RW; + break; + default: + /* broken reginfo with out-of-range opc1 */ + g_assert_not_reached(); + } + /* assert our permissions are not too lax (stricter is fine) */ + assert((r->access & ~mask) == 0); + } + + /* + * Check that the register definition has enough info to handle + * reads and writes if they are permitted. + */ + if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { + if (r->access & PL3_R) { + assert((r->fieldoffset || + (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || + r->readfn); + } + if (r->access & PL3_W) { + assert((r->fieldoffset || + (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || + r->writefn); + } + } + + for (crm = crmmin; crm <= crmmax; crm++) { + for (opc1 = opc1min; opc1 <= opc1max; opc1++) { + for (opc2 = opc2min; opc2 <= opc2max; opc2++) { + for (state = ARM_CP_STATE_AA32; + state <= ARM_CP_STATE_AA64; state++) { + if (r->state != state && r->state != ARM_CP_STATE_BOTH) { + continue; + } + if (state == ARM_CP_STATE_AA32) { + /* + * Under AArch32 CP registers can be common + * (same for secure and non-secure world) or banked. + */ + char *name; + + switch (r->secure) { + case ARM_CP_SECSTATE_S: + case ARM_CP_SECSTATE_NS: + add_cpreg_to_hashtable(cpu, r, opaque, state, + r->secure, crm, opc1, opc2, + r->name); + break; + case ARM_CP_SECSTATE_BOTH: + name = g_strdup_printf("%s_S", r->name); + add_cpreg_to_hashtable(cpu, r, opaque, state, + ARM_CP_SECSTATE_S, + crm, opc1, opc2, name); + g_free(name); + add_cpreg_to_hashtable(cpu, r, opaque, state, + ARM_CP_SECSTATE_NS, + crm, opc1, opc2, r->name); + break; + default: + g_assert_not_reached(); + } + } else { + /* + * AArch64 registers get mapped to non-secure instance + * of AArch32 + */ + add_cpreg_to_hashtable(cpu, r, opaque, state, + ARM_CP_SECSTATE_NS, + crm, opc1, opc2, r->name); + } + } + } + } + } +} + +/* Define a whole list of registers */ +void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, + void *opaque, size_t len) +{ + size_t i; + for (i = 0; i < len; ++i) { + define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); + } +} + +/* + * Modify ARMCPRegInfo for access from userspace. + * + * This is a data driven modification directed by + * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as + * user-space cannot alter any values and dynamic values pertaining to + * execution state are hidden from user space view anyway. + */ +void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, + const ARMCPRegUserSpaceInfo *mods, + size_t mods_len) +{ + for (size_t mi = 0; mi < mods_len; ++mi) { + const ARMCPRegUserSpaceInfo *m = mods + mi; + GPatternSpec *pat = NULL; + + if (m->is_glob) { + pat = g_pattern_spec_new(m->name); + } + for (size_t ri = 0; ri < regs_len; ++ri) { + ARMCPRegInfo *r = regs + ri; + + if (pat && g_pattern_match_string(pat, r->name)) { + r->type = ARM_CP_CONST; + r->access = PL0U_R; + r->resetvalue = 0; + /* continue */ + } else if (strcmp(r->name, m->name) == 0) { + r->type = ARM_CP_CONST; + r->access = PL0U_R; + r->resetvalue &= m->exported_bits; + r->resetvalue |= m->fixed_bits; + break; + } + } + if (pat) { + g_pattern_spec_free(pat); + } + } +} + +const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) +{ + return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); +} + +void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* Helper coprocessor write function for write-ignore registers */ +} + +uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) +{ + /* Helper coprocessor write function for read-as-zero registers */ + return 0; +} + +void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) +{ + /* Helper coprocessor reset function for do-nothing-on-reset registers */ +} diff --git a/target/arm/cpu.c b/target/arm/cpu.c index 5f63316dbf..fd337e1788 100644 --- a/target/arm/cpu.c +++ b/target/arm/cpu.c @@ -27,6 +27,7 @@ #include "qemu/module.h" #include "qapi/error.h" #include "cpu.h" +#include "cpregs.h" #ifdef CONFIG_TCG #include "hw/core/tcg-cpu-ops.h" #endif /* CONFIG_TCG */ diff --git a/target/arm/helper.c b/target/arm/helper.c index ddb0d76b70..1809df829b 100644 --- a/target/arm/helper.c +++ b/target/arm/helper.c @@ -31,5614 +31,9 @@ #endif #include "cpregs.h" -#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ static void switch_mode(CPUARMState *env, int mode); -static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - assert(ri->fieldoffset); - if (cpreg_field_is_64bit(ri)) { - return CPREG_FIELD64(env, ri); - } else { - return CPREG_FIELD32(env, ri); - } -} - -void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) -{ - assert(ri->fieldoffset); - if (cpreg_field_is_64bit(ri)) { - CPREG_FIELD64(env, ri) = value; - } else { - CPREG_FIELD32(env, ri) = value; - } -} - -static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return (char *)env + ri->fieldoffset; -} - -uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) -{ - /* Raw read of a coprocessor register (as needed for migration, etc). */ - if (ri->type & ARM_CP_CONST) { - return ri->resetvalue; - } else if (ri->raw_readfn) { - return ri->raw_readfn(env, ri); - } else if (ri->readfn) { - return ri->readfn(env, ri); - } else { - return raw_read(env, ri); - } -} - -static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t v) -{ - /* - * Raw write of a coprocessor register (as needed for migration, etc). - * Note that constant registers are treated as write-ignored; the - * caller should check for success by whether a readback gives the - * value written. - */ - if (ri->type & ARM_CP_CONST) { - return; - } else if (ri->raw_writefn) { - ri->raw_writefn(env, ri, v); - } else if (ri->writefn) { - ri->writefn(env, ri, v); - } else { - raw_write(env, ri, v); - } -} - -static bool raw_accessors_invalid(const ARMCPRegInfo *ri) -{ - /* - * Return true if the regdef would cause an assertion if you called - * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a - * program bug for it not to have the NO_RAW flag). - * NB that returning false here doesn't necessarily mean that calling - * read/write_raw_cp_reg() is safe, because we can't distinguish "has - * read/write access functions which are safe for raw use" from "has - * read/write access functions which have side effects but has forgotten - * to provide raw access functions". - * The tests here line up with the conditions in read/write_raw_cp_reg() - * and assertions in raw_read()/raw_write(). - */ - if ((ri->type & ARM_CP_CONST) || - ri->fieldoffset || - ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { - return false; - } - return true; -} - -bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) -{ - /* Write the coprocessor state from cpu->env to the (index,value) list. */ - int i; - bool ok = true; - - for (i = 0; i < cpu->cpreg_array_len; i++) { - uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); - const ARMCPRegInfo *ri; - uint64_t newval; - - ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); - if (!ri) { - ok = false; - continue; - } - if (ri->type & ARM_CP_NO_RAW) { - continue; - } - - newval = read_raw_cp_reg(&cpu->env, ri); - if (kvm_sync) { - /* - * Only sync if the previous list->cpustate sync succeeded. - * Rather than tracking the success/failure state for every - * item in the list, we just recheck "does the raw write we must - * have made in write_list_to_cpustate() read back OK" here. - */ - uint64_t oldval = cpu->cpreg_values[i]; - - if (oldval == newval) { - continue; - } - - write_raw_cp_reg(&cpu->env, ri, oldval); - if (read_raw_cp_reg(&cpu->env, ri) != oldval) { - continue; - } - - write_raw_cp_reg(&cpu->env, ri, newval); - } - cpu->cpreg_values[i] = newval; - } - return ok; -} - -bool write_list_to_cpustate(ARMCPU *cpu) -{ - int i; - bool ok = true; - - for (i = 0; i < cpu->cpreg_array_len; i++) { - uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); - uint64_t v = cpu->cpreg_values[i]; - const ARMCPRegInfo *ri; - - ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); - if (!ri) { - ok = false; - continue; - } - if (ri->type & ARM_CP_NO_RAW) { - continue; - } - /* - * Write value and confirm it reads back as written - * (to catch read-only registers and partially read-only - * registers where the incoming migration value doesn't match) - */ - write_raw_cp_reg(&cpu->env, ri, v); - if (read_raw_cp_reg(&cpu->env, ri) != v) { - ok = false; - } - } - return ok; -} - -static void add_cpreg_to_list(gpointer key, gpointer opaque) -{ - ARMCPU *cpu = opaque; - uint32_t regidx = (uintptr_t)key; - const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); - - if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { - cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); - /* The value array need not be initialized at this point */ - cpu->cpreg_array_len++; - } -} - -static void count_cpreg(gpointer key, gpointer opaque) -{ - ARMCPU *cpu = opaque; - const ARMCPRegInfo *ri; - - ri = g_hash_table_lookup(cpu->cp_regs, key); - - if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { - cpu->cpreg_array_len++; - } -} - -static gint cpreg_key_compare(gconstpointer a, gconstpointer b) -{ - uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); - uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); - - if (aidx > bidx) { - return 1; - } - if (aidx < bidx) { - return -1; - } - return 0; -} - -void init_cpreg_list(ARMCPU *cpu) -{ - /* - * Initialise the cpreg_tuples[] array based on the cp_regs hash. - * Note that we require cpreg_tuples[] to be sorted by key ID. - */ - GList *keys; - int arraylen; - - keys = g_hash_table_get_keys(cpu->cp_regs); - keys = g_list_sort(keys, cpreg_key_compare); - - cpu->cpreg_array_len = 0; - - g_list_foreach(keys, count_cpreg, cpu); - - arraylen = cpu->cpreg_array_len; - cpu->cpreg_indexes = g_new(uint64_t, arraylen); - cpu->cpreg_values = g_new(uint64_t, arraylen); - cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); - cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); - cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; - cpu->cpreg_array_len = 0; - - g_list_foreach(keys, add_cpreg_to_list, cpu); - - assert(cpu->cpreg_array_len == arraylen); - - g_list_free(keys); -} - -/* - * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. - */ -static CPAccessResult access_el3_aa32ns(CPUARMState *env, - const ARMCPRegInfo *ri, - bool isread) -{ - if (!is_a64(env) && arm_current_el(env) == 3 && - arm_is_secure_below_el3(env)) { - return CP_ACCESS_TRAP_UNCATEGORIZED; - } - return CP_ACCESS_OK; -} - -/* - * Some secure-only AArch32 registers trap to EL3 if used from - * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). - * Note that an access from Secure EL1 can only happen if EL3 is AArch64. - * We assume that the .access field is set to PL1_RW. - */ -static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, - const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_current_el(env) == 3) { - return CP_ACCESS_OK; - } - if (arm_is_secure_below_el3(env)) { - if (env->cp15.scr_el3 & SCR_EEL2) { - return CP_ACCESS_TRAP_EL2; - } - return CP_ACCESS_TRAP_EL3; - } - /* This will be EL1 NS and EL2 NS, which just UNDEF */ - return CP_ACCESS_TRAP_UNCATEGORIZED; -} - -/* - * Check for traps to performance monitor registers, which are controlled - * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. - */ -static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - int el = arm_current_el(env); - uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); - - if (el < 2 && (mdcr_el2 & MDCR_TPM)) { - return CP_ACCESS_TRAP_EL2; - } - if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { - return CP_ACCESS_TRAP_EL3; - } - return CP_ACCESS_OK; -} - -/* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ -static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_current_el(env) == 1) { - uint64_t trap = isread ? HCR_TRVM : HCR_TVM; - if (arm_hcr_el2_eff(env) & trap) { - return CP_ACCESS_TRAP_EL2; - } - } - return CP_ACCESS_OK; -} - -/* Check for traps from EL1 due to HCR_EL2.TSW. */ -static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { - return CP_ACCESS_TRAP_EL2; - } - return CP_ACCESS_OK; -} - -/* Check for traps from EL1 due to HCR_EL2.TACR. */ -static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { - return CP_ACCESS_TRAP_EL2; - } - return CP_ACCESS_OK; -} - -/* Check for traps from EL1 due to HCR_EL2.TTLB. */ -static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { - return CP_ACCESS_TRAP_EL2; - } - return CP_ACCESS_OK; -} - -/* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */ -static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_current_el(env) == 1 && - (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) { - return CP_ACCESS_TRAP_EL2; - } - return CP_ACCESS_OK; -} - -#ifdef TARGET_AARCH64 -/* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */ -static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_current_el(env) == 1 && - (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) { - return CP_ACCESS_TRAP_EL2; - } - return CP_ACCESS_OK; -} -#endif - -static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - - raw_write(env, ri, value); - tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ -} - -static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - - if (raw_read(env, ri) != value) { - /* - * Unlike real hardware the qemu TLB uses virtual addresses, - * not modified virtual addresses, so this causes a TLB flush. - */ - tlb_flush(CPU(cpu)); - raw_write(env, ri, value); - } -} - -static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - - if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) - && !extended_addresses_enabled(env)) { - /* - * For VMSA (when not using the LPAE long descriptor page table - * format) this register includes the ASID, so do a TLB flush. - * For PMSA it is purely a process ID and no action is needed. - */ - tlb_flush(CPU(cpu)); - } - raw_write(env, ri, value); -} - -static int alle1_tlbmask(CPUARMState *env) -{ - /* - * Note that the 'ALL' scope must invalidate both stage 1 and - * stage 2 translations, whereas most other scopes only invalidate - * stage 1 translations. - */ - return (ARMMMUIdxBit_E10_1 | - ARMMMUIdxBit_E10_1_PAN | - ARMMMUIdxBit_E10_0 | - ARMMMUIdxBit_Stage2 | - ARMMMUIdxBit_Stage2_S); -} - - -/* IS variants of TLB operations must affect all cores */ -static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - - tlb_flush_all_cpus_synced(cs); -} - -static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - - tlb_flush_all_cpus_synced(cs); -} - -static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - - tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); -} - -static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - - tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); -} - -/* - * Non-IS variants of TLB operations are upgraded to - * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to - * force broadcast of these operations. - */ -static bool tlb_force_broadcast(CPUARMState *env) -{ - return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); -} - -static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* Invalidate all (TLBIALL) */ - CPUState *cs = env_cpu(env); - - if (tlb_force_broadcast(env)) { - tlb_flush_all_cpus_synced(cs); - } else { - tlb_flush(cs); - } -} - -static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ - CPUState *cs = env_cpu(env); - - value &= TARGET_PAGE_MASK; - if (tlb_force_broadcast(env)) { - tlb_flush_page_all_cpus_synced(cs, value); - } else { - tlb_flush_page(cs, value); - } -} - -static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* Invalidate by ASID (TLBIASID) */ - CPUState *cs = env_cpu(env); - - if (tlb_force_broadcast(env)) { - tlb_flush_all_cpus_synced(cs); - } else { - tlb_flush(cs); - } -} - -static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ - CPUState *cs = env_cpu(env); - - value &= TARGET_PAGE_MASK; - if (tlb_force_broadcast(env)) { - tlb_flush_page_all_cpus_synced(cs, value); - } else { - tlb_flush_page(cs, value); - } -} - -static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - - tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); -} - -static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - - tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); -} - - -static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - - tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); -} - -static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - - tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); -} - -static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); - - tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); -} - -static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); - - tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, - ARMMMUIdxBit_E2); -} - -static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; - - tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); -} - -static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; - - tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); -} - -static const ARMCPRegInfo cp_reginfo[] = { - /* - * Define the secure and non-secure FCSE identifier CP registers - * separately because there is no secure bank in V8 (no _EL3). This allows - * the secure register to be properly reset and migrated. There is also no - * v8 EL1 version of the register so the non-secure instance stands alone. - */ - { .name = "FCSEIDR", - .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, - .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, - .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), - .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, - { .name = "FCSEIDR_S", - .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, - .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, - .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), - .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, - /* - * Define the secure and non-secure context identifier CP registers - * separately because there is no secure bank in V8 (no _EL3). This allows - * the secure register to be properly reset and migrated. In the - * non-secure case, the 32-bit register will have reset and migration - * disabled during registration as it is handled by the 64-bit instance. - */ - { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .secure = ARM_CP_SECSTATE_NS, - .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), - .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, - { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .secure = ARM_CP_SECSTATE_S, - .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), - .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, -}; - -static const ARMCPRegInfo not_v8_cp_reginfo[] = { - /* - * NB: Some of these registers exist in v8 but with more precise - * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). - */ - /* MMU Domain access control / MPU write buffer control */ - { .name = "DACR", - .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, - .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, - .writefn = dacr_write, .raw_writefn = raw_write, - .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), - offsetoflow32(CPUARMState, cp15.dacr_ns) } }, - /* - * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. - * For v6 and v5, these mappings are overly broad. - */ - { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, - .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, - { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, - .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, - { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, - .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, - { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, - .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, - /* Cache maintenance ops; some of this space may be overridden later. */ - { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, - .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, - .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, -}; - -static const ARMCPRegInfo not_v6_cp_reginfo[] = { - /* - * Not all pre-v6 cores implemented this WFI, so this is slightly - * over-broad. - */ - { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, - .access = PL1_W, .type = ARM_CP_WFI }, -}; - -static const ARMCPRegInfo not_v7_cp_reginfo[] = { - /* - * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which - * is UNPREDICTABLE; we choose to NOP as most implementations do). - */ - { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, - .access = PL1_W, .type = ARM_CP_WFI }, - /* - * L1 cache lockdown. Not architectural in v6 and earlier but in practice - * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and - * OMAPCP will override this space. - */ - { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), - .resetvalue = 0 }, - { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, - .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), - .resetvalue = 0 }, - /* v6 doesn't have the cache ID registers but Linux reads them anyway */ - { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, - .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, - .resetvalue = 0 }, - /* - * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; - * implementing it as RAZ means the "debug architecture version" bits - * will read as a reserved value, which should cause Linux to not try - * to use the debug hardware. - */ - { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, - .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, - /* - * MMU TLB control. Note that the wildcarding means we cover not just - * the unified TLB ops but also the dside/iside/inner-shareable variants. - */ - { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, - .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, - .type = ARM_CP_NO_RAW }, - { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, - .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, - .type = ARM_CP_NO_RAW }, - { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, - .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, - .type = ARM_CP_NO_RAW }, - { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, - .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, - .type = ARM_CP_NO_RAW }, - { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, - .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, - { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, - .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, -}; - -static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - uint32_t mask = 0; - - /* In ARMv8 most bits of CPACR_EL1 are RES0. */ - if (!arm_feature(env, ARM_FEATURE_V8)) { - /* - * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. - * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. - * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. - */ - if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { - /* VFP coprocessor: cp10 & cp11 [23:20] */ - mask |= R_CPACR_ASEDIS_MASK | - R_CPACR_D32DIS_MASK | - R_CPACR_CP11_MASK | - R_CPACR_CP10_MASK; - - if (!arm_feature(env, ARM_FEATURE_NEON)) { - /* ASEDIS [31] bit is RAO/WI */ - value |= R_CPACR_ASEDIS_MASK; - } - - /* - * VFPv3 and upwards with NEON implement 32 double precision - * registers (D0-D31). - */ - if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { - /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ - value |= R_CPACR_D32DIS_MASK; - } - } - value &= mask; - } - - /* - * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 - * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. - */ - if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && - !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { - mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; - value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); - } - - env->cp15.cpacr_el1 = value; -} - -static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - /* - * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 - * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. - */ - uint64_t value = env->cp15.cpacr_el1; - - if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && - !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { - value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); - } - return value; -} - - -static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) -{ - /* - * Call cpacr_write() so that we reset with the correct RAO bits set - * for our CPU features. - */ - cpacr_write(env, ri, 0); -} - -static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_feature(env, ARM_FEATURE_V8)) { - /* Check if CPACR accesses are to be trapped to EL2 */ - if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && - FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { - return CP_ACCESS_TRAP_EL2; - /* Check if CPACR accesses are to be trapped to EL3 */ - } else if (arm_current_el(env) < 3 && - FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { - return CP_ACCESS_TRAP_EL3; - } - } - - return CP_ACCESS_OK; -} - -static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - /* Check if CPTR accesses are set to trap to EL3 */ - if (arm_current_el(env) == 2 && - FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { - return CP_ACCESS_TRAP_EL3; - } - - return CP_ACCESS_OK; -} - -static const ARMCPRegInfo v6_cp_reginfo[] = { - /* prefetch by MVA in v6, NOP in v7 */ - { .name = "MVA_prefetch", - .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, - .access = PL1_W, .type = ARM_CP_NOP }, - /* - * We need to break the TB after ISB to execute self-modifying code - * correctly and also to take any pending interrupts immediately. - * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. - */ - { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, - .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, - { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, - .access = PL0_W, .type = ARM_CP_NOP }, - { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, - .access = PL0_W, .type = ARM_CP_NOP }, - { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), - offsetof(CPUARMState, cp15.ifar_ns) }, - .resetvalue = 0, }, - /* - * Watchpoint Fault Address Register : should actually only be present - * for 1136, 1176, 11MPCore. - */ - { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, - .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, - { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, - .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, - .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), - .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, -}; - -typedef struct pm_event { - uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ - /* If the event is supported on this CPU (used to generate PMCEID[01]) */ - bool (*supported)(CPUARMState *); - /* - * Retrieve the current count of the underlying event. The programmed - * counters hold a difference from the return value from this function - */ - uint64_t (*get_count)(CPUARMState *); - /* - * Return how many nanoseconds it will take (at a minimum) for count events - * to occur. A negative value indicates the counter will never overflow, or - * that the counter has otherwise arranged for the overflow bit to be set - * and the PMU interrupt to be raised on overflow. - */ - int64_t (*ns_per_count)(uint64_t); -} pm_event; - -static bool event_always_supported(CPUARMState *env) -{ - return true; -} - -static uint64_t swinc_get_count(CPUARMState *env) -{ - /* - * SW_INCR events are written directly to the pmevcntr's by writes to - * PMSWINC, so there is no underlying count maintained by the PMU itself - */ - return 0; -} - -static int64_t swinc_ns_per(uint64_t ignored) -{ - return -1; -} - -/* - * Return the underlying cycle count for the PMU cycle counters. If we're in - * usermode, simply return 0. - */ -static uint64_t cycles_get_count(CPUARMState *env) -{ -#ifndef CONFIG_USER_ONLY - return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), - ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); -#else - return cpu_get_host_ticks(); -#endif -} - -#ifndef CONFIG_USER_ONLY -static int64_t cycles_ns_per(uint64_t cycles) -{ - return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; -} - -static bool instructions_supported(CPUARMState *env) -{ - return icount_enabled() == 1; /* Precise instruction counting */ -} - -static uint64_t instructions_get_count(CPUARMState *env) -{ - return (uint64_t)icount_get_raw(); -} - -static int64_t instructions_ns_per(uint64_t icount) -{ - return icount_to_ns((int64_t)icount); -} -#endif - -static bool pmuv3p1_events_supported(CPUARMState *env) -{ - /* For events which are supported in any v8.1 PMU */ - return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); -} - -static bool pmuv3p4_events_supported(CPUARMState *env) -{ - /* For events which are supported in any v8.1 PMU */ - return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); -} - -static uint64_t zero_event_get_count(CPUARMState *env) -{ - /* For events which on QEMU never fire, so their count is always zero */ - return 0; -} - -static int64_t zero_event_ns_per(uint64_t cycles) -{ - /* An event which never fires can never overflow */ - return -1; -} - -static const pm_event pm_events[] = { - { .number = 0x000, /* SW_INCR */ - .supported = event_always_supported, - .get_count = swinc_get_count, - .ns_per_count = swinc_ns_per, - }, -#ifndef CONFIG_USER_ONLY - { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ - .supported = instructions_supported, - .get_count = instructions_get_count, - .ns_per_count = instructions_ns_per, - }, - { .number = 0x011, /* CPU_CYCLES, Cycle */ - .supported = event_always_supported, - .get_count = cycles_get_count, - .ns_per_count = cycles_ns_per, - }, -#endif - { .number = 0x023, /* STALL_FRONTEND */ - .supported = pmuv3p1_events_supported, - .get_count = zero_event_get_count, - .ns_per_count = zero_event_ns_per, - }, - { .number = 0x024, /* STALL_BACKEND */ - .supported = pmuv3p1_events_supported, - .get_count = zero_event_get_count, - .ns_per_count = zero_event_ns_per, - }, - { .number = 0x03c, /* STALL */ - .supported = pmuv3p4_events_supported, - .get_count = zero_event_get_count, - .ns_per_count = zero_event_ns_per, - }, -}; - -/* - * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of - * events (i.e. the statistical profiling extension), this implementation - * should first be updated to something sparse instead of the current - * supported_event_map[] array. - */ -#define MAX_EVENT_ID 0x3c -#define UNSUPPORTED_EVENT UINT16_MAX -static uint16_t supported_event_map[MAX_EVENT_ID + 1]; - -/* - * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map - * of ARM event numbers to indices in our pm_events array. - * - * Note: Events in the 0x40XX range are not currently supported. - */ -void pmu_init(ARMCPU *cpu) -{ - unsigned int i; - - /* - * Empty supported_event_map and cpu->pmceid[01] before adding supported - * events to them - */ - for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { - supported_event_map[i] = UNSUPPORTED_EVENT; - } - cpu->pmceid0 = 0; - cpu->pmceid1 = 0; - - for (i = 0; i < ARRAY_SIZE(pm_events); i++) { - const pm_event *cnt = &pm_events[i]; - assert(cnt->number <= MAX_EVENT_ID); - /* We do not currently support events in the 0x40xx range */ - assert(cnt->number <= 0x3f); - - if (cnt->supported(&cpu->env)) { - supported_event_map[cnt->number] = i; - uint64_t event_mask = 1ULL << (cnt->number & 0x1f); - if (cnt->number & 0x20) { - cpu->pmceid1 |= event_mask; - } else { - cpu->pmceid0 |= event_mask; - } - } - } -} - -/* - * Check at runtime whether a PMU event is supported for the current machine - */ -static bool event_supported(uint16_t number) -{ - if (number > MAX_EVENT_ID) { - return false; - } - return supported_event_map[number] != UNSUPPORTED_EVENT; -} - -static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - /* - * Performance monitor registers user accessibility is controlled - * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable - * trapping to EL2 or EL3 for other accesses. - */ - int el = arm_current_el(env); - uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); - - if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { - return CP_ACCESS_TRAP; - } - if (el < 2 && (mdcr_el2 & MDCR_TPM)) { - return CP_ACCESS_TRAP_EL2; - } - if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { - return CP_ACCESS_TRAP_EL3; - } - - return CP_ACCESS_OK; -} - -static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, - const ARMCPRegInfo *ri, - bool isread) -{ - /* ER: event counter read trap control */ - if (arm_feature(env, ARM_FEATURE_V8) - && arm_current_el(env) == 0 - && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 - && isread) { - return CP_ACCESS_OK; - } - - return pmreg_access(env, ri, isread); -} - -static CPAccessResult pmreg_access_swinc(CPUARMState *env, - const ARMCPRegInfo *ri, - bool isread) -{ - /* SW: software increment write trap control */ - if (arm_feature(env, ARM_FEATURE_V8) - && arm_current_el(env) == 0 - && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 - && !isread) { - return CP_ACCESS_OK; - } - - return pmreg_access(env, ri, isread); -} - -static CPAccessResult pmreg_access_selr(CPUARMState *env, - const ARMCPRegInfo *ri, - bool isread) -{ - /* ER: event counter read trap control */ - if (arm_feature(env, ARM_FEATURE_V8) - && arm_current_el(env) == 0 - && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { - return CP_ACCESS_OK; - } - - return pmreg_access(env, ri, isread); -} - -static CPAccessResult pmreg_access_ccntr(CPUARMState *env, - const ARMCPRegInfo *ri, - bool isread) -{ - /* CR: cycle counter read trap control */ - if (arm_feature(env, ARM_FEATURE_V8) - && arm_current_el(env) == 0 - && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 - && isread) { - return CP_ACCESS_OK; - } - - return pmreg_access(env, ri, isread); -} - -/* - * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. - * We use these to decide whether we need to wrap a write to MDCR_EL2 - * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. - */ -#define MDCR_EL2_PMU_ENABLE_BITS \ - (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) -#define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) - -/* - * Returns true if the counter (pass 31 for PMCCNTR) should count events using - * the current EL, security state, and register configuration. - */ -static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) -{ - uint64_t filter; - bool e, p, u, nsk, nsu, nsh, m; - bool enabled, prohibited = false, filtered; - bool secure = arm_is_secure(env); - int el = arm_current_el(env); - uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); - uint8_t hpmn = mdcr_el2 & MDCR_HPMN; - - if (!arm_feature(env, ARM_FEATURE_PMU)) { - return false; - } - - if (!arm_feature(env, ARM_FEATURE_EL2) || - (counter < hpmn || counter == 31)) { - e = env->cp15.c9_pmcr & PMCRE; - } else { - e = mdcr_el2 & MDCR_HPME; - } - enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); - - /* Is event counting prohibited? */ - if (el == 2 && (counter < hpmn || counter == 31)) { - prohibited = mdcr_el2 & MDCR_HPMD; - } - if (secure) { - prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); - } - - if (counter == 31) { - /* - * The cycle counter defaults to running. PMCR.DP says "disable - * the cycle counter when event counting is prohibited". - * Some MDCR bits disable the cycle counter specifically. - */ - prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; - if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { - if (secure) { - prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); - } - if (el == 2) { - prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); - } - } - } - - if (counter == 31) { - filter = env->cp15.pmccfiltr_el0; - } else { - filter = env->cp15.c14_pmevtyper[counter]; - } - - p = filter & PMXEVTYPER_P; - u = filter & PMXEVTYPER_U; - nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); - nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); - nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); - m = arm_el_is_aa64(env, 1) && - arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); - - if (el == 0) { - filtered = secure ? u : u != nsu; - } else if (el == 1) { - filtered = secure ? p : p != nsk; - } else if (el == 2) { - filtered = !nsh; - } else { /* EL3 */ - filtered = m != p; - } - - if (counter != 31) { - /* - * If not checking PMCCNTR, ensure the counter is setup to an event we - * support - */ - uint16_t event = filter & PMXEVTYPER_EVTCOUNT; - if (!event_supported(event)) { - return false; - } - } - - return enabled && !prohibited && !filtered; -} - -static void pmu_update_irq(CPUARMState *env) -{ - ARMCPU *cpu = env_archcpu(env); - qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && - (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); -} - -static bool pmccntr_clockdiv_enabled(CPUARMState *env) -{ - /* - * Return true if the clock divider is enabled and the cycle counter - * is supposed to tick only once every 64 clock cycles. This is - * controlled by PMCR.D, but if PMCR.LC is set to enable the long - * (64-bit) cycle counter PMCR.D has no effect. - */ - return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; -} - -static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) -{ - /* Return true if the specified event counter is configured to be 64 bit */ - - /* This isn't intended to be used with the cycle counter */ - assert(counter < 31); - - if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { - return false; - } - - if (arm_feature(env, ARM_FEATURE_EL2)) { - /* - * MDCR_EL2.HLP still applies even when EL2 is disabled in the - * current security state, so we don't use arm_mdcr_el2_eff() here. - */ - bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; - int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; - - if (hpmn != 0 && counter >= hpmn) { - return hlp; - } - } - return env->cp15.c9_pmcr & PMCRLP; -} - -/* - * Ensure c15_ccnt is the guest-visible count so that operations such as - * enabling/disabling the counter or filtering, modifying the count itself, - * etc. can be done logically. This is essentially a no-op if the counter is - * not enabled at the time of the call. - */ -static void pmccntr_op_start(CPUARMState *env) -{ - uint64_t cycles = cycles_get_count(env); - - if (pmu_counter_enabled(env, 31)) { - uint64_t eff_cycles = cycles; - if (pmccntr_clockdiv_enabled(env)) { - eff_cycles /= 64; - } - - uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; - - uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ - 1ull << 63 : 1ull << 31; - if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { - env->cp15.c9_pmovsr |= (1ULL << 31); - pmu_update_irq(env); - } - - env->cp15.c15_ccnt = new_pmccntr; - } - env->cp15.c15_ccnt_delta = cycles; -} - -/* - * If PMCCNTR is enabled, recalculate the delta between the clock and the - * guest-visible count. A call to pmccntr_op_finish should follow every call to - * pmccntr_op_start. - */ -static void pmccntr_op_finish(CPUARMState *env) -{ - if (pmu_counter_enabled(env, 31)) { -#ifndef CONFIG_USER_ONLY - /* Calculate when the counter will next overflow */ - uint64_t remaining_cycles = -env->cp15.c15_ccnt; - if (!(env->cp15.c9_pmcr & PMCRLC)) { - remaining_cycles = (uint32_t)remaining_cycles; - } - int64_t overflow_in = cycles_ns_per(remaining_cycles); - - if (overflow_in > 0) { - int64_t overflow_at; - - if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), - overflow_in, &overflow_at)) { - ARMCPU *cpu = env_archcpu(env); - timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); - } - } -#endif - - uint64_t prev_cycles = env->cp15.c15_ccnt_delta; - if (pmccntr_clockdiv_enabled(env)) { - prev_cycles /= 64; - } - env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; - } -} - -static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) -{ - - uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; - uint64_t count = 0; - if (event_supported(event)) { - uint16_t event_idx = supported_event_map[event]; - count = pm_events[event_idx].get_count(env); - } - - if (pmu_counter_enabled(env, counter)) { - uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; - uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? - 1ULL << 63 : 1ULL << 31; - - if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { - env->cp15.c9_pmovsr |= (1 << counter); - pmu_update_irq(env); - } - env->cp15.c14_pmevcntr[counter] = new_pmevcntr; - } - env->cp15.c14_pmevcntr_delta[counter] = count; -} - -static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) -{ - if (pmu_counter_enabled(env, counter)) { -#ifndef CONFIG_USER_ONLY - uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; - uint16_t event_idx = supported_event_map[event]; - uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); - int64_t overflow_in; - - if (!pmevcntr_is_64_bit(env, counter)) { - delta = (uint32_t)delta; - } - overflow_in = pm_events[event_idx].ns_per_count(delta); - - if (overflow_in > 0) { - int64_t overflow_at; - - if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), - overflow_in, &overflow_at)) { - ARMCPU *cpu = env_archcpu(env); - timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); - } - } -#endif - - env->cp15.c14_pmevcntr_delta[counter] -= - env->cp15.c14_pmevcntr[counter]; - } -} - -void pmu_op_start(CPUARMState *env) -{ - unsigned int i; - pmccntr_op_start(env); - for (i = 0; i < pmu_num_counters(env); i++) { - pmevcntr_op_start(env, i); - } -} - -void pmu_op_finish(CPUARMState *env) -{ - unsigned int i; - pmccntr_op_finish(env); - for (i = 0; i < pmu_num_counters(env); i++) { - pmevcntr_op_finish(env, i); - } -} - -void pmu_pre_el_change(ARMCPU *cpu, void *ignored) -{ - pmu_op_start(&cpu->env); -} - -void pmu_post_el_change(ARMCPU *cpu, void *ignored) -{ - pmu_op_finish(&cpu->env); -} - -void arm_pmu_timer_cb(void *opaque) -{ - ARMCPU *cpu = opaque; - - /* - * Update all the counter values based on the current underlying counts, - * triggering interrupts to be raised, if necessary. pmu_op_finish() also - * has the effect of setting the cpu->pmu_timer to the next earliest time a - * counter may expire. - */ - pmu_op_start(&cpu->env); - pmu_op_finish(&cpu->env); -} - -static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - pmu_op_start(env); - - if (value & PMCRC) { - /* The counter has been reset */ - env->cp15.c15_ccnt = 0; - } - - if (value & PMCRP) { - unsigned int i; - for (i = 0; i < pmu_num_counters(env); i++) { - env->cp15.c14_pmevcntr[i] = 0; - } - } - - env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; - env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); - - pmu_op_finish(env); -} - -static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - unsigned int i; - uint64_t overflow_mask, new_pmswinc; - - for (i = 0; i < pmu_num_counters(env); i++) { - /* Increment a counter's count iff: */ - if ((value & (1 << i)) && /* counter's bit is set */ - /* counter is enabled and not filtered */ - pmu_counter_enabled(env, i) && - /* counter is SW_INCR */ - (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { - pmevcntr_op_start(env, i); - - /* - * Detect if this write causes an overflow since we can't predict - * PMSWINC overflows like we can for other events - */ - new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; - - overflow_mask = pmevcntr_is_64_bit(env, i) ? - 1ULL << 63 : 1ULL << 31; - - if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { - env->cp15.c9_pmovsr |= (1 << i); - pmu_update_irq(env); - } - - env->cp15.c14_pmevcntr[i] = new_pmswinc; - - pmevcntr_op_finish(env, i); - } - } -} - -static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - uint64_t ret; - pmccntr_op_start(env); - ret = env->cp15.c15_ccnt; - pmccntr_op_finish(env); - return ret; -} - -static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and - * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the - * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are - * accessed. - */ - env->cp15.c9_pmselr = value & 0x1f; -} - -static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - pmccntr_op_start(env); - env->cp15.c15_ccnt = value; - pmccntr_op_finish(env); -} - -static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - uint64_t cur_val = pmccntr_read(env, NULL); - - pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); -} - -static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - pmccntr_op_start(env); - env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; - pmccntr_op_finish(env); -} - -static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - pmccntr_op_start(env); - /* M is not accessible from AArch32 */ - env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | - (value & PMCCFILTR); - pmccntr_op_finish(env); -} - -static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) -{ - /* M is not visible in AArch32 */ - return env->cp15.pmccfiltr_el0 & PMCCFILTR; -} - -static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - pmu_op_start(env); - value &= pmu_counter_mask(env); - env->cp15.c9_pmcnten |= value; - pmu_op_finish(env); -} - -static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - pmu_op_start(env); - value &= pmu_counter_mask(env); - env->cp15.c9_pmcnten &= ~value; - pmu_op_finish(env); -} - -static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - value &= pmu_counter_mask(env); - env->cp15.c9_pmovsr &= ~value; - pmu_update_irq(env); -} - -static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - value &= pmu_counter_mask(env); - env->cp15.c9_pmovsr |= value; - pmu_update_irq(env); -} - -static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value, const uint8_t counter) -{ - if (counter == 31) { - pmccfiltr_write(env, ri, value); - } else if (counter < pmu_num_counters(env)) { - pmevcntr_op_start(env, counter); - - /* - * If this counter's event type is changing, store the current - * underlying count for the new type in c14_pmevcntr_delta[counter] so - * pmevcntr_op_finish has the correct baseline when it converts back to - * a delta. - */ - uint16_t old_event = env->cp15.c14_pmevtyper[counter] & - PMXEVTYPER_EVTCOUNT; - uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; - if (old_event != new_event) { - uint64_t count = 0; - if (event_supported(new_event)) { - uint16_t event_idx = supported_event_map[new_event]; - count = pm_events[event_idx].get_count(env); - } - env->cp15.c14_pmevcntr_delta[counter] = count; - } - - env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; - pmevcntr_op_finish(env, counter); - } - /* - * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when - * PMSELR value is equal to or greater than the number of implemented - * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. - */ -} - -static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, - const uint8_t counter) -{ - if (counter == 31) { - return env->cp15.pmccfiltr_el0; - } else if (counter < pmu_num_counters(env)) { - return env->cp15.c14_pmevtyper[counter]; - } else { - /* - * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER - * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). - */ - return 0; - } -} - -static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); - pmevtyper_write(env, ri, value, counter); -} - -static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); - env->cp15.c14_pmevtyper[counter] = value; - - /* - * pmevtyper_rawwrite is called between a pair of pmu_op_start and - * pmu_op_finish calls when loading saved state for a migration. Because - * we're potentially updating the type of event here, the value written to - * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a - * different counter type. Therefore, we need to set this value to the - * current count for the counter type we're writing so that pmu_op_finish - * has the correct count for its calculation. - */ - uint16_t event = value & PMXEVTYPER_EVTCOUNT; - if (event_supported(event)) { - uint16_t event_idx = supported_event_map[event]; - env->cp15.c14_pmevcntr_delta[counter] = - pm_events[event_idx].get_count(env); - } -} - -static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) -{ - uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); - return pmevtyper_read(env, ri, counter); -} - -static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); -} - -static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); -} - -static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value, uint8_t counter) -{ - if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { - /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ - value &= MAKE_64BIT_MASK(0, 32); - } - if (counter < pmu_num_counters(env)) { - pmevcntr_op_start(env, counter); - env->cp15.c14_pmevcntr[counter] = value; - pmevcntr_op_finish(env, counter); - } - /* - * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR - * are CONSTRAINED UNPREDICTABLE. - */ -} - -static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, - uint8_t counter) -{ - if (counter < pmu_num_counters(env)) { - uint64_t ret; - pmevcntr_op_start(env, counter); - ret = env->cp15.c14_pmevcntr[counter]; - pmevcntr_op_finish(env, counter); - if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { - /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ - ret &= MAKE_64BIT_MASK(0, 32); - } - return ret; - } else { - /* - * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR - * are CONSTRAINED UNPREDICTABLE. - */ - return 0; - } -} - -static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); - pmevcntr_write(env, ri, value, counter); -} - -static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) -{ - uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); - return pmevcntr_read(env, ri, counter); -} - -static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); - assert(counter < pmu_num_counters(env)); - env->cp15.c14_pmevcntr[counter] = value; - pmevcntr_write(env, ri, value, counter); -} - -static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) -{ - uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); - assert(counter < pmu_num_counters(env)); - return env->cp15.c14_pmevcntr[counter]; -} - -static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); -} - -static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); -} - -static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - if (arm_feature(env, ARM_FEATURE_V8)) { - env->cp15.c9_pmuserenr = value & 0xf; - } else { - env->cp15.c9_pmuserenr = value & 1; - } -} - -static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* We have no event counters so only the C bit can be changed */ - value &= pmu_counter_mask(env); - env->cp15.c9_pminten |= value; - pmu_update_irq(env); -} - -static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - value &= pmu_counter_mask(env); - env->cp15.c9_pminten &= ~value; - pmu_update_irq(env); -} - -static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * Note that even though the AArch64 view of this register has bits - * [10:0] all RES0 we can only mask the bottom 5, to comply with the - * architectural requirements for bits which are RES0 only in some - * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 - * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) - */ - raw_write(env, ri, value & ~0x1FULL); -} - -static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) -{ - /* Begin with base v8.0 state. */ - uint64_t valid_mask = 0x3fff; - ARMCPU *cpu = env_archcpu(env); - uint64_t changed; - - /* - * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always - * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. - * Instead, choose the format based on the mode of EL3. - */ - if (arm_el_is_aa64(env, 3)) { - value |= SCR_FW | SCR_AW; /* RES1 */ - valid_mask &= ~SCR_NET; /* RES0 */ - - if (!cpu_isar_feature(aa64_aa32_el1, cpu) && - !cpu_isar_feature(aa64_aa32_el2, cpu)) { - value |= SCR_RW; /* RAO/WI */ - } - if (cpu_isar_feature(aa64_ras, cpu)) { - valid_mask |= SCR_TERR; - } - if (cpu_isar_feature(aa64_lor, cpu)) { - valid_mask |= SCR_TLOR; - } - if (cpu_isar_feature(aa64_pauth, cpu)) { - valid_mask |= SCR_API | SCR_APK; - } - if (cpu_isar_feature(aa64_sel2, cpu)) { - valid_mask |= SCR_EEL2; - } - if (cpu_isar_feature(aa64_mte, cpu)) { - valid_mask |= SCR_ATA; - } - if (cpu_isar_feature(aa64_scxtnum, cpu)) { - valid_mask |= SCR_ENSCXT; - } - if (cpu_isar_feature(aa64_doublefault, cpu)) { - valid_mask |= SCR_EASE | SCR_NMEA; - } - if (cpu_isar_feature(aa64_sme, cpu)) { - valid_mask |= SCR_ENTP2; - } - } else { - valid_mask &= ~(SCR_RW | SCR_ST); - if (cpu_isar_feature(aa32_ras, cpu)) { - valid_mask |= SCR_TERR; - } - } - - if (!arm_feature(env, ARM_FEATURE_EL2)) { - valid_mask &= ~SCR_HCE; - - /* - * On ARMv7, SMD (or SCD as it is called in v7) is only - * supported if EL2 exists. The bit is UNK/SBZP when - * EL2 is unavailable. In QEMU ARMv7, we force it to always zero - * when EL2 is unavailable. - * On ARMv8, this bit is always available. - */ - if (arm_feature(env, ARM_FEATURE_V7) && - !arm_feature(env, ARM_FEATURE_V8)) { - valid_mask &= ~SCR_SMD; - } - } - - /* Clear all-context RES0 bits. */ - value &= valid_mask; - changed = env->cp15.scr_el3 ^ value; - env->cp15.scr_el3 = value; - - /* - * If SCR_EL3.NS changes, i.e. arm_is_secure_below_el3, then - * we must invalidate all TLBs below EL3. - */ - if (changed & SCR_NS) { - tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | - ARMMMUIdxBit_E20_0 | - ARMMMUIdxBit_E10_1 | - ARMMMUIdxBit_E20_2 | - ARMMMUIdxBit_E10_1_PAN | - ARMMMUIdxBit_E20_2_PAN | - ARMMMUIdxBit_E2)); - } -} - -static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) -{ - /* - * scr_write will set the RES1 bits on an AArch64-only CPU. - * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. - */ - scr_write(env, ri, 0); -} - -static CPAccessResult access_tid4(CPUARMState *env, - const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_current_el(env) == 1 && - (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { - return CP_ACCESS_TRAP_EL2; - } - - return CP_ACCESS_OK; -} - -static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - ARMCPU *cpu = env_archcpu(env); - - /* - * Acquire the CSSELR index from the bank corresponding to the CCSIDR - * bank - */ - uint32_t index = A32_BANKED_REG_GET(env, csselr, - ri->secure & ARM_CP_SECSTATE_S); - - return cpu->ccsidr[index]; -} - -static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - raw_write(env, ri, value & 0xf); -} - -static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - CPUState *cs = env_cpu(env); - bool el1 = arm_current_el(env) == 1; - uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; - uint64_t ret = 0; - - if (hcr_el2 & HCR_IMO) { - if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { - ret |= CPSR_I; - } - } else { - if (cs->interrupt_request & CPU_INTERRUPT_HARD) { - ret |= CPSR_I; - } - } - - if (hcr_el2 & HCR_FMO) { - if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { - ret |= CPSR_F; - } - } else { - if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { - ret |= CPSR_F; - } - } - - if (hcr_el2 & HCR_AMO) { - if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { - ret |= CPSR_A; - } - } - - return ret; -} - -static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { - return CP_ACCESS_TRAP_EL2; - } - - return CP_ACCESS_OK; -} - -static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_feature(env, ARM_FEATURE_V8)) { - return access_aa64_tid1(env, ri, isread); - } - - return CP_ACCESS_OK; -} - -static const ARMCPRegInfo v7_cp_reginfo[] = { - /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ - { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, - .access = PL1_W, .type = ARM_CP_NOP }, - /* - * Performance monitors are implementation defined in v7, - * but with an ARM recommended set of registers, which we - * follow. - * - * Performance registers fall into three categories: - * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) - * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) - * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) - * For the cases controlled by PMUSERENR we must set .access to PL0_RW - * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. - */ - { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, - .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, - .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), - .writefn = pmcntenset_write, - .accessfn = pmreg_access, - .raw_writefn = raw_write }, - { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, - .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, - .access = PL0_RW, .accessfn = pmreg_access, - .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, - .writefn = pmcntenset_write, .raw_writefn = raw_write }, - { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, - .access = PL0_RW, - .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), - .accessfn = pmreg_access, - .writefn = pmcntenclr_write, - .type = ARM_CP_ALIAS | ARM_CP_IO }, - { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, - .access = PL0_RW, .accessfn = pmreg_access, - .type = ARM_CP_ALIAS | ARM_CP_IO, - .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), - .writefn = pmcntenclr_write }, - { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, - .access = PL0_RW, .type = ARM_CP_IO, - .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), - .accessfn = pmreg_access, - .writefn = pmovsr_write, - .raw_writefn = raw_write }, - { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, - .access = PL0_RW, .accessfn = pmreg_access, - .type = ARM_CP_ALIAS | ARM_CP_IO, - .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), - .writefn = pmovsr_write, - .raw_writefn = raw_write }, - { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, - .access = PL0_W, .accessfn = pmreg_access_swinc, - .type = ARM_CP_NO_RAW | ARM_CP_IO, - .writefn = pmswinc_write }, - { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, - .access = PL0_W, .accessfn = pmreg_access_swinc, - .type = ARM_CP_NO_RAW | ARM_CP_IO, - .writefn = pmswinc_write }, - { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, - .access = PL0_RW, .type = ARM_CP_ALIAS, - .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), - .accessfn = pmreg_access_selr, .writefn = pmselr_write, - .raw_writefn = raw_write}, - { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, - .access = PL0_RW, .accessfn = pmreg_access_selr, - .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), - .writefn = pmselr_write, .raw_writefn = raw_write, }, - { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, - .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, - .readfn = pmccntr_read, .writefn = pmccntr_write32, - .accessfn = pmreg_access_ccntr }, - { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, - .access = PL0_RW, .accessfn = pmreg_access_ccntr, - .type = ARM_CP_IO, - .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), - .readfn = pmccntr_read, .writefn = pmccntr_write, - .raw_readfn = raw_read, .raw_writefn = raw_write, }, - { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, - .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, - .access = PL0_RW, .accessfn = pmreg_access, - .type = ARM_CP_ALIAS | ARM_CP_IO, - .resetvalue = 0, }, - { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, - .writefn = pmccfiltr_write, .raw_writefn = raw_write, - .access = PL0_RW, .accessfn = pmreg_access, - .type = ARM_CP_IO, - .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), - .resetvalue = 0, }, - { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, - .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, - .accessfn = pmreg_access, - .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, - { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, - .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, - .accessfn = pmreg_access, - .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, - { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, - .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, - .accessfn = pmreg_access_xevcntr, - .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, - { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, - .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, - .accessfn = pmreg_access_xevcntr, - .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, - { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, - .access = PL0_R | PL1_RW, .accessfn = access_tpm, - .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), - .resetvalue = 0, - .writefn = pmuserenr_write, .raw_writefn = raw_write }, - { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, - .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, - .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), - .resetvalue = 0, - .writefn = pmuserenr_write, .raw_writefn = raw_write }, - { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, - .access = PL1_RW, .accessfn = access_tpm, - .type = ARM_CP_ALIAS | ARM_CP_IO, - .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), - .resetvalue = 0, - .writefn = pmintenset_write, .raw_writefn = raw_write }, - { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, - .access = PL1_RW, .accessfn = access_tpm, - .type = ARM_CP_IO, - .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), - .writefn = pmintenset_write, .raw_writefn = raw_write, - .resetvalue = 0x0 }, - { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, - .access = PL1_RW, .accessfn = access_tpm, - .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, - .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), - .writefn = pmintenclr_write, }, - { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, - .access = PL1_RW, .accessfn = access_tpm, - .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, - .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), - .writefn = pmintenclr_write }, - { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, - .access = PL1_R, - .accessfn = access_tid4, - .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, - { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, - .access = PL1_RW, - .accessfn = access_tid4, - .writefn = csselr_write, .resetvalue = 0, - .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), - offsetof(CPUARMState, cp15.csselr_ns) } }, - /* - * Auxiliary ID register: this actually has an IMPDEF value but for now - * just RAZ for all cores: - */ - { .name = "AIDR", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid1, - .resetvalue = 0 }, - /* - * Auxiliary fault status registers: these also are IMPDEF, and we - * choose to RAZ/WI for all cores. - */ - { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .type = ARM_CP_CONST, .resetvalue = 0 }, - /* - * MAIR can just read-as-written because we don't implement caches - * and so don't need to care about memory attributes. - */ - { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), - .resetvalue = 0 }, - { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, - .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), - .resetvalue = 0 }, - /* - * For non-long-descriptor page tables these are PRRR and NMRR; - * regardless they still act as reads-as-written for QEMU. - */ - /* - * MAIR0/1 are defined separately from their 64-bit counterpart which - * allows them to assign the correct fieldoffset based on the endianness - * handled in the field definitions. - */ - { .name = "MAIR0", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), - offsetof(CPUARMState, cp15.mair0_ns) }, - .resetfn = arm_cp_reset_ignore }, - { .name = "MAIR1", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), - offsetof(CPUARMState, cp15.mair1_ns) }, - .resetfn = arm_cp_reset_ignore }, - { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, - .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, - /* 32 bit ITLB invalidates */ - { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbiall_write }, - { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbimva_write }, - { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbiasid_write }, - /* 32 bit DTLB invalidates */ - { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbiall_write }, - { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbimva_write }, - { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbiasid_write }, - /* 32 bit TLB invalidates */ - { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbiall_write }, - { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbimva_write }, - { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbiasid_write }, - { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbimvaa_write }, -}; - -static const ARMCPRegInfo v7mp_cp_reginfo[] = { - /* 32 bit TLB invalidates, Inner Shareable */ - { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, - .writefn = tlbiall_is_write }, - { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, - .writefn = tlbimva_is_write }, - { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, - .writefn = tlbiasid_is_write }, - { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, - .writefn = tlbimvaa_is_write }, -}; - -static const ARMCPRegInfo pmovsset_cp_reginfo[] = { - /* PMOVSSET is not implemented in v7 before v7ve */ - { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, - .access = PL0_RW, .accessfn = pmreg_access, - .type = ARM_CP_ALIAS | ARM_CP_IO, - .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), - .writefn = pmovsset_write, - .raw_writefn = raw_write }, - { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, - .access = PL0_RW, .accessfn = pmreg_access, - .type = ARM_CP_ALIAS | ARM_CP_IO, - .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), - .writefn = pmovsset_write, - .raw_writefn = raw_write }, -}; - -static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - value &= 1; - env->teecr = value; -} - -static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - /* - * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE - * at all, so we don't need to check whether we're v8A. - */ - if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && - (env->cp15.hstr_el2 & HSTR_TTEE)) { - return CP_ACCESS_TRAP_EL2; - } - return CP_ACCESS_OK; -} - -static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_current_el(env) == 0 && (env->teecr & 1)) { - return CP_ACCESS_TRAP; - } - return teecr_access(env, ri, isread); -} - -static const ARMCPRegInfo t2ee_cp_reginfo[] = { - { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, - .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), - .resetvalue = 0, - .writefn = teecr_write, .accessfn = teecr_access }, - { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, - .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), - .accessfn = teehbr_access, .resetvalue = 0 }, -}; - -static const ARMCPRegInfo v6k_cp_reginfo[] = { - { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, - .access = PL0_RW, - .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, - { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, - .access = PL0_RW, - .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), - offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, - .resetfn = arm_cp_reset_ignore }, - { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, - .access = PL0_R | PL1_W, - .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), - .resetvalue = 0}, - { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, - .access = PL0_R | PL1_W, - .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), - offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, - .resetfn = arm_cp_reset_ignore }, - { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, - .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, - { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, - .access = PL1_RW, - .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), - offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, - .resetvalue = 0 }, -}; - -#ifndef CONFIG_USER_ONLY - -static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - /* - * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. - * Writable only at the highest implemented exception level. - */ - int el = arm_current_el(env); - uint64_t hcr; - uint32_t cntkctl; - - switch (el) { - case 0: - hcr = arm_hcr_el2_eff(env); - if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { - cntkctl = env->cp15.cnthctl_el2; - } else { - cntkctl = env->cp15.c14_cntkctl; - } - if (!extract32(cntkctl, 0, 2)) { - return CP_ACCESS_TRAP; - } - break; - case 1: - if (!isread && ri->state == ARM_CP_STATE_AA32 && - arm_is_secure_below_el3(env)) { - /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ - return CP_ACCESS_TRAP_UNCATEGORIZED; - } - break; - case 2: - case 3: - break; - } - - if (!isread && el < arm_highest_el(env)) { - return CP_ACCESS_TRAP_UNCATEGORIZED; - } - - return CP_ACCESS_OK; -} - -static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, - bool isread) -{ - unsigned int cur_el = arm_current_el(env); - bool has_el2 = arm_is_el2_enabled(env); - uint64_t hcr = arm_hcr_el2_eff(env); - - switch (cur_el) { - case 0: - /* If HCR_EL2. == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ - if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { - return (extract32(env->cp15.cnthctl_el2, timeridx, 1) - ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); - } - - /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ - if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { - return CP_ACCESS_TRAP; - } - - /* If HCR_EL2. == '10': check CNTHCTL_EL2.EL1PCTEN. */ - if (hcr & HCR_E2H) { - if (timeridx == GTIMER_PHYS && - !extract32(env->cp15.cnthctl_el2, 10, 1)) { - return CP_ACCESS_TRAP_EL2; - } - } else { - /* If HCR_EL2. == 0: check CNTHCTL_EL2.EL1PCEN. */ - if (has_el2 && timeridx == GTIMER_PHYS && - !extract32(env->cp15.cnthctl_el2, 1, 1)) { - return CP_ACCESS_TRAP_EL2; - } - } - break; - - case 1: - /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ - if (has_el2 && timeridx == GTIMER_PHYS && - (hcr & HCR_E2H - ? !extract32(env->cp15.cnthctl_el2, 10, 1) - : !extract32(env->cp15.cnthctl_el2, 0, 1))) { - return CP_ACCESS_TRAP_EL2; - } - break; - } - return CP_ACCESS_OK; -} - -static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, - bool isread) -{ - unsigned int cur_el = arm_current_el(env); - bool has_el2 = arm_is_el2_enabled(env); - uint64_t hcr = arm_hcr_el2_eff(env); - - switch (cur_el) { - case 0: - if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { - /* If HCR_EL2. == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ - return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) - ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); - } - - /* - * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from - * EL0 if EL0[PV]TEN is zero. - */ - if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { - return CP_ACCESS_TRAP; - } - /* fall through */ - - case 1: - if (has_el2 && timeridx == GTIMER_PHYS) { - if (hcr & HCR_E2H) { - /* If HCR_EL2. == '10': check CNTHCTL_EL2.EL1PTEN. */ - if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { - return CP_ACCESS_TRAP_EL2; - } - } else { - /* If HCR_EL2. == 0: check CNTHCTL_EL2.EL1PCEN. */ - if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { - return CP_ACCESS_TRAP_EL2; - } - } - } - break; - } - return CP_ACCESS_OK; -} - -static CPAccessResult gt_pct_access(CPUARMState *env, - const ARMCPRegInfo *ri, - bool isread) -{ - return gt_counter_access(env, GTIMER_PHYS, isread); -} - -static CPAccessResult gt_vct_access(CPUARMState *env, - const ARMCPRegInfo *ri, - bool isread) -{ - return gt_counter_access(env, GTIMER_VIRT, isread); -} - -static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - return gt_timer_access(env, GTIMER_PHYS, isread); -} - -static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - return gt_timer_access(env, GTIMER_VIRT, isread); -} - -static CPAccessResult gt_stimer_access(CPUARMState *env, - const ARMCPRegInfo *ri, - bool isread) -{ - /* - * The AArch64 register view of the secure physical timer is - * always accessible from EL3, and configurably accessible from - * Secure EL1. - */ - switch (arm_current_el(env)) { - case 1: - if (!arm_is_secure(env)) { - return CP_ACCESS_TRAP; - } - if (!(env->cp15.scr_el3 & SCR_ST)) { - return CP_ACCESS_TRAP_EL3; - } - return CP_ACCESS_OK; - case 0: - case 2: - return CP_ACCESS_TRAP; - case 3: - return CP_ACCESS_OK; - default: - g_assert_not_reached(); - } -} - -static uint64_t gt_get_countervalue(CPUARMState *env) -{ - ARMCPU *cpu = env_archcpu(env); - - return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); -} - -static void gt_recalc_timer(ARMCPU *cpu, int timeridx) -{ - ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; - - if (gt->ctl & 1) { - /* - * Timer enabled: calculate and set current ISTATUS, irq, and - * reset timer to when ISTATUS next has to change - */ - uint64_t offset = timeridx == GTIMER_VIRT ? - cpu->env.cp15.cntvoff_el2 : 0; - uint64_t count = gt_get_countervalue(&cpu->env); - /* Note that this must be unsigned 64 bit arithmetic: */ - int istatus = count - offset >= gt->cval; - uint64_t nexttick; - int irqstate; - - gt->ctl = deposit32(gt->ctl, 2, 1, istatus); - - irqstate = (istatus && !(gt->ctl & 2)); - qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); - - if (istatus) { - /* Next transition is when count rolls back over to zero */ - nexttick = UINT64_MAX; - } else { - /* Next transition is when we hit cval */ - nexttick = gt->cval + offset; - } - /* - * Note that the desired next expiry time might be beyond the - * signed-64-bit range of a QEMUTimer -- in this case we just - * set the timer for as far in the future as possible. When the - * timer expires we will reset the timer for any remaining period. - */ - if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { - timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); - } else { - timer_mod(cpu->gt_timer[timeridx], nexttick); - } - trace_arm_gt_recalc(timeridx, irqstate, nexttick); - } else { - /* Timer disabled: ISTATUS and timer output always clear */ - gt->ctl &= ~4; - qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); - timer_del(cpu->gt_timer[timeridx]); - trace_arm_gt_recalc_disabled(timeridx); - } -} - -static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, - int timeridx) -{ - ARMCPU *cpu = env_archcpu(env); - - timer_del(cpu->gt_timer[timeridx]); -} - -static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return gt_get_countervalue(env); -} - -static uint64_t gt_virt_cnt_offset(CPUARMState *env) -{ - uint64_t hcr; - - switch (arm_current_el(env)) { - case 2: - hcr = arm_hcr_el2_eff(env); - if (hcr & HCR_E2H) { - return 0; - } - break; - case 0: - hcr = arm_hcr_el2_eff(env); - if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { - return 0; - } - break; - } - - return env->cp15.cntvoff_el2; -} - -static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return gt_get_countervalue(env) - gt_virt_cnt_offset(env); -} - -static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, - int timeridx, - uint64_t value) -{ - trace_arm_gt_cval_write(timeridx, value); - env->cp15.c14_timer[timeridx].cval = value; - gt_recalc_timer(env_archcpu(env), timeridx); -} - -static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, - int timeridx) -{ - uint64_t offset = 0; - - switch (timeridx) { - case GTIMER_VIRT: - case GTIMER_HYPVIRT: - offset = gt_virt_cnt_offset(env); - break; - } - - return (uint32_t)(env->cp15.c14_timer[timeridx].cval - - (gt_get_countervalue(env) - offset)); -} - -static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, - int timeridx, - uint64_t value) -{ - uint64_t offset = 0; - - switch (timeridx) { - case GTIMER_VIRT: - case GTIMER_HYPVIRT: - offset = gt_virt_cnt_offset(env); - break; - } - - trace_arm_gt_tval_write(timeridx, value); - env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + - sextract64(value, 0, 32); - gt_recalc_timer(env_archcpu(env), timeridx); -} - -static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, - int timeridx, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; - - trace_arm_gt_ctl_write(timeridx, value); - env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); - if ((oldval ^ value) & 1) { - /* Enable toggled */ - gt_recalc_timer(cpu, timeridx); - } else if ((oldval ^ value) & 2) { - /* - * IMASK toggled: don't need to recalculate, - * just set the interrupt line based on ISTATUS - */ - int irqstate = (oldval & 4) && !(value & 2); - - trace_arm_gt_imask_toggle(timeridx, irqstate); - qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); - } -} - -static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) -{ - gt_timer_reset(env, ri, GTIMER_PHYS); -} - -static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_cval_write(env, ri, GTIMER_PHYS, value); -} - -static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return gt_tval_read(env, ri, GTIMER_PHYS); -} - -static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_tval_write(env, ri, GTIMER_PHYS, value); -} - -static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_ctl_write(env, ri, GTIMER_PHYS, value); -} - -static int gt_phys_redir_timeridx(CPUARMState *env) -{ - switch (arm_mmu_idx(env)) { - case ARMMMUIdx_E20_0: - case ARMMMUIdx_E20_2: - case ARMMMUIdx_E20_2_PAN: - return GTIMER_HYP; - default: - return GTIMER_PHYS; - } -} - -static int gt_virt_redir_timeridx(CPUARMState *env) -{ - switch (arm_mmu_idx(env)) { - case ARMMMUIdx_E20_0: - case ARMMMUIdx_E20_2: - case ARMMMUIdx_E20_2_PAN: - return GTIMER_HYPVIRT; - default: - return GTIMER_VIRT; - } -} - -static uint64_t gt_phys_redir_cval_read(CPUARMState *env, - const ARMCPRegInfo *ri) -{ - int timeridx = gt_phys_redir_timeridx(env); - return env->cp15.c14_timer[timeridx].cval; -} - -static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - int timeridx = gt_phys_redir_timeridx(env); - gt_cval_write(env, ri, timeridx, value); -} - -static uint64_t gt_phys_redir_tval_read(CPUARMState *env, - const ARMCPRegInfo *ri) -{ - int timeridx = gt_phys_redir_timeridx(env); - return gt_tval_read(env, ri, timeridx); -} - -static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - int timeridx = gt_phys_redir_timeridx(env); - gt_tval_write(env, ri, timeridx, value); -} - -static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, - const ARMCPRegInfo *ri) -{ - int timeridx = gt_phys_redir_timeridx(env); - return env->cp15.c14_timer[timeridx].ctl; -} - -static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - int timeridx = gt_phys_redir_timeridx(env); - gt_ctl_write(env, ri, timeridx, value); -} - -static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) -{ - gt_timer_reset(env, ri, GTIMER_VIRT); -} - -static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_cval_write(env, ri, GTIMER_VIRT, value); -} - -static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return gt_tval_read(env, ri, GTIMER_VIRT); -} - -static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_tval_write(env, ri, GTIMER_VIRT, value); -} - -static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_ctl_write(env, ri, GTIMER_VIRT, value); -} - -static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - - trace_arm_gt_cntvoff_write(value); - raw_write(env, ri, value); - gt_recalc_timer(cpu, GTIMER_VIRT); -} - -static uint64_t gt_virt_redir_cval_read(CPUARMState *env, - const ARMCPRegInfo *ri) -{ - int timeridx = gt_virt_redir_timeridx(env); - return env->cp15.c14_timer[timeridx].cval; -} - -static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - int timeridx = gt_virt_redir_timeridx(env); - gt_cval_write(env, ri, timeridx, value); -} - -static uint64_t gt_virt_redir_tval_read(CPUARMState *env, - const ARMCPRegInfo *ri) -{ - int timeridx = gt_virt_redir_timeridx(env); - return gt_tval_read(env, ri, timeridx); -} - -static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - int timeridx = gt_virt_redir_timeridx(env); - gt_tval_write(env, ri, timeridx, value); -} - -static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, - const ARMCPRegInfo *ri) -{ - int timeridx = gt_virt_redir_timeridx(env); - return env->cp15.c14_timer[timeridx].ctl; -} - -static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - int timeridx = gt_virt_redir_timeridx(env); - gt_ctl_write(env, ri, timeridx, value); -} - -static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) -{ - gt_timer_reset(env, ri, GTIMER_HYP); -} - -static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_cval_write(env, ri, GTIMER_HYP, value); -} - -static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return gt_tval_read(env, ri, GTIMER_HYP); -} - -static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_tval_write(env, ri, GTIMER_HYP, value); -} - -static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_ctl_write(env, ri, GTIMER_HYP, value); -} - -static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) -{ - gt_timer_reset(env, ri, GTIMER_SEC); -} - -static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_cval_write(env, ri, GTIMER_SEC, value); -} - -static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return gt_tval_read(env, ri, GTIMER_SEC); -} - -static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_tval_write(env, ri, GTIMER_SEC, value); -} - -static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_ctl_write(env, ri, GTIMER_SEC, value); -} - -static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) -{ - gt_timer_reset(env, ri, GTIMER_HYPVIRT); -} - -static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_cval_write(env, ri, GTIMER_HYPVIRT, value); -} - -static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return gt_tval_read(env, ri, GTIMER_HYPVIRT); -} - -static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_tval_write(env, ri, GTIMER_HYPVIRT, value); -} - -static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); -} - -void arm_gt_ptimer_cb(void *opaque) -{ - ARMCPU *cpu = opaque; - - gt_recalc_timer(cpu, GTIMER_PHYS); -} - -void arm_gt_vtimer_cb(void *opaque) -{ - ARMCPU *cpu = opaque; - - gt_recalc_timer(cpu, GTIMER_VIRT); -} - -void arm_gt_htimer_cb(void *opaque) -{ - ARMCPU *cpu = opaque; - - gt_recalc_timer(cpu, GTIMER_HYP); -} - -void arm_gt_stimer_cb(void *opaque) -{ - ARMCPU *cpu = opaque; - - gt_recalc_timer(cpu, GTIMER_SEC); -} - -void arm_gt_hvtimer_cb(void *opaque) -{ - ARMCPU *cpu = opaque; - - gt_recalc_timer(cpu, GTIMER_HYPVIRT); -} - -static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) -{ - ARMCPU *cpu = env_archcpu(env); - - cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; -} - -static const ARMCPRegInfo generic_timer_cp_reginfo[] = { - /* - * Note that CNTFRQ is purely reads-as-written for the benefit - * of software; writing it doesn't actually change the timer frequency. - * Our reset value matches the fixed frequency we implement the timer at. - */ - { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, - .type = ARM_CP_ALIAS, - .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, - .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), - }, - { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, - .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, - .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), - .resetfn = arm_gt_cntfrq_reset, - }, - /* overall control: mostly access permissions */ - { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, - .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), - .resetvalue = 0, - }, - /* per-timer control */ - { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, - .secure = ARM_CP_SECSTATE_NS, - .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, - .accessfn = gt_ptimer_access, - .fieldoffset = offsetoflow32(CPUARMState, - cp15.c14_timer[GTIMER_PHYS].ctl), - .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, - .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, - }, - { .name = "CNTP_CTL_S", - .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, - .secure = ARM_CP_SECSTATE_S, - .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, - .accessfn = gt_ptimer_access, - .fieldoffset = offsetoflow32(CPUARMState, - cp15.c14_timer[GTIMER_SEC].ctl), - .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, - }, - { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, - .type = ARM_CP_IO, .access = PL0_RW, - .accessfn = gt_ptimer_access, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), - .resetvalue = 0, - .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, - .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, - }, - { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, - .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, - .accessfn = gt_vtimer_access, - .fieldoffset = offsetoflow32(CPUARMState, - cp15.c14_timer[GTIMER_VIRT].ctl), - .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, - .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, - }, - { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, - .type = ARM_CP_IO, .access = PL0_RW, - .accessfn = gt_vtimer_access, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), - .resetvalue = 0, - .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, - .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, - }, - /* TimerValue views: a 32 bit downcounting view of the underlying state */ - { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, - .secure = ARM_CP_SECSTATE_NS, - .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, - .accessfn = gt_ptimer_access, - .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, - }, - { .name = "CNTP_TVAL_S", - .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, - .secure = ARM_CP_SECSTATE_S, - .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, - .accessfn = gt_ptimer_access, - .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, - }, - { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, - .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, - .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, - .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, - }, - { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, - .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, - .accessfn = gt_vtimer_access, - .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, - }, - { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, - .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, - .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, - .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, - }, - /* The counter itself */ - { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, - .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, - .accessfn = gt_pct_access, - .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, - }, - { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, - .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, - .accessfn = gt_pct_access, .readfn = gt_cnt_read, - }, - { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, - .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, - .accessfn = gt_vct_access, - .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, - }, - { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, - .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, - .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, - }, - /* Comparison value, indicating when the timer goes off */ - { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, - .secure = ARM_CP_SECSTATE_NS, - .access = PL0_RW, - .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), - .accessfn = gt_ptimer_access, - .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, - .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, - }, - { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, - .secure = ARM_CP_SECSTATE_S, - .access = PL0_RW, - .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), - .accessfn = gt_ptimer_access, - .writefn = gt_sec_cval_write, .raw_writefn = raw_write, - }, - { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, - .access = PL0_RW, - .type = ARM_CP_IO, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), - .resetvalue = 0, .accessfn = gt_ptimer_access, - .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, - .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, - }, - { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, - .access = PL0_RW, - .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), - .accessfn = gt_vtimer_access, - .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, - .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, - }, - { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, - .access = PL0_RW, - .type = ARM_CP_IO, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), - .resetvalue = 0, .accessfn = gt_vtimer_access, - .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, - .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, - }, - /* - * Secure timer -- this is actually restricted to only EL3 - * and configurably Secure-EL1 via the accessfn. - */ - { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, - .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, - .accessfn = gt_stimer_access, - .readfn = gt_sec_tval_read, - .writefn = gt_sec_tval_write, - .resetfn = gt_sec_timer_reset, - }, - { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, - .type = ARM_CP_IO, .access = PL1_RW, - .accessfn = gt_stimer_access, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), - .resetvalue = 0, - .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, - }, - { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, - .type = ARM_CP_IO, .access = PL1_RW, - .accessfn = gt_stimer_access, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), - .writefn = gt_sec_cval_write, .raw_writefn = raw_write, - }, -}; - -static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { - return CP_ACCESS_TRAP; - } - return CP_ACCESS_OK; -} - -#else - -/* - * In user-mode most of the generic timer registers are inaccessible - * however modern kernels (4.12+) allow access to cntvct_el0 - */ - -static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - ARMCPU *cpu = env_archcpu(env); - - /* - * Currently we have no support for QEMUTimer in linux-user so we - * can't call gt_get_countervalue(env), instead we directly - * call the lower level functions. - */ - return cpu_get_clock() / gt_cntfrq_period_ns(cpu); -} - -static const ARMCPRegInfo generic_timer_cp_reginfo[] = { - { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, - .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, - .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), - .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, - }, - { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, - .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, - .readfn = gt_virt_cnt_read, - }, -}; - -#endif - -static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) -{ - if (arm_feature(env, ARM_FEATURE_LPAE)) { - raw_write(env, ri, value); - } else if (arm_feature(env, ARM_FEATURE_V7)) { - raw_write(env, ri, value & 0xfffff6ff); - } else { - raw_write(env, ri, value & 0xfffff1ff); - } -} - -#ifndef CONFIG_USER_ONLY -/* get_phys_addr() isn't present for user-mode-only targets */ - -static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (ri->opc2 & 4) { - /* - * The ATS12NSO* operations must trap to EL3 or EL2 if executed in - * Secure EL1 (which can only happen if EL3 is AArch64). - * They are simply UNDEF if executed from NS EL1. - * They function normally from EL2 or EL3. - */ - if (arm_current_el(env) == 1) { - if (arm_is_secure_below_el3(env)) { - if (env->cp15.scr_el3 & SCR_EEL2) { - return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; - } - return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; - } - return CP_ACCESS_TRAP_UNCATEGORIZED; - } - } - return CP_ACCESS_OK; -} - -#ifdef CONFIG_TCG -static uint64_t do_ats_write(CPUARMState *env, uint64_t value, - MMUAccessType access_type, ARMMMUIdx mmu_idx, - bool is_secure) -{ - bool ret; - uint64_t par64; - bool format64 = false; - ARMMMUFaultInfo fi = {}; - GetPhysAddrResult res = {}; - - ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx, - is_secure, &res, &fi); - - /* - * ATS operations only do S1 or S1+S2 translations, so we never - * have to deal with the ARMCacheAttrs format for S2 only. - */ - assert(!res.cacheattrs.is_s2_format); - - if (ret) { - /* - * Some kinds of translation fault must cause exceptions rather - * than being reported in the PAR. - */ - int current_el = arm_current_el(env); - int target_el; - uint32_t syn, fsr, fsc; - bool take_exc = false; - - if (fi.s1ptw && current_el == 1 - && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { - /* - * Synchronous stage 2 fault on an access made as part of the - * translation table walk for AT S1E0* or AT S1E1* insn - * executed from NS EL1. If this is a synchronous external abort - * and SCR_EL3.EA == 1, then we take a synchronous external abort - * to EL3. Otherwise the fault is taken as an exception to EL2, - * and HPFAR_EL2 holds the faulting IPA. - */ - if (fi.type == ARMFault_SyncExternalOnWalk && - (env->cp15.scr_el3 & SCR_EA)) { - target_el = 3; - } else { - env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; - if (arm_is_secure_below_el3(env) && fi.s1ns) { - env->cp15.hpfar_el2 |= HPFAR_NS; - } - target_el = 2; - } - take_exc = true; - } else if (fi.type == ARMFault_SyncExternalOnWalk) { - /* - * Synchronous external aborts during a translation table walk - * are taken as Data Abort exceptions. - */ - if (fi.stage2) { - if (current_el == 3) { - target_el = 3; - } else { - target_el = 2; - } - } else { - target_el = exception_target_el(env); - } - take_exc = true; - } - - if (take_exc) { - /* Construct FSR and FSC using same logic as arm_deliver_fault() */ - if (target_el == 2 || arm_el_is_aa64(env, target_el) || - arm_s1_regime_using_lpae_format(env, mmu_idx)) { - fsr = arm_fi_to_lfsc(&fi); - fsc = extract32(fsr, 0, 6); - } else { - fsr = arm_fi_to_sfsc(&fi); - fsc = 0x3f; - } - /* - * Report exception with ESR indicating a fault due to a - * translation table walk for a cache maintenance instruction. - */ - syn = syn_data_abort_no_iss(current_el == target_el, 0, - fi.ea, 1, fi.s1ptw, 1, fsc); - env->exception.vaddress = value; - env->exception.fsr = fsr; - raise_exception(env, EXCP_DATA_ABORT, syn, target_el); - } - } - - if (is_a64(env)) { - format64 = true; - } else if (arm_feature(env, ARM_FEATURE_LPAE)) { - /* - * ATS1Cxx: - * * TTBCR.EAE determines whether the result is returned using the - * 32-bit or the 64-bit PAR format - * * Instructions executed in Hyp mode always use the 64bit format - * - * ATS1S2NSOxx uses the 64bit format if any of the following is true: - * * The Non-secure TTBCR.EAE bit is set to 1 - * * The implementation includes EL2, and the value of HCR.VM is 1 - * - * (Note that HCR.DC makes HCR.VM behave as if it is 1.) - * - * ATS1Hx always uses the 64bit format. - */ - format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); - - if (arm_feature(env, ARM_FEATURE_EL2)) { - if (mmu_idx == ARMMMUIdx_E10_0 || - mmu_idx == ARMMMUIdx_E10_1 || - mmu_idx == ARMMMUIdx_E10_1_PAN) { - format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); - } else { - format64 |= arm_current_el(env) == 2; - } - } - } - - if (format64) { - /* Create a 64-bit PAR */ - par64 = (1 << 11); /* LPAE bit always set */ - if (!ret) { - par64 |= res.f.phys_addr & ~0xfffULL; - if (!res.f.attrs.secure) { - par64 |= (1 << 9); /* NS */ - } - par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ - par64 |= res.cacheattrs.shareability << 7; /* SH */ - } else { - uint32_t fsr = arm_fi_to_lfsc(&fi); - - par64 |= 1; /* F */ - par64 |= (fsr & 0x3f) << 1; /* FS */ - if (fi.stage2) { - par64 |= (1 << 9); /* S */ - } - if (fi.s1ptw) { - par64 |= (1 << 8); /* PTW */ - } - } - } else { - /* - * fsr is a DFSR/IFSR value for the short descriptor - * translation table format (with WnR always clear). - * Convert it to a 32-bit PAR. - */ - if (!ret) { - /* We do not set any attribute bits in the PAR */ - if (res.f.lg_page_size == 24 - && arm_feature(env, ARM_FEATURE_V7)) { - par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); - } else { - par64 = res.f.phys_addr & 0xfffff000; - } - if (!res.f.attrs.secure) { - par64 |= (1 << 9); /* NS */ - } - } else { - uint32_t fsr = arm_fi_to_sfsc(&fi); - - par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | - ((fsr & 0xf) << 1) | 1; - } - } - return par64; -} -#endif /* CONFIG_TCG */ - -static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) -{ -#ifdef CONFIG_TCG - MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; - uint64_t par64; - ARMMMUIdx mmu_idx; - int el = arm_current_el(env); - bool secure = arm_is_secure_below_el3(env); - - switch (ri->opc2 & 6) { - case 0: - /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ - switch (el) { - case 3: - mmu_idx = ARMMMUIdx_E3; - secure = true; - break; - case 2: - g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ - /* fall through */ - case 1: - if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { - mmu_idx = ARMMMUIdx_Stage1_E1_PAN; - } else { - mmu_idx = ARMMMUIdx_Stage1_E1; - } - break; - default: - g_assert_not_reached(); - } - break; - case 2: - /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ - switch (el) { - case 3: - mmu_idx = ARMMMUIdx_E10_0; - secure = true; - break; - case 2: - g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ - mmu_idx = ARMMMUIdx_Stage1_E0; - break; - case 1: - mmu_idx = ARMMMUIdx_Stage1_E0; - break; - default: - g_assert_not_reached(); - } - break; - case 4: - /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ - mmu_idx = ARMMMUIdx_E10_1; - secure = false; - break; - case 6: - /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ - mmu_idx = ARMMMUIdx_E10_0; - secure = false; - break; - default: - g_assert_not_reached(); - } - - par64 = do_ats_write(env, value, access_type, mmu_idx, secure); - - A32_BANKED_CURRENT_REG_SET(env, par, par64); -#else - /* Handled by hardware accelerator. */ - g_assert_not_reached(); -#endif /* CONFIG_TCG */ -} - -static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ -#ifdef CONFIG_TCG - MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; - uint64_t par64; - - /* There is no SecureEL2 for AArch32. */ - par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false); - - A32_BANKED_CURRENT_REG_SET(env, par, par64); -#else - /* Handled by hardware accelerator. */ - g_assert_not_reached(); -#endif /* CONFIG_TCG */ -} - -static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_current_el(env) == 3 && - !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { - return CP_ACCESS_TRAP; - } - return CP_ACCESS_OK; -} - -static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ -#ifdef CONFIG_TCG - MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; - ARMMMUIdx mmu_idx; - int secure = arm_is_secure_below_el3(env); - uint64_t hcr_el2 = arm_hcr_el2_eff(env); - bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); - - switch (ri->opc2 & 6) { - case 0: - switch (ri->opc1) { - case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ - if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { - mmu_idx = regime_e20 ? - ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; - } else { - mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; - } - break; - case 4: /* AT S1E2R, AT S1E2W */ - mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; - break; - case 6: /* AT S1E3R, AT S1E3W */ - mmu_idx = ARMMMUIdx_E3; - secure = true; - break; - default: - g_assert_not_reached(); - } - break; - case 2: /* AT S1E0R, AT S1E0W */ - mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; - break; - case 4: /* AT S12E1R, AT S12E1W */ - mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; - break; - case 6: /* AT S12E0R, AT S12E0W */ - mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; - break; - default: - g_assert_not_reached(); - } - - env->cp15.par_el[1] = do_ats_write(env, value, access_type, - mmu_idx, secure); -#else - /* Handled by hardware accelerator. */ - g_assert_not_reached(); -#endif /* CONFIG_TCG */ -} -#endif - -static const ARMCPRegInfo vapa_cp_reginfo[] = { - { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, .resetvalue = 0, - .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), - offsetoflow32(CPUARMState, cp15.par_ns) }, - .writefn = par_write }, -#ifndef CONFIG_USER_ONLY - /* This underdecoding is safe because the reginfo is NO_RAW. */ - { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, - .access = PL1_W, .accessfn = ats_access, - .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, -#endif -}; - -/* Return basic MPU access permission bits. */ -static uint32_t simple_mpu_ap_bits(uint32_t val) -{ - uint32_t ret; - uint32_t mask; - int i; - ret = 0; - mask = 3; - for (i = 0; i < 16; i += 2) { - ret |= (val >> i) & mask; - mask <<= 2; - } - return ret; -} - -/* Pad basic MPU access permission bits to extended format. */ -static uint32_t extended_mpu_ap_bits(uint32_t val) -{ - uint32_t ret; - uint32_t mask; - int i; - ret = 0; - mask = 3; - for (i = 0; i < 16; i += 2) { - ret |= (val & mask) << i; - mask <<= 2; - } - return ret; -} - -static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); -} - -static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); -} - -static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); -} - -static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); -} - -static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); - - if (!u32p) { - return 0; - } - - u32p += env->pmsav7.rnr[M_REG_NS]; - return *u32p; -} - -static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); - - if (!u32p) { - return; - } - - u32p += env->pmsav7.rnr[M_REG_NS]; - tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ - *u32p = value; -} - -static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - uint32_t nrgs = cpu->pmsav7_dregion; - - if (value >= nrgs) { - qemu_log_mask(LOG_GUEST_ERROR, - "PMSAv7 RGNR write >= # supported regions, %" PRIu32 - " > %" PRIu32 "\n", (uint32_t)value, nrgs); - return; - } - - raw_write(env, ri, value); -} - -static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - - tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ - env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; -} - -static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; -} - -static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - - tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ - env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; -} - -static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; -} - -static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - - /* - * Ignore writes that would select not implemented region. - * This is architecturally UNPREDICTABLE. - */ - if (value >= cpu->pmsav7_dregion) { - return; - } - - env->pmsav7.rnr[M_REG_NS] = value; -} - -static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - - tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ - env->pmsav8.hprbar[env->pmsav8.hprselr] = value; -} - -static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return env->pmsav8.hprbar[env->pmsav8.hprselr]; -} - -static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - - tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ - env->pmsav8.hprlar[env->pmsav8.hprselr] = value; -} - -static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return env->pmsav8.hprlar[env->pmsav8.hprselr]; -} - -static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - uint32_t n; - uint32_t bit; - ARMCPU *cpu = env_archcpu(env); - - /* Ignore writes to unimplemented regions */ - int rmax = MIN(cpu->pmsav8r_hdregion, 32); - value &= MAKE_64BIT_MASK(0, rmax); - - tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ - - /* Register alias is only valid for first 32 indexes */ - for (n = 0; n < rmax; ++n) { - bit = extract32(value, n, 1); - env->pmsav8.hprlar[n] = deposit32( - env->pmsav8.hprlar[n], 0, 1, bit); - } -} - -static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - uint32_t n; - uint32_t result = 0x0; - ARMCPU *cpu = env_archcpu(env); - - /* Register alias is only valid for first 32 indexes */ - for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { - if (env->pmsav8.hprlar[n] & 0x1) { - result |= (0x1 << n); - } - } - return result; -} - -static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - - /* - * Ignore writes that would select not implemented region. - * This is architecturally UNPREDICTABLE. - */ - if (value >= cpu->pmsav8r_hdregion) { - return; - } - - env->pmsav8.hprselr = value; -} - -static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | - (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); - - tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ - - if (ri->opc1 & 4) { - if (index >= cpu->pmsav8r_hdregion) { - return; - } - if (ri->opc2 & 0x1) { - env->pmsav8.hprlar[index] = value; - } else { - env->pmsav8.hprbar[index] = value; - } - } else { - if (index >= cpu->pmsav7_dregion) { - return; - } - if (ri->opc2 & 0x1) { - env->pmsav8.rlar[M_REG_NS][index] = value; - } else { - env->pmsav8.rbar[M_REG_NS][index] = value; - } - } -} - -static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - ARMCPU *cpu = env_archcpu(env); - uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | - (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); - - if (ri->opc1 & 4) { - if (index >= cpu->pmsav8r_hdregion) { - return 0x0; - } - if (ri->opc2 & 0x1) { - return env->pmsav8.hprlar[index]; - } else { - return env->pmsav8.hprbar[index]; - } - } else { - if (index >= cpu->pmsav7_dregion) { - return 0x0; - } - if (ri->opc2 & 0x1) { - return env->pmsav8.rlar[M_REG_NS][index]; - } else { - return env->pmsav8.rbar[M_REG_NS][index]; - } - } -} - -static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { - { .name = "PRBAR", - .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, - .access = PL1_RW, .type = ARM_CP_NO_RAW, - .accessfn = access_tvm_trvm, - .readfn = prbar_read, .writefn = prbar_write }, - { .name = "PRLAR", - .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, - .access = PL1_RW, .type = ARM_CP_NO_RAW, - .accessfn = access_tvm_trvm, - .readfn = prlar_read, .writefn = prlar_write }, - { .name = "PRSELR", .resetvalue = 0, - .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .writefn = prselr_write, - .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, - { .name = "HPRBAR", .resetvalue = 0, - .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, - .access = PL2_RW, .type = ARM_CP_NO_RAW, - .readfn = hprbar_read, .writefn = hprbar_write }, - { .name = "HPRLAR", - .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, - .access = PL2_RW, .type = ARM_CP_NO_RAW, - .readfn = hprlar_read, .writefn = hprlar_write }, - { .name = "HPRSELR", .resetvalue = 0, - .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, - .access = PL2_RW, - .writefn = hprselr_write, - .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, - { .name = "HPRENR", - .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, - .access = PL2_RW, .type = ARM_CP_NO_RAW, - .readfn = hprenr_read, .writefn = hprenr_write }, -}; - -static const ARMCPRegInfo pmsav7_cp_reginfo[] = { - /* - * Reset for all these registers is handled in arm_cpu_reset(), - * because the PMSAv7 is also used by M-profile CPUs, which do - * not register cpregs but still need the state to be reset. - */ - { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, - .access = PL1_RW, .type = ARM_CP_NO_RAW, - .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), - .readfn = pmsav7_read, .writefn = pmsav7_write, - .resetfn = arm_cp_reset_ignore }, - { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, - .access = PL1_RW, .type = ARM_CP_NO_RAW, - .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), - .readfn = pmsav7_read, .writefn = pmsav7_write, - .resetfn = arm_cp_reset_ignore }, - { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, - .access = PL1_RW, .type = ARM_CP_NO_RAW, - .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), - .readfn = pmsav7_read, .writefn = pmsav7_write, - .resetfn = arm_cp_reset_ignore }, - { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, - .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), - .writefn = pmsav7_rgnr_write, - .resetfn = arm_cp_reset_ignore }, -}; - -static const ARMCPRegInfo pmsav5_cp_reginfo[] = { - { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, .type = ARM_CP_ALIAS, - .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), - .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, - { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, - .access = PL1_RW, .type = ARM_CP_ALIAS, - .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), - .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, - { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, - .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), - .resetvalue = 0, }, - { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, - .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), - .resetvalue = 0, }, - { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, - { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, - .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, - /* Protection region base and size registers */ - { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, - .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, - { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, - .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, - { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, - .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, - { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, - .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, - { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, - .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, - { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, - .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, - { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, - .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, - { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, - .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, -}; - -static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - - if (!arm_feature(env, ARM_FEATURE_V8)) { - if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { - /* - * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when - * using Long-descriptor translation table format - */ - value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); - } else if (arm_feature(env, ARM_FEATURE_EL3)) { - /* - * In an implementation that includes the Security Extensions - * TTBCR has additional fields PD0 [4] and PD1 [5] for - * Short-descriptor translation table format. - */ - value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; - } else { - value &= TTBCR_N; - } - } - - if (arm_feature(env, ARM_FEATURE_LPAE)) { - /* - * With LPAE the TTBCR could result in a change of ASID - * via the TTBCR.A1 bit, so do a TLB flush. - */ - tlb_flush(CPU(cpu)); - } - raw_write(env, ri, value); -} - -static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - - /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ - tlb_flush(CPU(cpu)); - raw_write(env, ri, value); -} - -static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ - if (cpreg_field_is_64bit(ri) && - extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { - ARMCPU *cpu = env_archcpu(env); - tlb_flush(CPU(cpu)); - } - raw_write(env, ri, value); -} - -static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * If we are running with E2&0 regime, then an ASID is active. - * Flush if that might be changing. Note we're not checking - * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that - * holds the active ASID, only checking the field that might. - */ - if (extract64(raw_read(env, ri) ^ value, 48, 16) && - (arm_hcr_el2_eff(env) & HCR_E2H)) { - uint16_t mask = ARMMMUIdxBit_E20_2 | - ARMMMUIdxBit_E20_2_PAN | - ARMMMUIdxBit_E20_0; - tlb_flush_by_mmuidx(env_cpu(env), mask); - } - raw_write(env, ri, value); -} - -static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - CPUState *cs = CPU(cpu); - - /* - * A change in VMID to the stage2 page table (Stage2) invalidates - * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). - */ - if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { - tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); - } - raw_write(env, ri, value); -} - -static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { - { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, - .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), - offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, - { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, - .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, - .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), - offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, - { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, - .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, - .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), - offsetof(CPUARMState, cp15.dfar_ns) } }, - { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), - .resetvalue = 0, }, -}; - -static const ARMCPRegInfo vmsa_cp_reginfo[] = { - { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, - { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .writefn = vmsa_ttbr_write, .resetvalue = 0, - .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), - offsetof(CPUARMState, cp15.ttbr0_ns) } }, - { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .writefn = vmsa_ttbr_write, .resetvalue = 0, - .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), - offsetof(CPUARMState, cp15.ttbr1_ns) } }, - { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .writefn = vmsa_tcr_el12_write, - .raw_writefn = raw_write, - .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, - { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, - .raw_writefn = raw_write, - .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), - offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, -}; - -/* - * Note that unlike TTBCR, writing to TTBCR2 does not require flushing - * qemu tlbs nor adjusting cached masks. - */ -static const ARMCPRegInfo ttbcr2_reginfo = { - .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .type = ARM_CP_ALIAS, - .bank_fieldoffsets = { - offsetofhigh32(CPUARMState, cp15.tcr_el[3]), - offsetofhigh32(CPUARMState, cp15.tcr_el[1]), - }, -}; - -static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - env->cp15.c15_ticonfig = value & 0xe7; - /* The OS_TYPE bit in this register changes the reported CPUID! */ - env->cp15.c0_cpuid = (value & (1 << 5)) ? - ARM_CPUID_TI915T : ARM_CPUID_TI925T; -} - -static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - env->cp15.c15_threadid = value & 0xffff; -} - -static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* Wait-for-interrupt (deprecated) */ - cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); -} - -static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * On OMAP there are registers indicating the max/min index of dcache lines - * containing a dirty line; cache flush operations have to reset these. - */ - env->cp15.c15_i_max = 0x000; - env->cp15.c15_i_min = 0xff0; -} - -static const ARMCPRegInfo omap_cp_reginfo[] = { - { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, - .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, - .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), - .resetvalue = 0, }, - { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, .type = ARM_CP_NOP }, - { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, - .writefn = omap_ticonfig_write }, - { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, - { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, .resetvalue = 0xff0, - .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, - { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, - .writefn = omap_threadid_write }, - { .name = "TI925T_STATUS", .cp = 15, .crn = 15, - .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, - .type = ARM_CP_NO_RAW, - .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, - /* - * TODO: Peripheral port remap register: - * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller - * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), - * when MMU is off. - */ - { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, - .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, - .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, - .writefn = omap_cachemaint_write }, - { .name = "C9", .cp = 15, .crn = 9, - .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, - .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, -}; - -static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - env->cp15.c15_cpar = value & 0x3fff; -} - -static const ARMCPRegInfo xscale_cp_reginfo[] = { - { .name = "XSCALE_CPAR", - .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, - .writefn = xscale_cpar_write, }, - { .name = "XSCALE_AUXCR", - .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), - .resetvalue = 0, }, - /* - * XScale specific cache-lockdown: since we have no cache we NOP these - * and hope the guest does not really rely on cache behaviour. - */ - { .name = "XSCALE_LOCK_ICACHE_LINE", - .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, - .access = PL1_W, .type = ARM_CP_NOP }, - { .name = "XSCALE_UNLOCK_ICACHE", - .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, - .access = PL1_W, .type = ARM_CP_NOP }, - { .name = "XSCALE_DCACHE_LOCK", - .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, - .access = PL1_RW, .type = ARM_CP_NOP }, - { .name = "XSCALE_UNLOCK_DCACHE", - .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, - .access = PL1_W, .type = ARM_CP_NOP }, -}; - -static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { - /* - * RAZ/WI the whole crn=15 space, when we don't have a more specific - * implementation of this implementation-defined space. - * Ideally this should eventually disappear in favour of actually - * implementing the correct behaviour for all cores. - */ - { .name = "C15_IMPDEF", .cp = 15, .crn = 15, - .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, - .access = PL1_RW, - .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, - .resetvalue = 0 }, -}; - -static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { - /* Cache status: RAZ because we have no cache so it's always clean */ - { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, - .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, - .resetvalue = 0 }, -}; - -static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { - /* We never have a block transfer operation in progress */ - { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, - .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, - .resetvalue = 0 }, - /* The cache ops themselves: these all NOP for QEMU */ - { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, - .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, - { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, - .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, - { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, - .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, - { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, - .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, - { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, - .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, - { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, - .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, -}; - -static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { - /* - * The cache test-and-clean instructions always return (1 << 30) - * to indicate that there are no dirty cache lines. - */ - { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, - .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, - .resetvalue = (1 << 30) }, - { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, - .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, - .resetvalue = (1 << 30) }, -}; - -static const ARMCPRegInfo strongarm_cp_reginfo[] = { - /* Ignore ReadBuffer accesses */ - { .name = "C9_READBUFFER", .cp = 15, .crn = 9, - .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, - .access = PL1_RW, .resetvalue = 0, - .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, -}; - -static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - unsigned int cur_el = arm_current_el(env); - - if (arm_is_el2_enabled(env) && cur_el == 1) { - return env->cp15.vpidr_el2; - } - return raw_read(env, ri); -} - -static uint64_t mpidr_read_val(CPUARMState *env) -{ - ARMCPU *cpu = env_archcpu(env); - uint64_t mpidr = cpu->mp_affinity; - - if (arm_feature(env, ARM_FEATURE_V7MP)) { - mpidr |= (1U << 31); - /* - * Cores which are uniprocessor (non-coherent) - * but still implement the MP extensions set - * bit 30. (For instance, Cortex-R5). - */ - if (cpu->mp_is_up) { - mpidr |= (1u << 30); - } - } - return mpidr; -} - -static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - unsigned int cur_el = arm_current_el(env); - - if (arm_is_el2_enabled(env) && cur_el == 1) { - return env->cp15.vmpidr_el2; - } - return mpidr_read_val(env); -} - -static const ARMCPRegInfo lpae_cp_reginfo[] = { - /* NOP AMAIR0/1 */ - { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .type = ARM_CP_CONST, .resetvalue = 0 }, - /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ - { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, - .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, - .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), - offsetof(CPUARMState, cp15.par_ns)} }, - { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .type = ARM_CP_64BIT | ARM_CP_ALIAS, - .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), - offsetof(CPUARMState, cp15.ttbr0_ns) }, - .writefn = vmsa_ttbr_write, }, - { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .type = ARM_CP_64BIT | ARM_CP_ALIAS, - .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), - offsetof(CPUARMState, cp15.ttbr1_ns) }, - .writefn = vmsa_ttbr_write, }, -}; - -static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return vfp_get_fpcr(env); -} - -static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - vfp_set_fpcr(env, value); -} - -static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return vfp_get_fpsr(env); -} - -static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - vfp_set_fpsr(env, value); -} - -static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { - return CP_ACCESS_TRAP; - } - return CP_ACCESS_OK; -} - -static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - env->daif = value & PSTATE_DAIF; -} - -static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return env->pstate & PSTATE_PAN; -} - -static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); -} - -static const ARMCPRegInfo pan_reginfo = { - .name = "PAN", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, - .type = ARM_CP_NO_RAW, .access = PL1_RW, - .readfn = aa64_pan_read, .writefn = aa64_pan_write -}; - -static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return env->pstate & PSTATE_UAO; -} - -static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); -} - -static const ARMCPRegInfo uao_reginfo = { - .name = "UAO", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, - .type = ARM_CP_NO_RAW, .access = PL1_RW, - .readfn = aa64_uao_read, .writefn = aa64_uao_write -}; - -static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return env->pstate & PSTATE_DIT; -} - -static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); -} - -static const ARMCPRegInfo dit_reginfo = { - .name = "DIT", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, - .type = ARM_CP_NO_RAW, .access = PL0_RW, - .readfn = aa64_dit_read, .writefn = aa64_dit_write -}; - -static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return env->pstate & PSTATE_SSBS; -} - -static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); -} - -static const ARMCPRegInfo ssbs_reginfo = { - .name = "SSBS", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, - .type = ARM_CP_NO_RAW, .access = PL0_RW, - .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write -}; - -static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, - const ARMCPRegInfo *ri, - bool isread) -{ - /* Cache invalidate/clean to Point of Coherency or Persistence... */ - switch (arm_current_el(env)) { - case 0: - /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ - if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { - return CP_ACCESS_TRAP; - } - /* fall through */ - case 1: - /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ - if (arm_hcr_el2_eff(env) & HCR_TPCP) { - return CP_ACCESS_TRAP_EL2; - } - break; - } - return CP_ACCESS_OK; -} - -static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) -{ - /* Cache invalidate/clean to Point of Unification... */ - switch (arm_current_el(env)) { - case 0: - /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ - if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { - return CP_ACCESS_TRAP; - } - /* fall through */ - case 1: - /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ - if (arm_hcr_el2_eff(env) & hcrflags) { - return CP_ACCESS_TRAP_EL2; - } - break; - } - return CP_ACCESS_OK; -} - -static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); -} - -static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); -} - -/* - * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions - * Page D4-1736 (DDI0487A.b) - */ - -static int vae1_tlbmask(CPUARMState *env) -{ - uint64_t hcr = arm_hcr_el2_eff(env); - uint16_t mask; - - if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { - mask = ARMMMUIdxBit_E20_2 | - ARMMMUIdxBit_E20_2_PAN | - ARMMMUIdxBit_E20_0; - } else { - mask = ARMMMUIdxBit_E10_1 | - ARMMMUIdxBit_E10_1_PAN | - ARMMMUIdxBit_E10_0; - } - return mask; -} - -/* Return 56 if TBI is enabled, 64 otherwise. */ -static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, - uint64_t addr) -{ - uint64_t tcr = regime_tcr(env, mmu_idx); - int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); - int select = extract64(addr, 55, 1); - - return (tbi >> select) & 1 ? 56 : 64; -} - -static int vae1_tlbbits(CPUARMState *env, uint64_t addr) -{ - uint64_t hcr = arm_hcr_el2_eff(env); - ARMMMUIdx mmu_idx; - - /* Only the regime of the mmu_idx below is significant. */ - if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { - mmu_idx = ARMMMUIdx_E20_0; - } else { - mmu_idx = ARMMMUIdx_E10_0; - } - - return tlbbits_for_regime(env, mmu_idx, addr); -} - -static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - int mask = vae1_tlbmask(env); - - tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); -} - -static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - int mask = vae1_tlbmask(env); - - if (tlb_force_broadcast(env)) { - tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); - } else { - tlb_flush_by_mmuidx(cs, mask); - } -} - -static int e2_tlbmask(CPUARMState *env) -{ - return (ARMMMUIdxBit_E20_0 | - ARMMMUIdxBit_E20_2 | - ARMMMUIdxBit_E20_2_PAN | - ARMMMUIdxBit_E2); -} - -static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - int mask = alle1_tlbmask(env); - - tlb_flush_by_mmuidx(cs, mask); -} - -static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - int mask = e2_tlbmask(env); - - tlb_flush_by_mmuidx(cs, mask); -} - -static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - CPUState *cs = CPU(cpu); - - tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); -} - -static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - int mask = alle1_tlbmask(env); - - tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); -} - -static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - int mask = e2_tlbmask(env); - - tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); -} - -static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - - tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); -} - -static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * Invalidate by VA, EL2 - * Currently handles both VAE2 and VALE2, since we don't support - * flush-last-level-only. - */ - CPUState *cs = env_cpu(env); - int mask = e2_tlbmask(env); - uint64_t pageaddr = sextract64(value << 12, 0, 56); - - tlb_flush_page_by_mmuidx(cs, pageaddr, mask); -} - -static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * Invalidate by VA, EL3 - * Currently handles both VAE3 and VALE3, since we don't support - * flush-last-level-only. - */ - ARMCPU *cpu = env_archcpu(env); - CPUState *cs = CPU(cpu); - uint64_t pageaddr = sextract64(value << 12, 0, 56); - - tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); -} - -static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - int mask = vae1_tlbmask(env); - uint64_t pageaddr = sextract64(value << 12, 0, 56); - int bits = vae1_tlbbits(env, pageaddr); - - tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); -} - -static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * Invalidate by VA, EL1&0 (AArch64 version). - * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, - * since we don't support flush-for-specific-ASID-only or - * flush-last-level-only. - */ - CPUState *cs = env_cpu(env); - int mask = vae1_tlbmask(env); - uint64_t pageaddr = sextract64(value << 12, 0, 56); - int bits = vae1_tlbbits(env, pageaddr); - - if (tlb_force_broadcast(env)) { - tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); - } else { - tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); - } -} - -static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - uint64_t pageaddr = sextract64(value << 12, 0, 56); - int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr); - - tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, - ARMMMUIdxBit_E2, bits); -} - -static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - uint64_t pageaddr = sextract64(value << 12, 0, 56); - int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); - - tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, - ARMMMUIdxBit_E3, bits); -} - -static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) -{ - /* - * The MSB of value is the NS field, which only applies if SEL2 - * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). - */ - return (value >= 0 - && cpu_isar_feature(aa64_sel2, env_archcpu(env)) - && arm_is_secure_below_el3(env) - ? ARMMMUIdxBit_Stage2_S - : ARMMMUIdxBit_Stage2); -} - -static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - int mask = ipas2e1_tlbmask(env, value); - uint64_t pageaddr = sextract64(value << 12, 0, 56); - - if (tlb_force_broadcast(env)) { - tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); - } else { - tlb_flush_page_by_mmuidx(cs, pageaddr, mask); - } -} - -static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPUState *cs = env_cpu(env); - int mask = ipas2e1_tlbmask(env, value); - uint64_t pageaddr = sextract64(value << 12, 0, 56); - - tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); -} - -#ifdef TARGET_AARCH64 -typedef struct { - uint64_t base; - uint64_t length; -} TLBIRange; - -static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) -{ - /* - * Note that the TLBI range TG field encoding differs from both - * TG0 and TG1 encodings. - */ - switch (tg) { - case 1: - return Gran4K; - case 2: - return Gran16K; - case 3: - return Gran64K; - default: - return GranInvalid; - } -} - -static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, - uint64_t value) -{ - unsigned int page_size_granule, page_shift, num, scale, exponent; - /* Extract one bit to represent the va selector in use. */ - uint64_t select = sextract64(value, 36, 1); - ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); - TLBIRange ret = { }; - ARMGranuleSize gran; - - page_size_granule = extract64(value, 46, 2); - gran = tlbi_range_tg_to_gran_size(page_size_granule); - - /* The granule encoded in value must match the granule in use. */ - if (gran != param.gran) { - qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", - page_size_granule); - return ret; - } - - page_shift = arm_granule_bits(gran); - num = extract64(value, 39, 5); - scale = extract64(value, 44, 2); - exponent = (5 * scale) + 1; - - ret.length = (num + 1) << (exponent + page_shift); - - if (param.select) { - ret.base = sextract64(value, 0, 37); - } else { - ret.base = extract64(value, 0, 37); - } - if (param.ds) { - /* - * With DS=1, BaseADDR is always shifted 16 so that it is able - * to address all 52 va bits. The input address is perforce - * aligned on a 64k boundary regardless of translation granule. - */ - page_shift = 16; - } - ret.base <<= page_shift; - - return ret; -} - -static void do_rvae_write(CPUARMState *env, uint64_t value, - int idxmap, bool synced) -{ - ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); - TLBIRange range; - int bits; - - range = tlbi_aa64_get_range(env, one_idx, value); - bits = tlbbits_for_regime(env, one_idx, range.base); - - if (synced) { - tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), - range.base, - range.length, - idxmap, - bits); - } else { - tlb_flush_range_by_mmuidx(env_cpu(env), range.base, - range.length, idxmap, bits); - } -} - -static void tlbi_aa64_rvae1_write(CPUARMState *env, - const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * Invalidate by VA range, EL1&0. - * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, - * since we don't support flush-for-specific-ASID-only or - * flush-last-level-only. - */ - - do_rvae_write(env, value, vae1_tlbmask(env), - tlb_force_broadcast(env)); -} - -static void tlbi_aa64_rvae1is_write(CPUARMState *env, - const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * Invalidate by VA range, Inner/Outer Shareable EL1&0. - * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, - * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support - * flush-for-specific-ASID-only, flush-last-level-only or inner/outer - * shareable specific flushes. - */ - - do_rvae_write(env, value, vae1_tlbmask(env), true); -} - -static int vae2_tlbmask(CPUARMState *env) -{ - return ARMMMUIdxBit_E2; -} - -static void tlbi_aa64_rvae2_write(CPUARMState *env, - const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * Invalidate by VA range, EL2. - * Currently handles all of RVAE2 and RVALE2, - * since we don't support flush-for-specific-ASID-only or - * flush-last-level-only. - */ - - do_rvae_write(env, value, vae2_tlbmask(env), - tlb_force_broadcast(env)); - - -} - -static void tlbi_aa64_rvae2is_write(CPUARMState *env, - const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * Invalidate by VA range, Inner/Outer Shareable, EL2. - * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, - * since we don't support flush-for-specific-ASID-only, - * flush-last-level-only or inner/outer shareable specific flushes. - */ - - do_rvae_write(env, value, vae2_tlbmask(env), true); - -} - -static void tlbi_aa64_rvae3_write(CPUARMState *env, - const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * Invalidate by VA range, EL3. - * Currently handles all of RVAE3 and RVALE3, - * since we don't support flush-for-specific-ASID-only or - * flush-last-level-only. - */ - - do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); -} - -static void tlbi_aa64_rvae3is_write(CPUARMState *env, - const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * Invalidate by VA range, EL3, Inner/Outer Shareable. - * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, - * since we don't support flush-for-specific-ASID-only, - * flush-last-level-only or inner/outer specific flushes. - */ - - do_rvae_write(env, value, ARMMMUIdxBit_E3, true); -} - -static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - do_rvae_write(env, value, ipas2e1_tlbmask(env, value), - tlb_force_broadcast(env)); -} - -static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, - const ARMCPRegInfo *ri, - uint64_t value) -{ - do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); -} -#endif - -static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - int cur_el = arm_current_el(env); - - if (cur_el < 2) { - uint64_t hcr = arm_hcr_el2_eff(env); - - if (cur_el == 0) { - if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { - if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { - return CP_ACCESS_TRAP_EL2; - } - } else { - if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { - return CP_ACCESS_TRAP; - } - if (hcr & HCR_TDZ) { - return CP_ACCESS_TRAP_EL2; - } - } - } else if (hcr & HCR_TDZ) { - return CP_ACCESS_TRAP_EL2; - } - } - return CP_ACCESS_OK; -} - -static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - ARMCPU *cpu = env_archcpu(env); - int dzp_bit = 1 << 4; - - /* DZP indicates whether DC ZVA access is allowed */ - if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { - dzp_bit = 0; - } - return cpu->dcz_blocksize | dzp_bit; -} - -static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (!(env->pstate & PSTATE_SP)) { - /* - * Access to SP_EL0 is undefined if it's being used as - * the stack pointer. - */ - return CP_ACCESS_TRAP_UNCATEGORIZED; - } - return CP_ACCESS_OK; -} - -static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return env->pstate & PSTATE_SP; -} - -static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) -{ - update_spsel(env, val); -} - -static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - - if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { - /* M bit is RAZ/WI for PMSA with no MPU implemented */ - value &= ~SCTLR_M; - } - - /* ??? Lots of these bits are not implemented. */ - - if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { - if (ri->opc1 == 6) { /* SCTLR_EL3 */ - value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); - } else { - value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | - SCTLR_ATA0 | SCTLR_ATA); - } - } - - if (raw_read(env, ri) == value) { - /* - * Skip the TLB flush if nothing actually changed; Linux likes - * to do a lot of pointless SCTLR writes. - */ - return; - } - - raw_write(env, ri, value); - - /* This may enable/disable the MMU, so do a TLB flush. */ - tlb_flush(CPU(cpu)); - - if (ri->type & ARM_CP_SUPPRESS_TB_END) { - /* - * Normally we would always end the TB on an SCTLR write; see the - * comment in ARMCPRegInfo sctlr initialization below for why Xscale - * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild - * of hflags from the translator, so do it here. - */ - arm_rebuild_hflags(env); - } -} - -static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * Some MDCR_EL3 bits affect whether PMU counters are running: - * if we are trying to change any of those then we must - * bracket this update with PMU start/finish calls. - */ - bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; - - if (pmu_op) { - pmu_op_start(env); - } - env->cp15.mdcr_el3 = value; - if (pmu_op) { - pmu_op_finish(env); - } -} - -static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ - mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); -} - -static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * Some MDCR_EL2 bits affect whether PMU counters are running: - * if we are trying to change any of those then we must - * bracket this update with PMU start/finish calls. - */ - bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; - - if (pmu_op) { - pmu_op_start(env); - } - env->cp15.mdcr_el2 = value; - if (pmu_op) { - pmu_op_finish(env); - } -} - -static const ARMCPRegInfo v8_cp_reginfo[] = { - /* - * Minimal set of EL0-visible registers. This will need to be expanded - * significantly for system emulation of AArch64 CPUs. - */ - { .name = "NZCV", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, - .access = PL0_RW, .type = ARM_CP_NZCV }, - { .name = "DAIF", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, - .type = ARM_CP_NO_RAW, - .access = PL0_RW, .accessfn = aa64_daif_access, - .fieldoffset = offsetof(CPUARMState, daif), - .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, - { .name = "FPCR", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, - .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, - .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, - { .name = "FPSR", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, - .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, - .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, - { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, - .access = PL0_R, .type = ARM_CP_NO_RAW, - .readfn = aa64_dczid_read }, - { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, - .access = PL0_W, .type = ARM_CP_DC_ZVA, -#ifndef CONFIG_USER_ONLY - /* Avoid overhead of an access check that always passes in user-mode */ - .accessfn = aa64_zva_access, -#endif - }, - { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, - .access = PL1_R, .type = ARM_CP_CURRENTEL }, - /* Cache ops: all NOPs since we don't emulate caches */ - { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, - .access = PL1_W, .type = ARM_CP_NOP, - .accessfn = access_ticab }, - { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, - .access = PL1_W, .type = ARM_CP_NOP, - .accessfn = access_tocu }, - { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, - .access = PL0_W, .type = ARM_CP_NOP, - .accessfn = access_tocu }, - { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, - .access = PL1_W, .accessfn = aa64_cacheop_poc_access, - .type = ARM_CP_NOP }, - { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, - .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, - { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, - .access = PL0_W, .type = ARM_CP_NOP, - .accessfn = aa64_cacheop_poc_access }, - { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, - .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, - { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, - .access = PL0_W, .type = ARM_CP_NOP, - .accessfn = access_tocu }, - { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, - .access = PL0_W, .type = ARM_CP_NOP, - .accessfn = aa64_cacheop_poc_access }, - { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, - .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, - /* TLBI operations */ - { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, - .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vmalle1is_write }, - { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, - .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae1is_write }, - { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, - .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vmalle1is_write }, - { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, - .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae1is_write }, - { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, - .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae1is_write }, - { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, - .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae1is_write }, - { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, - .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vmalle1_write }, - { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, - .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae1_write }, - { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, - .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vmalle1_write }, - { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, - .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae1_write }, - { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, - .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae1_write }, - { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, - .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae1_write }, - { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_ipas2e1is_write }, - { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_ipas2e1is_write }, - { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_alle1is_write }, - { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_alle1is_write }, - { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_ipas2e1_write }, - { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_ipas2e1_write }, - { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_alle1_write }, - { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_alle1is_write }, -#ifndef CONFIG_USER_ONLY - /* 64 bit address translation operations */ - { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, - .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write64 }, - { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, - .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write64 }, - { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, - .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write64 }, - { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, - .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write64 }, - { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, - .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write64 }, - { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, - .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write64 }, - { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, - .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write64 }, - { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, - .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write64 }, - /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ - { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, - .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write64 }, - { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, - .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write64 }, - { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_ALIAS, - .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, - .access = PL1_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), - .writefn = par_write }, -#endif - /* TLB invalidate last level of translation table walk */ - { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, - .writefn = tlbimva_is_write }, - { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, - .writefn = tlbimvaa_is_write }, - { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbimva_write }, - { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, - .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, - .writefn = tlbimvaa_write }, - { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, - .type = ARM_CP_NO_RAW, .access = PL2_W, - .writefn = tlbimva_hyp_write }, - { .name = "TLBIMVALHIS", - .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, - .type = ARM_CP_NO_RAW, .access = PL2_W, - .writefn = tlbimva_hyp_is_write }, - { .name = "TLBIIPAS2", - .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, - .type = ARM_CP_NO_RAW, .access = PL2_W, - .writefn = tlbiipas2_hyp_write }, - { .name = "TLBIIPAS2IS", - .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, - .type = ARM_CP_NO_RAW, .access = PL2_W, - .writefn = tlbiipas2is_hyp_write }, - { .name = "TLBIIPAS2L", - .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, - .type = ARM_CP_NO_RAW, .access = PL2_W, - .writefn = tlbiipas2_hyp_write }, - { .name = "TLBIIPAS2LIS", - .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, - .type = ARM_CP_NO_RAW, .access = PL2_W, - .writefn = tlbiipas2is_hyp_write }, - /* 32 bit cache operations */ - { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, - { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, - .type = ARM_CP_NOP, .access = PL1_W }, - { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, - { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, - { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, - .type = ARM_CP_NOP, .access = PL1_W }, - { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, - .type = ARM_CP_NOP, .access = PL1_W }, - { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, - { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, - { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, - { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, - { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, - { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, - { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, - /* MMU Domain access control / MPU write buffer control */ - { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, - .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, - .writefn = dacr_write, .raw_writefn = raw_write, - .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), - offsetoflow32(CPUARMState, cp15.dacr_ns) } }, - { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_ALIAS, - .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, - .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, - { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_ALIAS, - .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, - .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, - /* - * We rely on the access checks not allowing the guest to write to the - * state field when SPSel indicates that it's being used as the stack - * pointer. - */ - { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, - .access = PL1_RW, .accessfn = sp_el0_access, - .type = ARM_CP_ALIAS, - .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, - { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, - .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, - .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, - { .name = "SPSel", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, - .type = ARM_CP_NO_RAW, - .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, - { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, - .access = PL2_RW, - .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, - .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, - { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, - .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, - .writefn = dacr_write, .raw_writefn = raw_write, - .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, - { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, - .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, - .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, - { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_ALIAS, - .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, - .access = PL2_RW, - .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, - { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_ALIAS, - .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, - .access = PL2_RW, - .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, - { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_ALIAS, - .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, - .access = PL2_RW, - .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, - { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_ALIAS, - .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, - .access = PL2_RW, - .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, - { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_IO, - .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, - .resetvalue = 0, - .access = PL3_RW, - .writefn = mdcr_el3_write, - .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, - { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, - .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, - .access = PL1_RW, .accessfn = access_trap_aa32s_el1, - .writefn = sdcr_write, - .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, -}; - -static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) -{ - ARMCPU *cpu = env_archcpu(env); - - if (arm_feature(env, ARM_FEATURE_V8)) { - valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ - } else { - valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ - } - - if (arm_feature(env, ARM_FEATURE_EL3)) { - valid_mask &= ~HCR_HCD; - } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { - /* - * Architecturally HCR.TSC is RES0 if EL3 is not implemented. - * However, if we're using the SMC PSCI conduit then QEMU is - * effectively acting like EL3 firmware and so the guest at - * EL2 should retain the ability to prevent EL1 from being - * able to make SMC calls into the ersatz firmware, so in - * that case HCR.TSC should be read/write. - */ - valid_mask &= ~HCR_TSC; - } - - if (arm_feature(env, ARM_FEATURE_AARCH64)) { - if (cpu_isar_feature(aa64_vh, cpu)) { - valid_mask |= HCR_E2H; - } - if (cpu_isar_feature(aa64_ras, cpu)) { - valid_mask |= HCR_TERR | HCR_TEA; - } - if (cpu_isar_feature(aa64_lor, cpu)) { - valid_mask |= HCR_TLOR; - } - if (cpu_isar_feature(aa64_pauth, cpu)) { - valid_mask |= HCR_API | HCR_APK; - } - if (cpu_isar_feature(aa64_mte, cpu)) { - valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; - } - if (cpu_isar_feature(aa64_scxtnum, cpu)) { - valid_mask |= HCR_ENSCXT; - } - if (cpu_isar_feature(aa64_fwb, cpu)) { - valid_mask |= HCR_FWB; - } - } - - if (cpu_isar_feature(any_evt, cpu)) { - valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; - } else if (cpu_isar_feature(any_half_evt, cpu)) { - valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; - } - - /* Clear RES0 bits. */ - value &= valid_mask; - - /* - * These bits change the MMU setup: - * HCR_VM enables stage 2 translation - * HCR_PTW forbids certain page-table setups - * HCR_DC disables stage1 and enables stage2 translation - * HCR_DCT enables tagging on (disabled) stage1 translation - * HCR_FWB changes the interpretation of stage2 descriptor bits - */ - if ((env->cp15.hcr_el2 ^ value) & - (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { - tlb_flush(CPU(cpu)); - } - env->cp15.hcr_el2 = value; - - /* - * Updates to VI and VF require us to update the status of - * virtual interrupts, which are the logical OR of these bits - * and the state of the input lines from the GIC. (This requires - * that we have the iothread lock, which is done by marking the - * reginfo structs as ARM_CP_IO.) - * Note that if a write to HCR pends a VIRQ or VFIQ it is never - * possible for it to be taken immediately, because VIRQ and - * VFIQ are masked unless running at EL0 or EL1, and HCR - * can only be written at EL2. - */ - g_assert(qemu_mutex_iothread_locked()); - arm_cpu_update_virq(cpu); - arm_cpu_update_vfiq(cpu); - arm_cpu_update_vserr(cpu); -} - -static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) -{ - do_hcr_write(env, value, 0); -} - -static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ - value = deposit64(env->cp15.hcr_el2, 32, 32, value); - do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); -} - -static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* Handle HCR write, i.e. write to low half of HCR_EL2 */ - value = deposit64(env->cp15.hcr_el2, 0, 32, value); - do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); -} - /* * Return the effective value of HCR_EL2, at the given security state. * Bits that are not included here: @@ -5740,747 +135,6 @@ bool el_is_in_host(CPUARMState *env, int el) return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); } -static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - uint64_t valid_mask = 0; - - /* No features adding bits to HCRX are implemented. */ - - /* Clear RES0 bits. */ - env->cp15.hcrx_el2 = value & valid_mask; -} - -static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_current_el(env) < 3 - && arm_feature(env, ARM_FEATURE_EL3) - && !(env->cp15.scr_el3 & SCR_HXEN)) { - return CP_ACCESS_TRAP_EL3; - } - return CP_ACCESS_OK; -} - -static const ARMCPRegInfo hcrx_el2_reginfo = { - .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, - .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, - .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), -}; - -/* Return the effective value of HCRX_EL2. */ -uint64_t arm_hcrx_el2_eff(CPUARMState *env) -{ - /* - * The bits in this register behave as 0 for all purposes other than - * direct reads of the register if: - * - EL2 is not enabled in the current security state, - * - SCR_EL3.HXEn is 0. - */ - if (!arm_is_el2_enabled(env) - || (arm_feature(env, ARM_FEATURE_EL3) - && !(env->cp15.scr_el3 & SCR_HXEN))) { - return 0; - } - return env->cp15.hcrx_el2; -} - -static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* - * For A-profile AArch32 EL3, if NSACR.CP10 - * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. - */ - if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && - !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { - uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; - value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); - } - env->cp15.cptr_el[2] = value; -} - -static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - /* - * For A-profile AArch32 EL3, if NSACR.CP10 - * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. - */ - uint64_t value = env->cp15.cptr_el[2]; - - if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && - !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { - value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; - } - return value; -} - -static const ARMCPRegInfo el2_cp_reginfo[] = { - { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_IO, - .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, - .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), - .writefn = hcr_write }, - { .name = "HCR", .state = ARM_CP_STATE_AA32, - .type = ARM_CP_ALIAS | ARM_CP_IO, - .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, - .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), - .writefn = hcr_writelow }, - { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, - .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_ALIAS, - .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, - .access = PL2_RW, - .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, - { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, - .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, - { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, - .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, - { .name = "HIFAR", .state = ARM_CP_STATE_AA32, - .type = ARM_CP_ALIAS, - .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, - .access = PL2_RW, - .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, - { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_ALIAS, - .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, - .access = PL2_RW, - .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, - { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, - .access = PL2_RW, .writefn = vbar_write, - .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), - .resetvalue = 0 }, - { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, - .access = PL3_RW, .type = ARM_CP_ALIAS, - .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, - { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, - .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), - .readfn = cptr_el2_read, .writefn = cptr_el2_write }, - { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, - .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), - .resetvalue = 0 }, - { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, - .access = PL2_RW, .type = ARM_CP_ALIAS, - .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, - { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, - .access = PL2_RW, .type = ARM_CP_CONST, - .resetvalue = 0 }, - /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ - { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, - .access = PL2_RW, .type = ARM_CP_CONST, - .resetvalue = 0 }, - { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, - .access = PL2_RW, .type = ARM_CP_CONST, - .resetvalue = 0 }, - { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, - .access = PL2_RW, .type = ARM_CP_CONST, - .resetvalue = 0 }, - { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, - .access = PL2_RW, .writefn = vmsa_tcr_el12_write, - .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, - { .name = "VTCR", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, - .type = ARM_CP_ALIAS, - .access = PL2_RW, .accessfn = access_el3_aa32ns, - .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, - { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, - .access = PL2_RW, - /* no .writefn needed as this can't cause an ASID change */ - .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, - { .name = "VTTBR", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 6, .crm = 2, - .type = ARM_CP_64BIT | ARM_CP_ALIAS, - .access = PL2_RW, .accessfn = access_el3_aa32ns, - .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), - .writefn = vttbr_write }, - { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, - .access = PL2_RW, .writefn = vttbr_write, - .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, - { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, - .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, - .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, - { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, - .access = PL2_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, - { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, - .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, - .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, - { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, - .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, - .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, - { .name = "TLBIALLNSNH", - .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, - .type = ARM_CP_NO_RAW, .access = PL2_W, - .writefn = tlbiall_nsnh_write }, - { .name = "TLBIALLNSNHIS", - .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, - .type = ARM_CP_NO_RAW, .access = PL2_W, - .writefn = tlbiall_nsnh_is_write }, - { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, - .type = ARM_CP_NO_RAW, .access = PL2_W, - .writefn = tlbiall_hyp_write }, - { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, - .type = ARM_CP_NO_RAW, .access = PL2_W, - .writefn = tlbiall_hyp_is_write }, - { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, - .type = ARM_CP_NO_RAW, .access = PL2_W, - .writefn = tlbimva_hyp_write }, - { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, - .type = ARM_CP_NO_RAW, .access = PL2_W, - .writefn = tlbimva_hyp_is_write }, - { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, - .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, - .writefn = tlbi_aa64_alle2_write }, - { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, - .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, - .writefn = tlbi_aa64_vae2_write }, - { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, - .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, - .writefn = tlbi_aa64_vae2_write }, - { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, - .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, - .writefn = tlbi_aa64_alle2is_write }, - { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, - .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, - .writefn = tlbi_aa64_vae2is_write }, - { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, - .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, - .writefn = tlbi_aa64_vae2is_write }, -#ifndef CONFIG_USER_ONLY - /* - * Unlike the other EL2-related AT operations, these must - * UNDEF from EL3 if EL2 is not implemented, which is why we - * define them here rather than with the rest of the AT ops. - */ - { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, - .access = PL2_W, .accessfn = at_s1e2_access, - .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, - .writefn = ats_write64 }, - { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, - .access = PL2_W, .accessfn = at_s1e2_access, - .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, - .writefn = ats_write64 }, - /* - * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE - * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 - * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose - * to behave as if SCR.NS was 1. - */ - { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, - .access = PL2_W, - .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, - { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, - .access = PL2_W, - .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, - { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, - /* - * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the - * reset values as IMPDEF. We choose to reset to 3 to comply with - * both ARMv7 and ARMv8. - */ - .access = PL2_RW, .resetvalue = 3, - .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, - { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, - .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, - .writefn = gt_cntvoff_write, - .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, - { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, - .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, - .writefn = gt_cntvoff_write, - .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, - { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), - .type = ARM_CP_IO, .access = PL2_RW, - .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, - { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), - .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, - .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, - { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, - .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, - .resetfn = gt_hyp_timer_reset, - .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, - { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, - .type = ARM_CP_IO, - .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, - .access = PL2_RW, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), - .resetvalue = 0, - .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, -#endif - { .name = "HPFAR", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, - .access = PL2_RW, .accessfn = access_el3_aa32ns, - .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, - { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, - .access = PL2_RW, - .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, - { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, - .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, - .access = PL2_RW, - .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, -}; - -static const ARMCPRegInfo el2_v8_cp_reginfo[] = { - { .name = "HCR2", .state = ARM_CP_STATE_AA32, - .type = ARM_CP_ALIAS | ARM_CP_IO, - .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, - .access = PL2_RW, - .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), - .writefn = hcr_writehigh }, -}; - -static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { - return CP_ACCESS_OK; - } - return CP_ACCESS_TRAP_UNCATEGORIZED; -} - -static const ARMCPRegInfo el2_sec_cp_reginfo[] = { - { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, - .access = PL2_RW, .accessfn = sel2_access, - .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, - { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, - .access = PL2_RW, .accessfn = sel2_access, - .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, -}; - -static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - /* - * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. - * At Secure EL1 it traps to EL3 or EL2. - */ - if (arm_current_el(env) == 3) { - return CP_ACCESS_OK; - } - if (arm_is_secure_below_el3(env)) { - if (env->cp15.scr_el3 & SCR_EEL2) { - return CP_ACCESS_TRAP_EL2; - } - return CP_ACCESS_TRAP_EL3; - } - /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ - if (isread) { - return CP_ACCESS_OK; - } - return CP_ACCESS_TRAP_UNCATEGORIZED; -} - -static const ARMCPRegInfo el3_cp_reginfo[] = { - { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, - .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), - .resetfn = scr_reset, .writefn = scr_write }, - { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, - .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, - .access = PL1_RW, .accessfn = access_trap_aa32s_el1, - .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), - .writefn = scr_write }, - { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, - .access = PL3_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.sder) }, - { .name = "SDER", - .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, - .access = PL3_RW, .resetvalue = 0, - .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, - { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, - .access = PL1_RW, .accessfn = access_trap_aa32s_el1, - .writefn = vbar_write, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, - { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, - .access = PL3_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, - { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, - .access = PL3_RW, - /* no .writefn needed as this can't cause an ASID change */ - .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, - { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_ALIAS, - .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, - .access = PL3_RW, - .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, - { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, - .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, - { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, - .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, - { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_ALIAS, - .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, - .access = PL3_RW, - .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, - { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, - .access = PL3_RW, .writefn = vbar_write, - .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), - .resetvalue = 0 }, - { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, - .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, - { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, - .access = PL3_RW, .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, - { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, - .access = PL3_RW, .type = ARM_CP_CONST, - .resetvalue = 0 }, - { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, - .access = PL3_RW, .type = ARM_CP_CONST, - .resetvalue = 0 }, - { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, - .access = PL3_RW, .type = ARM_CP_CONST, - .resetvalue = 0 }, - { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_alle3is_write }, - { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae3is_write }, - { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae3is_write }, - { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_alle3_write }, - { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae3_write }, - { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae3_write }, -}; - -#ifndef CONFIG_USER_ONLY -/* Test if system register redirection is to occur in the current state. */ -static bool redirect_for_e2h(CPUARMState *env) -{ - return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); -} - -static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - CPReadFn *readfn; - - if (redirect_for_e2h(env)) { - /* Switch to the saved EL2 version of the register. */ - ri = ri->opaque; - readfn = ri->readfn; - } else { - readfn = ri->orig_readfn; - } - if (readfn == NULL) { - readfn = raw_read; - } - return readfn(env, ri); -} - -static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - CPWriteFn *writefn; - - if (redirect_for_e2h(env)) { - /* Switch to the saved EL2 version of the register. */ - ri = ri->opaque; - writefn = ri->writefn; - } else { - writefn = ri->orig_writefn; - } - if (writefn == NULL) { - writefn = raw_write; - } - writefn(env, ri, value); -} - -static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) -{ - struct E2HAlias { - uint32_t src_key, dst_key, new_key; - const char *src_name, *dst_name, *new_name; - bool (*feature)(const ARMISARegisters *id); - }; - -#define K(op0, op1, crn, crm, op2) \ - ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) - - static const struct E2HAlias aliases[] = { - { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), - "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, - { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), - "CPACR", "CPTR_EL2", "CPACR_EL12" }, - { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), - "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, - { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), - "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, - { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), - "TCR_EL1", "TCR_EL2", "TCR_EL12" }, - { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), - "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, - { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), - "ELR_EL1", "ELR_EL2", "ELR_EL12" }, - { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), - "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, - { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), - "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, - { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), - "ESR_EL1", "ESR_EL2", "ESR_EL12" }, - { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), - "FAR_EL1", "FAR_EL2", "FAR_EL12" }, - { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), - "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, - { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), - "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, - { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), - "VBAR", "VBAR_EL2", "VBAR_EL12" }, - { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), - "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, - { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), - "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, - - /* - * Note that redirection of ZCR is mentioned in the description - * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but - * not in the summary table. - */ - { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), - "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, - { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), - "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, - - { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), - "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, - - { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), - "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", - isar_feature_aa64_scxtnum }, - - /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ - /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ - }; -#undef K - - size_t i; - - for (i = 0; i < ARRAY_SIZE(aliases); i++) { - const struct E2HAlias *a = &aliases[i]; - ARMCPRegInfo *src_reg, *dst_reg, *new_reg; - bool ok; - - if (a->feature && !a->feature(&cpu->isar)) { - continue; - } - - src_reg = g_hash_table_lookup(cpu->cp_regs, - (gpointer)(uintptr_t)a->src_key); - dst_reg = g_hash_table_lookup(cpu->cp_regs, - (gpointer)(uintptr_t)a->dst_key); - g_assert(src_reg != NULL); - g_assert(dst_reg != NULL); - - /* Cross-compare names to detect typos in the keys. */ - g_assert(strcmp(src_reg->name, a->src_name) == 0); - g_assert(strcmp(dst_reg->name, a->dst_name) == 0); - - /* None of the core system registers use opaque; we will. */ - g_assert(src_reg->opaque == NULL); - - /* Create alias before redirection so we dup the right data. */ - new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); - - new_reg->name = a->new_name; - new_reg->type |= ARM_CP_ALIAS; - /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ - new_reg->access &= PL2_RW | PL3_RW; - - ok = g_hash_table_insert(cpu->cp_regs, - (gpointer)(uintptr_t)a->new_key, new_reg); - g_assert(ok); - - src_reg->opaque = dst_reg; - src_reg->orig_readfn = src_reg->readfn ?: raw_read; - src_reg->orig_writefn = src_reg->writefn ?: raw_write; - if (!src_reg->raw_readfn) { - src_reg->raw_readfn = raw_read; - } - if (!src_reg->raw_writefn) { - src_reg->raw_writefn = raw_write; - } - src_reg->readfn = el2_e2h_read; - src_reg->writefn = el2_e2h_write; - } -} -#endif - -static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - int cur_el = arm_current_el(env); - - if (cur_el < 2) { - uint64_t hcr = arm_hcr_el2_eff(env); - - if (cur_el == 0) { - if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { - if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { - return CP_ACCESS_TRAP_EL2; - } - } else { - if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { - return CP_ACCESS_TRAP; - } - if (hcr & HCR_TID2) { - return CP_ACCESS_TRAP_EL2; - } - } - } else if (hcr & HCR_TID2) { - return CP_ACCESS_TRAP_EL2; - } - } - - if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { - return CP_ACCESS_TRAP_EL2; - } - - return CP_ACCESS_OK; -} - -/* - * Check for traps to RAS registers, which are controlled - * by HCR_EL2.TERR and SCR_EL3.TERR. - */ -static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - int el = arm_current_el(env); - - if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { - return CP_ACCESS_TRAP_EL2; - } - if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { - return CP_ACCESS_TRAP_EL3; - } - return CP_ACCESS_OK; -} - -static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - int el = arm_current_el(env); - - if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { - return env->cp15.vdisr_el2; - } - if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { - return 0; /* RAZ/WI */ - } - return env->cp15.disr_el1; -} - -static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) -{ - int el = arm_current_el(env); - - if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { - env->cp15.vdisr_el2 = val; - return; - } - if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { - return; /* RAZ/WI */ - } - env->cp15.disr_el1 = val; -} - -/* - * Minimal RAS implementation with no Error Records. - * Which means that all of the Error Record registers: - * ERXADDR_EL1 - * ERXCTLR_EL1 - * ERXFR_EL1 - * ERXMISC0_EL1 - * ERXMISC1_EL1 - * ERXMISC2_EL1 - * ERXMISC3_EL1 - * ERXPFGCDN_EL1 (RASv1p1) - * ERXPFGCTL_EL1 (RASv1p1) - * ERXPFGF_EL1 (RASv1p1) - * ERXSTATUS_EL1 - * and - * ERRSELR_EL1 - * may generate UNDEFINED, which is the effect we get by not - * listing them at all. - */ -static const ARMCPRegInfo minimal_ras_reginfo[] = { - { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, - .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), - .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, - { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, - .access = PL1_R, .accessfn = access_terr, - .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, - .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, - { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, - .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, -}; - /* * Return the exception level to which exceptions should be taken * via SVEAccessTrap. This excludes the check for whether the exception @@ -6651,2272 +305,6 @@ uint32_t sve_vqm1_for_el(CPUARMState *env, int el) return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); } -static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - int cur_el = arm_current_el(env); - int old_len = sve_vqm1_for_el(env, cur_el); - int new_len; - - /* Bits other than [3:0] are RAZ/WI. */ - QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); - raw_write(env, ri, value & 0xf); - - /* - * Because we arrived here, we know both FP and SVE are enabled; - * otherwise we would have trapped access to the ZCR_ELn register. - */ - new_len = sve_vqm1_for_el(env, cur_el); - if (new_len < old_len) { - aarch64_sve_narrow_vq(env, new_len + 1); - } -} - -static const ARMCPRegInfo zcr_reginfo[] = { - { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, - .access = PL1_RW, .type = ARM_CP_SVE, - .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), - .writefn = zcr_write, .raw_writefn = raw_write }, - { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, - .access = PL2_RW, .type = ARM_CP_SVE, - .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), - .writefn = zcr_write, .raw_writefn = raw_write }, - { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, - .access = PL3_RW, .type = ARM_CP_SVE, - .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), - .writefn = zcr_write, .raw_writefn = raw_write }, -}; - -#ifdef TARGET_AARCH64 -static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - int el = arm_current_el(env); - - if (el == 0) { - uint64_t sctlr = arm_sctlr(env, el); - if (!(sctlr & SCTLR_EnTP2)) { - return CP_ACCESS_TRAP; - } - } - /* TODO: FEAT_FGT */ - if (el < 3 - && arm_feature(env, ARM_FEATURE_EL3) - && !(env->cp15.scr_el3 & SCR_ENTP2)) { - return CP_ACCESS_TRAP_EL3; - } - return CP_ACCESS_OK; -} - -static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */ - if (arm_current_el(env) < 3 - && arm_feature(env, ARM_FEATURE_EL3) - && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { - return CP_ACCESS_TRAP_EL3; - } - return CP_ACCESS_OK; -} - -static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - helper_set_pstate_sm(env, FIELD_EX64(value, SVCR, SM)); - helper_set_pstate_za(env, FIELD_EX64(value, SVCR, ZA)); - arm_rebuild_hflags(env); -} - -static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - int cur_el = arm_current_el(env); - int old_len = sve_vqm1_for_el(env, cur_el); - int new_len; - - QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); - value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; - raw_write(env, ri, value); - - /* - * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage - * when SVL is widened (old values kept, or zeros). Choose to keep the - * current values for simplicity. But for QEMU internals, we must still - * apply the narrower SVL to the Zregs and Pregs -- see the comment - * above aarch64_sve_narrow_vq. - */ - new_len = sve_vqm1_for_el(env, cur_el); - if (new_len < old_len) { - aarch64_sve_narrow_vq(env, new_len + 1); - } -} - -static const ARMCPRegInfo sme_reginfo[] = { - { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, - .access = PL0_RW, .accessfn = access_tpidr2, - .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, - { .name = "SVCR", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, - .access = PL0_RW, .type = ARM_CP_SME, - .fieldoffset = offsetof(CPUARMState, svcr), - .writefn = svcr_write, .raw_writefn = raw_write }, - { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, - .access = PL1_RW, .type = ARM_CP_SME, - .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), - .writefn = smcr_write, .raw_writefn = raw_write }, - { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, - .access = PL2_RW, .type = ARM_CP_SME, - .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), - .writefn = smcr_write, .raw_writefn = raw_write }, - { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, - .access = PL3_RW, .type = ARM_CP_SME, - .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), - .writefn = smcr_write, .raw_writefn = raw_write }, - { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, - .access = PL1_R, .accessfn = access_aa64_tid1, - /* - * IMPLEMENTOR = 0 (software) - * REVISION = 0 (implementation defined) - * SMPS = 0 (no streaming execution priority in QEMU) - * AFFINITY = 0 (streaming sve mode not shared with other PEs) - */ - .type = ARM_CP_CONST, .resetvalue = 0, }, - /* - * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. - */ - { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, - .access = PL1_RW, .accessfn = access_esm, - .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, - .access = PL2_RW, .accessfn = access_esm, - .type = ARM_CP_CONST, .resetvalue = 0 }, -}; -#endif /* TARGET_AARCH64 */ - -static void define_pmu_regs(ARMCPU *cpu) -{ - /* - * v7 performance monitor control register: same implementor - * field as main ID register, and we implement four counters in - * addition to the cycle count register. - */ - unsigned int i, pmcrn = pmu_num_counters(&cpu->env); - ARMCPRegInfo pmcr = { - .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, - .access = PL0_RW, - .type = ARM_CP_IO | ARM_CP_ALIAS, - .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), - .accessfn = pmreg_access, .writefn = pmcr_write, - .raw_writefn = raw_write, - }; - ARMCPRegInfo pmcr64 = { - .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, - .access = PL0_RW, .accessfn = pmreg_access, - .type = ARM_CP_IO, - .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), - .resetvalue = cpu->isar.reset_pmcr_el0, - .writefn = pmcr_write, .raw_writefn = raw_write, - }; - - define_one_arm_cp_reg(cpu, &pmcr); - define_one_arm_cp_reg(cpu, &pmcr64); - for (i = 0; i < pmcrn; i++) { - char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); - char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); - char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); - char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); - ARMCPRegInfo pmev_regs[] = { - { .name = pmevcntr_name, .cp = 15, .crn = 14, - .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, - .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, - .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, - .accessfn = pmreg_access_xevcntr }, - { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), - .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, - .type = ARM_CP_IO, - .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, - .raw_readfn = pmevcntr_rawread, - .raw_writefn = pmevcntr_rawwrite }, - { .name = pmevtyper_name, .cp = 15, .crn = 14, - .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, - .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, - .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, - .accessfn = pmreg_access }, - { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), - .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, - .type = ARM_CP_IO, - .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, - .raw_writefn = pmevtyper_rawwrite }, - }; - define_arm_cp_regs(cpu, pmev_regs); - g_free(pmevcntr_name); - g_free(pmevcntr_el0_name); - g_free(pmevtyper_name); - g_free(pmevtyper_el0_name); - } - if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { - ARMCPRegInfo v81_pmu_regs[] = { - { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, - .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, - .resetvalue = extract64(cpu->pmceid0, 32, 32) }, - { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, - .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, - .resetvalue = extract64(cpu->pmceid1, 32, 32) }, - }; - define_arm_cp_regs(cpu, v81_pmu_regs); - } - if (cpu_isar_feature(any_pmuv3p4, cpu)) { - static const ARMCPRegInfo v84_pmmir = { - .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, - .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, - .resetvalue = 0 - }; - define_one_arm_cp_reg(cpu, &v84_pmmir); - } -} - -/* - * We don't know until after realize whether there's a GICv3 - * attached, and that is what registers the gicv3 sysregs. - * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 - * at runtime. - */ -static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - ARMCPU *cpu = env_archcpu(env); - uint64_t pfr1 = cpu->isar.id_pfr1; - - if (env->gicv3state) { - pfr1 |= 1 << 28; - } - return pfr1; -} - -#ifndef CONFIG_USER_ONLY -static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - ARMCPU *cpu = env_archcpu(env); - uint64_t pfr0 = cpu->isar.id_aa64pfr0; - - if (env->gicv3state) { - pfr0 |= 1 << 24; - } - return pfr0; -} -#endif - -/* - * Shared logic between LORID and the rest of the LOR* registers. - * Secure state exclusion has already been dealt with. - */ -static CPAccessResult access_lor_ns(CPUARMState *env, - const ARMCPRegInfo *ri, bool isread) -{ - int el = arm_current_el(env); - - if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { - return CP_ACCESS_TRAP_EL2; - } - if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { - return CP_ACCESS_TRAP_EL3; - } - return CP_ACCESS_OK; -} - -static CPAccessResult access_lor_other(CPUARMState *env, - const ARMCPRegInfo *ri, bool isread) -{ - if (arm_is_secure_below_el3(env)) { - /* Access denied in secure mode. */ - return CP_ACCESS_TRAP; - } - return access_lor_ns(env, ri, isread); -} - -/* - * A trivial implementation of ARMv8.1-LOR leaves all of these - * registers fixed at 0, which indicates that there are zero - * supported Limited Ordering regions. - */ -static const ARMCPRegInfo lor_reginfo[] = { - { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, - .access = PL1_RW, .accessfn = access_lor_other, - .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, - .access = PL1_RW, .accessfn = access_lor_other, - .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, - .access = PL1_RW, .accessfn = access_lor_other, - .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, - .access = PL1_RW, .accessfn = access_lor_other, - .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, - .access = PL1_R, .accessfn = access_lor_ns, - .type = ARM_CP_CONST, .resetvalue = 0 }, -}; - -#ifdef TARGET_AARCH64 -static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - int el = arm_current_el(env); - - if (el < 2 && - arm_is_el2_enabled(env) && - !(arm_hcr_el2_eff(env) & HCR_APK)) { - return CP_ACCESS_TRAP_EL2; - } - if (el < 3 && - arm_feature(env, ARM_FEATURE_EL3) && - !(env->cp15.scr_el3 & SCR_APK)) { - return CP_ACCESS_TRAP_EL3; - } - return CP_ACCESS_OK; -} - -static const ARMCPRegInfo pauth_reginfo[] = { - { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, - .access = PL1_RW, .accessfn = access_pauth, - .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, - { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, - .access = PL1_RW, .accessfn = access_pauth, - .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, - { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, - .access = PL1_RW, .accessfn = access_pauth, - .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, - { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, - .access = PL1_RW, .accessfn = access_pauth, - .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, - { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, - .access = PL1_RW, .accessfn = access_pauth, - .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, - { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, - .access = PL1_RW, .accessfn = access_pauth, - .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, - { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, - .access = PL1_RW, .accessfn = access_pauth, - .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, - { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, - .access = PL1_RW, .accessfn = access_pauth, - .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, - { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, - .access = PL1_RW, .accessfn = access_pauth, - .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, - { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, - .access = PL1_RW, .accessfn = access_pauth, - .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, -}; - -static const ARMCPRegInfo tlbirange_reginfo[] = { - { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, - .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae1is_write }, - { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, - .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae1is_write }, - { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, - .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae1is_write }, - { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, - .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae1is_write }, - { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, - .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae1is_write }, - { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, - .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae1is_write }, - { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, - .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae1is_write }, - { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, - .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae1is_write }, - { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, - .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae1_write }, - { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, - .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae1_write }, - { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, - .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae1_write }, - { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, - .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae1_write }, - { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_ripas2e1is_write }, - { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_ripas2e1is_write }, - { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, - .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, - .writefn = tlbi_aa64_rvae2is_write }, - { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, - .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, - .writefn = tlbi_aa64_rvae2is_write }, - { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_ripas2e1_write }, - { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_ripas2e1_write }, - { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, - .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, - .writefn = tlbi_aa64_rvae2is_write }, - { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, - .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, - .writefn = tlbi_aa64_rvae2is_write }, - { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, - .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, - .writefn = tlbi_aa64_rvae2_write }, - { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, - .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, - .writefn = tlbi_aa64_rvae2_write }, - { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae3is_write }, - { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae3is_write }, - { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae3is_write }, - { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae3is_write }, - { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae3_write }, - { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_rvae3_write }, -}; - -static const ARMCPRegInfo tlbios_reginfo[] = { - { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, - .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vmalle1is_write }, - { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, - .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae1is_write }, - { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, - .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vmalle1is_write }, - { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, - .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae1is_write }, - { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, - .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae1is_write }, - { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, - .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae1is_write }, - { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, - .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, - .writefn = tlbi_aa64_alle2is_write }, - { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, - .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, - .writefn = tlbi_aa64_vae2is_write }, - { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_alle1is_write }, - { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, - .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, - .writefn = tlbi_aa64_vae2is_write }, - { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, - .access = PL2_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_alle1is_write }, - { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, - .access = PL2_W, .type = ARM_CP_NOP }, - { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, - .access = PL2_W, .type = ARM_CP_NOP }, - { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, - .access = PL2_W, .type = ARM_CP_NOP }, - { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, - .access = PL2_W, .type = ARM_CP_NOP }, - { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_alle3is_write }, - { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae3is_write }, - { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, - .access = PL3_W, .type = ARM_CP_NO_RAW, - .writefn = tlbi_aa64_vae3is_write }, -}; - -static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) -{ - Error *err = NULL; - uint64_t ret; - - /* Success sets NZCV = 0000. */ - env->NF = env->CF = env->VF = 0, env->ZF = 1; - - if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { - /* - * ??? Failed, for unknown reasons in the crypto subsystem. - * The best we can do is log the reason and return the - * timed-out indication to the guest. There is no reason - * we know to expect this failure to be transitory, so the - * guest may well hang retrying the operation. - */ - qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", - ri->name, error_get_pretty(err)); - error_free(err); - - env->ZF = 0; /* NZCF = 0100 */ - return 0; - } - return ret; -} - -/* We do not support re-seeding, so the two registers operate the same. */ -static const ARMCPRegInfo rndr_reginfo[] = { - { .name = "RNDR", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, - .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, - .access = PL0_R, .readfn = rndr_readfn }, - { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, - .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, - .access = PL0_R, .readfn = rndr_readfn }, -}; - -#ifndef CONFIG_USER_ONLY -static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, - uint64_t value) -{ - ARMCPU *cpu = env_archcpu(env); - /* CTR_EL0 System register -> DminLine, bits [19:16] */ - uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); - uint64_t vaddr_in = (uint64_t) value; - uint64_t vaddr = vaddr_in & ~(dline_size - 1); - void *haddr; - int mem_idx = cpu_mmu_index(env, false); - - /* This won't be crossing page boundaries */ - haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); - if (haddr) { - - ram_addr_t offset; - MemoryRegion *mr; - - /* RCU lock is already being held */ - mr = memory_region_from_host(haddr, &offset); - - if (mr) { - memory_region_writeback(mr, offset, dline_size); - } - } -} - -static const ARMCPRegInfo dcpop_reg[] = { - { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, - .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, - .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, -}; - -static const ARMCPRegInfo dcpodp_reg[] = { - { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, - .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, - .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, -}; -#endif /*CONFIG_USER_ONLY*/ - -static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { - return CP_ACCESS_TRAP_EL2; - } - - return CP_ACCESS_OK; -} - -static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - int el = arm_current_el(env); - - if (el < 2 && arm_is_el2_enabled(env)) { - uint64_t hcr = arm_hcr_el2_eff(env); - if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { - return CP_ACCESS_TRAP_EL2; - } - } - if (el < 3 && - arm_feature(env, ARM_FEATURE_EL3) && - !(env->cp15.scr_el3 & SCR_ATA)) { - return CP_ACCESS_TRAP_EL3; - } - return CP_ACCESS_OK; -} - -static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - return env->pstate & PSTATE_TCO; -} - -static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) -{ - env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); -} - -static const ARMCPRegInfo mte_reginfo[] = { - { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, - .access = PL1_RW, .accessfn = access_mte, - .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, - { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, - .access = PL1_RW, .accessfn = access_mte, - .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, - { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, - .access = PL2_RW, .accessfn = access_mte, - .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, - { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, - .access = PL3_RW, - .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, - { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, - .access = PL1_RW, .accessfn = access_mte, - .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, - { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, - .access = PL1_RW, .accessfn = access_mte, - .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, - { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, - .access = PL1_R, .accessfn = access_aa64_tid5, - .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, - { .name = "TCO", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, - .type = ARM_CP_NO_RAW, - .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, - { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, - .type = ARM_CP_NOP, .access = PL1_W, - .accessfn = aa64_cacheop_poc_access }, - { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, - { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, - .type = ARM_CP_NOP, .access = PL1_W, - .accessfn = aa64_cacheop_poc_access }, - { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, - { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, - { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, - { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, - { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, - .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, -}; - -static const ARMCPRegInfo mte_tco_ro_reginfo[] = { - { .name = "TCO", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, - .type = ARM_CP_CONST, .access = PL0_RW, }, -}; - -static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { - { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, - .type = ARM_CP_NOP, .access = PL0_W, - .accessfn = aa64_cacheop_poc_access }, - { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, - .type = ARM_CP_NOP, .access = PL0_W, - .accessfn = aa64_cacheop_poc_access }, - { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, - .type = ARM_CP_NOP, .access = PL0_W, - .accessfn = aa64_cacheop_poc_access }, - { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, - .type = ARM_CP_NOP, .access = PL0_W, - .accessfn = aa64_cacheop_poc_access }, - { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, - .type = ARM_CP_NOP, .access = PL0_W, - .accessfn = aa64_cacheop_poc_access }, - { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, - .type = ARM_CP_NOP, .access = PL0_W, - .accessfn = aa64_cacheop_poc_access }, - { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, - .type = ARM_CP_NOP, .access = PL0_W, - .accessfn = aa64_cacheop_poc_access }, - { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, - .type = ARM_CP_NOP, .access = PL0_W, - .accessfn = aa64_cacheop_poc_access }, - { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, - .access = PL0_W, .type = ARM_CP_DC_GVA, -#ifndef CONFIG_USER_ONLY - /* Avoid overhead of an access check that always passes in user-mode */ - .accessfn = aa64_zva_access, -#endif - }, - { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, - .access = PL0_W, .type = ARM_CP_DC_GZVA, -#ifndef CONFIG_USER_ONLY - /* Avoid overhead of an access check that always passes in user-mode */ - .accessfn = aa64_zva_access, -#endif - }, -}; - -static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - uint64_t hcr = arm_hcr_el2_eff(env); - int el = arm_current_el(env); - - if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { - if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { - if (hcr & HCR_TGE) { - return CP_ACCESS_TRAP_EL2; - } - return CP_ACCESS_TRAP; - } - } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { - return CP_ACCESS_TRAP_EL2; - } - if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { - return CP_ACCESS_TRAP_EL2; - } - if (el < 3 - && arm_feature(env, ARM_FEATURE_EL3) - && !(env->cp15.scr_el3 & SCR_ENSCXT)) { - return CP_ACCESS_TRAP_EL3; - } - return CP_ACCESS_OK; -} - -static const ARMCPRegInfo scxtnum_reginfo[] = { - { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, - .access = PL0_RW, .accessfn = access_scxtnum, - .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, - { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, - .access = PL1_RW, .accessfn = access_scxtnum, - .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, - { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, - .access = PL2_RW, .accessfn = access_scxtnum, - .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, - { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, - .access = PL3_RW, - .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, -}; -#endif /* TARGET_AARCH64 */ - -static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - int el = arm_current_el(env); - - if (el == 0) { - uint64_t sctlr = arm_sctlr(env, el); - if (!(sctlr & SCTLR_EnRCTX)) { - return CP_ACCESS_TRAP; - } - } else if (el == 1) { - uint64_t hcr = arm_hcr_el2_eff(env); - if (hcr & HCR_NV) { - return CP_ACCESS_TRAP_EL2; - } - } - return CP_ACCESS_OK; -} - -static const ARMCPRegInfo predinv_reginfo[] = { - { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, - .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, - { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, - .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, - { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, - .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, - /* - * Note the AArch32 opcodes have a different OPC1. - */ - { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, - .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, - { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, - .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, - { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, - .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, -}; - -static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) -{ - /* Read the high 32 bits of the current CCSIDR */ - return extract64(ccsidr_read(env, ri), 32, 32); -} - -static const ARMCPRegInfo ccsidr2_reginfo[] = { - { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, - .access = PL1_R, - .accessfn = access_tid4, - .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, -}; - -static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { - return CP_ACCESS_TRAP_EL2; - } - - return CP_ACCESS_OK; -} - -static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_feature(env, ARM_FEATURE_V8)) { - return access_aa64_tid3(env, ri, isread); - } - - return CP_ACCESS_OK; -} - -static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, - bool isread) -{ - if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { - return CP_ACCESS_TRAP_EL2; - } - - return CP_ACCESS_OK; -} - -static CPAccessResult access_joscr_jmcr(CPUARMState *env, - const ARMCPRegInfo *ri, bool isread) -{ - /* - * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only - * in v7A, not in v8A. - */ - if (!arm_feature(env, ARM_FEATURE_V8) && - arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && - (env->cp15.hstr_el2 & HSTR_TJDBX)) { - return CP_ACCESS_TRAP_EL2; - } - return CP_ACCESS_OK; -} - -static const ARMCPRegInfo jazelle_regs[] = { - { .name = "JIDR", - .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, - .access = PL1_R, .accessfn = access_jazelle, - .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "JOSCR", - .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, - .accessfn = access_joscr_jmcr, - .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "JMCR", - .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, - .accessfn = access_joscr_jmcr, - .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, -}; - -static const ARMCPRegInfo contextidr_el2 = { - .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, - .access = PL2_RW, - .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) -}; - -static const ARMCPRegInfo vhe_reginfo[] = { - { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, - .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, - .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, -#ifndef CONFIG_USER_ONLY - { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, - .fieldoffset = - offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), - .type = ARM_CP_IO, .access = PL2_RW, - .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, - { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, - .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, - .resetfn = gt_hv_timer_reset, - .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, - { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, - .type = ARM_CP_IO, - .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, - .access = PL2_RW, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), - .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, - { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, - .type = ARM_CP_IO | ARM_CP_ALIAS, - .access = PL2_RW, .accessfn = e2h_access, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), - .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, - { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, - .type = ARM_CP_IO | ARM_CP_ALIAS, - .access = PL2_RW, .accessfn = e2h_access, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), - .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, - { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, - .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, - .access = PL2_RW, .accessfn = e2h_access, - .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, - { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, - .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, - .access = PL2_RW, .accessfn = e2h_access, - .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, - { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, - .type = ARM_CP_IO | ARM_CP_ALIAS, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), - .access = PL2_RW, .accessfn = e2h_access, - .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, - { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, - .type = ARM_CP_IO | ARM_CP_ALIAS, - .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), - .access = PL2_RW, .accessfn = e2h_access, - .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, -#endif -}; - -#ifndef CONFIG_USER_ONLY -static const ARMCPRegInfo ats1e1_reginfo[] = { - { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, - .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write64 }, - { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, - .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, - .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write64 }, -}; - -static const ARMCPRegInfo ats1cp_reginfo[] = { - { .name = "ATS1CPRP", - .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, - .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write }, - { .name = "ATS1CPWP", - .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, - .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, - .writefn = ats_write }, -}; -#endif - -/* - * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and - * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field - * is non-zero, which is never for ARMv7, optionally in ARMv8 - * and mandatorily for ARMv8.2 and up. - * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's - * implementation is RAZ/WI we can ignore this detail, as we - * do for ACTLR. - */ -static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { - { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, - .access = PL1_RW, .accessfn = access_tacr, - .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, - .access = PL2_RW, .type = ARM_CP_CONST, - .resetvalue = 0 }, -}; - -void register_cp_regs_for_features(ARMCPU *cpu) -{ - /* Register all the coprocessor registers based on feature bits */ - CPUARMState *env = &cpu->env; - if (arm_feature(env, ARM_FEATURE_M)) { - /* M profile has no coprocessor registers */ - return; - } - - define_arm_cp_regs(cpu, cp_reginfo); - if (!arm_feature(env, ARM_FEATURE_V8)) { - /* - * Must go early as it is full of wildcards that may be - * overridden by later definitions. - */ - define_arm_cp_regs(cpu, not_v8_cp_reginfo); - } - - if (arm_feature(env, ARM_FEATURE_V6)) { - /* The ID registers all have impdef reset values */ - ARMCPRegInfo v6_idregs[] = { - { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_pfr0 }, - /* - * ID_PFR1 is not a plain ARM_CP_CONST because we don't know - * the value of the GIC field until after we define these regs. - */ - { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, - .access = PL1_R, .type = ARM_CP_NO_RAW, - .accessfn = access_aa32_tid3, - .readfn = id_pfr1_read, - .writefn = arm_cp_write_ignore }, - { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_dfr0 }, - { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->id_afr0 }, - { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_mmfr0 }, - { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_mmfr1 }, - { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_mmfr2 }, - { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_mmfr3 }, - { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_isar0 }, - { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_isar1 }, - { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_isar2 }, - { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_isar3 }, - { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_isar4 }, - { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_isar5 }, - { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_mmfr4 }, - { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa32_tid3, - .resetvalue = cpu->isar.id_isar6 }, - }; - define_arm_cp_regs(cpu, v6_idregs); - define_arm_cp_regs(cpu, v6_cp_reginfo); - } else { - define_arm_cp_regs(cpu, not_v6_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_V6K)) { - define_arm_cp_regs(cpu, v6k_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_V7MP) && - !arm_feature(env, ARM_FEATURE_PMSA)) { - define_arm_cp_regs(cpu, v7mp_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_V7VE)) { - define_arm_cp_regs(cpu, pmovsset_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_V7)) { - ARMCPRegInfo clidr = { - .name = "CLIDR", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_tid4, - .resetvalue = cpu->clidr - }; - define_one_arm_cp_reg(cpu, &clidr); - define_arm_cp_regs(cpu, v7_cp_reginfo); - define_debug_regs(cpu); - define_pmu_regs(cpu); - } else { - define_arm_cp_regs(cpu, not_v7_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_V8)) { - /* - * v8 ID registers, which all have impdef reset values. - * Note that within the ID register ranges the unused slots - * must all RAZ, not UNDEF; future architecture versions may - * define new registers here. - * ID registers which are AArch64 views of the AArch32 ID registers - * which already existed in v6 and v7 are handled elsewhere, - * in v6_idregs[]. - */ - int i; - ARMCPRegInfo v8_idregs[] = { - /* - * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system - * emulation because we don't know the right value for the - * GIC field until after we define these regs. - */ - { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, - .access = PL1_R, -#ifdef CONFIG_USER_ONLY - .type = ARM_CP_CONST, - .resetvalue = cpu->isar.id_aa64pfr0 -#else - .type = ARM_CP_NO_RAW, - .accessfn = access_aa64_tid3, - .readfn = id_aa64pfr0_read, - .writefn = arm_cp_write_ignore -#endif - }, - { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.id_aa64pfr1}, - { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.id_aa64zfr0 }, - { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.id_aa64smfr0 }, - { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.id_aa64dfr0 }, - { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.id_aa64dfr1 }, - { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->id_aa64afr0 }, - { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->id_aa64afr1 }, - { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.id_aa64isar0 }, - { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.id_aa64isar1 }, - { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.id_aa64mmfr0 }, - { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.id_aa64mmfr1 }, - { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.id_aa64mmfr2 }, - { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.mvfr0 }, - { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.mvfr1 }, - { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.mvfr2 }, - /* - * "0, c0, c3, {0,1,2}" are the encodings corresponding to - * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding - * as RAZ, since it is in the "reserved for future ID - * registers, RAZ" part of the AArch32 encoding space. - */ - { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - /* - * Other encodings in "0, c0, c3, ..." are STATE_BOTH because - * they're also RAZ for AArch64, and in v8 are gradually - * being filled with AArch64-view-of-AArch32-ID-register - * for new ID registers. - */ - { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.id_pfr2 }, - { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.id_dfr1 }, - { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = cpu->isar.id_mmfr5 }, - { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }, - { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, - .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, - .resetvalue = extract64(cpu->pmceid0, 0, 32) }, - { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, - .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, - .resetvalue = cpu->pmceid0 }, - { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, - .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, - .resetvalue = extract64(cpu->pmceid1, 0, 32) }, - { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, - .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, - .resetvalue = cpu->pmceid1 }, - }; -#ifdef CONFIG_USER_ONLY - static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { - { .name = "ID_AA64PFR0_EL1", - .exported_bits = R_ID_AA64PFR0_FP_MASK | - R_ID_AA64PFR0_ADVSIMD_MASK | - R_ID_AA64PFR0_SVE_MASK | - R_ID_AA64PFR0_DIT_MASK, - .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | - (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, - { .name = "ID_AA64PFR1_EL1", - .exported_bits = R_ID_AA64PFR1_BT_MASK | - R_ID_AA64PFR1_SSBS_MASK | - R_ID_AA64PFR1_MTE_MASK | - R_ID_AA64PFR1_SME_MASK }, - { .name = "ID_AA64PFR*_EL1_RESERVED", - .is_glob = true }, - { .name = "ID_AA64ZFR0_EL1", - .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | - R_ID_AA64ZFR0_AES_MASK | - R_ID_AA64ZFR0_BITPERM_MASK | - R_ID_AA64ZFR0_BFLOAT16_MASK | - R_ID_AA64ZFR0_SHA3_MASK | - R_ID_AA64ZFR0_SM4_MASK | - R_ID_AA64ZFR0_I8MM_MASK | - R_ID_AA64ZFR0_F32MM_MASK | - R_ID_AA64ZFR0_F64MM_MASK }, - { .name = "ID_AA64SMFR0_EL1", - .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | - R_ID_AA64SMFR0_B16F32_MASK | - R_ID_AA64SMFR0_F16F32_MASK | - R_ID_AA64SMFR0_I8I32_MASK | - R_ID_AA64SMFR0_F64F64_MASK | - R_ID_AA64SMFR0_I16I64_MASK | - R_ID_AA64SMFR0_FA64_MASK }, - { .name = "ID_AA64MMFR0_EL1", - .exported_bits = R_ID_AA64MMFR0_ECV_MASK, - .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | - (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, - { .name = "ID_AA64MMFR1_EL1", - .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, - { .name = "ID_AA64MMFR2_EL1", - .exported_bits = R_ID_AA64MMFR2_AT_MASK }, - { .name = "ID_AA64MMFR*_EL1_RESERVED", - .is_glob = true }, - { .name = "ID_AA64DFR0_EL1", - .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, - { .name = "ID_AA64DFR1_EL1" }, - { .name = "ID_AA64DFR*_EL1_RESERVED", - .is_glob = true }, - { .name = "ID_AA64AFR*", - .is_glob = true }, - { .name = "ID_AA64ISAR0_EL1", - .exported_bits = R_ID_AA64ISAR0_AES_MASK | - R_ID_AA64ISAR0_SHA1_MASK | - R_ID_AA64ISAR0_SHA2_MASK | - R_ID_AA64ISAR0_CRC32_MASK | - R_ID_AA64ISAR0_ATOMIC_MASK | - R_ID_AA64ISAR0_RDM_MASK | - R_ID_AA64ISAR0_SHA3_MASK | - R_ID_AA64ISAR0_SM3_MASK | - R_ID_AA64ISAR0_SM4_MASK | - R_ID_AA64ISAR0_DP_MASK | - R_ID_AA64ISAR0_FHM_MASK | - R_ID_AA64ISAR0_TS_MASK | - R_ID_AA64ISAR0_RNDR_MASK }, - { .name = "ID_AA64ISAR1_EL1", - .exported_bits = R_ID_AA64ISAR1_DPB_MASK | - R_ID_AA64ISAR1_APA_MASK | - R_ID_AA64ISAR1_API_MASK | - R_ID_AA64ISAR1_JSCVT_MASK | - R_ID_AA64ISAR1_FCMA_MASK | - R_ID_AA64ISAR1_LRCPC_MASK | - R_ID_AA64ISAR1_GPA_MASK | - R_ID_AA64ISAR1_GPI_MASK | - R_ID_AA64ISAR1_FRINTTS_MASK | - R_ID_AA64ISAR1_SB_MASK | - R_ID_AA64ISAR1_BF16_MASK | - R_ID_AA64ISAR1_DGH_MASK | - R_ID_AA64ISAR1_I8MM_MASK }, - { .name = "ID_AA64ISAR2_EL1", - .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | - R_ID_AA64ISAR2_RPRES_MASK | - R_ID_AA64ISAR2_GPA3_MASK | - R_ID_AA64ISAR2_APA3_MASK }, - { .name = "ID_AA64ISAR*_EL1_RESERVED", - .is_glob = true }, - }; - modify_arm_cp_regs(v8_idregs, v8_user_idregs); -#endif - /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ - if (!arm_feature(env, ARM_FEATURE_EL3) && - !arm_feature(env, ARM_FEATURE_EL2)) { - ARMCPRegInfo rvbar = { - .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, - .access = PL1_R, - .fieldoffset = offsetof(CPUARMState, cp15.rvbar), - }; - define_one_arm_cp_reg(cpu, &rvbar); - } - define_arm_cp_regs(cpu, v8_idregs); - define_arm_cp_regs(cpu, v8_cp_reginfo); - - for (i = 4; i < 16; i++) { - /* - * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. - * For pre-v8 cores there are RAZ patterns for these in - * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. - * v8 extends the "must RAZ" part of the ID register space - * to also cover c0, 0, c{8-15}, {0-7}. - * These are STATE_AA32 because in the AArch64 sysreg space - * c4-c7 is where the AArch64 ID registers live (and we've - * already defined those in v8_idregs[]), and c8-c15 are not - * "must RAZ" for AArch64. - */ - g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); - ARMCPRegInfo v8_aa32_raz_idregs = { - .name = name, - .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, - .access = PL1_R, .type = ARM_CP_CONST, - .accessfn = access_aa64_tid3, - .resetvalue = 0 }; - define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); - } - } - - /* - * Register the base EL2 cpregs. - * Pre v8, these registers are implemented only as part of the - * Virtualization Extensions (EL2 present). Beginning with v8, - * if EL2 is missing but EL3 is enabled, mostly these become - * RES0 from EL3, with some specific exceptions. - */ - if (arm_feature(env, ARM_FEATURE_EL2) - || (arm_feature(env, ARM_FEATURE_EL3) - && arm_feature(env, ARM_FEATURE_V8))) { - uint64_t vmpidr_def = mpidr_read_val(env); - ARMCPRegInfo vpidr_regs[] = { - { .name = "VPIDR", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, - .access = PL2_RW, .accessfn = access_el3_aa32ns, - .resetvalue = cpu->midr, - .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, - .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, - { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, - .access = PL2_RW, .resetvalue = cpu->midr, - .type = ARM_CP_EL3_NO_EL2_C_NZ, - .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, - { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, - .access = PL2_RW, .accessfn = access_el3_aa32ns, - .resetvalue = vmpidr_def, - .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, - .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, - { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, - .access = PL2_RW, .resetvalue = vmpidr_def, - .type = ARM_CP_EL3_NO_EL2_C_NZ, - .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, - }; - /* - * The only field of MDCR_EL2 that has a defined architectural reset - * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. - */ - ARMCPRegInfo mdcr_el2 = { - .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, - .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, - .writefn = mdcr_el2_write, - .access = PL2_RW, .resetvalue = pmu_num_counters(env), - .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), - }; - define_one_arm_cp_reg(cpu, &mdcr_el2); - define_arm_cp_regs(cpu, vpidr_regs); - define_arm_cp_regs(cpu, el2_cp_reginfo); - if (arm_feature(env, ARM_FEATURE_V8)) { - define_arm_cp_regs(cpu, el2_v8_cp_reginfo); - } - if (cpu_isar_feature(aa64_sel2, cpu)) { - define_arm_cp_regs(cpu, el2_sec_cp_reginfo); - } - /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ - if (!arm_feature(env, ARM_FEATURE_EL3)) { - ARMCPRegInfo rvbar[] = { - { - .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, - .access = PL2_R, - .fieldoffset = offsetof(CPUARMState, cp15.rvbar), - }, - { .name = "RVBAR", .type = ARM_CP_ALIAS, - .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, - .access = PL2_R, - .fieldoffset = offsetof(CPUARMState, cp15.rvbar), - }, - }; - define_arm_cp_regs(cpu, rvbar); - } - } - - /* Register the base EL3 cpregs. */ - if (arm_feature(env, ARM_FEATURE_EL3)) { - define_arm_cp_regs(cpu, el3_cp_reginfo); - ARMCPRegInfo el3_regs[] = { - { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, - .access = PL3_R, - .fieldoffset = offsetof(CPUARMState, cp15.rvbar), - }, - { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, - .access = PL3_RW, - .raw_writefn = raw_write, .writefn = sctlr_write, - .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), - .resetvalue = cpu->reset_sctlr }, - }; - - define_arm_cp_regs(cpu, el3_regs); - } - /* - * The behaviour of NSACR is sufficiently various that we don't - * try to describe it in a single reginfo: - * if EL3 is 64 bit, then trap to EL3 from S EL1, - * reads as constant 0xc00 from NS EL1 and NS EL2 - * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 - * if v7 without EL3, register doesn't exist - * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 - */ - if (arm_feature(env, ARM_FEATURE_EL3)) { - if (arm_feature(env, ARM_FEATURE_AARCH64)) { - static const ARMCPRegInfo nsacr = { - .name = "NSACR", .type = ARM_CP_CONST, - .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, - .access = PL1_RW, .accessfn = nsacr_access, - .resetvalue = 0xc00 - }; - define_one_arm_cp_reg(cpu, &nsacr); - } else { - static const ARMCPRegInfo nsacr = { - .name = "NSACR", - .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, - .access = PL3_RW | PL1_R, - .resetvalue = 0, - .fieldoffset = offsetof(CPUARMState, cp15.nsacr) - }; - define_one_arm_cp_reg(cpu, &nsacr); - } - } else { - if (arm_feature(env, ARM_FEATURE_V8)) { - static const ARMCPRegInfo nsacr = { - .name = "NSACR", .type = ARM_CP_CONST, - .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, - .access = PL1_R, - .resetvalue = 0xc00 - }; - define_one_arm_cp_reg(cpu, &nsacr); - } - } - - if (arm_feature(env, ARM_FEATURE_PMSA)) { - if (arm_feature(env, ARM_FEATURE_V6)) { - /* PMSAv6 not implemented */ - assert(arm_feature(env, ARM_FEATURE_V7)); - define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); - define_arm_cp_regs(cpu, pmsav7_cp_reginfo); - } else { - define_arm_cp_regs(cpu, pmsav5_cp_reginfo); - } - } else { - define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); - define_arm_cp_regs(cpu, vmsa_cp_reginfo); - /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ - if (cpu_isar_feature(aa32_hpd, cpu)) { - define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); - } - } - if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { - define_arm_cp_regs(cpu, t2ee_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { - define_arm_cp_regs(cpu, generic_timer_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_VAPA)) { - define_arm_cp_regs(cpu, vapa_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { - define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { - define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { - define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_OMAPCP)) { - define_arm_cp_regs(cpu, omap_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_STRONGARM)) { - define_arm_cp_regs(cpu, strongarm_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_XSCALE)) { - define_arm_cp_regs(cpu, xscale_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { - define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); - } - if (arm_feature(env, ARM_FEATURE_LPAE)) { - define_arm_cp_regs(cpu, lpae_cp_reginfo); - } - if (cpu_isar_feature(aa32_jazelle, cpu)) { - define_arm_cp_regs(cpu, jazelle_regs); - } - /* - * Slightly awkwardly, the OMAP and StrongARM cores need all of - * cp15 crn=0 to be writes-ignored, whereas for other cores they should - * be read-only (ie write causes UNDEF exception). - */ - { - ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { - /* - * Pre-v8 MIDR space. - * Note that the MIDR isn't a simple constant register because - * of the TI925 behaviour where writes to another register can - * cause the MIDR value to change. - * - * Unimplemented registers in the c15 0 0 0 space default to - * MIDR. Define MIDR first as this entire space, then CTR, TCMTR - * and friends override accordingly. - */ - { .name = "MIDR", - .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, - .access = PL1_R, .resetvalue = cpu->midr, - .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, - .readfn = midr_read, - .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), - .type = ARM_CP_OVERRIDE }, - /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ - { .name = "DUMMY", - .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, - .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "DUMMY", - .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, - .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "DUMMY", - .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, - .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "DUMMY", - .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, - .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, - { .name = "DUMMY", - .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, - .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, - }; - ARMCPRegInfo id_v8_midr_cp_reginfo[] = { - { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, - .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, - .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), - .readfn = midr_read }, - /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ - { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, - .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, - .access = PL1_R, .resetvalue = cpu->midr }, - { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, - .access = PL1_R, - .accessfn = access_aa64_tid1, - .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, - }; - ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { - .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, - .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, - .access = PL1_R, .resetvalue = cpu->midr - }; - ARMCPRegInfo id_cp_reginfo[] = { - /* These are common to v8 and pre-v8 */ - { .name = "CTR", - .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, - .access = PL1_R, .accessfn = ctr_el0_access, - .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, - { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, - .access = PL0_R, .accessfn = ctr_el0_access, - .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, - /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ - { .name = "TCMTR", - .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, - .access = PL1_R, - .accessfn = access_aa32_tid1, - .type = ARM_CP_CONST, .resetvalue = 0 }, - }; - /* TLBTR is specific to VMSA */ - ARMCPRegInfo id_tlbtr_reginfo = { - .name = "TLBTR", - .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, - .access = PL1_R, - .accessfn = access_aa32_tid1, - .type = ARM_CP_CONST, .resetvalue = 0, - }; - /* MPUIR is specific to PMSA V6+ */ - ARMCPRegInfo id_mpuir_reginfo = { - .name = "MPUIR", - .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, - .access = PL1_R, .type = ARM_CP_CONST, - .resetvalue = cpu->pmsav7_dregion << 8 - }; - /* HMPUIR is specific to PMSA V8 */ - ARMCPRegInfo id_hmpuir_reginfo = { - .name = "HMPUIR", - .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, - .access = PL2_R, .type = ARM_CP_CONST, - .resetvalue = cpu->pmsav8r_hdregion - }; - static const ARMCPRegInfo crn0_wi_reginfo = { - .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, - .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, - .type = ARM_CP_NOP | ARM_CP_OVERRIDE - }; -#ifdef CONFIG_USER_ONLY - static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { - { .name = "MIDR_EL1", - .exported_bits = R_MIDR_EL1_REVISION_MASK | - R_MIDR_EL1_PARTNUM_MASK | - R_MIDR_EL1_ARCHITECTURE_MASK | - R_MIDR_EL1_VARIANT_MASK | - R_MIDR_EL1_IMPLEMENTER_MASK }, - { .name = "REVIDR_EL1" }, - }; - modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); -#endif - if (arm_feature(env, ARM_FEATURE_OMAPCP) || - arm_feature(env, ARM_FEATURE_STRONGARM)) { - size_t i; - /* - * Register the blanket "writes ignored" value first to cover the - * whole space. Then update the specific ID registers to allow write - * access, so that they ignore writes rather than causing them to - * UNDEF. - */ - define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); - for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { - id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; - } - for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { - id_cp_reginfo[i].access = PL1_RW; - } - id_mpuir_reginfo.access = PL1_RW; - id_tlbtr_reginfo.access = PL1_RW; - } - if (arm_feature(env, ARM_FEATURE_V8)) { - define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); - if (!arm_feature(env, ARM_FEATURE_PMSA)) { - define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); - } - } else { - define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); - } - define_arm_cp_regs(cpu, id_cp_reginfo); - if (!arm_feature(env, ARM_FEATURE_PMSA)) { - define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); - } else if (arm_feature(env, ARM_FEATURE_PMSA) && - arm_feature(env, ARM_FEATURE_V8)) { - uint32_t i = 0; - char *tmp_string; - - define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); - define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); - define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); - - /* Register alias is only valid for first 32 indexes */ - for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { - uint8_t crm = 0b1000 | extract32(i, 1, 3); - uint8_t opc1 = extract32(i, 4, 1); - uint8_t opc2 = extract32(i, 0, 1) << 2; - - tmp_string = g_strdup_printf("PRBAR%u", i); - ARMCPRegInfo tmp_prbarn_reginfo = { - .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, - .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, - .access = PL1_RW, .resetvalue = 0, - .accessfn = access_tvm_trvm, - .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read - }; - define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); - g_free(tmp_string); - - opc2 = extract32(i, 0, 1) << 2 | 0x1; - tmp_string = g_strdup_printf("PRLAR%u", i); - ARMCPRegInfo tmp_prlarn_reginfo = { - .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, - .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, - .access = PL1_RW, .resetvalue = 0, - .accessfn = access_tvm_trvm, - .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read - }; - define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); - g_free(tmp_string); - } - - /* Register alias is only valid for first 32 indexes */ - for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { - uint8_t crm = 0b1000 | extract32(i, 1, 3); - uint8_t opc1 = 0b100 | extract32(i, 4, 1); - uint8_t opc2 = extract32(i, 0, 1) << 2; - - tmp_string = g_strdup_printf("HPRBAR%u", i); - ARMCPRegInfo tmp_hprbarn_reginfo = { - .name = tmp_string, - .type = ARM_CP_NO_RAW, - .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, - .access = PL2_RW, .resetvalue = 0, - .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read - }; - define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); - g_free(tmp_string); - - opc2 = extract32(i, 0, 1) << 2 | 0x1; - tmp_string = g_strdup_printf("HPRLAR%u", i); - ARMCPRegInfo tmp_hprlarn_reginfo = { - .name = tmp_string, - .type = ARM_CP_NO_RAW, - .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, - .access = PL2_RW, .resetvalue = 0, - .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read - }; - define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); - g_free(tmp_string); - } - } else if (arm_feature(env, ARM_FEATURE_V7)) { - define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); - } - } - - if (arm_feature(env, ARM_FEATURE_MPIDR)) { - ARMCPRegInfo mpidr_cp_reginfo[] = { - { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, - .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, - }; -#ifdef CONFIG_USER_ONLY - static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { - { .name = "MPIDR_EL1", - .fixed_bits = 0x0000000080000000 }, - }; - modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); -#endif - define_arm_cp_regs(cpu, mpidr_cp_reginfo); - } - - if (arm_feature(env, ARM_FEATURE_AUXCR)) { - ARMCPRegInfo auxcr_reginfo[] = { - { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, - .access = PL1_RW, .accessfn = access_tacr, - .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, - { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, - .access = PL2_RW, .type = ARM_CP_CONST, - .resetvalue = 0 }, - { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, - .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, - .access = PL3_RW, .type = ARM_CP_CONST, - .resetvalue = 0 }, - }; - define_arm_cp_regs(cpu, auxcr_reginfo); - if (cpu_isar_feature(aa32_ac2, cpu)) { - define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); - } - } - - if (arm_feature(env, ARM_FEATURE_CBAR)) { - /* - * CBAR is IMPDEF, but common on Arm Cortex-A implementations. - * There are two flavours: - * (1) older 32-bit only cores have a simple 32-bit CBAR - * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a - * 32-bit register visible to AArch32 at a different encoding - * to the "flavour 1" register and with the bits rearranged to - * be able to squash a 64-bit address into the 32-bit view. - * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but - * in future if we support AArch32-only configs of some of the - * AArch64 cores we might need to add a specific feature flag - * to indicate cores with "flavour 2" CBAR. - */ - if (arm_feature(env, ARM_FEATURE_AARCH64)) { - /* 32 bit view is [31:18] 0...0 [43:32]. */ - uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) - | extract64(cpu->reset_cbar, 32, 12); - ARMCPRegInfo cbar_reginfo[] = { - { .name = "CBAR", - .type = ARM_CP_CONST, - .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, - .access = PL1_R, .resetvalue = cbar32 }, - { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_CONST, - .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, - .access = PL1_R, .resetvalue = cpu->reset_cbar }, - }; - /* We don't implement a r/w 64 bit CBAR currently */ - assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); - define_arm_cp_regs(cpu, cbar_reginfo); - } else { - ARMCPRegInfo cbar = { - .name = "CBAR", - .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, - .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, - .fieldoffset = offsetof(CPUARMState, - cp15.c15_config_base_address) - }; - if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { - cbar.access = PL1_R; - cbar.fieldoffset = 0; - cbar.type = ARM_CP_CONST; - } - define_one_arm_cp_reg(cpu, &cbar); - } - } - - if (arm_feature(env, ARM_FEATURE_VBAR)) { - static const ARMCPRegInfo vbar_cp_reginfo[] = { - { .name = "VBAR", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, .writefn = vbar_write, - .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), - offsetof(CPUARMState, cp15.vbar_ns) }, - .resetvalue = 0 }, - }; - define_arm_cp_regs(cpu, vbar_cp_reginfo); - } - - /* Generic registers whose values depend on the implementation */ - { - ARMCPRegInfo sctlr = { - .name = "SCTLR", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, - .access = PL1_RW, .accessfn = access_tvm_trvm, - .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), - offsetof(CPUARMState, cp15.sctlr_ns) }, - .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, - .raw_writefn = raw_write, - }; - if (arm_feature(env, ARM_FEATURE_XSCALE)) { - /* - * Normally we would always end the TB on an SCTLR write, but Linux - * arch/arm/mach-pxa/sleep.S expects two instructions following - * an MMU enable to execute from cache. Imitate this behaviour. - */ - sctlr.type |= ARM_CP_SUPPRESS_TB_END; - } - define_one_arm_cp_reg(cpu, &sctlr); - - if (arm_feature(env, ARM_FEATURE_PMSA) && - arm_feature(env, ARM_FEATURE_V8)) { - ARMCPRegInfo vsctlr = { - .name = "VSCTLR", .state = ARM_CP_STATE_AA32, - .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, - .access = PL2_RW, .resetvalue = 0x0, - .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), - }; - define_one_arm_cp_reg(cpu, &vsctlr); - } - } - - if (cpu_isar_feature(aa64_lor, cpu)) { - define_arm_cp_regs(cpu, lor_reginfo); - } - if (cpu_isar_feature(aa64_pan, cpu)) { - define_one_arm_cp_reg(cpu, &pan_reginfo); - } -#ifndef CONFIG_USER_ONLY - if (cpu_isar_feature(aa64_ats1e1, cpu)) { - define_arm_cp_regs(cpu, ats1e1_reginfo); - } - if (cpu_isar_feature(aa32_ats1e1, cpu)) { - define_arm_cp_regs(cpu, ats1cp_reginfo); - } -#endif - if (cpu_isar_feature(aa64_uao, cpu)) { - define_one_arm_cp_reg(cpu, &uao_reginfo); - } - - if (cpu_isar_feature(aa64_dit, cpu)) { - define_one_arm_cp_reg(cpu, &dit_reginfo); - } - if (cpu_isar_feature(aa64_ssbs, cpu)) { - define_one_arm_cp_reg(cpu, &ssbs_reginfo); - } - if (cpu_isar_feature(any_ras, cpu)) { - define_arm_cp_regs(cpu, minimal_ras_reginfo); - } - - if (cpu_isar_feature(aa64_vh, cpu) || - cpu_isar_feature(aa64_debugv8p2, cpu)) { - define_one_arm_cp_reg(cpu, &contextidr_el2); - } - if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { - define_arm_cp_regs(cpu, vhe_reginfo); - } - - if (cpu_isar_feature(aa64_sve, cpu)) { - define_arm_cp_regs(cpu, zcr_reginfo); - } - - if (cpu_isar_feature(aa64_hcx, cpu)) { - define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); - } - -#ifdef TARGET_AARCH64 - if (cpu_isar_feature(aa64_sme, cpu)) { - define_arm_cp_regs(cpu, sme_reginfo); - } - if (cpu_isar_feature(aa64_pauth, cpu)) { - define_arm_cp_regs(cpu, pauth_reginfo); - } - if (cpu_isar_feature(aa64_rndr, cpu)) { - define_arm_cp_regs(cpu, rndr_reginfo); - } - if (cpu_isar_feature(aa64_tlbirange, cpu)) { - define_arm_cp_regs(cpu, tlbirange_reginfo); - } - if (cpu_isar_feature(aa64_tlbios, cpu)) { - define_arm_cp_regs(cpu, tlbios_reginfo); - } -#ifndef CONFIG_USER_ONLY - /* Data Cache clean instructions up to PoP */ - if (cpu_isar_feature(aa64_dcpop, cpu)) { - define_one_arm_cp_reg(cpu, dcpop_reg); - - if (cpu_isar_feature(aa64_dcpodp, cpu)) { - define_one_arm_cp_reg(cpu, dcpodp_reg); - } - } -#endif /*CONFIG_USER_ONLY*/ - - /* - * If full MTE is enabled, add all of the system registers. - * If only "instructions available at EL0" are enabled, - * then define only a RAZ/WI version of PSTATE.TCO. - */ - if (cpu_isar_feature(aa64_mte, cpu)) { - define_arm_cp_regs(cpu, mte_reginfo); - define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); - } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { - define_arm_cp_regs(cpu, mte_tco_ro_reginfo); - define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); - } - - if (cpu_isar_feature(aa64_scxtnum, cpu)) { - define_arm_cp_regs(cpu, scxtnum_reginfo); - } -#endif - - if (cpu_isar_feature(any_predinv, cpu)) { - define_arm_cp_regs(cpu, predinv_reginfo); - } - - if (cpu_isar_feature(any_ccidx, cpu)) { - define_arm_cp_regs(cpu, ccsidr2_reginfo); - } - -#ifndef CONFIG_USER_ONLY - /* - * Register redirections and aliases must be done last, - * after the registers from the other extensions have been defined. - */ - if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { - define_arm_vh_e2h_redirects_aliases(cpu); - } -#endif -} - /* Sort alphabetically by type name, except for "any". */ static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) { @@ -8991,461 +379,6 @@ CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) return cpu_list; } -/* - * Private utility function for define_one_arm_cp_reg_with_opaque(): - * add a single reginfo struct to the hash table. - */ -static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, - void *opaque, CPState state, - CPSecureState secstate, - int crm, int opc1, int opc2, - const char *name) -{ - CPUARMState *env = &cpu->env; - uint32_t key; - ARMCPRegInfo *r2; - bool is64 = r->type & ARM_CP_64BIT; - bool ns = secstate & ARM_CP_SECSTATE_NS; - int cp = r->cp; - size_t name_len; - bool make_const; - - switch (state) { - case ARM_CP_STATE_AA32: - /* We assume it is a cp15 register if the .cp field is left unset. */ - if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { - cp = 15; - } - key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); - break; - case ARM_CP_STATE_AA64: - /* - * To allow abbreviation of ARMCPRegInfo definitions, we treat - * cp == 0 as equivalent to the value for "standard guest-visible - * sysreg". STATE_BOTH definitions are also always "standard sysreg" - * in their AArch64 view (the .cp value may be non-zero for the - * benefit of the AArch32 view). - */ - if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { - cp = CP_REG_ARM64_SYSREG_CP; - } - key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); - break; - default: - g_assert_not_reached(); - } - - /* Overriding of an existing definition must be explicitly requested. */ - if (!(r->type & ARM_CP_OVERRIDE)) { - const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); - if (oldreg) { - assert(oldreg->type & ARM_CP_OVERRIDE); - } - } - - /* - * Eliminate registers that are not present because the EL is missing. - * Doing this here makes it easier to put all registers for a given - * feature into the same ARMCPRegInfo array and define them all at once. - */ - make_const = false; - if (arm_feature(env, ARM_FEATURE_EL3)) { - /* - * An EL2 register without EL2 but with EL3 is (usually) RES0. - * See rule RJFFP in section D1.1.3 of DDI0487H.a. - */ - int min_el = ctz32(r->access) / 2; - if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { - if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { - return; - } - make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); - } - } else { - CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) - ? PL2_RW : PL1_RW); - if ((r->access & max_el) == 0) { - return; - } - } - - /* Combine cpreg and name into one allocation. */ - name_len = strlen(name) + 1; - r2 = g_malloc(sizeof(*r2) + name_len); - *r2 = *r; - r2->name = memcpy(r2 + 1, name, name_len); - - /* - * Update fields to match the instantiation, overwiting wildcards - * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. - */ - r2->cp = cp; - r2->crm = crm; - r2->opc1 = opc1; - r2->opc2 = opc2; - r2->state = state; - r2->secure = secstate; - if (opaque) { - r2->opaque = opaque; - } - - if (make_const) { - /* This should not have been a very special register to begin. */ - int old_special = r2->type & ARM_CP_SPECIAL_MASK; - assert(old_special == 0 || old_special == ARM_CP_NOP); - /* - * Set the special function to CONST, retaining the other flags. - * This is important for e.g. ARM_CP_SVE so that we still - * take the SVE trap if CPTR_EL3.EZ == 0. - */ - r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; - /* - * Usually, these registers become RES0, but there are a few - * special cases like VPIDR_EL2 which have a constant non-zero - * value with writes ignored. - */ - if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { - r2->resetvalue = 0; - } - /* - * ARM_CP_CONST has precedence, so removing the callbacks and - * offsets are not strictly necessary, but it is potentially - * less confusing to debug later. - */ - r2->readfn = NULL; - r2->writefn = NULL; - r2->raw_readfn = NULL; - r2->raw_writefn = NULL; - r2->resetfn = NULL; - r2->fieldoffset = 0; - r2->bank_fieldoffsets[0] = 0; - r2->bank_fieldoffsets[1] = 0; - } else { - bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; - - if (isbanked) { - /* - * Register is banked (using both entries in array). - * Overwriting fieldoffset as the array is only used to define - * banked registers but later only fieldoffset is used. - */ - r2->fieldoffset = r->bank_fieldoffsets[ns]; - } - if (state == ARM_CP_STATE_AA32) { - if (isbanked) { - /* - * If the register is banked then we don't need to migrate or - * reset the 32-bit instance in certain cases: - * - * 1) If the register has both 32-bit and 64-bit instances - * then we can count on the 64-bit instance taking care - * of the non-secure bank. - * 2) If ARMv8 is enabled then we can count on a 64-bit - * version taking care of the secure bank. This requires - * that separate 32 and 64-bit definitions are provided. - */ - if ((r->state == ARM_CP_STATE_BOTH && ns) || - (arm_feature(env, ARM_FEATURE_V8) && !ns)) { - r2->type |= ARM_CP_ALIAS; - } - } else if ((secstate != r->secure) && !ns) { - /* - * The register is not banked so we only want to allow - * migration of the non-secure instance. - */ - r2->type |= ARM_CP_ALIAS; - } - - if (HOST_BIG_ENDIAN && - r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { - r2->fieldoffset += sizeof(uint32_t); - } - } - } - - /* - * By convention, for wildcarded registers only the first - * entry is used for migration; the others are marked as - * ALIAS so we don't try to transfer the register - * multiple times. Special registers (ie NOP/WFI) are - * never migratable and not even raw-accessible. - */ - if (r2->type & ARM_CP_SPECIAL_MASK) { - r2->type |= ARM_CP_NO_RAW; - } - if (((r->crm == CP_ANY) && crm != 0) || - ((r->opc1 == CP_ANY) && opc1 != 0) || - ((r->opc2 == CP_ANY) && opc2 != 0)) { - r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; - } - - /* - * Check that raw accesses are either forbidden or handled. Note that - * we can't assert this earlier because the setup of fieldoffset for - * banked registers has to be done first. - */ - if (!(r2->type & ARM_CP_NO_RAW)) { - assert(!raw_accessors_invalid(r2)); - } - - g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); -} - - -void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, - const ARMCPRegInfo *r, void *opaque) -{ - /* - * Define implementations of coprocessor registers. - * We store these in a hashtable because typically - * there are less than 150 registers in a space which - * is 16*16*16*8*8 = 262144 in size. - * Wildcarding is supported for the crm, opc1 and opc2 fields. - * If a register is defined twice then the second definition is - * used, so this can be used to define some generic registers and - * then override them with implementation specific variations. - * At least one of the original and the second definition should - * include ARM_CP_OVERRIDE in its type bits -- this is just a guard - * against accidental use. - * - * The state field defines whether the register is to be - * visible in the AArch32 or AArch64 execution state. If the - * state is set to ARM_CP_STATE_BOTH then we synthesise a - * reginfo structure for the AArch32 view, which sees the lower - * 32 bits of the 64 bit register. - * - * Only registers visible in AArch64 may set r->opc0; opc0 cannot - * be wildcarded. AArch64 registers are always considered to be 64 - * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of - * the register, if any. - */ - int crm, opc1, opc2; - int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; - int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; - int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; - int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; - int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; - int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; - CPState state; - - /* 64 bit registers have only CRm and Opc1 fields */ - assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); - /* op0 only exists in the AArch64 encodings */ - assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); - /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ - assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); - /* - * This API is only for Arm's system coprocessors (14 and 15) or - * (M-profile or v7A-and-earlier only) for implementation defined - * coprocessors in the range 0..7. Our decode assumes this, since - * 8..13 can be used for other insns including VFP and Neon. See - * valid_cp() in translate.c. Assert here that we haven't tried - * to use an invalid coprocessor number. - */ - switch (r->state) { - case ARM_CP_STATE_BOTH: - /* 0 has a special meaning, but otherwise the same rules as AA32. */ - if (r->cp == 0) { - break; - } - /* fall through */ - case ARM_CP_STATE_AA32: - if (arm_feature(&cpu->env, ARM_FEATURE_V8) && - !arm_feature(&cpu->env, ARM_FEATURE_M)) { - assert(r->cp >= 14 && r->cp <= 15); - } else { - assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); - } - break; - case ARM_CP_STATE_AA64: - assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); - break; - default: - g_assert_not_reached(); - } - /* - * The AArch64 pseudocode CheckSystemAccess() specifies that op1 - * encodes a minimum access level for the register. We roll this - * runtime check into our general permission check code, so check - * here that the reginfo's specified permissions are strict enough - * to encompass the generic architectural permission check. - */ - if (r->state != ARM_CP_STATE_AA32) { - CPAccessRights mask; - switch (r->opc1) { - case 0: - /* min_EL EL1, but some accessible to EL0 via kernel ABI */ - mask = PL0U_R | PL1_RW; - break; - case 1: case 2: - /* min_EL EL1 */ - mask = PL1_RW; - break; - case 3: - /* min_EL EL0 */ - mask = PL0_RW; - break; - case 4: - case 5: - /* min_EL EL2 */ - mask = PL2_RW; - break; - case 6: - /* min_EL EL3 */ - mask = PL3_RW; - break; - case 7: - /* min_EL EL1, secure mode only (we don't check the latter) */ - mask = PL1_RW; - break; - default: - /* broken reginfo with out-of-range opc1 */ - g_assert_not_reached(); - } - /* assert our permissions are not too lax (stricter is fine) */ - assert((r->access & ~mask) == 0); - } - - /* - * Check that the register definition has enough info to handle - * reads and writes if they are permitted. - */ - if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { - if (r->access & PL3_R) { - assert((r->fieldoffset || - (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || - r->readfn); - } - if (r->access & PL3_W) { - assert((r->fieldoffset || - (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || - r->writefn); - } - } - - for (crm = crmmin; crm <= crmmax; crm++) { - for (opc1 = opc1min; opc1 <= opc1max; opc1++) { - for (opc2 = opc2min; opc2 <= opc2max; opc2++) { - for (state = ARM_CP_STATE_AA32; - state <= ARM_CP_STATE_AA64; state++) { - if (r->state != state && r->state != ARM_CP_STATE_BOTH) { - continue; - } - if (state == ARM_CP_STATE_AA32) { - /* - * Under AArch32 CP registers can be common - * (same for secure and non-secure world) or banked. - */ - char *name; - - switch (r->secure) { - case ARM_CP_SECSTATE_S: - case ARM_CP_SECSTATE_NS: - add_cpreg_to_hashtable(cpu, r, opaque, state, - r->secure, crm, opc1, opc2, - r->name); - break; - case ARM_CP_SECSTATE_BOTH: - name = g_strdup_printf("%s_S", r->name); - add_cpreg_to_hashtable(cpu, r, opaque, state, - ARM_CP_SECSTATE_S, - crm, opc1, opc2, name); - g_free(name); - add_cpreg_to_hashtable(cpu, r, opaque, state, - ARM_CP_SECSTATE_NS, - crm, opc1, opc2, r->name); - break; - default: - g_assert_not_reached(); - } - } else { - /* - * AArch64 registers get mapped to non-secure instance - * of AArch32 - */ - add_cpreg_to_hashtable(cpu, r, opaque, state, - ARM_CP_SECSTATE_NS, - crm, opc1, opc2, r->name); - } - } - } - } - } -} - -/* Define a whole list of registers */ -void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, - void *opaque, size_t len) -{ - size_t i; - for (i = 0; i < len; ++i) { - define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); - } -} - -/* - * Modify ARMCPRegInfo for access from userspace. - * - * This is a data driven modification directed by - * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as - * user-space cannot alter any values and dynamic values pertaining to - * execution state are hidden from user space view anyway. - */ -void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, - const ARMCPRegUserSpaceInfo *mods, - size_t mods_len) -{ - for (size_t mi = 0; mi < mods_len; ++mi) { - const ARMCPRegUserSpaceInfo *m = mods + mi; - GPatternSpec *pat = NULL; - - if (m->is_glob) { - pat = g_pattern_spec_new(m->name); - } - for (size_t ri = 0; ri < regs_len; ++ri) { - ARMCPRegInfo *r = regs + ri; - - if (pat && g_pattern_match_string(pat, r->name)) { - r->type = ARM_CP_CONST; - r->access = PL0U_R; - r->resetvalue = 0; - /* continue */ - } else if (strcmp(r->name, m->name) == 0) { - r->type = ARM_CP_CONST; - r->access = PL0U_R; - r->resetvalue &= m->exported_bits; - r->resetvalue |= m->fixed_bits; - break; - } - } - if (pat) { - g_pattern_spec_free(pat); - } - } -} - -const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) -{ - return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); -} - -void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - /* Helper coprocessor write function for write-ignore registers */ -} - -uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) -{ - /* Helper coprocessor write function for read-as-zero registers */ - return 0; -} - -void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) -{ - /* Helper coprocessor reset function for do-nothing-on-reset registers */ -} - static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) { /* diff --git a/target/arm/machine.c b/target/arm/machine.c index b4c3850570..d5dd6825b9 100644 --- a/target/arm/machine.c +++ b/target/arm/machine.c @@ -5,6 +5,7 @@ #include "kvm_arm.h" #include "internals.h" #include "migration/cpu.h" +#include "cpregs.h" static bool vfp_needed(void *opaque) { diff --git a/target/arm/meson.build b/target/arm/meson.build index 87e911b27f..aa5aae9888 100644 --- a/target/arm/meson.build +++ b/target/arm/meson.build @@ -18,6 +18,7 @@ gen = [ arm_ss = ss.source_set() arm_ss.add(gen) arm_ss.add(files( + 'cpregs.c', 'cpu.c', 'crypto_helper.c', 'debug_helper.c', diff --git a/target/arm/op_helper.c b/target/arm/op_helper.c index 70672bcd9f..8f027f64db 100644 --- a/target/arm/op_helper.c +++ b/target/arm/op_helper.c @@ -19,6 +19,7 @@ #include "qemu/osdep.h" #include "qemu/main-loop.h" #include "cpu.h" +#include "cpregs.h" #include "exec/helper-proto.h" #include "internals.h" #include "exec/exec-all.h" diff --git a/target/arm/trace-events b/target/arm/trace-events index 2a0ba7bffc..04a480443e 100644 --- a/target/arm/trace-events +++ b/target/arm/trace-events @@ -1,6 +1,6 @@ # See docs/devel/tracing.rst for syntax documentation. -# helper.c +# cpregs.c arm_gt_recalc(int timer, int irqstate, uint64_t nexttick) "gt recalc: timer %d irqstate %d next tick 0x%" PRIx64 arm_gt_recalc_disabled(int timer) "gt recalc: timer %d irqstate 0 timer disabled" arm_gt_cval_write(int timer, uint64_t value) "gt_cval_write: timer %d value 0x%" PRIx64 diff --git a/target/arm/translate-a64.c b/target/arm/translate-a64.c index 2ee171f249..5c7ef25995 100644 --- a/target/arm/translate-a64.c +++ b/target/arm/translate-a64.c @@ -19,6 +19,7 @@ #include "qemu/osdep.h" #include "cpu.h" +#include "cpregs.h" #include "exec/exec-all.h" #include "tcg/tcg-op.h" #include "tcg/tcg-op-gvec.h" diff --git a/target/arm/translate.c b/target/arm/translate.c index 1dcaefb8e7..0bee6b0595 100644 --- a/target/arm/translate.c +++ b/target/arm/translate.c @@ -22,6 +22,7 @@ #include "cpu.h" #include "internals.h" +#include "cpregs.h" #include "disas/disas.h" #include "exec/exec-all.h" #include "tcg/tcg-op.h" -- 2.35.3