All of lore.kernel.org
 help / color / mirror / Atom feed
From: Jeff Chua <jeff.chua.linux@gmail.com>
To: Takashi Iwai <tiwai@suse.de>
Cc: Chris Wilson <chris@chris-wilson.co.uk>,
	Linus Torvalds <torvalds@linux-foundation.org>,
	"Rafael J. Wysocki" <rjw@sisk.pl>, Len Brown <lenb@kernel.org>,
	LKML <linux-kernel@vger.kernel.org>
Subject: Re: Commit 500f7147cf5bafd139056d521536b10c2bc2e154 breaks _resume_
Date: Mon, 7 Feb 2011 16:36:33 +0800	[thread overview]
Message-ID: <AANLkTi=KGMJ9vLaLfkzGQrc-F2eB5CRmDX1L5UohPTZ=@mail.gmail.com> (raw)
In-Reply-To: <s5hy65suu7t.wl%tiwai@suse.de>

[-- Attachment #1: Type: text/plain, Size: 1957 bytes --]

On Mon, Feb 7, 2011 at 4:25 PM, Takashi Iwai <tiwai@suse.de> wrote:
> At Mon, 7 Feb 2011 13:02:46 +0800,
> Jeff Chua wrote:
>>
>> On Mon, Feb 7, 2011 at 12:48 PM, Jeff Chua <jeff.chua.linux@gmail.com> wrote:
>> > On Sun, Feb 6, 2011 at 11:27 PM, Chris Wilson <chris@chris-wilson.co.uk> wrote:
>> >> One last step: move contents of intel_crtc_reset() back to
>> >> intel_crtc_init() one by one.
>> >>
>> >> The active flag is my suspicion. I was thinking that we brought up the
>> >> outputs in a similar manner upon resume as upon initial boot. On
>> >> reflection, this is the not case.
>> >>
>> >> However, the first action we take inside modesetting is to disable the
>> >> outputs about to be reconfigured. So setting active should be the right
>> >> course of action so that cleanup any residual state from resume.
>> >>
>> >> So I am intrigued as to which line is the cause, and just where the
>> >> machine becomes unresponsive...
>> >
>> > It's this line causing the problem.
>> >
>> > intel_crtc->active = true; /* force the pipe off on setup_init_config */
>> >
>> >
>> > When it's called before entering intel_crtc_reset(&intel_crtc->base),
>> > it works, but if called within the function, it doesn't work. Strange.
>> > Not sure whether is passing the correct value to to_intel_crtc(crtc)?
>>
>> I've added printk() below and the function returns a different value
>> of intel_crtc.
>>
>>
>> static void intel_crtc_reset(struct drm_crtc *crtc)
>> {
>>         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
>>         printk("intel_crtc %p\n", intel_crtc); ===> intel_crtc ffff8802349d1000
>>
>> }
>>
>> printk("intel_crtc %p\n", intel_crtc); ===> intel_crtc ffff8802349d0000
>> intel_crtc_reset(&intel_crtc->base);
>
> That's weird.  Since base is the first member, both intel_crtc and crtc
> must be identical.

In case I'm messing something up, here's my intel_display.c

Thanks,
Jeff

[-- Attachment #2: intel_display.c --]
[-- Type: text/x-csrc, Size: 202316 bytes --]

/*
 * Copyright © 2006-2007 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 *
 * Authors:
 *	Eric Anholt <eric@anholt.net>
 */

#include <linux/module.h>
#include <linux/input.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/vgaarb.h>
#include "drmP.h"
#include "intel_drv.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "i915_trace.h"
#include "drm_dp_helper.h"

#include "drm_crtc_helper.h"

#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))

bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
static void intel_update_watermarks(struct drm_device *dev);
static void intel_increase_pllclock(struct drm_crtc *crtc);
static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);

typedef struct {
    /* given values */
    int n;
    int m1, m2;
    int p1, p2;
    /* derived values */
    int	dot;
    int	vco;
    int	m;
    int	p;
} intel_clock_t;

typedef struct {
    int	min, max;
} intel_range_t;

typedef struct {
    int	dot_limit;
    int	p2_slow, p2_fast;
} intel_p2_t;

#define INTEL_P2_NUM		      2
typedef struct intel_limit intel_limit_t;
struct intel_limit {
    intel_range_t   dot, vco, n, m, m1, m2, p, p1;
    intel_p2_t	    p2;
    bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
		      int, int, intel_clock_t *);
};

#define I8XX_DOT_MIN		  25000
#define I8XX_DOT_MAX		 350000
#define I8XX_VCO_MIN		 930000
#define I8XX_VCO_MAX		1400000
#define I8XX_N_MIN		      3
#define I8XX_N_MAX		     16
#define I8XX_M_MIN		     96
#define I8XX_M_MAX		    140
#define I8XX_M1_MIN		     18
#define I8XX_M1_MAX		     26
#define I8XX_M2_MIN		      6
#define I8XX_M2_MAX		     16
#define I8XX_P_MIN		      4
#define I8XX_P_MAX		    128
#define I8XX_P1_MIN		      2
#define I8XX_P1_MAX		     33
#define I8XX_P1_LVDS_MIN	      1
#define I8XX_P1_LVDS_MAX	      6
#define I8XX_P2_SLOW		      4
#define I8XX_P2_FAST		      2
#define I8XX_P2_LVDS_SLOW	      14
#define I8XX_P2_LVDS_FAST	      7
#define I8XX_P2_SLOW_LIMIT	 165000

#define I9XX_DOT_MIN		  20000
#define I9XX_DOT_MAX		 400000
#define I9XX_VCO_MIN		1400000
#define I9XX_VCO_MAX		2800000
#define PINEVIEW_VCO_MIN		1700000
#define PINEVIEW_VCO_MAX		3500000
#define I9XX_N_MIN		      1
#define I9XX_N_MAX		      6
/* Pineview's Ncounter is a ring counter */
#define PINEVIEW_N_MIN		      3
#define PINEVIEW_N_MAX		      6
#define I9XX_M_MIN		     70
#define I9XX_M_MAX		    120
#define PINEVIEW_M_MIN		      2
#define PINEVIEW_M_MAX		    256
#define I9XX_M1_MIN		     10
#define I9XX_M1_MAX		     22
#define I9XX_M2_MIN		      5
#define I9XX_M2_MAX		      9
/* Pineview M1 is reserved, and must be 0 */
#define PINEVIEW_M1_MIN		      0
#define PINEVIEW_M1_MAX		      0
#define PINEVIEW_M2_MIN		      0
#define PINEVIEW_M2_MAX		      254
#define I9XX_P_SDVO_DAC_MIN	      5
#define I9XX_P_SDVO_DAC_MAX	     80
#define I9XX_P_LVDS_MIN		      7
#define I9XX_P_LVDS_MAX		     98
#define PINEVIEW_P_LVDS_MIN		      7
#define PINEVIEW_P_LVDS_MAX		     112
#define I9XX_P1_MIN		      1
#define I9XX_P1_MAX		      8
#define I9XX_P2_SDVO_DAC_SLOW		     10
#define I9XX_P2_SDVO_DAC_FAST		      5
#define I9XX_P2_SDVO_DAC_SLOW_LIMIT	 200000
#define I9XX_P2_LVDS_SLOW		     14
#define I9XX_P2_LVDS_FAST		      7
#define I9XX_P2_LVDS_SLOW_LIMIT		 112000

/*The parameter is for SDVO on G4x platform*/
#define G4X_DOT_SDVO_MIN           25000
#define G4X_DOT_SDVO_MAX           270000
#define G4X_VCO_MIN                1750000
#define G4X_VCO_MAX                3500000
#define G4X_N_SDVO_MIN             1
#define G4X_N_SDVO_MAX             4
#define G4X_M_SDVO_MIN             104
#define G4X_M_SDVO_MAX             138
#define G4X_M1_SDVO_MIN            17
#define G4X_M1_SDVO_MAX            23
#define G4X_M2_SDVO_MIN            5
#define G4X_M2_SDVO_MAX            11
#define G4X_P_SDVO_MIN             10
#define G4X_P_SDVO_MAX             30
#define G4X_P1_SDVO_MIN            1
#define G4X_P1_SDVO_MAX            3
#define G4X_P2_SDVO_SLOW           10
#define G4X_P2_SDVO_FAST           10
#define G4X_P2_SDVO_LIMIT          270000

/*The parameter is for HDMI_DAC on G4x platform*/
#define G4X_DOT_HDMI_DAC_MIN           22000
#define G4X_DOT_HDMI_DAC_MAX           400000
#define G4X_N_HDMI_DAC_MIN             1
#define G4X_N_HDMI_DAC_MAX             4
#define G4X_M_HDMI_DAC_MIN             104
#define G4X_M_HDMI_DAC_MAX             138
#define G4X_M1_HDMI_DAC_MIN            16
#define G4X_M1_HDMI_DAC_MAX            23
#define G4X_M2_HDMI_DAC_MIN            5
#define G4X_M2_HDMI_DAC_MAX            11
#define G4X_P_HDMI_DAC_MIN             5
#define G4X_P_HDMI_DAC_MAX             80
#define G4X_P1_HDMI_DAC_MIN            1
#define G4X_P1_HDMI_DAC_MAX            8
#define G4X_P2_HDMI_DAC_SLOW           10
#define G4X_P2_HDMI_DAC_FAST           5
#define G4X_P2_HDMI_DAC_LIMIT          165000

/*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
#define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
#define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
#define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
#define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
#define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
#define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
#define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
#define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
#define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
#define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
#define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
#define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
#define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
#define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
#define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
#define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
#define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0

/*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
#define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
#define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
#define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
#define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
#define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
#define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
#define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
#define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
#define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
#define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
#define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
#define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
#define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
#define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
#define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
#define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
#define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0

/*The parameter is for DISPLAY PORT on G4x platform*/
#define G4X_DOT_DISPLAY_PORT_MIN           161670
#define G4X_DOT_DISPLAY_PORT_MAX           227000
#define G4X_N_DISPLAY_PORT_MIN             1
#define G4X_N_DISPLAY_PORT_MAX             2
#define G4X_M_DISPLAY_PORT_MIN             97
#define G4X_M_DISPLAY_PORT_MAX             108
#define G4X_M1_DISPLAY_PORT_MIN            0x10
#define G4X_M1_DISPLAY_PORT_MAX            0x12
#define G4X_M2_DISPLAY_PORT_MIN            0x05
#define G4X_M2_DISPLAY_PORT_MAX            0x06
#define G4X_P_DISPLAY_PORT_MIN             10
#define G4X_P_DISPLAY_PORT_MAX             20
#define G4X_P1_DISPLAY_PORT_MIN            1
#define G4X_P1_DISPLAY_PORT_MAX            2
#define G4X_P2_DISPLAY_PORT_SLOW           10
#define G4X_P2_DISPLAY_PORT_FAST           10
#define G4X_P2_DISPLAY_PORT_LIMIT          0

/* Ironlake / Sandybridge */
/* as we calculate clock using (register_value + 2) for
   N/M1/M2, so here the range value for them is (actual_value-2).
 */
#define IRONLAKE_DOT_MIN         25000
#define IRONLAKE_DOT_MAX         350000
#define IRONLAKE_VCO_MIN         1760000
#define IRONLAKE_VCO_MAX         3510000
#define IRONLAKE_M1_MIN          12
#define IRONLAKE_M1_MAX          22
#define IRONLAKE_M2_MIN          5
#define IRONLAKE_M2_MAX          9
#define IRONLAKE_P2_DOT_LIMIT    225000 /* 225Mhz */

/* We have parameter ranges for different type of outputs. */

/* DAC & HDMI Refclk 120Mhz */
#define IRONLAKE_DAC_N_MIN	1
#define IRONLAKE_DAC_N_MAX	5
#define IRONLAKE_DAC_M_MIN	79
#define IRONLAKE_DAC_M_MAX	127
#define IRONLAKE_DAC_P_MIN	5
#define IRONLAKE_DAC_P_MAX	80
#define IRONLAKE_DAC_P1_MIN	1
#define IRONLAKE_DAC_P1_MAX	8
#define IRONLAKE_DAC_P2_SLOW	10
#define IRONLAKE_DAC_P2_FAST	5

/* LVDS single-channel 120Mhz refclk */
#define IRONLAKE_LVDS_S_N_MIN	1
#define IRONLAKE_LVDS_S_N_MAX	3
#define IRONLAKE_LVDS_S_M_MIN	79
#define IRONLAKE_LVDS_S_M_MAX	118
#define IRONLAKE_LVDS_S_P_MIN	28
#define IRONLAKE_LVDS_S_P_MAX	112
#define IRONLAKE_LVDS_S_P1_MIN	2
#define IRONLAKE_LVDS_S_P1_MAX	8
#define IRONLAKE_LVDS_S_P2_SLOW	14
#define IRONLAKE_LVDS_S_P2_FAST	14

/* LVDS dual-channel 120Mhz refclk */
#define IRONLAKE_LVDS_D_N_MIN	1
#define IRONLAKE_LVDS_D_N_MAX	3
#define IRONLAKE_LVDS_D_M_MIN	79
#define IRONLAKE_LVDS_D_M_MAX	127
#define IRONLAKE_LVDS_D_P_MIN	14
#define IRONLAKE_LVDS_D_P_MAX	56
#define IRONLAKE_LVDS_D_P1_MIN	2
#define IRONLAKE_LVDS_D_P1_MAX	8
#define IRONLAKE_LVDS_D_P2_SLOW	7
#define IRONLAKE_LVDS_D_P2_FAST	7

/* LVDS single-channel 100Mhz refclk */
#define IRONLAKE_LVDS_S_SSC_N_MIN	1
#define IRONLAKE_LVDS_S_SSC_N_MAX	2
#define IRONLAKE_LVDS_S_SSC_M_MIN	79
#define IRONLAKE_LVDS_S_SSC_M_MAX	126
#define IRONLAKE_LVDS_S_SSC_P_MIN	28
#define IRONLAKE_LVDS_S_SSC_P_MAX	112
#define IRONLAKE_LVDS_S_SSC_P1_MIN	2
#define IRONLAKE_LVDS_S_SSC_P1_MAX	8
#define IRONLAKE_LVDS_S_SSC_P2_SLOW	14
#define IRONLAKE_LVDS_S_SSC_P2_FAST	14

/* LVDS dual-channel 100Mhz refclk */
#define IRONLAKE_LVDS_D_SSC_N_MIN	1
#define IRONLAKE_LVDS_D_SSC_N_MAX	3
#define IRONLAKE_LVDS_D_SSC_M_MIN	79
#define IRONLAKE_LVDS_D_SSC_M_MAX	126
#define IRONLAKE_LVDS_D_SSC_P_MIN	14
#define IRONLAKE_LVDS_D_SSC_P_MAX	42
#define IRONLAKE_LVDS_D_SSC_P1_MIN	2
#define IRONLAKE_LVDS_D_SSC_P1_MAX	6
#define IRONLAKE_LVDS_D_SSC_P2_SLOW	7
#define IRONLAKE_LVDS_D_SSC_P2_FAST	7

/* DisplayPort */
#define IRONLAKE_DP_N_MIN		1
#define IRONLAKE_DP_N_MAX		2
#define IRONLAKE_DP_M_MIN		81
#define IRONLAKE_DP_M_MAX		90
#define IRONLAKE_DP_P_MIN		10
#define IRONLAKE_DP_P_MAX		20
#define IRONLAKE_DP_P2_FAST		10
#define IRONLAKE_DP_P2_SLOW		10
#define IRONLAKE_DP_P2_LIMIT		0
#define IRONLAKE_DP_P1_MIN		1
#define IRONLAKE_DP_P1_MAX		2

/* FDI */
#define IRONLAKE_FDI_FREQ		2700000 /* in kHz for mode->clock */

static bool
intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
		    int target, int refclk, intel_clock_t *best_clock);
static bool
intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
			int target, int refclk, intel_clock_t *best_clock);

static bool
intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
		      int target, int refclk, intel_clock_t *best_clock);
static bool
intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
			   int target, int refclk, intel_clock_t *best_clock);

static inline u32 /* units of 100MHz */
intel_fdi_link_freq(struct drm_device *dev)
{
	if (IS_GEN5(dev)) {
		struct drm_i915_private *dev_priv = dev->dev_private;
		return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
	} else
		return 27;
}

static const intel_limit_t intel_limits_i8xx_dvo = {
        .dot = { .min = I8XX_DOT_MIN,		.max = I8XX_DOT_MAX },
        .vco = { .min = I8XX_VCO_MIN,		.max = I8XX_VCO_MAX },
        .n   = { .min = I8XX_N_MIN,		.max = I8XX_N_MAX },
        .m   = { .min = I8XX_M_MIN,		.max = I8XX_M_MAX },
        .m1  = { .min = I8XX_M1_MIN,		.max = I8XX_M1_MAX },
        .m2  = { .min = I8XX_M2_MIN,		.max = I8XX_M2_MAX },
        .p   = { .min = I8XX_P_MIN,		.max = I8XX_P_MAX },
        .p1  = { .min = I8XX_P1_MIN,		.max = I8XX_P1_MAX },
	.p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
		 .p2_slow = I8XX_P2_SLOW,	.p2_fast = I8XX_P2_FAST },
	.find_pll = intel_find_best_PLL,
};

static const intel_limit_t intel_limits_i8xx_lvds = {
        .dot = { .min = I8XX_DOT_MIN,		.max = I8XX_DOT_MAX },
        .vco = { .min = I8XX_VCO_MIN,		.max = I8XX_VCO_MAX },
        .n   = { .min = I8XX_N_MIN,		.max = I8XX_N_MAX },
        .m   = { .min = I8XX_M_MIN,		.max = I8XX_M_MAX },
        .m1  = { .min = I8XX_M1_MIN,		.max = I8XX_M1_MAX },
        .m2  = { .min = I8XX_M2_MIN,		.max = I8XX_M2_MAX },
        .p   = { .min = I8XX_P_MIN,		.max = I8XX_P_MAX },
        .p1  = { .min = I8XX_P1_LVDS_MIN,	.max = I8XX_P1_LVDS_MAX },
	.p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
		 .p2_slow = I8XX_P2_LVDS_SLOW,	.p2_fast = I8XX_P2_LVDS_FAST },
	.find_pll = intel_find_best_PLL,
};
	
static const intel_limit_t intel_limits_i9xx_sdvo = {
        .dot = { .min = I9XX_DOT_MIN,		.max = I9XX_DOT_MAX },
        .vco = { .min = I9XX_VCO_MIN,		.max = I9XX_VCO_MAX },
        .n   = { .min = I9XX_N_MIN,		.max = I9XX_N_MAX },
        .m   = { .min = I9XX_M_MIN,		.max = I9XX_M_MAX },
        .m1  = { .min = I9XX_M1_MIN,		.max = I9XX_M1_MAX },
        .m2  = { .min = I9XX_M2_MIN,		.max = I9XX_M2_MAX },
        .p   = { .min = I9XX_P_SDVO_DAC_MIN,	.max = I9XX_P_SDVO_DAC_MAX },
        .p1  = { .min = I9XX_P1_MIN,		.max = I9XX_P1_MAX },
	.p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
		 .p2_slow = I9XX_P2_SDVO_DAC_SLOW,	.p2_fast = I9XX_P2_SDVO_DAC_FAST },
	.find_pll = intel_find_best_PLL,
};

static const intel_limit_t intel_limits_i9xx_lvds = {
        .dot = { .min = I9XX_DOT_MIN,		.max = I9XX_DOT_MAX },
        .vco = { .min = I9XX_VCO_MIN,		.max = I9XX_VCO_MAX },
        .n   = { .min = I9XX_N_MIN,		.max = I9XX_N_MAX },
        .m   = { .min = I9XX_M_MIN,		.max = I9XX_M_MAX },
        .m1  = { .min = I9XX_M1_MIN,		.max = I9XX_M1_MAX },
        .m2  = { .min = I9XX_M2_MIN,		.max = I9XX_M2_MAX },
        .p   = { .min = I9XX_P_LVDS_MIN,	.max = I9XX_P_LVDS_MAX },
        .p1  = { .min = I9XX_P1_MIN,		.max = I9XX_P1_MAX },
	/* The single-channel range is 25-112Mhz, and dual-channel
	 * is 80-224Mhz.  Prefer single channel as much as possible.
	 */
	.p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
		 .p2_slow = I9XX_P2_LVDS_SLOW,	.p2_fast = I9XX_P2_LVDS_FAST },
	.find_pll = intel_find_best_PLL,
};

    /* below parameter and function is for G4X Chipset Family*/
static const intel_limit_t intel_limits_g4x_sdvo = {
	.dot = { .min = G4X_DOT_SDVO_MIN,	.max = G4X_DOT_SDVO_MAX },
	.vco = { .min = G4X_VCO_MIN,	        .max = G4X_VCO_MAX},
	.n   = { .min = G4X_N_SDVO_MIN,	        .max = G4X_N_SDVO_MAX },
	.m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
	.m1  = { .min = G4X_M1_SDVO_MIN,	.max = G4X_M1_SDVO_MAX },
	.m2  = { .min = G4X_M2_SDVO_MIN,	.max = G4X_M2_SDVO_MAX },
	.p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
	.p1  = { .min = G4X_P1_SDVO_MIN,	.max = G4X_P1_SDVO_MAX},
	.p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
		 .p2_slow = G4X_P2_SDVO_SLOW,
		 .p2_fast = G4X_P2_SDVO_FAST
	},
	.find_pll = intel_g4x_find_best_PLL,
};

static const intel_limit_t intel_limits_g4x_hdmi = {
	.dot = { .min = G4X_DOT_HDMI_DAC_MIN,	.max = G4X_DOT_HDMI_DAC_MAX },
	.vco = { .min = G4X_VCO_MIN,	        .max = G4X_VCO_MAX},
	.n   = { .min = G4X_N_HDMI_DAC_MIN,	.max = G4X_N_HDMI_DAC_MAX },
	.m   = { .min = G4X_M_HDMI_DAC_MIN,	.max = G4X_M_HDMI_DAC_MAX },
	.m1  = { .min = G4X_M1_HDMI_DAC_MIN,	.max = G4X_M1_HDMI_DAC_MAX },
	.m2  = { .min = G4X_M2_HDMI_DAC_MIN,	.max = G4X_M2_HDMI_DAC_MAX },
	.p   = { .min = G4X_P_HDMI_DAC_MIN,	.max = G4X_P_HDMI_DAC_MAX },
	.p1  = { .min = G4X_P1_HDMI_DAC_MIN,	.max = G4X_P1_HDMI_DAC_MAX},
	.p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
		 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
		 .p2_fast = G4X_P2_HDMI_DAC_FAST
	},
	.find_pll = intel_g4x_find_best_PLL,
};

static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
	.dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
		 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
	.vco = { .min = G4X_VCO_MIN,
		 .max = G4X_VCO_MAX },
	.n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
		 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
	.m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
		 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
	.m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
		 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
	.m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
		 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
	.p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
		 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
	.p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
		 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
	.p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
		 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
		 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
	},
	.find_pll = intel_g4x_find_best_PLL,
};

static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
	.dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
		 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
	.vco = { .min = G4X_VCO_MIN,
		 .max = G4X_VCO_MAX },
	.n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
		 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
	.m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
		 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
	.m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
		 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
	.m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
		 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
	.p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
		 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
	.p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
		 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
	.p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
		 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
		 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
	},
	.find_pll = intel_g4x_find_best_PLL,
};

static const intel_limit_t intel_limits_g4x_display_port = {
        .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
                 .max = G4X_DOT_DISPLAY_PORT_MAX },
        .vco = { .min = G4X_VCO_MIN,
                 .max = G4X_VCO_MAX},
        .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
                 .max = G4X_N_DISPLAY_PORT_MAX },
        .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
                 .max = G4X_M_DISPLAY_PORT_MAX },
        .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
                 .max = G4X_M1_DISPLAY_PORT_MAX },
        .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
                 .max = G4X_M2_DISPLAY_PORT_MAX },
        .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
                 .max = G4X_P_DISPLAY_PORT_MAX },
        .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
                 .max = G4X_P1_DISPLAY_PORT_MAX},
        .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
                 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
                 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
        .find_pll = intel_find_pll_g4x_dp,
};

static const intel_limit_t intel_limits_pineview_sdvo = {
        .dot = { .min = I9XX_DOT_MIN,		.max = I9XX_DOT_MAX},
        .vco = { .min = PINEVIEW_VCO_MIN,		.max = PINEVIEW_VCO_MAX },
        .n   = { .min = PINEVIEW_N_MIN,		.max = PINEVIEW_N_MAX },
        .m   = { .min = PINEVIEW_M_MIN,		.max = PINEVIEW_M_MAX },
        .m1  = { .min = PINEVIEW_M1_MIN,		.max = PINEVIEW_M1_MAX },
        .m2  = { .min = PINEVIEW_M2_MIN,		.max = PINEVIEW_M2_MAX },
        .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
        .p1  = { .min = I9XX_P1_MIN,		.max = I9XX_P1_MAX },
	.p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
		 .p2_slow = I9XX_P2_SDVO_DAC_SLOW,	.p2_fast = I9XX_P2_SDVO_DAC_FAST },
	.find_pll = intel_find_best_PLL,
};

static const intel_limit_t intel_limits_pineview_lvds = {
        .dot = { .min = I9XX_DOT_MIN,		.max = I9XX_DOT_MAX },
        .vco = { .min = PINEVIEW_VCO_MIN,		.max = PINEVIEW_VCO_MAX },
        .n   = { .min = PINEVIEW_N_MIN,		.max = PINEVIEW_N_MAX },
        .m   = { .min = PINEVIEW_M_MIN,		.max = PINEVIEW_M_MAX },
        .m1  = { .min = PINEVIEW_M1_MIN,		.max = PINEVIEW_M1_MAX },
        .m2  = { .min = PINEVIEW_M2_MIN,		.max = PINEVIEW_M2_MAX },
        .p   = { .min = PINEVIEW_P_LVDS_MIN,	.max = PINEVIEW_P_LVDS_MAX },
        .p1  = { .min = I9XX_P1_MIN,		.max = I9XX_P1_MAX },
	/* Pineview only supports single-channel mode. */
	.p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
		 .p2_slow = I9XX_P2_LVDS_SLOW,	.p2_fast = I9XX_P2_LVDS_SLOW },
	.find_pll = intel_find_best_PLL,
};

static const intel_limit_t intel_limits_ironlake_dac = {
	.dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
	.vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
	.n   = { .min = IRONLAKE_DAC_N_MIN,        .max = IRONLAKE_DAC_N_MAX },
	.m   = { .min = IRONLAKE_DAC_M_MIN,        .max = IRONLAKE_DAC_M_MAX },
	.m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
	.m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
	.p   = { .min = IRONLAKE_DAC_P_MIN,	   .max = IRONLAKE_DAC_P_MAX },
	.p1  = { .min = IRONLAKE_DAC_P1_MIN,       .max = IRONLAKE_DAC_P1_MAX },
	.p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
		 .p2_slow = IRONLAKE_DAC_P2_SLOW,
		 .p2_fast = IRONLAKE_DAC_P2_FAST },
	.find_pll = intel_g4x_find_best_PLL,
};

static const intel_limit_t intel_limits_ironlake_single_lvds = {
	.dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
	.vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
	.n   = { .min = IRONLAKE_LVDS_S_N_MIN,     .max = IRONLAKE_LVDS_S_N_MAX },
	.m   = { .min = IRONLAKE_LVDS_S_M_MIN,     .max = IRONLAKE_LVDS_S_M_MAX },
	.m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
	.m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
	.p   = { .min = IRONLAKE_LVDS_S_P_MIN,     .max = IRONLAKE_LVDS_S_P_MAX },
	.p1  = { .min = IRONLAKE_LVDS_S_P1_MIN,    .max = IRONLAKE_LVDS_S_P1_MAX },
	.p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
		 .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
		 .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
	.find_pll = intel_g4x_find_best_PLL,
};

static const intel_limit_t intel_limits_ironlake_dual_lvds = {
	.dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
	.vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
	.n   = { .min = IRONLAKE_LVDS_D_N_MIN,     .max = IRONLAKE_LVDS_D_N_MAX },
	.m   = { .min = IRONLAKE_LVDS_D_M_MIN,     .max = IRONLAKE_LVDS_D_M_MAX },
	.m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
	.m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
	.p   = { .min = IRONLAKE_LVDS_D_P_MIN,     .max = IRONLAKE_LVDS_D_P_MAX },
	.p1  = { .min = IRONLAKE_LVDS_D_P1_MIN,    .max = IRONLAKE_LVDS_D_P1_MAX },
	.p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
		 .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
		 .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
	.find_pll = intel_g4x_find_best_PLL,
};

static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
	.dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
	.vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
	.n   = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
	.m   = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
	.m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
	.m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
	.p   = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
	.p1  = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
	.p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
		 .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
		 .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
	.find_pll = intel_g4x_find_best_PLL,
};

static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
	.dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
	.vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
	.n   = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
	.m   = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
	.m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
	.m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
	.p   = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
	.p1  = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
	.p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
		 .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
		 .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
	.find_pll = intel_g4x_find_best_PLL,
};

static const intel_limit_t intel_limits_ironlake_display_port = {
        .dot = { .min = IRONLAKE_DOT_MIN,
                 .max = IRONLAKE_DOT_MAX },
        .vco = { .min = IRONLAKE_VCO_MIN,
                 .max = IRONLAKE_VCO_MAX},
        .n   = { .min = IRONLAKE_DP_N_MIN,
                 .max = IRONLAKE_DP_N_MAX },
        .m   = { .min = IRONLAKE_DP_M_MIN,
                 .max = IRONLAKE_DP_M_MAX },
        .m1  = { .min = IRONLAKE_M1_MIN,
                 .max = IRONLAKE_M1_MAX },
        .m2  = { .min = IRONLAKE_M2_MIN,
                 .max = IRONLAKE_M2_MAX },
        .p   = { .min = IRONLAKE_DP_P_MIN,
                 .max = IRONLAKE_DP_P_MAX },
        .p1  = { .min = IRONLAKE_DP_P1_MIN,
                 .max = IRONLAKE_DP_P1_MAX},
        .p2  = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
                 .p2_slow = IRONLAKE_DP_P2_SLOW,
                 .p2_fast = IRONLAKE_DP_P2_FAST },
        .find_pll = intel_find_pll_ironlake_dp,
};

static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
						int refclk)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	const intel_limit_t *limit;

	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
		if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
		    LVDS_CLKB_POWER_UP) {
			/* LVDS dual channel */
			if (refclk == 100000)
				limit = &intel_limits_ironlake_dual_lvds_100m;
			else
				limit = &intel_limits_ironlake_dual_lvds;
		} else {
			if (refclk == 100000)
				limit = &intel_limits_ironlake_single_lvds_100m;
			else
				limit = &intel_limits_ironlake_single_lvds;
		}
	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
			HAS_eDP)
		limit = &intel_limits_ironlake_display_port;
	else
		limit = &intel_limits_ironlake_dac;

	return limit;
}

static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	const intel_limit_t *limit;

	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
		if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
		    LVDS_CLKB_POWER_UP)
			/* LVDS with dual channel */
			limit = &intel_limits_g4x_dual_channel_lvds;
		else
			/* LVDS with dual channel */
			limit = &intel_limits_g4x_single_channel_lvds;
	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
		   intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
		limit = &intel_limits_g4x_hdmi;
	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
		limit = &intel_limits_g4x_sdvo;
	} else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
		limit = &intel_limits_g4x_display_port;
	} else /* The option is for other outputs */
		limit = &intel_limits_i9xx_sdvo;

	return limit;
}

static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
{
	struct drm_device *dev = crtc->dev;
	const intel_limit_t *limit;

	if (HAS_PCH_SPLIT(dev))
		limit = intel_ironlake_limit(crtc, refclk);
	else if (IS_G4X(dev)) {
		limit = intel_g4x_limit(crtc);
	} else if (IS_PINEVIEW(dev)) {
		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
			limit = &intel_limits_pineview_lvds;
		else
			limit = &intel_limits_pineview_sdvo;
	} else if (!IS_GEN2(dev)) {
		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
			limit = &intel_limits_i9xx_lvds;
		else
			limit = &intel_limits_i9xx_sdvo;
	} else {
		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
			limit = &intel_limits_i8xx_lvds;
		else
			limit = &intel_limits_i8xx_dvo;
	}
	return limit;
}

/* m1 is reserved as 0 in Pineview, n is a ring counter */
static void pineview_clock(int refclk, intel_clock_t *clock)
{
	clock->m = clock->m2 + 2;
	clock->p = clock->p1 * clock->p2;
	clock->vco = refclk * clock->m / clock->n;
	clock->dot = clock->vco / clock->p;
}

static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
{
	if (IS_PINEVIEW(dev)) {
		pineview_clock(refclk, clock);
		return;
	}
	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
	clock->p = clock->p1 * clock->p2;
	clock->vco = refclk * clock->m / (clock->n + 2);
	clock->dot = clock->vco / clock->p;
}

/**
 * Returns whether any output on the specified pipe is of the specified type
 */
bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
{
	struct drm_device *dev = crtc->dev;
	struct drm_mode_config *mode_config = &dev->mode_config;
	struct intel_encoder *encoder;

	list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
		if (encoder->base.crtc == crtc && encoder->type == type)
			return true;

	return false;
}

#define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
/**
 * Returns whether the given set of divisors are valid for a given refclk with
 * the given connectors.
 */

static bool intel_PLL_is_valid(struct drm_device *dev,
			       const intel_limit_t *limit,
			       const intel_clock_t *clock)
{
	if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
		INTELPllInvalid ("p1 out of range\n");
	if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
		INTELPllInvalid ("p out of range\n");
	if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
		INTELPllInvalid ("m2 out of range\n");
	if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
		INTELPllInvalid ("m1 out of range\n");
	if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
		INTELPllInvalid ("m1 <= m2\n");
	if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
		INTELPllInvalid ("m out of range\n");
	if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
		INTELPllInvalid ("n out of range\n");
	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
		INTELPllInvalid ("vco out of range\n");
	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
	 * connector, etc., rather than just a single range.
	 */
	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
		INTELPllInvalid ("dot out of range\n");

	return true;
}

static bool
intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
		    int target, int refclk, intel_clock_t *best_clock)

{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	intel_clock_t clock;
	int err = target;

	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
	    (I915_READ(LVDS)) != 0) {
		/*
		 * For LVDS, if the panel is on, just rely on its current
		 * settings for dual-channel.  We haven't figured out how to
		 * reliably set up different single/dual channel state, if we
		 * even can.
		 */
		if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
		    LVDS_CLKB_POWER_UP)
			clock.p2 = limit->p2.p2_fast;
		else
			clock.p2 = limit->p2.p2_slow;
	} else {
		if (target < limit->p2.dot_limit)
			clock.p2 = limit->p2.p2_slow;
		else
			clock.p2 = limit->p2.p2_fast;
	}

	memset (best_clock, 0, sizeof (*best_clock));

	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
	     clock.m1++) {
		for (clock.m2 = limit->m2.min;
		     clock.m2 <= limit->m2.max; clock.m2++) {
			/* m1 is always 0 in Pineview */
			if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
				break;
			for (clock.n = limit->n.min;
			     clock.n <= limit->n.max; clock.n++) {
				for (clock.p1 = limit->p1.min;
					clock.p1 <= limit->p1.max; clock.p1++) {
					int this_err;

					intel_clock(dev, refclk, &clock);
					if (!intel_PLL_is_valid(dev, limit,
								&clock))
						continue;

					this_err = abs(clock.dot - target);
					if (this_err < err) {
						*best_clock = clock;
						err = this_err;
					}
				}
			}
		}
	}

	return (err != target);
}

static bool
intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
			int target, int refclk, intel_clock_t *best_clock)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	intel_clock_t clock;
	int max_n;
	bool found;
	/* approximately equals target * 0.00585 */
	int err_most = (target >> 8) + (target >> 9);
	found = false;

	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
		int lvds_reg;

		if (HAS_PCH_SPLIT(dev))
			lvds_reg = PCH_LVDS;
		else
			lvds_reg = LVDS;
		if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
		    LVDS_CLKB_POWER_UP)
			clock.p2 = limit->p2.p2_fast;
		else
			clock.p2 = limit->p2.p2_slow;
	} else {
		if (target < limit->p2.dot_limit)
			clock.p2 = limit->p2.p2_slow;
		else
			clock.p2 = limit->p2.p2_fast;
	}

	memset(best_clock, 0, sizeof(*best_clock));
	max_n = limit->n.max;
	/* based on hardware requirement, prefer smaller n to precision */
	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
		/* based on hardware requirement, prefere larger m1,m2 */
		for (clock.m1 = limit->m1.max;
		     clock.m1 >= limit->m1.min; clock.m1--) {
			for (clock.m2 = limit->m2.max;
			     clock.m2 >= limit->m2.min; clock.m2--) {
				for (clock.p1 = limit->p1.max;
				     clock.p1 >= limit->p1.min; clock.p1--) {
					int this_err;

					intel_clock(dev, refclk, &clock);
					if (!intel_PLL_is_valid(dev, limit,
								&clock))
						continue;

					this_err = abs(clock.dot - target);
					if (this_err < err_most) {
						*best_clock = clock;
						err_most = this_err;
						max_n = clock.n;
						found = true;
					}
				}
			}
		}
	}
	return found;
}

static bool
intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
			   int target, int refclk, intel_clock_t *best_clock)
{
	struct drm_device *dev = crtc->dev;
	intel_clock_t clock;

	if (target < 200000) {
		clock.n = 1;
		clock.p1 = 2;
		clock.p2 = 10;
		clock.m1 = 12;
		clock.m2 = 9;
	} else {
		clock.n = 2;
		clock.p1 = 1;
		clock.p2 = 10;
		clock.m1 = 14;
		clock.m2 = 8;
	}
	intel_clock(dev, refclk, &clock);
	memcpy(best_clock, &clock, sizeof(intel_clock_t));
	return true;
}

/* DisplayPort has only two frequencies, 162MHz and 270MHz */
static bool
intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
		      int target, int refclk, intel_clock_t *best_clock)
{
	intel_clock_t clock;
	if (target < 200000) {
		clock.p1 = 2;
		clock.p2 = 10;
		clock.n = 2;
		clock.m1 = 23;
		clock.m2 = 8;
	} else {
		clock.p1 = 1;
		clock.p2 = 10;
		clock.n = 1;
		clock.m1 = 14;
		clock.m2 = 2;
	}
	clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
	clock.p = (clock.p1 * clock.p2);
	clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
	clock.vco = 0;
	memcpy(best_clock, &clock, sizeof(intel_clock_t));
	return true;
}

/**
 * intel_wait_for_vblank - wait for vblank on a given pipe
 * @dev: drm device
 * @pipe: pipe to wait for
 *
 * Wait for vblank to occur on a given pipe.  Needed for various bits of
 * mode setting code.
 */
void intel_wait_for_vblank(struct drm_device *dev, int pipe)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipestat_reg = (pipe == 0 ? PIPEASTAT : PIPEBSTAT);

	/* Clear existing vblank status. Note this will clear any other
	 * sticky status fields as well.
	 *
	 * This races with i915_driver_irq_handler() with the result
	 * that either function could miss a vblank event.  Here it is not
	 * fatal, as we will either wait upon the next vblank interrupt or
	 * timeout.  Generally speaking intel_wait_for_vblank() is only
	 * called during modeset at which time the GPU should be idle and
	 * should *not* be performing page flips and thus not waiting on
	 * vblanks...
	 * Currently, the result of us stealing a vblank from the irq
	 * handler is that a single frame will be skipped during swapbuffers.
	 */
	I915_WRITE(pipestat_reg,
		   I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);

	/* Wait for vblank interrupt bit to set */
	if (wait_for(I915_READ(pipestat_reg) &
		     PIPE_VBLANK_INTERRUPT_STATUS,
		     50))
		DRM_DEBUG_KMS("vblank wait timed out\n");
}

/*
 * intel_wait_for_pipe_off - wait for pipe to turn off
 * @dev: drm device
 * @pipe: pipe to wait for
 *
 * After disabling a pipe, we can't wait for vblank in the usual way,
 * spinning on the vblank interrupt status bit, since we won't actually
 * see an interrupt when the pipe is disabled.
 *
 * On Gen4 and above:
 *   wait for the pipe register state bit to turn off
 *
 * Otherwise:
 *   wait for the display line value to settle (it usually
 *   ends up stopping at the start of the next frame).
 *
 */
void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (INTEL_INFO(dev)->gen >= 4) {
		int reg = PIPECONF(pipe);

		/* Wait for the Pipe State to go off */
		if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
			     100))
			DRM_DEBUG_KMS("pipe_off wait timed out\n");
	} else {
		u32 last_line;
		int reg = PIPEDSL(pipe);
		unsigned long timeout = jiffies + msecs_to_jiffies(100);

		/* Wait for the display line to settle */
		do {
			last_line = I915_READ(reg) & DSL_LINEMASK;
			mdelay(5);
		} while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
			 time_after(timeout, jiffies));
		if (time_after(jiffies, timeout))
			DRM_DEBUG_KMS("pipe_off wait timed out\n");
	}
}

static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int plane, i;
	u32 fbc_ctl, fbc_ctl2;

	if (fb->pitch == dev_priv->cfb_pitch &&
	    obj->fence_reg == dev_priv->cfb_fence &&
	    intel_crtc->plane == dev_priv->cfb_plane &&
	    I915_READ(FBC_CONTROL) & FBC_CTL_EN)
		return;

	i8xx_disable_fbc(dev);

	dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;

	if (fb->pitch < dev_priv->cfb_pitch)
		dev_priv->cfb_pitch = fb->pitch;

	/* FBC_CTL wants 64B units */
	dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
	dev_priv->cfb_fence = obj->fence_reg;
	dev_priv->cfb_plane = intel_crtc->plane;
	plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;

	/* Clear old tags */
	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
		I915_WRITE(FBC_TAG + (i * 4), 0);

	/* Set it up... */
	fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
	if (obj->tiling_mode != I915_TILING_NONE)
		fbc_ctl2 |= FBC_CTL_CPU_FENCE;
	I915_WRITE(FBC_CONTROL2, fbc_ctl2);
	I915_WRITE(FBC_FENCE_OFF, crtc->y);

	/* enable it... */
	fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
	if (IS_I945GM(dev))
		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
	fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
	fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
	if (obj->tiling_mode != I915_TILING_NONE)
		fbc_ctl |= dev_priv->cfb_fence;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

	DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
		      dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
}

void i8xx_disable_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 fbc_ctl;

	/* Disable compression */
	fbc_ctl = I915_READ(FBC_CONTROL);
	if ((fbc_ctl & FBC_CTL_EN) == 0)
		return;

	fbc_ctl &= ~FBC_CTL_EN;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

	/* Wait for compressing bit to clear */
	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
		DRM_DEBUG_KMS("FBC idle timed out\n");
		return;
	}

	DRM_DEBUG_KMS("disabled FBC\n");
}

static bool i8xx_fbc_enabled(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
}

static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
	unsigned long stall_watermark = 200;
	u32 dpfc_ctl;

	dpfc_ctl = I915_READ(DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
		    dev_priv->cfb_fence == obj->fence_reg &&
		    dev_priv->cfb_plane == intel_crtc->plane &&
		    dev_priv->cfb_y == crtc->y)
			return;

		I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
		POSTING_READ(DPFC_CONTROL);
		intel_wait_for_vblank(dev, intel_crtc->pipe);
	}

	dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
	dev_priv->cfb_fence = obj->fence_reg;
	dev_priv->cfb_plane = intel_crtc->plane;
	dev_priv->cfb_y = crtc->y;

	dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
	if (obj->tiling_mode != I915_TILING_NONE) {
		dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
		I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
	} else {
		I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
	}

	I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);

	/* enable it... */
	I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);

	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
}

void g4x_disable_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

	/* Disable compression */
	dpfc_ctl = I915_READ(DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(DPFC_CONTROL, dpfc_ctl);

		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

static bool g4x_fbc_enabled(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
}

static void sandybridge_blit_fbc_update(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 blt_ecoskpd;

	/* Make sure blitter notifies FBC of writes */
	__gen6_force_wake_get(dev_priv);
	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
		GEN6_BLITTER_LOCK_SHIFT;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
			 GEN6_BLITTER_LOCK_SHIFT);
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	POSTING_READ(GEN6_BLITTER_ECOSKPD);
	__gen6_force_wake_put(dev_priv);
}

static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
	unsigned long stall_watermark = 200;
	u32 dpfc_ctl;

	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
		    dev_priv->cfb_fence == obj->fence_reg &&
		    dev_priv->cfb_plane == intel_crtc->plane &&
		    dev_priv->cfb_offset == obj->gtt_offset &&
		    dev_priv->cfb_y == crtc->y)
			return;

		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
		POSTING_READ(ILK_DPFC_CONTROL);
		intel_wait_for_vblank(dev, intel_crtc->pipe);
	}

	dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
	dev_priv->cfb_fence = obj->fence_reg;
	dev_priv->cfb_plane = intel_crtc->plane;
	dev_priv->cfb_offset = obj->gtt_offset;
	dev_priv->cfb_y = crtc->y;

	dpfc_ctl &= DPFC_RESERVED;
	dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
	if (obj->tiling_mode != I915_TILING_NONE) {
		dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
		I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
	} else {
		I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
	}

	I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
	I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
	/* enable it... */
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);

	if (IS_GEN6(dev)) {
		I915_WRITE(SNB_DPFC_CTL_SA,
			   SNB_CPU_FENCE_ENABLE | dev_priv->cfb_fence);
		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
		sandybridge_blit_fbc_update(dev);
	}

	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
}

void ironlake_disable_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

	/* Disable compression */
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);

		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

static bool ironlake_fbc_enabled(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
}

bool intel_fbc_enabled(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.fbc_enabled)
		return false;

	return dev_priv->display.fbc_enabled(dev);
}

void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;

	if (!dev_priv->display.enable_fbc)
		return;

	dev_priv->display.enable_fbc(crtc, interval);
}

void intel_disable_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.disable_fbc)
		return;

	dev_priv->display.disable_fbc(dev);
}

/**
 * intel_update_fbc - enable/disable FBC as needed
 * @dev: the drm_device
 *
 * Set up the framebuffer compression hardware at mode set time.  We
 * enable it if possible:
 *   - plane A only (on pre-965)
 *   - no pixel mulitply/line duplication
 *   - no alpha buffer discard
 *   - no dual wide
 *   - framebuffer <= 2048 in width, 1536 in height
 *
 * We can't assume that any compression will take place (worst case),
 * so the compressed buffer has to be the same size as the uncompressed
 * one.  It also must reside (along with the line length buffer) in
 * stolen memory.
 *
 * We need to enable/disable FBC on a global basis.
 */
static void intel_update_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc = NULL, *tmp_crtc;
	struct intel_crtc *intel_crtc;
	struct drm_framebuffer *fb;
	struct intel_framebuffer *intel_fb;
	struct drm_i915_gem_object *obj;

	DRM_DEBUG_KMS("\n");

	if (!i915_powersave)
		return;

	if (!I915_HAS_FBC(dev))
		return;

	/*
	 * If FBC is already on, we just have to verify that we can
	 * keep it that way...
	 * Need to disable if:
	 *   - more than one pipe is active
	 *   - changing FBC params (stride, fence, mode)
	 *   - new fb is too large to fit in compressed buffer
	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
	 */
	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
		if (tmp_crtc->enabled) {
			if (crtc) {
				DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
				dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
				goto out_disable;
			}
			crtc = tmp_crtc;
		}
	}

	if (!crtc || crtc->fb == NULL) {
		DRM_DEBUG_KMS("no output, disabling\n");
		dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
		goto out_disable;
	}

	intel_crtc = to_intel_crtc(crtc);
	fb = crtc->fb;
	intel_fb = to_intel_framebuffer(fb);
	obj = intel_fb->obj;

	if (intel_fb->obj->base.size > dev_priv->cfb_size) {
		DRM_DEBUG_KMS("framebuffer too large, disabling "
			      "compression\n");
		dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
		goto out_disable;
	}
	if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
	    (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
		DRM_DEBUG_KMS("mode incompatible with compression, "
			      "disabling\n");
		dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
		goto out_disable;
	}
	if ((crtc->mode.hdisplay > 2048) ||
	    (crtc->mode.vdisplay > 1536)) {
		DRM_DEBUG_KMS("mode too large for compression, disabling\n");
		dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
		goto out_disable;
	}
	if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
		DRM_DEBUG_KMS("plane not 0, disabling compression\n");
		dev_priv->no_fbc_reason = FBC_BAD_PLANE;
		goto out_disable;
	}
	if (obj->tiling_mode != I915_TILING_X) {
		DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
		dev_priv->no_fbc_reason = FBC_NOT_TILED;
		goto out_disable;
	}

	/* If the kernel debugger is active, always disable compression */
	if (in_dbg_master())
		goto out_disable;

	intel_enable_fbc(crtc, 500);
	return;

out_disable:
	/* Multiple disables should be harmless */
	if (intel_fbc_enabled(dev)) {
		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
		intel_disable_fbc(dev);
	}
}

int
intel_pin_and_fence_fb_obj(struct drm_device *dev,
			   struct drm_i915_gem_object *obj,
			   struct intel_ring_buffer *pipelined)
{
	u32 alignment;
	int ret;

	switch (obj->tiling_mode) {
	case I915_TILING_NONE:
		if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
			alignment = 128 * 1024;
		else if (INTEL_INFO(dev)->gen >= 4)
			alignment = 4 * 1024;
		else
			alignment = 64 * 1024;
		break;
	case I915_TILING_X:
		/* pin() will align the object as required by fence */
		alignment = 0;
		break;
	case I915_TILING_Y:
		/* FIXME: Is this true? */
		DRM_ERROR("Y tiled not allowed for scan out buffers\n");
		return -EINVAL;
	default:
		BUG();
	}

	ret = i915_gem_object_pin(obj, alignment, true);
	if (ret)
		return ret;

	ret = i915_gem_object_set_to_display_plane(obj, pipelined);
	if (ret)
		goto err_unpin;

	/* Install a fence for tiled scan-out. Pre-i965 always needs a
	 * fence, whereas 965+ only requires a fence if using
	 * framebuffer compression.  For simplicity, we always install
	 * a fence as the cost is not that onerous.
	 */
	if (obj->tiling_mode != I915_TILING_NONE) {
		ret = i915_gem_object_get_fence(obj, pipelined, false);
		if (ret)
			goto err_unpin;
	}

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
	return ret;
}

/* Assume fb object is pinned & idle & fenced and just update base pointers */
static int
intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
			   int x, int y, enum mode_set_atomic state)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_framebuffer *intel_fb;
	struct drm_i915_gem_object *obj;
	int plane = intel_crtc->plane;
	unsigned long Start, Offset;
	u32 dspcntr;
	u32 reg;

	switch (plane) {
	case 0:
	case 1:
		break;
	default:
		DRM_ERROR("Can't update plane %d in SAREA\n", plane);
		return -EINVAL;
	}

	intel_fb = to_intel_framebuffer(fb);
	obj = intel_fb->obj;

	reg = DSPCNTR(plane);
	dspcntr = I915_READ(reg);
	/* Mask out pixel format bits in case we change it */
	dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
	switch (fb->bits_per_pixel) {
	case 8:
		dspcntr |= DISPPLANE_8BPP;
		break;
	case 16:
		if (fb->depth == 15)
			dspcntr |= DISPPLANE_15_16BPP;
		else
			dspcntr |= DISPPLANE_16BPP;
		break;
	case 24:
	case 32:
		dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
		break;
	default:
		DRM_ERROR("Unknown color depth\n");
		return -EINVAL;
	}
	if (INTEL_INFO(dev)->gen >= 4) {
		if (obj->tiling_mode != I915_TILING_NONE)
			dspcntr |= DISPPLANE_TILED;
		else
			dspcntr &= ~DISPPLANE_TILED;
	}

	if (HAS_PCH_SPLIT(dev))
		/* must disable */
		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;

	I915_WRITE(reg, dspcntr);

	Start = obj->gtt_offset;
	Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);

	DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
		      Start, Offset, x, y, fb->pitch);
	I915_WRITE(DSPSTRIDE(plane), fb->pitch);
	if (INTEL_INFO(dev)->gen >= 4) {
		I915_WRITE(DSPSURF(plane), Start);
		I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
		I915_WRITE(DSPADDR(plane), Offset);
	} else
		I915_WRITE(DSPADDR(plane), Start + Offset);
	POSTING_READ(reg);

	intel_update_fbc(dev);
	intel_increase_pllclock(crtc);

	return 0;
}

static int
intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
		    struct drm_framebuffer *old_fb)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_master_private *master_priv;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int ret;

	/* no fb bound */
	if (!crtc->fb) {
		DRM_DEBUG_KMS("No FB bound\n");
		return 0;
	}

	switch (intel_crtc->plane) {
	case 0:
	case 1:
		break;
	default:
		return -EINVAL;
	}

	mutex_lock(&dev->struct_mutex);
	ret = intel_pin_and_fence_fb_obj(dev,
					 to_intel_framebuffer(crtc->fb)->obj,
					 NULL);
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}

	if (old_fb) {
		struct drm_i915_private *dev_priv = dev->dev_private;
		struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;

		wait_event(dev_priv->pending_flip_queue,
			   atomic_read(&obj->pending_flip) == 0);

		/* Big Hammer, we also need to ensure that any pending
		 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
		 * current scanout is retired before unpinning the old
		 * framebuffer.
		 */
		ret = i915_gem_object_flush_gpu(obj, false);
		if (ret) {
			i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
					 LEAVE_ATOMIC_MODE_SET);
	if (ret) {
		i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}

	if (old_fb) {
		intel_wait_for_vblank(dev, intel_crtc->pipe);
		i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
	}

	mutex_unlock(&dev->struct_mutex);

	if (!dev->primary->master)
		return 0;

	master_priv = dev->primary->master->driver_priv;
	if (!master_priv->sarea_priv)
		return 0;

	if (intel_crtc->pipe) {
		master_priv->sarea_priv->pipeB_x = x;
		master_priv->sarea_priv->pipeB_y = y;
	} else {
		master_priv->sarea_priv->pipeA_x = x;
		master_priv->sarea_priv->pipeA_y = y;
	}

	return 0;
}

static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpa_ctl;

	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
	dpa_ctl = I915_READ(DP_A);
	dpa_ctl &= ~DP_PLL_FREQ_MASK;

	if (clock < 200000) {
		u32 temp;
		dpa_ctl |= DP_PLL_FREQ_160MHZ;
		/* workaround for 160Mhz:
		   1) program 0x4600c bits 15:0 = 0x8124
		   2) program 0x46010 bit 0 = 1
		   3) program 0x46034 bit 24 = 1
		   4) program 0x64000 bit 14 = 1
		   */
		temp = I915_READ(0x4600c);
		temp &= 0xffff0000;
		I915_WRITE(0x4600c, temp | 0x8124);

		temp = I915_READ(0x46010);
		I915_WRITE(0x46010, temp | 1);

		temp = I915_READ(0x46034);
		I915_WRITE(0x46034, temp | (1 << 24));
	} else {
		dpa_ctl |= DP_PLL_FREQ_270MHZ;
	}
	I915_WRITE(DP_A, dpa_ctl);

	POSTING_READ(DP_A);
	udelay(500);
}

static void intel_fdi_normal_train(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pipe = intel_crtc->pipe;
	u32 reg, temp;

	/* enable normal train */
	reg = FDI_TX_CTL(pipe);
	temp = I915_READ(reg);
	temp &= ~FDI_LINK_TRAIN_NONE;
	temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
	I915_WRITE(reg, temp);

	reg = FDI_RX_CTL(pipe);
	temp = I915_READ(reg);
	if (HAS_PCH_CPT(dev)) {
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
	} else {
		temp &= ~FDI_LINK_TRAIN_NONE;
		temp |= FDI_LINK_TRAIN_NONE;
	}
	I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);

	/* wait one idle pattern time */
	POSTING_READ(reg);
	udelay(1000);
}

/* The FDI link training functions for ILK/Ibexpeak. */
static void ironlake_fdi_link_train(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pipe = intel_crtc->pipe;
	u32 reg, temp, tries;

	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
	   for train result */
	reg = FDI_RX_IMR(pipe);
	temp = I915_READ(reg);
	temp &= ~FDI_RX_SYMBOL_LOCK;
	temp &= ~FDI_RX_BIT_LOCK;
	I915_WRITE(reg, temp);
	I915_READ(reg);
	udelay(150);

	/* enable CPU FDI TX and PCH FDI RX */
	reg = FDI_TX_CTL(pipe);
	temp = I915_READ(reg);
	temp &= ~(7 << 19);
	temp |= (intel_crtc->fdi_lanes - 1) << 19;
	temp &= ~FDI_LINK_TRAIN_NONE;
	temp |= FDI_LINK_TRAIN_PATTERN_1;
	I915_WRITE(reg, temp | FDI_TX_ENABLE);

	reg = FDI_RX_CTL(pipe);
	temp = I915_READ(reg);
	temp &= ~FDI_LINK_TRAIN_NONE;
	temp |= FDI_LINK_TRAIN_PATTERN_1;
	I915_WRITE(reg, temp | FDI_RX_ENABLE);

	POSTING_READ(reg);
	udelay(150);

	/* Ironlake workaround, enable clock pointer after FDI enable*/
	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_ENABLE);

	reg = FDI_RX_IIR(pipe);
	for (tries = 0; tries < 5; tries++) {
		temp = I915_READ(reg);
		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);

		if ((temp & FDI_RX_BIT_LOCK)) {
			DRM_DEBUG_KMS("FDI train 1 done.\n");
			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
			break;
		}
	}
	if (tries == 5)
		DRM_ERROR("FDI train 1 fail!\n");

	/* Train 2 */
	reg = FDI_TX_CTL(pipe);
	temp = I915_READ(reg);
	temp &= ~FDI_LINK_TRAIN_NONE;
	temp |= FDI_LINK_TRAIN_PATTERN_2;
	I915_WRITE(reg, temp);

	reg = FDI_RX_CTL(pipe);
	temp = I915_READ(reg);
	temp &= ~FDI_LINK_TRAIN_NONE;
	temp |= FDI_LINK_TRAIN_PATTERN_2;
	I915_WRITE(reg, temp);

	POSTING_READ(reg);
	udelay(150);

	reg = FDI_RX_IIR(pipe);
	for (tries = 0; tries < 5; tries++) {
		temp = I915_READ(reg);
		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);

		if (temp & FDI_RX_SYMBOL_LOCK) {
			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
			DRM_DEBUG_KMS("FDI train 2 done.\n");
			break;
		}
	}
	if (tries == 5)
		DRM_ERROR("FDI train 2 fail!\n");

	DRM_DEBUG_KMS("FDI train done\n");

}

static const int const snb_b_fdi_train_param [] = {
	FDI_LINK_TRAIN_400MV_0DB_SNB_B,
	FDI_LINK_TRAIN_400MV_6DB_SNB_B,
	FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
	FDI_LINK_TRAIN_800MV_0DB_SNB_B,
};

/* The FDI link training functions for SNB/Cougarpoint. */
static void gen6_fdi_link_train(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pipe = intel_crtc->pipe;
	u32 reg, temp, i;

	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
	   for train result */
	reg = FDI_RX_IMR(pipe);
	temp = I915_READ(reg);
	temp &= ~FDI_RX_SYMBOL_LOCK;
	temp &= ~FDI_RX_BIT_LOCK;
	I915_WRITE(reg, temp);

	POSTING_READ(reg);
	udelay(150);

	/* enable CPU FDI TX and PCH FDI RX */
	reg = FDI_TX_CTL(pipe);
	temp = I915_READ(reg);
	temp &= ~(7 << 19);
	temp |= (intel_crtc->fdi_lanes - 1) << 19;
	temp &= ~FDI_LINK_TRAIN_NONE;
	temp |= FDI_LINK_TRAIN_PATTERN_1;
	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
	/* SNB-B */
	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
	I915_WRITE(reg, temp | FDI_TX_ENABLE);

	reg = FDI_RX_CTL(pipe);
	temp = I915_READ(reg);
	if (HAS_PCH_CPT(dev)) {
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
	} else {
		temp &= ~FDI_LINK_TRAIN_NONE;
		temp |= FDI_LINK_TRAIN_PATTERN_1;
	}
	I915_WRITE(reg, temp | FDI_RX_ENABLE);

	POSTING_READ(reg);
	udelay(150);

	for (i = 0; i < 4; i++ ) {
		reg = FDI_TX_CTL(pipe);
		temp = I915_READ(reg);
		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
		temp |= snb_b_fdi_train_param[i];
		I915_WRITE(reg, temp);

		POSTING_READ(reg);
		udelay(500);

		reg = FDI_RX_IIR(pipe);
		temp = I915_READ(reg);
		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);

		if (temp & FDI_RX_BIT_LOCK) {
			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
			DRM_DEBUG_KMS("FDI train 1 done.\n");
			break;
		}
	}
	if (i == 4)
		DRM_ERROR("FDI train 1 fail!\n");

	/* Train 2 */
	reg = FDI_TX_CTL(pipe);
	temp = I915_READ(reg);
	temp &= ~FDI_LINK_TRAIN_NONE;
	temp |= FDI_LINK_TRAIN_PATTERN_2;
	if (IS_GEN6(dev)) {
		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
		/* SNB-B */
		temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
	}
	I915_WRITE(reg, temp);

	reg = FDI_RX_CTL(pipe);
	temp = I915_READ(reg);
	if (HAS_PCH_CPT(dev)) {
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
	} else {
		temp &= ~FDI_LINK_TRAIN_NONE;
		temp |= FDI_LINK_TRAIN_PATTERN_2;
	}
	I915_WRITE(reg, temp);

	POSTING_READ(reg);
	udelay(150);

	for (i = 0; i < 4; i++ ) {
		reg = FDI_TX_CTL(pipe);
		temp = I915_READ(reg);
		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
		temp |= snb_b_fdi_train_param[i];
		I915_WRITE(reg, temp);

		POSTING_READ(reg);
		udelay(500);

		reg = FDI_RX_IIR(pipe);
		temp = I915_READ(reg);
		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);

		if (temp & FDI_RX_SYMBOL_LOCK) {
			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
			DRM_DEBUG_KMS("FDI train 2 done.\n");
			break;
		}
	}
	if (i == 4)
		DRM_ERROR("FDI train 2 fail!\n");

	DRM_DEBUG_KMS("FDI train done.\n");
}

static void ironlake_fdi_enable(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pipe = intel_crtc->pipe;
	u32 reg, temp;

	/* Write the TU size bits so error detection works */
	I915_WRITE(FDI_RX_TUSIZE1(pipe),
		   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);

	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
	reg = FDI_RX_CTL(pipe);
	temp = I915_READ(reg);
	temp &= ~((0x7 << 19) | (0x7 << 16));
	temp |= (intel_crtc->fdi_lanes - 1) << 19;
	temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
	I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);

	POSTING_READ(reg);
	udelay(200);

	/* Switch from Rawclk to PCDclk */
	temp = I915_READ(reg);
	I915_WRITE(reg, temp | FDI_PCDCLK);

	POSTING_READ(reg);
	udelay(200);

	/* Enable CPU FDI TX PLL, always on for Ironlake */
	reg = FDI_TX_CTL(pipe);
	temp = I915_READ(reg);
	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
		I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);

		POSTING_READ(reg);
		udelay(100);
	}
}

static void intel_flush_display_plane(struct drm_device *dev,
				      int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 reg = DSPADDR(plane);
	I915_WRITE(reg, I915_READ(reg));
}

/*
 * When we disable a pipe, we need to clear any pending scanline wait events
 * to avoid hanging the ring, which we assume we are waiting on.
 */
static void intel_clear_scanline_wait(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_ring_buffer *ring;
	u32 tmp;

	if (IS_GEN2(dev))
		/* Can't break the hang on i8xx */
		return;

	ring = LP_RING(dev_priv);
	tmp = I915_READ_CTL(ring);
	if (tmp & RING_WAIT)
		I915_WRITE_CTL(ring, tmp);
}

static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
{
	struct drm_i915_gem_object *obj;
	struct drm_i915_private *dev_priv;

	if (crtc->fb == NULL)
		return;

	obj = to_intel_framebuffer(crtc->fb)->obj;
	dev_priv = crtc->dev->dev_private;
	wait_event(dev_priv->pending_flip_queue,
		   atomic_read(&obj->pending_flip) == 0);
}

static void ironlake_crtc_enable(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pipe = intel_crtc->pipe;
	int plane = intel_crtc->plane;
	u32 reg, temp;

	if (intel_crtc->active)
		return;

	intel_crtc->active = true;
	intel_update_watermarks(dev);

	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
		temp = I915_READ(PCH_LVDS);
		if ((temp & LVDS_PORT_EN) == 0)
			I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
	}

	ironlake_fdi_enable(crtc);

	/* Enable panel fitting for LVDS */
	if (dev_priv->pch_pf_size &&
	    (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
		/* Force use of hard-coded filter coefficients
		 * as some pre-programmed values are broken,
		 * e.g. x201.
		 */
		I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1,
			   PF_ENABLE | PF_FILTER_MED_3x3);
		I915_WRITE(pipe ? PFB_WIN_POS : PFA_WIN_POS,
			   dev_priv->pch_pf_pos);
		I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ,
			   dev_priv->pch_pf_size);
	}

	/* Enable CPU pipe */
	reg = PIPECONF(pipe);
	temp = I915_READ(reg);
	if ((temp & PIPECONF_ENABLE) == 0) {
		I915_WRITE(reg, temp | PIPECONF_ENABLE);
		POSTING_READ(reg);
		intel_wait_for_vblank(dev, intel_crtc->pipe);
	}

	/* configure and enable CPU plane */
	reg = DSPCNTR(plane);
	temp = I915_READ(reg);
	if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
		I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
		intel_flush_display_plane(dev, plane);
	}

	/* For PCH output, training FDI link */
	if (IS_GEN6(dev))
		gen6_fdi_link_train(crtc);
	else
		ironlake_fdi_link_train(crtc);

	/* enable PCH DPLL */
	reg = PCH_DPLL(pipe);
	temp = I915_READ(reg);
	if ((temp & DPLL_VCO_ENABLE) == 0) {
		I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
		POSTING_READ(reg);
		udelay(200);
	}

	if (HAS_PCH_CPT(dev)) {
		/* Be sure PCH DPLL SEL is set */
		temp = I915_READ(PCH_DPLL_SEL);
		if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
			temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
		else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
			temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
		I915_WRITE(PCH_DPLL_SEL, temp);
	}

	/* set transcoder timing */
	I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
	I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
	I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));

	I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
	I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
	I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));

	intel_fdi_normal_train(crtc);

	/* For PCH DP, enable TRANS_DP_CTL */
	if (HAS_PCH_CPT(dev) &&
	    intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
		reg = TRANS_DP_CTL(pipe);
		temp = I915_READ(reg);
		temp &= ~(TRANS_DP_PORT_SEL_MASK |
			  TRANS_DP_SYNC_MASK |
			  TRANS_DP_BPC_MASK);
		temp |= (TRANS_DP_OUTPUT_ENABLE |
			 TRANS_DP_ENH_FRAMING);
		temp |= TRANS_DP_8BPC;

		if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
		if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;

		switch (intel_trans_dp_port_sel(crtc)) {
		case PCH_DP_B:
			temp |= TRANS_DP_PORT_SEL_B;
			break;
		case PCH_DP_C:
			temp |= TRANS_DP_PORT_SEL_C;
			break;
		case PCH_DP_D:
			temp |= TRANS_DP_PORT_SEL_D;
			break;
		default:
			DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
			temp |= TRANS_DP_PORT_SEL_B;
			break;
		}

		I915_WRITE(reg, temp);
	}

	/* enable PCH transcoder */
	reg = TRANSCONF(pipe);
	temp = I915_READ(reg);
	/*
	 * make the BPC in transcoder be consistent with
	 * that in pipeconf reg.
	 */
	temp &= ~PIPE_BPC_MASK;
	temp |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
	I915_WRITE(reg, temp | TRANS_ENABLE);
	if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
		DRM_ERROR("failed to enable transcoder %d\n", pipe);

	intel_crtc_load_lut(crtc);
	intel_update_fbc(dev);
	intel_crtc_update_cursor(crtc, true);
}

static void ironlake_crtc_disable(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pipe = intel_crtc->pipe;
	int plane = intel_crtc->plane;
	u32 reg, temp;

	if (!intel_crtc->active)
		return;

	intel_crtc_wait_for_pending_flips(crtc);
	drm_vblank_off(dev, pipe);
	intel_crtc_update_cursor(crtc, false);

	/* Disable display plane */
	reg = DSPCNTR(plane);
	temp = I915_READ(reg);
	if (temp & DISPLAY_PLANE_ENABLE) {
		I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
		intel_flush_display_plane(dev, plane);
	}

	if (dev_priv->cfb_plane == plane &&
	    dev_priv->display.disable_fbc)
		dev_priv->display.disable_fbc(dev);

	/* disable cpu pipe, disable after all planes disabled */
	reg = PIPECONF(pipe);
	temp = I915_READ(reg);
	if (temp & PIPECONF_ENABLE) {
		I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
		POSTING_READ(reg);
		/* wait for cpu pipe off, pipe state */
		intel_wait_for_pipe_off(dev, intel_crtc->pipe);
	}

	/* Disable PF */
	I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1, 0);
	I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ, 0);

	/* disable CPU FDI tx and PCH FDI rx */
	reg = FDI_TX_CTL(pipe);
	temp = I915_READ(reg);
	I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
	POSTING_READ(reg);

	reg = FDI_RX_CTL(pipe);
	temp = I915_READ(reg);
	temp &= ~(0x7 << 16);
	temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
	I915_WRITE(reg, temp & ~FDI_RX_ENABLE);

	POSTING_READ(reg);
	udelay(100);

	/* Ironlake workaround, disable clock pointer after downing FDI */
	if (HAS_PCH_IBX(dev))
		I915_WRITE(FDI_RX_CHICKEN(pipe),
			   I915_READ(FDI_RX_CHICKEN(pipe) &
				     ~FDI_RX_PHASE_SYNC_POINTER_ENABLE));

	/* still set train pattern 1 */
	reg = FDI_TX_CTL(pipe);
	temp = I915_READ(reg);
	temp &= ~FDI_LINK_TRAIN_NONE;
	temp |= FDI_LINK_TRAIN_PATTERN_1;
	I915_WRITE(reg, temp);

	reg = FDI_RX_CTL(pipe);
	temp = I915_READ(reg);
	if (HAS_PCH_CPT(dev)) {
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
	} else {
		temp &= ~FDI_LINK_TRAIN_NONE;
		temp |= FDI_LINK_TRAIN_PATTERN_1;
	}
	/* BPC in FDI rx is consistent with that in PIPECONF */
	temp &= ~(0x07 << 16);
	temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
	I915_WRITE(reg, temp);

	POSTING_READ(reg);
	udelay(100);

	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
		temp = I915_READ(PCH_LVDS);
		if (temp & LVDS_PORT_EN) {
			I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
			POSTING_READ(PCH_LVDS);
			udelay(100);
		}
	}

	/* disable PCH transcoder */
	reg = TRANSCONF(plane);
	temp = I915_READ(reg);
	if (temp & TRANS_ENABLE) {
		I915_WRITE(reg, temp & ~TRANS_ENABLE);
		/* wait for PCH transcoder off, transcoder state */
		if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
			DRM_ERROR("failed to disable transcoder\n");
	}

	if (HAS_PCH_CPT(dev)) {
		/* disable TRANS_DP_CTL */
		reg = TRANS_DP_CTL(pipe);
		temp = I915_READ(reg);
		temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
		I915_WRITE(reg, temp);

		/* disable DPLL_SEL */
		temp = I915_READ(PCH_DPLL_SEL);
		if (pipe == 0)
			temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
		else
			temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
		I915_WRITE(PCH_DPLL_SEL, temp);
	}

	/* disable PCH DPLL */
	reg = PCH_DPLL(pipe);
	temp = I915_READ(reg);
	I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);

	/* Switch from PCDclk to Rawclk */
	reg = FDI_RX_CTL(pipe);
	temp = I915_READ(reg);
	I915_WRITE(reg, temp & ~FDI_PCDCLK);

	/* Disable CPU FDI TX PLL */
	reg = FDI_TX_CTL(pipe);
	temp = I915_READ(reg);
	I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);

	POSTING_READ(reg);
	udelay(100);

	reg = FDI_RX_CTL(pipe);
	temp = I915_READ(reg);
	I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);

	/* Wait for the clocks to turn off. */
	POSTING_READ(reg);
	udelay(100);

	intel_crtc->active = false;
	intel_update_watermarks(dev);
	intel_update_fbc(dev);
	intel_clear_scanline_wait(dev);
}

static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pipe = intel_crtc->pipe;
	int plane = intel_crtc->plane;

	/* XXX: When our outputs are all unaware of DPMS modes other than off
	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
	 */
	switch (mode) {
	case DRM_MODE_DPMS_ON:
	case DRM_MODE_DPMS_STANDBY:
	case DRM_MODE_DPMS_SUSPEND:
		DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
		ironlake_crtc_enable(crtc);
		break;

	case DRM_MODE_DPMS_OFF:
		DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
		ironlake_crtc_disable(crtc);
		break;
	}
}

static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
{
	if (!enable && intel_crtc->overlay) {
		struct drm_device *dev = intel_crtc->base.dev;

		mutex_lock(&dev->struct_mutex);
		(void) intel_overlay_switch_off(intel_crtc->overlay, false);
		mutex_unlock(&dev->struct_mutex);
	}

	/* Let userspace switch the overlay on again. In most cases userspace
	 * has to recompute where to put it anyway.
	 */
}

static void i9xx_crtc_enable(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pipe = intel_crtc->pipe;
	int plane = intel_crtc->plane;
	u32 reg, temp;

	if (intel_crtc->active)
		return;

	intel_crtc->active = true;
	intel_update_watermarks(dev);

	/* Enable the DPLL */
	reg = DPLL(pipe);
	temp = I915_READ(reg);
	if ((temp & DPLL_VCO_ENABLE) == 0) {
		I915_WRITE(reg, temp);

		/* Wait for the clocks to stabilize. */
		POSTING_READ(reg);
		udelay(150);

		I915_WRITE(reg, temp | DPLL_VCO_ENABLE);

		/* Wait for the clocks to stabilize. */
		POSTING_READ(reg);
		udelay(150);

		I915_WRITE(reg, temp | DPLL_VCO_ENABLE);

		/* Wait for the clocks to stabilize. */
		POSTING_READ(reg);
		udelay(150);
	}

	/* Enable the pipe */
	reg = PIPECONF(pipe);
	temp = I915_READ(reg);
	if ((temp & PIPECONF_ENABLE) == 0)
		I915_WRITE(reg, temp | PIPECONF_ENABLE);

	/* Enable the plane */
	reg = DSPCNTR(plane);
	temp = I915_READ(reg);
	if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
		I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
		intel_flush_display_plane(dev, plane);
	}

	intel_crtc_load_lut(crtc);
	intel_update_fbc(dev);

	/* Give the overlay scaler a chance to enable if it's on this pipe */
	intel_crtc_dpms_overlay(intel_crtc, true);
	intel_crtc_update_cursor(crtc, true);
}

static void i9xx_crtc_disable(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pipe = intel_crtc->pipe;
	int plane = intel_crtc->plane;
	u32 reg, temp;

	if (!intel_crtc->active)
		return;

	/* Give the overlay scaler a chance to disable if it's on this pipe */
	intel_crtc_wait_for_pending_flips(crtc);
	drm_vblank_off(dev, pipe);
	intel_crtc_dpms_overlay(intel_crtc, false);
	intel_crtc_update_cursor(crtc, false);

	if (dev_priv->cfb_plane == plane &&
	    dev_priv->display.disable_fbc)
		dev_priv->display.disable_fbc(dev);

	/* Disable display plane */
	reg = DSPCNTR(plane);
	temp = I915_READ(reg);
	if (temp & DISPLAY_PLANE_ENABLE) {
		I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
		/* Flush the plane changes */
		intel_flush_display_plane(dev, plane);

		/* Wait for vblank for the disable to take effect */
		if (IS_GEN2(dev))
			intel_wait_for_vblank(dev, pipe);
	}

	/* Don't disable pipe A or pipe A PLLs if needed */
	if (pipe == 0 && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
		goto done;

	/* Next, disable display pipes */
	reg = PIPECONF(pipe);
	temp = I915_READ(reg);
	if (temp & PIPECONF_ENABLE) {
		I915_WRITE(reg, temp & ~PIPECONF_ENABLE);

		/* Wait for the pipe to turn off */
		POSTING_READ(reg);
		intel_wait_for_pipe_off(dev, pipe);
	}

	reg = DPLL(pipe);
	temp = I915_READ(reg);
	if (temp & DPLL_VCO_ENABLE) {
		I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);

		/* Wait for the clocks to turn off. */
		POSTING_READ(reg);
		udelay(150);
	}

done:
	intel_crtc->active = false;
	intel_update_fbc(dev);
	intel_update_watermarks(dev);
	intel_clear_scanline_wait(dev);
}

static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
{
	/* XXX: When our outputs are all unaware of DPMS modes other than off
	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
	 */
	switch (mode) {
	case DRM_MODE_DPMS_ON:
	case DRM_MODE_DPMS_STANDBY:
	case DRM_MODE_DPMS_SUSPEND:
		i9xx_crtc_enable(crtc);
		break;
	case DRM_MODE_DPMS_OFF:
		i9xx_crtc_disable(crtc);
		break;
	}
}

/**
 * Sets the power management mode of the pipe and plane.
 */
static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_master_private *master_priv;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pipe = intel_crtc->pipe;
	bool enabled;

	if (intel_crtc->dpms_mode == mode)
		return;

	intel_crtc->dpms_mode = mode;

	dev_priv->display.dpms(crtc, mode);

	if (!dev->primary->master)
		return;

	master_priv = dev->primary->master->driver_priv;
	if (!master_priv->sarea_priv)
		return;

	enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;

	switch (pipe) {
	case 0:
		master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
		master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
		break;
	case 1:
		master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
		master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
		break;
	default:
		DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
		break;
	}
}

static void intel_crtc_disable(struct drm_crtc *crtc)
{
	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
	struct drm_device *dev = crtc->dev;

	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);

	if (crtc->fb) {
		mutex_lock(&dev->struct_mutex);
		i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
		mutex_unlock(&dev->struct_mutex);
	}
}

/* Prepare for a mode set.
 *
 * Note we could be a lot smarter here.  We need to figure out which outputs
 * will be enabled, which disabled (in short, how the config will changes)
 * and perform the minimum necessary steps to accomplish that, e.g. updating
 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
 * panel fitting is in the proper state, etc.
 */
static void i9xx_crtc_prepare(struct drm_crtc *crtc)
{
	i9xx_crtc_disable(crtc);
}

static void i9xx_crtc_commit(struct drm_crtc *crtc)
{
	i9xx_crtc_enable(crtc);
}

static void ironlake_crtc_prepare(struct drm_crtc *crtc)
{
	ironlake_crtc_disable(crtc);
}

static void ironlake_crtc_commit(struct drm_crtc *crtc)
{
	ironlake_crtc_enable(crtc);
}

void intel_encoder_prepare (struct drm_encoder *encoder)
{
	struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
	/* lvds has its own version of prepare see intel_lvds_prepare */
	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
}

void intel_encoder_commit (struct drm_encoder *encoder)
{
	struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
	/* lvds has its own version of commit see intel_lvds_commit */
	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
}

void intel_encoder_destroy(struct drm_encoder *encoder)
{
	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);

	drm_encoder_cleanup(encoder);
	kfree(intel_encoder);
}

static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
				  struct drm_display_mode *mode,
				  struct drm_display_mode *adjusted_mode)
{
	struct drm_device *dev = crtc->dev;

	if (HAS_PCH_SPLIT(dev)) {
		/* FDI link clock is fixed at 2.7G */
		if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
			return false;
	}

	/* XXX some encoders set the crtcinfo, others don't.
	 * Obviously we need some form of conflict resolution here...
	 */
	if (adjusted_mode->crtc_htotal == 0)
		drm_mode_set_crtcinfo(adjusted_mode, 0);

	return true;
}

static int i945_get_display_clock_speed(struct drm_device *dev)
{
	return 400000;
}

static int i915_get_display_clock_speed(struct drm_device *dev)
{
	return 333000;
}

static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
{
	return 200000;
}

static int i915gm_get_display_clock_speed(struct drm_device *dev)
{
	u16 gcfgc = 0;

	pci_read_config_word(dev->pdev, GCFGC, &gcfgc);

	if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
		return 133000;
	else {
		switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
		case GC_DISPLAY_CLOCK_333_MHZ:
			return 333000;
		default:
		case GC_DISPLAY_CLOCK_190_200_MHZ:
			return 190000;
		}
	}
}

static int i865_get_display_clock_speed(struct drm_device *dev)
{
	return 266000;
}

static int i855_get_display_clock_speed(struct drm_device *dev)
{
	u16 hpllcc = 0;
	/* Assume that the hardware is in the high speed state.  This
	 * should be the default.
	 */
	switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
	case GC_CLOCK_133_200:
	case GC_CLOCK_100_200:
		return 200000;
	case GC_CLOCK_166_250:
		return 250000;
	case GC_CLOCK_100_133:
		return 133000;
	}

	/* Shouldn't happen */
	return 0;
}

static int i830_get_display_clock_speed(struct drm_device *dev)
{
	return 133000;
}

struct fdi_m_n {
	u32        tu;
	u32        gmch_m;
	u32        gmch_n;
	u32        link_m;
	u32        link_n;
};

static void
fdi_reduce_ratio(u32 *num, u32 *den)
{
	while (*num > 0xffffff || *den > 0xffffff) {
		*num >>= 1;
		*den >>= 1;
	}
}

static void
ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
		     int link_clock, struct fdi_m_n *m_n)
{
	m_n->tu = 64; /* default size */

	/* BUG_ON(pixel_clock > INT_MAX / 36); */
	m_n->gmch_m = bits_per_pixel * pixel_clock;
	m_n->gmch_n = link_clock * nlanes * 8;
	fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);

	m_n->link_m = pixel_clock;
	m_n->link_n = link_clock;
	fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
}


struct intel_watermark_params {
	unsigned long fifo_size;
	unsigned long max_wm;
	unsigned long default_wm;
	unsigned long guard_size;
	unsigned long cacheline_size;
};

/* Pineview has different values for various configs */
static struct intel_watermark_params pineview_display_wm = {
	PINEVIEW_DISPLAY_FIFO,
	PINEVIEW_MAX_WM,
	PINEVIEW_DFT_WM,
	PINEVIEW_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE
};
static struct intel_watermark_params pineview_display_hplloff_wm = {
	PINEVIEW_DISPLAY_FIFO,
	PINEVIEW_MAX_WM,
	PINEVIEW_DFT_HPLLOFF_WM,
	PINEVIEW_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE
};
static struct intel_watermark_params pineview_cursor_wm = {
	PINEVIEW_CURSOR_FIFO,
	PINEVIEW_CURSOR_MAX_WM,
	PINEVIEW_CURSOR_DFT_WM,
	PINEVIEW_CURSOR_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE,
};
static struct intel_watermark_params pineview_cursor_hplloff_wm = {
	PINEVIEW_CURSOR_FIFO,
	PINEVIEW_CURSOR_MAX_WM,
	PINEVIEW_CURSOR_DFT_WM,
	PINEVIEW_CURSOR_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE
};
static struct intel_watermark_params g4x_wm_info = {
	G4X_FIFO_SIZE,
	G4X_MAX_WM,
	G4X_MAX_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static struct intel_watermark_params g4x_cursor_wm_info = {
	I965_CURSOR_FIFO,
	I965_CURSOR_MAX_WM,
	I965_CURSOR_DFT_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static struct intel_watermark_params i965_cursor_wm_info = {
	I965_CURSOR_FIFO,
	I965_CURSOR_MAX_WM,
	I965_CURSOR_DFT_WM,
	2,
	I915_FIFO_LINE_SIZE,
};
static struct intel_watermark_params i945_wm_info = {
	I945_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I915_FIFO_LINE_SIZE
};
static struct intel_watermark_params i915_wm_info = {
	I915_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I915_FIFO_LINE_SIZE
};
static struct intel_watermark_params i855_wm_info = {
	I855GM_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I830_FIFO_LINE_SIZE
};
static struct intel_watermark_params i830_wm_info = {
	I830_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I830_FIFO_LINE_SIZE
};

static struct intel_watermark_params ironlake_display_wm_info = {
	ILK_DISPLAY_FIFO,
	ILK_DISPLAY_MAXWM,
	ILK_DISPLAY_DFTWM,
	2,
	ILK_FIFO_LINE_SIZE
};

static struct intel_watermark_params ironlake_cursor_wm_info = {
	ILK_CURSOR_FIFO,
	ILK_CURSOR_MAXWM,
	ILK_CURSOR_DFTWM,
	2,
	ILK_FIFO_LINE_SIZE
};

static struct intel_watermark_params ironlake_display_srwm_info = {
	ILK_DISPLAY_SR_FIFO,
	ILK_DISPLAY_MAX_SRWM,
	ILK_DISPLAY_DFT_SRWM,
	2,
	ILK_FIFO_LINE_SIZE
};

static struct intel_watermark_params ironlake_cursor_srwm_info = {
	ILK_CURSOR_SR_FIFO,
	ILK_CURSOR_MAX_SRWM,
	ILK_CURSOR_DFT_SRWM,
	2,
	ILK_FIFO_LINE_SIZE
};

static struct intel_watermark_params sandybridge_display_wm_info = {
	SNB_DISPLAY_FIFO,
	SNB_DISPLAY_MAXWM,
	SNB_DISPLAY_DFTWM,
	2,
	SNB_FIFO_LINE_SIZE
};

static struct intel_watermark_params sandybridge_cursor_wm_info = {
	SNB_CURSOR_FIFO,
	SNB_CURSOR_MAXWM,
	SNB_CURSOR_DFTWM,
	2,
	SNB_FIFO_LINE_SIZE
};

static struct intel_watermark_params sandybridge_display_srwm_info = {
	SNB_DISPLAY_SR_FIFO,
	SNB_DISPLAY_MAX_SRWM,
	SNB_DISPLAY_DFT_SRWM,
	2,
	SNB_FIFO_LINE_SIZE
};

static struct intel_watermark_params sandybridge_cursor_srwm_info = {
	SNB_CURSOR_SR_FIFO,
	SNB_CURSOR_MAX_SRWM,
	SNB_CURSOR_DFT_SRWM,
	2,
	SNB_FIFO_LINE_SIZE
};


/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					struct intel_watermark_params *wm,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);

	wm_size = wm->fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
	return wm_size;
}

struct cxsr_latency {
	int is_desktop;
	int is_ddr3;
	unsigned long fsb_freq;
	unsigned long mem_freq;
	unsigned long display_sr;
	unsigned long display_hpll_disable;
	unsigned long cursor_sr;
	unsigned long cursor_hpll_disable;
};

static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

static void pineview_disable_cxsr(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* deactivate cxsr */
	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
}

/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
static const int latency_ns = 5000;

static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

static int i85x_get_fifo_size(struct drm_device *dev, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

static int i845_get_fifo_size(struct drm_device *dev, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

static int i830_get_fifo_size(struct drm_device *dev, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

static void pineview_update_wm(struct drm_device *dev,  int planea_clock,
			       int planeb_clock, int sr_hdisplay, int unused,
			       int pixel_size)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;
	int sr_clock;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
		pineview_disable_cxsr(dev);
		return;
	}

	if (!planea_clock || !planeb_clock) {
		sr_clock = planea_clock ? planea_clock : planeb_clock;

		/* Display SR */
		wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
		reg |= wm << DSPFW_SR_SHIFT;
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
		reg |= wm & DSPFW_HPLL_SR_MASK;
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

		/* activate cxsr */
		I915_WRITE(DSPFW3,
			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
		DRM_DEBUG_KMS("Self-refresh is enabled\n");
	} else {
		pineview_disable_cxsr(dev);
		DRM_DEBUG_KMS("Self-refresh is disabled\n");
	}
}

static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
			  int planeb_clock, int sr_hdisplay, int sr_htotal,
			  int pixel_size)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int total_size, cacheline_size;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
	struct intel_watermark_params planea_params, planeb_params;
	unsigned long line_time_us;
	int sr_clock, sr_entries = 0, entries_required;

	/* Create copies of the base settings for each pipe */
	planea_params = planeb_params = g4x_wm_info;

	/* Grab a couple of global values before we overwrite them */
	total_size = planea_params.fifo_size;
	cacheline_size = planea_params.cacheline_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
	planea_wm = entries_required + planea_params.guard_size;

	entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
	planeb_wm = entries_required + planeb_params.guard_size;

	cursora_wm = cursorb_wm = 16;
	cursor_sr = 32;

	DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

	/* Calc sr entries for one plane configs */
	if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;

		sr_clock = planea_clock ? planea_clock : planeb_clock;
		line_time_us = ((sr_htotal * 1000) / sr_clock);

		/* Use ns/us then divide to preserve precision */
		sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * sr_hdisplay;
		sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);

		entries_required = (((sr_latency_ns / line_time_us) +
				     1000) / 1000) * pixel_size * 64;
		entries_required = DIV_ROUND_UP(entries_required,
						g4x_cursor_wm_info.cacheline_size);
		cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;

		if (cursor_sr > g4x_cursor_wm_info.max_wm)
			cursor_sr = g4x_cursor_wm_info.max_wm;
		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", sr_entries, cursor_sr);

		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
	} else {
		/* Turn off self refresh if both pipes are enabled */
		I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
			   & ~FW_BLC_SELF_EN);
	}

	DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
		  planea_wm, planeb_wm, sr_entries);

	planea_wm &= 0x3f;
	planeb_wm &= 0x3f;

	I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
	I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
}

static void i965_update_wm(struct drm_device *dev, int planea_clock,
			   int planeb_clock, int sr_hdisplay, int sr_htotal,
			   int pixel_size)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long line_time_us;
	int sr_clock, sr_entries, srwm = 1;
	int cursor_sr = 16;

	/* Calc sr entries for one plane configs */
	if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;

		sr_clock = planea_clock ? planea_clock : planeb_clock;
		line_time_us = ((sr_htotal * 1000) / sr_clock);

		/* Use ns/us then divide to preserve precision */
		sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * sr_hdisplay;
		sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
		DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
		srwm = I965_FIFO_SIZE - sr_entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;

		sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * 64;
		sr_entries = DIV_ROUND_UP(sr_entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(sr_entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

		if (IS_CRESTLINE(dev))
			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
	} else {
		/* Turn off self refresh if both pipes are enabled */
		if (IS_CRESTLINE(dev))
			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
				   & ~FW_BLC_SELF_EN);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
		   (8 << 0));
	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
	/* update cursor SR watermark */
	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
}

static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
			   int planeb_clock, int sr_hdisplay, int sr_htotal,
			   int pixel_size)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int total_size, cacheline_size, cwm, srwm = 1;
	int planea_wm, planeb_wm;
	struct intel_watermark_params planea_params, planeb_params;
	unsigned long line_time_us;
	int sr_clock, sr_entries = 0;

	/* Create copies of the base settings for each pipe */
	if (IS_CRESTLINE(dev) || IS_I945GM(dev))
		planea_params = planeb_params = i945_wm_info;
	else if (!IS_GEN2(dev))
		planea_params = planeb_params = i915_wm_info;
	else
		planea_params = planeb_params = i855_wm_info;

	/* Grab a couple of global values before we overwrite them */
	total_size = planea_params.fifo_size;
	cacheline_size = planea_params.cacheline_size;

	/* Update per-plane FIFO sizes */
	planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);

	planea_wm = intel_calculate_wm(planea_clock, &planea_params,
				       pixel_size, latency_ns);
	planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
				       pixel_size, latency_ns);
	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && sr_hdisplay &&
	    (!planea_clock || !planeb_clock)) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;

		sr_clock = planea_clock ? planea_clock : planeb_clock;
		line_time_us = ((sr_htotal * 1000) / sr_clock);

		/* Use ns/us then divide to preserve precision */
		sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * sr_hdisplay;
		sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
		srwm = total_size - sr_entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev)) {
			/* 915M has a smaller SRWM field */
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
			I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
		}
	} else {
		/* Turn off self refresh if both pipes are enabled */
		if (IS_I945G(dev) || IS_I945GM(dev)) {
			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
				   & ~FW_BLC_SELF_EN);
		} else if (IS_I915GM(dev)) {
			I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
		}
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);
}

static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
			   int unused2, int unused3, int pixel_size)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	int planea_wm;

	i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);

	planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
				       pixel_size, latency_ns);
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

#define ILK_LP0_PLANE_LATENCY		700
#define ILK_LP0_CURSOR_LATENCY		1300

static bool ironlake_compute_wm0(struct drm_device *dev,
				 int pipe,
				 const struct intel_watermark_params *display,
				 int display_latency_ns,
				 const struct intel_watermark_params *cursor,
				 int cursor_latency_ns,
				 int *plane_wm,
				 int *cursor_wm)
{
	struct drm_crtc *crtc;
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_pipe(dev, pipe);
	if (crtc->fb == NULL || !crtc->enabled)
		return false;

	htotal = crtc->mode.htotal;
	hdisplay = crtc->mode.hdisplay;
	clock = crtc->mode.clock;
	pixel_size = crtc->fb->bits_per_pixel / 8;

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
	line_time_us = ((htotal * 1000) / clock);
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
	entries = line_count * 64 * pixel_size;
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool ironlake_check_srwm(struct drm_device *dev, int level,
				int fbc_wm, int display_wm, int cursor_wm,
				const struct intel_watermark_params *display,
				const struct intel_watermark_params *cursor)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
		      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);

	if (fbc_wm > SNB_FBC_MAX_SRWM) {
		DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
			      fbc_wm, SNB_FBC_MAX_SRWM, level);

		/* fbc has it's own way to disable FBC WM */
		I915_WRITE(DISP_ARB_CTL,
			   I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
		return false;
	}

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
			      display_wm, SNB_DISPLAY_MAX_SRWM, level);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
			      cursor_wm, SNB_CURSOR_MAX_SRWM, level);
		return false;
	}

	if (!(fbc_wm || display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
		return false;
	}

	return true;
}

/*
 * Compute watermark values of WM[1-3],
 */
static bool ironlake_compute_srwm(struct drm_device *dev, int level,
				  int hdisplay, int htotal,
				  int pixel_size, int clock, int latency_ns,
				  const struct intel_watermark_params *display,
				  const struct intel_watermark_params *cursor,
				  int *fbc_wm, int *display_wm, int *cursor_wm)
{

	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*fbc_wm = *display_wm = *cursor_wm = 0;
		return false;
	}

	line_time_us = (htotal * 1000) / clock;
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/*
	 * Spec says:
	 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
	 */
	*fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;

	/* calculate the self-refresh watermark for display cursor */
	entries = line_count * pixel_size * 64;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return ironlake_check_srwm(dev, level,
				   *fbc_wm, *display_wm, *cursor_wm,
				   display, cursor);
}

static void ironlake_update_wm(struct drm_device *dev,
			       int planea_clock, int planeb_clock,
			       int hdisplay, int htotal,
			       int pixel_size)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int fbc_wm, plane_wm, cursor_wm, enabled;
	int clock;

	enabled = 0;
	if (ironlake_compute_wm0(dev, 0,
				 &ironlake_display_wm_info,
				 ILK_LP0_PLANE_LATENCY,
				 &ironlake_cursor_wm_info,
				 ILK_LP0_CURSOR_LATENCY,
				 &plane_wm, &cursor_wm)) {
		I915_WRITE(WM0_PIPEA_ILK,
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
			      " plane %d, " "cursor: %d\n",
			      plane_wm, cursor_wm);
		enabled++;
	}

	if (ironlake_compute_wm0(dev, 1,
				 &ironlake_display_wm_info,
				 ILK_LP0_PLANE_LATENCY,
				 &ironlake_cursor_wm_info,
				 ILK_LP0_CURSOR_LATENCY,
				 &plane_wm, &cursor_wm)) {
		I915_WRITE(WM0_PIPEB_ILK,
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
		enabled++;
	}

	/*
	 * Calculate and update the self-refresh watermark only when one
	 * display plane is used.
	 */
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	if (enabled != 1)
		return;

	clock = planea_clock ? planea_clock : planeb_clock;

	/* WM1 */
	if (!ironlake_compute_srwm(dev, 1, hdisplay, htotal, pixel_size,
				   clock, ILK_READ_WM1_LATENCY() * 500,
				   &ironlake_display_srwm_info,
				   &ironlake_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM1_LP_ILK,
		   WM1_LP_SR_EN |
		   (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM2 */
	if (!ironlake_compute_srwm(dev, 2, hdisplay, htotal, pixel_size,
				   clock, ILK_READ_WM2_LATENCY() * 500,
				   &ironlake_display_srwm_info,
				   &ironlake_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM2_LP_ILK,
		   WM2_LP_EN |
		   (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/*
	 * WM3 is unsupported on ILK, probably because we don't have latency
	 * data for that power state
	 */
}

static void sandybridge_update_wm(struct drm_device *dev,
			       int planea_clock, int planeb_clock,
			       int hdisplay, int htotal,
			       int pixel_size)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
	int fbc_wm, plane_wm, cursor_wm, enabled;
	int clock;

	enabled = 0;
	if (ironlake_compute_wm0(dev, 0,
				 &sandybridge_display_wm_info, latency,
				 &sandybridge_cursor_wm_info, latency,
				 &plane_wm, &cursor_wm)) {
		I915_WRITE(WM0_PIPEA_ILK,
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
			      " plane %d, " "cursor: %d\n",
			      plane_wm, cursor_wm);
		enabled++;
	}

	if (ironlake_compute_wm0(dev, 1,
				 &sandybridge_display_wm_info, latency,
				 &sandybridge_cursor_wm_info, latency,
				 &plane_wm, &cursor_wm)) {
		I915_WRITE(WM0_PIPEB_ILK,
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
		enabled++;
	}

	/*
	 * Calculate and update the self-refresh watermark only when one
	 * display plane is used.
	 *
	 * SNB support 3 levels of watermark.
	 *
	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
	 * and disabled in the descending order
	 *
	 */
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	if (enabled != 1)
		return;

	clock = planea_clock ? planea_clock : planeb_clock;

	/* WM1 */
	if (!ironlake_compute_srwm(dev, 1, hdisplay, htotal, pixel_size,
				   clock, SNB_READ_WM1_LATENCY() * 500,
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM1_LP_ILK,
		   WM1_LP_SR_EN |
		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM2 */
	if (!ironlake_compute_srwm(dev, 2,
				   hdisplay, htotal, pixel_size,
				   clock, SNB_READ_WM2_LATENCY() * 500,
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM2_LP_ILK,
		   WM2_LP_EN |
		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM3 */
	if (!ironlake_compute_srwm(dev, 3,
				   hdisplay, htotal, pixel_size,
				   clock, SNB_READ_WM3_LATENCY() * 500,
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM3_LP_ILK,
		   WM3_LP_EN |
		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);
}

/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
static void intel_update_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int sr_hdisplay = 0;
	unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
	int enabled = 0, pixel_size = 0;
	int sr_htotal = 0;

	if (!dev_priv->display.update_wm)
		return;

	/* Get the clock config from both planes */
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		if (intel_crtc->active) {
			enabled++;
			if (intel_crtc->plane == 0) {
				DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
					      intel_crtc->pipe, crtc->mode.clock);
				planea_clock = crtc->mode.clock;
			} else {
				DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
					      intel_crtc->pipe, crtc->mode.clock);
				planeb_clock = crtc->mode.clock;
			}
			sr_hdisplay = crtc->mode.hdisplay;
			sr_clock = crtc->mode.clock;
			sr_htotal = crtc->mode.htotal;
			if (crtc->fb)
				pixel_size = crtc->fb->bits_per_pixel / 8;
			else
				pixel_size = 4; /* by default */
		}
	}

	if (enabled <= 0)
		return;

	dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
				    sr_hdisplay, sr_htotal, pixel_size);
}

static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
{
	return dev_priv->lvds_use_ssc && i915_panel_use_ssc;
}

static int intel_crtc_mode_set(struct drm_crtc *crtc,
			       struct drm_display_mode *mode,
			       struct drm_display_mode *adjusted_mode,
			       int x, int y,
			       struct drm_framebuffer *old_fb)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pipe = intel_crtc->pipe;
	int plane = intel_crtc->plane;
	u32 fp_reg, dpll_reg;
	int refclk, num_connectors = 0;
	intel_clock_t clock, reduced_clock;
	u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
	bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
	bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
	struct intel_encoder *has_edp_encoder = NULL;
	struct drm_mode_config *mode_config = &dev->mode_config;
	struct intel_encoder *encoder;
	const intel_limit_t *limit;
	int ret;
	struct fdi_m_n m_n = {0};
	u32 reg, temp;
	int target_clock;

	drm_vblank_pre_modeset(dev, pipe);

	list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
		if (encoder->base.crtc != crtc)
			continue;

		switch (encoder->type) {
		case INTEL_OUTPUT_LVDS:
			is_lvds = true;
			break;
		case INTEL_OUTPUT_SDVO:
		case INTEL_OUTPUT_HDMI:
			is_sdvo = true;
			if (encoder->needs_tv_clock)
				is_tv = true;
			break;
		case INTEL_OUTPUT_DVO:
			is_dvo = true;
			break;
		case INTEL_OUTPUT_TVOUT:
			is_tv = true;
			break;
		case INTEL_OUTPUT_ANALOG:
			is_crt = true;
			break;
		case INTEL_OUTPUT_DISPLAYPORT:
			is_dp = true;
			break;
		case INTEL_OUTPUT_EDP:
			has_edp_encoder = encoder;
			break;
		}

		num_connectors++;
	}

	if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
		refclk = dev_priv->lvds_ssc_freq * 1000;
		DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
			      refclk / 1000);
	} else if (!IS_GEN2(dev)) {
		refclk = 96000;
		if (HAS_PCH_SPLIT(dev) &&
		    (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)))
			refclk = 120000; /* 120Mhz refclk */
	} else {
		refclk = 48000;
	}

	/*
	 * Returns a set of divisors for the desired target clock with the given
	 * refclk, or FALSE.  The returned values represent the clock equation:
	 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
	 */
	limit = intel_limit(crtc, refclk);
	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
	if (!ok) {
		DRM_ERROR("Couldn't find PLL settings for mode!\n");
		drm_vblank_post_modeset(dev, pipe);
		return -EINVAL;
	}

	/* Ensure that the cursor is valid for the new mode before changing... */
	intel_crtc_update_cursor(crtc, true);

	if (is_lvds && dev_priv->lvds_downclock_avail) {
		has_reduced_clock = limit->find_pll(limit, crtc,
						    dev_priv->lvds_downclock,
						    refclk,
						    &reduced_clock);
		if (has_reduced_clock && (clock.p != reduced_clock.p)) {
			/*
			 * If the different P is found, it means that we can't
			 * switch the display clock by using the FP0/FP1.
			 * In such case we will disable the LVDS downclock
			 * feature.
			 */
			DRM_DEBUG_KMS("Different P is found for "
				      "LVDS clock/downclock\n");
			has_reduced_clock = 0;
		}
	}
	/* SDVO TV has fixed PLL values depend on its clock range,
	   this mirrors vbios setting. */
	if (is_sdvo && is_tv) {
		if (adjusted_mode->clock >= 100000
		    && adjusted_mode->clock < 140500) {
			clock.p1 = 2;
			clock.p2 = 10;
			clock.n = 3;
			clock.m1 = 16;
			clock.m2 = 8;
		} else if (adjusted_mode->clock >= 140500
			   && adjusted_mode->clock <= 200000) {
			clock.p1 = 1;
			clock.p2 = 10;
			clock.n = 6;
			clock.m1 = 12;
			clock.m2 = 8;
		}
	}

	/* FDI link */
	if (HAS_PCH_SPLIT(dev)) {
		int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
		int lane = 0, link_bw, bpp;
		/* CPU eDP doesn't require FDI link, so just set DP M/N
		   according to current link config */
		if (has_edp_encoder && !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
			target_clock = mode->clock;
			intel_edp_link_config(has_edp_encoder,
					      &lane, &link_bw);
		} else {
			/* [e]DP over FDI requires target mode clock
			   instead of link clock */
			if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
				target_clock = mode->clock;
			else
				target_clock = adjusted_mode->clock;

			/* FDI is a binary signal running at ~2.7GHz, encoding
			 * each output octet as 10 bits. The actual frequency
			 * is stored as a divider into a 100MHz clock, and the
			 * mode pixel clock is stored in units of 1KHz.
			 * Hence the bw of each lane in terms of the mode signal
			 * is:
			 */
			link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
		}

		/* determine panel color depth */
		temp = I915_READ(PIPECONF(pipe));
		temp &= ~PIPE_BPC_MASK;
		if (is_lvds) {
			/* the BPC will be 6 if it is 18-bit LVDS panel */
			if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
				temp |= PIPE_8BPC;
			else
				temp |= PIPE_6BPC;
		} else if (has_edp_encoder) {
			switch (dev_priv->edp.bpp/3) {
			case 8:
				temp |= PIPE_8BPC;
				break;
			case 10:
				temp |= PIPE_10BPC;
				break;
			case 6:
				temp |= PIPE_6BPC;
				break;
			case 12:
				temp |= PIPE_12BPC;
				break;
			}
		} else
			temp |= PIPE_8BPC;
		I915_WRITE(PIPECONF(pipe), temp);

		switch (temp & PIPE_BPC_MASK) {
		case PIPE_8BPC:
			bpp = 24;
			break;
		case PIPE_10BPC:
			bpp = 30;
			break;
		case PIPE_6BPC:
			bpp = 18;
			break;
		case PIPE_12BPC:
			bpp = 36;
			break;
		default:
			DRM_ERROR("unknown pipe bpc value\n");
			bpp = 24;
		}

		if (!lane) {
			/* 
			 * Account for spread spectrum to avoid
			 * oversubscribing the link. Max center spread
			 * is 2.5%; use 5% for safety's sake.
			 */
			u32 bps = target_clock * bpp * 21 / 20;
			lane = bps / (link_bw * 8) + 1;
		}

		intel_crtc->fdi_lanes = lane;

		if (pixel_multiplier > 1)
			link_bw *= pixel_multiplier;
		ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
	}

	/* Ironlake: try to setup display ref clock before DPLL
	 * enabling. This is only under driver's control after
	 * PCH B stepping, previous chipset stepping should be
	 * ignoring this setting.
	 */
	if (HAS_PCH_SPLIT(dev)) {
		temp = I915_READ(PCH_DREF_CONTROL);
		/* Always enable nonspread source */
		temp &= ~DREF_NONSPREAD_SOURCE_MASK;
		temp |= DREF_NONSPREAD_SOURCE_ENABLE;
		temp &= ~DREF_SSC_SOURCE_MASK;
		temp |= DREF_SSC_SOURCE_ENABLE;
		I915_WRITE(PCH_DREF_CONTROL, temp);

		POSTING_READ(PCH_DREF_CONTROL);
		udelay(200);

		if (has_edp_encoder) {
			if (intel_panel_use_ssc(dev_priv)) {
				temp |= DREF_SSC1_ENABLE;
				I915_WRITE(PCH_DREF_CONTROL, temp);

				POSTING_READ(PCH_DREF_CONTROL);
				udelay(200);
			}
			temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;

			/* Enable CPU source on CPU attached eDP */
			if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
				if (intel_panel_use_ssc(dev_priv))
					temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
				else
					temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
			} else {
				/* Enable SSC on PCH eDP if needed */
				if (intel_panel_use_ssc(dev_priv)) {
					DRM_ERROR("enabling SSC on PCH\n");
					temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
				}
			}
			I915_WRITE(PCH_DREF_CONTROL, temp);
			POSTING_READ(PCH_DREF_CONTROL);
			udelay(200);
		}
	}

	if (IS_PINEVIEW(dev)) {
		fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
		if (has_reduced_clock)
			fp2 = (1 << reduced_clock.n) << 16 |
				reduced_clock.m1 << 8 | reduced_clock.m2;
	} else {
		fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
		if (has_reduced_clock)
			fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
				reduced_clock.m2;
	}

	/* Enable autotuning of the PLL clock (if permissible) */
	if (HAS_PCH_SPLIT(dev)) {
		int factor = 21;

		if (is_lvds) {
			if ((intel_panel_use_ssc(dev_priv) &&
			     dev_priv->lvds_ssc_freq == 100) ||
			    (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
				factor = 25;
		} else if (is_sdvo && is_tv)
			factor = 20;

		if (clock.m1 < factor * clock.n)
			fp |= FP_CB_TUNE;
	}

	dpll = 0;
	if (!HAS_PCH_SPLIT(dev))
		dpll = DPLL_VGA_MODE_DIS;

	if (!IS_GEN2(dev)) {
		if (is_lvds)
			dpll |= DPLLB_MODE_LVDS;
		else
			dpll |= DPLLB_MODE_DAC_SERIAL;
		if (is_sdvo) {
			int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
			if (pixel_multiplier > 1) {
				if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
					dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
				else if (HAS_PCH_SPLIT(dev))
					dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
			}
			dpll |= DPLL_DVO_HIGH_SPEED;
		}
		if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
			dpll |= DPLL_DVO_HIGH_SPEED;

		/* compute bitmask from p1 value */
		if (IS_PINEVIEW(dev))
			dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
		else {
			dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
			/* also FPA1 */
			if (HAS_PCH_SPLIT(dev))
				dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
			if (IS_G4X(dev) && has_reduced_clock)
				dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
		}
		switch (clock.p2) {
		case 5:
			dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
			break;
		case 7:
			dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
			break;
		case 10:
			dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
			break;
		case 14:
			dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
			break;
		}
		if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev))
			dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
	} else {
		if (is_lvds) {
			dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
		} else {
			if (clock.p1 == 2)
				dpll |= PLL_P1_DIVIDE_BY_TWO;
			else
				dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
			if (clock.p2 == 4)
				dpll |= PLL_P2_DIVIDE_BY_4;
		}
	}

	if (is_sdvo && is_tv)
		dpll |= PLL_REF_INPUT_TVCLKINBC;
	else if (is_tv)
		/* XXX: just matching BIOS for now */
		/*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
		dpll |= 3;
	else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
	else
		dpll |= PLL_REF_INPUT_DREFCLK;

	/* setup pipeconf */
	pipeconf = I915_READ(PIPECONF(pipe));

	/* Set up the display plane register */
	dspcntr = DISPPLANE_GAMMA_ENABLE;

	/* Ironlake's plane is forced to pipe, bit 24 is to
	   enable color space conversion */
	if (!HAS_PCH_SPLIT(dev)) {
		if (pipe == 0)
			dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
		else
			dspcntr |= DISPPLANE_SEL_PIPE_B;
	}

	if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
		/* Enable pixel doubling when the dot clock is > 90% of the (display)
		 * core speed.
		 *
		 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
		 * pipe == 0 check?
		 */
		if (mode->clock >
		    dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
			pipeconf |= PIPECONF_DOUBLE_WIDE;
		else
			pipeconf &= ~PIPECONF_DOUBLE_WIDE;
	}

	dspcntr |= DISPLAY_PLANE_ENABLE;
	pipeconf |= PIPECONF_ENABLE;
	dpll |= DPLL_VCO_ENABLE;

	DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
	drm_mode_debug_printmodeline(mode);

	/* assign to Ironlake registers */
	if (HAS_PCH_SPLIT(dev)) {
		fp_reg = PCH_FP0(pipe);
		dpll_reg = PCH_DPLL(pipe);
	} else {
		fp_reg = FP0(pipe);
		dpll_reg = DPLL(pipe);
	}

	/* PCH eDP needs FDI, but CPU eDP does not */
	if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
		I915_WRITE(fp_reg, fp);
		I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);

		POSTING_READ(dpll_reg);
		udelay(150);
	}

	/* enable transcoder DPLL */
	if (HAS_PCH_CPT(dev)) {
		temp = I915_READ(PCH_DPLL_SEL);
		if (pipe == 0)
			temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
		else
			temp |=	TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
		I915_WRITE(PCH_DPLL_SEL, temp);

		POSTING_READ(PCH_DPLL_SEL);
		udelay(150);
	}

	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
	 * This is an exception to the general rule that mode_set doesn't turn
	 * things on.
	 */
	if (is_lvds) {
		reg = LVDS;
		if (HAS_PCH_SPLIT(dev))
			reg = PCH_LVDS;

		temp = I915_READ(reg);
		temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
		if (pipe == 1) {
			if (HAS_PCH_CPT(dev))
				temp |= PORT_TRANS_B_SEL_CPT;
			else
				temp |= LVDS_PIPEB_SELECT;
		} else {
			if (HAS_PCH_CPT(dev))
				temp &= ~PORT_TRANS_SEL_MASK;
			else
				temp &= ~LVDS_PIPEB_SELECT;
		}
		/* set the corresponsding LVDS_BORDER bit */
		temp |= dev_priv->lvds_border_bits;
		/* Set the B0-B3 data pairs corresponding to whether we're going to
		 * set the DPLLs for dual-channel mode or not.
		 */
		if (clock.p2 == 7)
			temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
		else
			temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);

		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
		 * appropriately here, but we need to look more thoroughly into how
		 * panels behave in the two modes.
		 */
		/* set the dithering flag on non-PCH LVDS as needed */
		if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
			if (dev_priv->lvds_dither)
				temp |= LVDS_ENABLE_DITHER;
			else
				temp &= ~LVDS_ENABLE_DITHER;
		}
		I915_WRITE(reg, temp);
	}

	/* set the dithering flag and clear for anything other than a panel. */
	if (HAS_PCH_SPLIT(dev)) {
		pipeconf &= ~PIPECONF_DITHER_EN;
		pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
		if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
			pipeconf |= PIPECONF_DITHER_EN;
			pipeconf |= PIPECONF_DITHER_TYPE_ST1;
		}
	}

	if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
		intel_dp_set_m_n(crtc, mode, adjusted_mode);
	} else if (HAS_PCH_SPLIT(dev)) {
		/* For non-DP output, clear any trans DP clock recovery setting.*/
		if (pipe == 0) {
			I915_WRITE(TRANSA_DATA_M1, 0);
			I915_WRITE(TRANSA_DATA_N1, 0);
			I915_WRITE(TRANSA_DP_LINK_M1, 0);
			I915_WRITE(TRANSA_DP_LINK_N1, 0);
		} else {
			I915_WRITE(TRANSB_DATA_M1, 0);
			I915_WRITE(TRANSB_DATA_N1, 0);
			I915_WRITE(TRANSB_DP_LINK_M1, 0);
			I915_WRITE(TRANSB_DP_LINK_N1, 0);
		}
	}

	if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
		I915_WRITE(dpll_reg, dpll);

		/* Wait for the clocks to stabilize. */
		POSTING_READ(dpll_reg);
		udelay(150);

		if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
			temp = 0;
			if (is_sdvo) {
				temp = intel_mode_get_pixel_multiplier(adjusted_mode);
				if (temp > 1)
					temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
				else
					temp = 0;
			}
			I915_WRITE(DPLL_MD(pipe), temp);
		} else {
			/* The pixel multiplier can only be updated once the
			 * DPLL is enabled and the clocks are stable.
			 *
			 * So write it again.
			 */
			I915_WRITE(dpll_reg, dpll);
		}
	}

	intel_crtc->lowfreq_avail = false;
	if (is_lvds && has_reduced_clock && i915_powersave) {
		I915_WRITE(fp_reg + 4, fp2);
		intel_crtc->lowfreq_avail = true;
		if (HAS_PIPE_CXSR(dev)) {
			DRM_DEBUG_KMS("enabling CxSR downclocking\n");
			pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
		}
	} else {
		I915_WRITE(fp_reg + 4, fp);
		if (HAS_PIPE_CXSR(dev)) {
			DRM_DEBUG_KMS("disabling CxSR downclocking\n");
			pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
		}
	}

	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
		pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
		/* the chip adds 2 halflines automatically */
		adjusted_mode->crtc_vdisplay -= 1;
		adjusted_mode->crtc_vtotal -= 1;
		adjusted_mode->crtc_vblank_start -= 1;
		adjusted_mode->crtc_vblank_end -= 1;
		adjusted_mode->crtc_vsync_end -= 1;
		adjusted_mode->crtc_vsync_start -= 1;
	} else
		pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */

	I915_WRITE(HTOTAL(pipe),
		   (adjusted_mode->crtc_hdisplay - 1) |
		   ((adjusted_mode->crtc_htotal - 1) << 16));
	I915_WRITE(HBLANK(pipe),
		   (adjusted_mode->crtc_hblank_start - 1) |
		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
	I915_WRITE(HSYNC(pipe),
		   (adjusted_mode->crtc_hsync_start - 1) |
		   ((adjusted_mode->crtc_hsync_end - 1) << 16));

	I915_WRITE(VTOTAL(pipe),
		   (adjusted_mode->crtc_vdisplay - 1) |
		   ((adjusted_mode->crtc_vtotal - 1) << 16));
	I915_WRITE(VBLANK(pipe),
		   (adjusted_mode->crtc_vblank_start - 1) |
		   ((adjusted_mode->crtc_vblank_end - 1) << 16));
	I915_WRITE(VSYNC(pipe),
		   (adjusted_mode->crtc_vsync_start - 1) |
		   ((adjusted_mode->crtc_vsync_end - 1) << 16));

	/* pipesrc and dspsize control the size that is scaled from,
	 * which should always be the user's requested size.
	 */
	if (!HAS_PCH_SPLIT(dev)) {
		I915_WRITE(DSPSIZE(plane),
			   ((mode->vdisplay - 1) << 16) |
			   (mode->hdisplay - 1));
		I915_WRITE(DSPPOS(plane), 0);
	}
	I915_WRITE(PIPESRC(pipe),
		   ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));

	if (HAS_PCH_SPLIT(dev)) {
		I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
		I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
		I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
		I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);

		if (has_edp_encoder && !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
			ironlake_set_pll_edp(crtc, adjusted_mode->clock);
		}
	}

	I915_WRITE(PIPECONF(pipe), pipeconf);
	POSTING_READ(PIPECONF(pipe));

	intel_wait_for_vblank(dev, pipe);

	if (IS_GEN5(dev)) {
		/* enable address swizzle for tiling buffer */
		temp = I915_READ(DISP_ARB_CTL);
		I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
	}

	I915_WRITE(DSPCNTR(plane), dspcntr);

	ret = intel_pipe_set_base(crtc, x, y, old_fb);

	intel_update_watermarks(dev);

	drm_vblank_post_modeset(dev, pipe);

	return ret;
}

/** Loads the palette/gamma unit for the CRTC with the prepared values */
void intel_crtc_load_lut(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
	int i;

	/* The clocks have to be on to load the palette. */
	if (!crtc->enabled)
		return;

	/* use legacy palette for Ironlake */
	if (HAS_PCH_SPLIT(dev))
		palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
						   LGC_PALETTE_B;

	for (i = 0; i < 256; i++) {
		I915_WRITE(palreg + 4 * i,
			   (intel_crtc->lut_r[i] << 16) |
			   (intel_crtc->lut_g[i] << 8) |
			   intel_crtc->lut_b[i]);
	}
}

static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	bool visible = base != 0;
	u32 cntl;

	if (intel_crtc->cursor_visible == visible)
		return;

	cntl = I915_READ(CURACNTR);
	if (visible) {
		/* On these chipsets we can only modify the base whilst
		 * the cursor is disabled.
		 */
		I915_WRITE(CURABASE, base);

		cntl &= ~(CURSOR_FORMAT_MASK);
		/* XXX width must be 64, stride 256 => 0x00 << 28 */
		cntl |= CURSOR_ENABLE |
			CURSOR_GAMMA_ENABLE |
			CURSOR_FORMAT_ARGB;
	} else
		cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
	I915_WRITE(CURACNTR, cntl);

	intel_crtc->cursor_visible = visible;
}

static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pipe = intel_crtc->pipe;
	bool visible = base != 0;

	if (intel_crtc->cursor_visible != visible) {
		uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR);
		if (base) {
			cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
			cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
			cntl |= pipe << 28; /* Connect to correct pipe */
		} else {
			cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
			cntl |= CURSOR_MODE_DISABLE;
		}
		I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl);

		intel_crtc->cursor_visible = visible;
	}
	/* and commit changes on next vblank */
	I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base);
}

/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
static void intel_crtc_update_cursor(struct drm_crtc *crtc,
				     bool on)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pipe = intel_crtc->pipe;
	int x = intel_crtc->cursor_x;
	int y = intel_crtc->cursor_y;
	u32 base, pos;
	bool visible;

	pos = 0;

	if (on && crtc->enabled && crtc->fb) {
		base = intel_crtc->cursor_addr;
		if (x > (int) crtc->fb->width)
			base = 0;

		if (y > (int) crtc->fb->height)
			base = 0;
	} else
		base = 0;

	if (x < 0) {
		if (x + intel_crtc->cursor_width < 0)
			base = 0;

		pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
		x = -x;
	}
	pos |= x << CURSOR_X_SHIFT;

	if (y < 0) {
		if (y + intel_crtc->cursor_height < 0)
			base = 0;

		pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
		y = -y;
	}
	pos |= y << CURSOR_Y_SHIFT;

	visible = base != 0;
	if (!visible && !intel_crtc->cursor_visible)
		return;

	I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos);
	if (IS_845G(dev) || IS_I865G(dev))
		i845_update_cursor(crtc, base);
	else
		i9xx_update_cursor(crtc, base);

	if (visible)
		intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
}

static int intel_crtc_cursor_set(struct drm_crtc *crtc,
				 struct drm_file *file,
				 uint32_t handle,
				 uint32_t width, uint32_t height)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_gem_object *obj;
	uint32_t addr;
	int ret;

	DRM_DEBUG_KMS("\n");

	/* if we want to turn off the cursor ignore width and height */
	if (!handle) {
		DRM_DEBUG_KMS("cursor off\n");
		addr = 0;
		obj = NULL;
		mutex_lock(&dev->struct_mutex);
		goto finish;
	}

	/* Currently we only support 64x64 cursors */
	if (width != 64 || height != 64) {
		DRM_ERROR("we currently only support 64x64 cursors\n");
		return -EINVAL;
	}

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
	if (!obj)
		return -ENOENT;

	if (obj->base.size < width * height * 4) {
		DRM_ERROR("buffer is to small\n");
		ret = -ENOMEM;
		goto fail;
	}

	/* we only need to pin inside GTT if cursor is non-phy */
	mutex_lock(&dev->struct_mutex);
	if (!dev_priv->info->cursor_needs_physical) {
		if (obj->tiling_mode) {
			DRM_ERROR("cursor cannot be tiled\n");
			ret = -EINVAL;
			goto fail_locked;
		}

		ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
		if (ret) {
			DRM_ERROR("failed to pin cursor bo\n");
			goto fail_locked;
		}

		ret = i915_gem_object_set_to_gtt_domain(obj, 0);
		if (ret) {
			DRM_ERROR("failed to move cursor bo into the GTT\n");
			goto fail_unpin;
		}

		ret = i915_gem_object_put_fence(obj);
		if (ret) {
			DRM_ERROR("failed to move cursor bo into the GTT\n");
			goto fail_unpin;
		}

		addr = obj->gtt_offset;
	} else {
		int align = IS_I830(dev) ? 16 * 1024 : 256;
		ret = i915_gem_attach_phys_object(dev, obj,
						  (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
						  align);
		if (ret) {
			DRM_ERROR("failed to attach phys object\n");
			goto fail_locked;
		}
		addr = obj->phys_obj->handle->busaddr;
	}

	if (IS_GEN2(dev))
		I915_WRITE(CURSIZE, (height << 12) | width);

 finish:
	if (intel_crtc->cursor_bo) {
		if (dev_priv->info->cursor_needs_physical) {
			if (intel_crtc->cursor_bo != obj)
				i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
		} else
			i915_gem_object_unpin(intel_crtc->cursor_bo);
		drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
	}

	mutex_unlock(&dev->struct_mutex);

	intel_crtc->cursor_addr = addr;
	intel_crtc->cursor_bo = obj;
	intel_crtc->cursor_width = width;
	intel_crtc->cursor_height = height;

	intel_crtc_update_cursor(crtc, true);

	return 0;
fail_unpin:
	i915_gem_object_unpin(obj);
fail_locked:
	mutex_unlock(&dev->struct_mutex);
fail:
	drm_gem_object_unreference_unlocked(&obj->base);
	return ret;
}

static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	intel_crtc->cursor_x = x;
	intel_crtc->cursor_y = y;

	intel_crtc_update_cursor(crtc, true);

	return 0;
}

/** Sets the color ramps on behalf of RandR */
void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
				 u16 blue, int regno)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	intel_crtc->lut_r[regno] = red >> 8;
	intel_crtc->lut_g[regno] = green >> 8;
	intel_crtc->lut_b[regno] = blue >> 8;
}

void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
			     u16 *blue, int regno)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	*red = intel_crtc->lut_r[regno] << 8;
	*green = intel_crtc->lut_g[regno] << 8;
	*blue = intel_crtc->lut_b[regno] << 8;
}

static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
				 u16 *blue, uint32_t start, uint32_t size)
{
	int end = (start + size > 256) ? 256 : start + size, i;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	for (i = start; i < end; i++) {
		intel_crtc->lut_r[i] = red[i] >> 8;
		intel_crtc->lut_g[i] = green[i] >> 8;
		intel_crtc->lut_b[i] = blue[i] >> 8;
	}

	intel_crtc_load_lut(crtc);
}

/**
 * Get a pipe with a simple mode set on it for doing load-based monitor
 * detection.
 *
 * It will be up to the load-detect code to adjust the pipe as appropriate for
 * its requirements.  The pipe will be connected to no other encoders.
 *
 * Currently this code will only succeed if there is a pipe with no encoders
 * configured for it.  In the future, it could choose to temporarily disable
 * some outputs to free up a pipe for its use.
 *
 * \return crtc, or NULL if no pipes are available.
 */

/* VESA 640x480x72Hz mode to set on the pipe */
static struct drm_display_mode load_detect_mode = {
	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
};

struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
					    struct drm_connector *connector,
					    struct drm_display_mode *mode,
					    int *dpms_mode)
{
	struct intel_crtc *intel_crtc;
	struct drm_crtc *possible_crtc;
	struct drm_crtc *supported_crtc =NULL;
	struct drm_encoder *encoder = &intel_encoder->base;
	struct drm_crtc *crtc = NULL;
	struct drm_device *dev = encoder->dev;
	struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
	struct drm_crtc_helper_funcs *crtc_funcs;
	int i = -1;

	/*
	 * Algorithm gets a little messy:
	 *   - if the connector already has an assigned crtc, use it (but make
	 *     sure it's on first)
	 *   - try to find the first unused crtc that can drive this connector,
	 *     and use that if we find one
	 *   - if there are no unused crtcs available, try to use the first
	 *     one we found that supports the connector
	 */

	/* See if we already have a CRTC for this connector */
	if (encoder->crtc) {
		crtc = encoder->crtc;
		/* Make sure the crtc and connector are running */
		intel_crtc = to_intel_crtc(crtc);
		*dpms_mode = intel_crtc->dpms_mode;
		if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
			crtc_funcs = crtc->helper_private;
			crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
			encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
		}
		return crtc;
	}

	/* Find an unused one (if possible) */
	list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
		i++;
		if (!(encoder->possible_crtcs & (1 << i)))
			continue;
		if (!possible_crtc->enabled) {
			crtc = possible_crtc;
			break;
		}
		if (!supported_crtc)
			supported_crtc = possible_crtc;
	}

	/*
	 * If we didn't find an unused CRTC, don't use any.
	 */
	if (!crtc) {
		return NULL;
	}

	encoder->crtc = crtc;
	connector->encoder = encoder;
	intel_encoder->load_detect_temp = true;

	intel_crtc = to_intel_crtc(crtc);
	*dpms_mode = intel_crtc->dpms_mode;

	if (!crtc->enabled) {
		if (!mode)
			mode = &load_detect_mode;
		drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
	} else {
		if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
			crtc_funcs = crtc->helper_private;
			crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
		}

		/* Add this connector to the crtc */
		encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
		encoder_funcs->commit(encoder);
	}
	/* let the connector get through one full cycle before testing */
	intel_wait_for_vblank(dev, intel_crtc->pipe);

	return crtc;
}

void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
				    struct drm_connector *connector, int dpms_mode)
{
	struct drm_encoder *encoder = &intel_encoder->base;
	struct drm_device *dev = encoder->dev;
	struct drm_crtc *crtc = encoder->crtc;
	struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;

	if (intel_encoder->load_detect_temp) {
		encoder->crtc = NULL;
		connector->encoder = NULL;
		intel_encoder->load_detect_temp = false;
		crtc->enabled = drm_helper_crtc_in_use(crtc);
		drm_helper_disable_unused_functions(dev);
	}

	/* Switch crtc and encoder back off if necessary */
	if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
		if (encoder->crtc == crtc)
			encoder_funcs->dpms(encoder, dpms_mode);
		crtc_funcs->dpms(crtc, dpms_mode);
	}
}

/* Returns the clock of the currently programmed mode of the given pipe. */
static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pipe = intel_crtc->pipe;
	u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
	u32 fp;
	intel_clock_t clock;

	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
		fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
	else
		fp = I915_READ((pipe == 0) ? FPA1 : FPB1);

	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
	if (IS_PINEVIEW(dev)) {
		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
	} else {
		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
	}

	if (!IS_GEN2(dev)) {
		if (IS_PINEVIEW(dev))
			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
		else
			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
			       DPLL_FPA01_P1_POST_DIV_SHIFT);

		switch (dpll & DPLL_MODE_MASK) {
		case DPLLB_MODE_DAC_SERIAL:
			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
				5 : 10;
			break;
		case DPLLB_MODE_LVDS:
			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
				7 : 14;
			break;
		default:
			DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
				  "mode\n", (int)(dpll & DPLL_MODE_MASK));
			return 0;
		}

		/* XXX: Handle the 100Mhz refclk */
		intel_clock(dev, 96000, &clock);
	} else {
		bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);

		if (is_lvds) {
			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
				       DPLL_FPA01_P1_POST_DIV_SHIFT);
			clock.p2 = 14;

			if ((dpll & PLL_REF_INPUT_MASK) ==
			    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
				/* XXX: might not be 66MHz */
				intel_clock(dev, 66000, &clock);
			} else
				intel_clock(dev, 48000, &clock);
		} else {
			if (dpll & PLL_P1_DIVIDE_BY_TWO)
				clock.p1 = 2;
			else {
				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
			}
			if (dpll & PLL_P2_DIVIDE_BY_4)
				clock.p2 = 4;
			else
				clock.p2 = 2;

			intel_clock(dev, 48000, &clock);
		}
	}

	/* XXX: It would be nice to validate the clocks, but we can't reuse
	 * i830PllIsValid() because it relies on the xf86_config connector
	 * configuration being accurate, which it isn't necessarily.
	 */

	return clock.dot;
}

/** Returns the currently programmed mode of the given pipe. */
struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
					     struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pipe = intel_crtc->pipe;
	struct drm_display_mode *mode;
	int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
	int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
	int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
	int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);

	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
	if (!mode)
		return NULL;

	mode->clock = intel_crtc_clock_get(dev, crtc);
	mode->hdisplay = (htot & 0xffff) + 1;
	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
	mode->hsync_start = (hsync & 0xffff) + 1;
	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
	mode->vdisplay = (vtot & 0xffff) + 1;
	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
	mode->vsync_start = (vsync & 0xffff) + 1;
	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;

	drm_mode_set_name(mode);
	drm_mode_set_crtcinfo(mode, 0);

	return mode;
}

#define GPU_IDLE_TIMEOUT 500 /* ms */

/* When this timer fires, we've been idle for awhile */
static void intel_gpu_idle_timer(unsigned long arg)
{
	struct drm_device *dev = (struct drm_device *)arg;
	drm_i915_private_t *dev_priv = dev->dev_private;

	if (!list_empty(&dev_priv->mm.active_list)) {
		/* Still processing requests, so just re-arm the timer. */
		mod_timer(&dev_priv->idle_timer, jiffies +
			  msecs_to_jiffies(GPU_IDLE_TIMEOUT));
		return;
	}

	dev_priv->busy = false;
	queue_work(dev_priv->wq, &dev_priv->idle_work);
}

#define CRTC_IDLE_TIMEOUT 1000 /* ms */

static void intel_crtc_idle_timer(unsigned long arg)
{
	struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
	struct drm_crtc *crtc = &intel_crtc->base;
	drm_i915_private_t *dev_priv = crtc->dev->dev_private;
	struct intel_framebuffer *intel_fb;

	intel_fb = to_intel_framebuffer(crtc->fb);
	if (intel_fb && intel_fb->obj->active) {
		/* The framebuffer is still being accessed by the GPU. */
		mod_timer(&intel_crtc->idle_timer, jiffies +
			  msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
		return;
	}

	intel_crtc->busy = false;
	queue_work(dev_priv->wq, &dev_priv->idle_work);
}

static void intel_increase_pllclock(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pipe = intel_crtc->pipe;
	int dpll_reg = DPLL(pipe);
	int dpll;

	if (HAS_PCH_SPLIT(dev))
		return;

	if (!dev_priv->lvds_downclock_avail)
		return;

	dpll = I915_READ(dpll_reg);
	if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
		DRM_DEBUG_DRIVER("upclocking LVDS\n");

		/* Unlock panel regs */
		I915_WRITE(PP_CONTROL,
			   I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);

		dpll &= ~DISPLAY_RATE_SELECT_FPA1;
		I915_WRITE(dpll_reg, dpll);
		POSTING_READ(dpll_reg);
		intel_wait_for_vblank(dev, pipe);

		dpll = I915_READ(dpll_reg);
		if (dpll & DISPLAY_RATE_SELECT_FPA1)
			DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");

		/* ...and lock them again */
		I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
	}

	/* Schedule downclock */
	mod_timer(&intel_crtc->idle_timer, jiffies +
		  msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
}

static void intel_decrease_pllclock(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pipe = intel_crtc->pipe;
	int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
	int dpll = I915_READ(dpll_reg);

	if (HAS_PCH_SPLIT(dev))
		return;

	if (!dev_priv->lvds_downclock_avail)
		return;

	/*
	 * Since this is called by a timer, we should never get here in
	 * the manual case.
	 */
	if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
		DRM_DEBUG_DRIVER("downclocking LVDS\n");

		/* Unlock panel regs */
		I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
			   PANEL_UNLOCK_REGS);

		dpll |= DISPLAY_RATE_SELECT_FPA1;
		I915_WRITE(dpll_reg, dpll);
		dpll = I915_READ(dpll_reg);
		intel_wait_for_vblank(dev, pipe);
		dpll = I915_READ(dpll_reg);
		if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
			DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");

		/* ...and lock them again */
		I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
	}

}

/**
 * intel_idle_update - adjust clocks for idleness
 * @work: work struct
 *
 * Either the GPU or display (or both) went idle.  Check the busy status
 * here and adjust the CRTC and GPU clocks as necessary.
 */
static void intel_idle_update(struct work_struct *work)
{
	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
						    idle_work);
	struct drm_device *dev = dev_priv->dev;
	struct drm_crtc *crtc;
	struct intel_crtc *intel_crtc;
	int enabled = 0;

	if (!i915_powersave)
		return;

	mutex_lock(&dev->struct_mutex);

	i915_update_gfx_val(dev_priv);

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		/* Skip inactive CRTCs */
		if (!crtc->fb)
			continue;

		enabled++;
		intel_crtc = to_intel_crtc(crtc);
		if (!intel_crtc->busy)
			intel_decrease_pllclock(crtc);
	}

	if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
		DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
	}

	mutex_unlock(&dev->struct_mutex);
}

/**
 * intel_mark_busy - mark the GPU and possibly the display busy
 * @dev: drm device
 * @obj: object we're operating on
 *
 * Callers can use this function to indicate that the GPU is busy processing
 * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
 * buffer), we'll also mark the display as busy, so we know to increase its
 * clock frequency.
 */
void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_crtc *crtc = NULL;
	struct intel_framebuffer *intel_fb;
	struct intel_crtc *intel_crtc;

	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		return;

	if (!dev_priv->busy) {
		if (IS_I945G(dev) || IS_I945GM(dev)) {
			u32 fw_blc_self;

			DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
			fw_blc_self = I915_READ(FW_BLC_SELF);
			fw_blc_self &= ~FW_BLC_SELF_EN;
			I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
		}
		dev_priv->busy = true;
	} else
		mod_timer(&dev_priv->idle_timer, jiffies +
			  msecs_to_jiffies(GPU_IDLE_TIMEOUT));

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		if (!crtc->fb)
			continue;

		intel_crtc = to_intel_crtc(crtc);
		intel_fb = to_intel_framebuffer(crtc->fb);
		if (intel_fb->obj == obj) {
			if (!intel_crtc->busy) {
				if (IS_I945G(dev) || IS_I945GM(dev)) {
					u32 fw_blc_self;

					DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
					fw_blc_self = I915_READ(FW_BLC_SELF);
					fw_blc_self &= ~FW_BLC_SELF_EN;
					I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
				}
				/* Non-busy -> busy, upclock */
				intel_increase_pllclock(crtc);
				intel_crtc->busy = true;
			} else {
				/* Busy -> busy, put off timer */
				mod_timer(&intel_crtc->idle_timer, jiffies +
					  msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
			}
		}
	}
}

static void intel_crtc_destroy(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct intel_unpin_work *work;
	unsigned long flags;

	spin_lock_irqsave(&dev->event_lock, flags);
	work = intel_crtc->unpin_work;
	intel_crtc->unpin_work = NULL;
	spin_unlock_irqrestore(&dev->event_lock, flags);

	if (work) {
		cancel_work_sync(&work->work);
		kfree(work);
	}

	drm_crtc_cleanup(crtc);

	kfree(intel_crtc);
}

static void intel_unpin_work_fn(struct work_struct *__work)
{
	struct intel_unpin_work *work =
		container_of(__work, struct intel_unpin_work, work);

	mutex_lock(&work->dev->struct_mutex);
	i915_gem_object_unpin(work->old_fb_obj);
	drm_gem_object_unreference(&work->pending_flip_obj->base);
	drm_gem_object_unreference(&work->old_fb_obj->base);

	mutex_unlock(&work->dev->struct_mutex);
	kfree(work);
}

static void do_intel_finish_page_flip(struct drm_device *dev,
				      struct drm_crtc *crtc)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_unpin_work *work;
	struct drm_i915_gem_object *obj;
	struct drm_pending_vblank_event *e;
	struct timeval tnow, tvbl;
	unsigned long flags;

	/* Ignore early vblank irqs */
	if (intel_crtc == NULL)
		return;

	do_gettimeofday(&tnow);

	spin_lock_irqsave(&dev->event_lock, flags);
	work = intel_crtc->unpin_work;
	if (work == NULL || !work->pending) {
		spin_unlock_irqrestore(&dev->event_lock, flags);
		return;
	}

	intel_crtc->unpin_work = NULL;

	if (work->event) {
		e = work->event;
		e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);

		/* Called before vblank count and timestamps have
		 * been updated for the vblank interval of flip
		 * completion? Need to increment vblank count and
		 * add one videorefresh duration to returned timestamp
		 * to account for this. We assume this happened if we
		 * get called over 0.9 frame durations after the last
		 * timestamped vblank.
		 *
		 * This calculation can not be used with vrefresh rates
		 * below 5Hz (10Hz to be on the safe side) without
		 * promoting to 64 integers.
		 */
		if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
		    9 * crtc->framedur_ns) {
			e->event.sequence++;
			tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
					     crtc->framedur_ns);
		}

		e->event.tv_sec = tvbl.tv_sec;
		e->event.tv_usec = tvbl.tv_usec;

		list_add_tail(&e->base.link,
			      &e->base.file_priv->event_list);
		wake_up_interruptible(&e->base.file_priv->event_wait);
	}

	drm_vblank_put(dev, intel_crtc->pipe);

	spin_unlock_irqrestore(&dev->event_lock, flags);

	obj = work->old_fb_obj;

	atomic_clear_mask(1 << intel_crtc->plane,
			  &obj->pending_flip.counter);
	if (atomic_read(&obj->pending_flip) == 0)
		wake_up(&dev_priv->pending_flip_queue);

	schedule_work(&work->work);

	trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
}

void intel_finish_page_flip(struct drm_device *dev, int pipe)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];

	do_intel_finish_page_flip(dev, crtc);
}

void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];

	do_intel_finish_page_flip(dev, crtc);
}

void intel_prepare_page_flip(struct drm_device *dev, int plane)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc =
		to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
	unsigned long flags;

	spin_lock_irqsave(&dev->event_lock, flags);
	if (intel_crtc->unpin_work) {
		if ((++intel_crtc->unpin_work->pending) > 1)
			DRM_ERROR("Prepared flip multiple times\n");
	} else {
		DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
	}
	spin_unlock_irqrestore(&dev->event_lock, flags);
}

static int intel_crtc_page_flip(struct drm_crtc *crtc,
				struct drm_framebuffer *fb,
				struct drm_pending_vblank_event *event)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_framebuffer *intel_fb;
	struct drm_i915_gem_object *obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_unpin_work *work;
	unsigned long flags, offset;
	int pipe = intel_crtc->pipe;
	u32 pf, pipesrc;
	int ret;

	work = kzalloc(sizeof *work, GFP_KERNEL);
	if (work == NULL)
		return -ENOMEM;

	work->event = event;
	work->dev = crtc->dev;
	intel_fb = to_intel_framebuffer(crtc->fb);
	work->old_fb_obj = intel_fb->obj;
	INIT_WORK(&work->work, intel_unpin_work_fn);

	/* We borrow the event spin lock for protecting unpin_work */
	spin_lock_irqsave(&dev->event_lock, flags);
	if (intel_crtc->unpin_work) {
		spin_unlock_irqrestore(&dev->event_lock, flags);
		kfree(work);

		DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
		return -EBUSY;
	}
	intel_crtc->unpin_work = work;
	spin_unlock_irqrestore(&dev->event_lock, flags);

	intel_fb = to_intel_framebuffer(fb);
	obj = intel_fb->obj;

	mutex_lock(&dev->struct_mutex);
	ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
	if (ret)
		goto cleanup_work;

	/* Reference the objects for the scheduled work. */
	drm_gem_object_reference(&work->old_fb_obj->base);
	drm_gem_object_reference(&obj->base);

	crtc->fb = fb;

	ret = drm_vblank_get(dev, intel_crtc->pipe);
	if (ret)
		goto cleanup_objs;

	if (IS_GEN3(dev) || IS_GEN2(dev)) {
		u32 flip_mask;

		/* Can't queue multiple flips, so wait for the previous
		 * one to finish before executing the next.
		 */
		ret = BEGIN_LP_RING(2);
		if (ret)
			goto cleanup_objs;

		if (intel_crtc->plane)
			flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
		else
			flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
		OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
		OUT_RING(MI_NOOP);
		ADVANCE_LP_RING();
	}

	work->pending_flip_obj = obj;

	work->enable_stall_check = true;

	/* Offset into the new buffer for cases of shared fbs between CRTCs */
	offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;

	ret = BEGIN_LP_RING(4);
	if (ret)
		goto cleanup_objs;

	/* Block clients from rendering to the new back buffer until
	 * the flip occurs and the object is no longer visible.
	 */
	atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);

	switch (INTEL_INFO(dev)->gen) {
	case 2:
		OUT_RING(MI_DISPLAY_FLIP |
			 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
		OUT_RING(fb->pitch);
		OUT_RING(obj->gtt_offset + offset);
		OUT_RING(MI_NOOP);
		break;

	case 3:
		OUT_RING(MI_DISPLAY_FLIP_I915 |
			 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
		OUT_RING(fb->pitch);
		OUT_RING(obj->gtt_offset + offset);
		OUT_RING(MI_NOOP);
		break;

	case 4:
	case 5:
		/* i965+ uses the linear or tiled offsets from the
		 * Display Registers (which do not change across a page-flip)
		 * so we need only reprogram the base address.
		 */
		OUT_RING(MI_DISPLAY_FLIP |
			 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
		OUT_RING(fb->pitch);
		OUT_RING(obj->gtt_offset | obj->tiling_mode);

		/* XXX Enabling the panel-fitter across page-flip is so far
		 * untested on non-native modes, so ignore it for now.
		 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
		 */
		pf = 0;
		pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
		OUT_RING(pf | pipesrc);
		break;

	case 6:
		OUT_RING(MI_DISPLAY_FLIP |
			 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
		OUT_RING(fb->pitch | obj->tiling_mode);
		OUT_RING(obj->gtt_offset);

		pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
		pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
		OUT_RING(pf | pipesrc);
		break;
	}
	ADVANCE_LP_RING();

	mutex_unlock(&dev->struct_mutex);

	trace_i915_flip_request(intel_crtc->plane, obj);

	return 0;

cleanup_objs:
	drm_gem_object_unreference(&work->old_fb_obj->base);
	drm_gem_object_unreference(&obj->base);
cleanup_work:
	mutex_unlock(&dev->struct_mutex);

	spin_lock_irqsave(&dev->event_lock, flags);
	intel_crtc->unpin_work = NULL;
	spin_unlock_irqrestore(&dev->event_lock, flags);

	kfree(work);

	return ret;
}

static void intel_crtc_reset(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	/* Reset flags back to the 'unknown' status so that they
	 * will be correctly set on the initial modeset.
	 */
	intel_crtc->cursor_addr = 0;
	intel_crtc->dpms_mode = -1;

	printk("intel_crtc %p\n", intel_crtc);

	//intel_crtc->active = true; // force the pipe off on setup_init_config
}

static struct drm_crtc_helper_funcs intel_helper_funcs = {
	.dpms = intel_crtc_dpms,
	.mode_fixup = intel_crtc_mode_fixup,
	.mode_set = intel_crtc_mode_set,
	.mode_set_base = intel_pipe_set_base,
	.mode_set_base_atomic = intel_pipe_set_base_atomic,
	.load_lut = intel_crtc_load_lut,
	.disable = intel_crtc_disable,
};

static const struct drm_crtc_funcs intel_crtc_funcs = {
	.reset = intel_crtc_reset,
	.cursor_set = intel_crtc_cursor_set,
	.cursor_move = intel_crtc_cursor_move,
	.gamma_set = intel_crtc_gamma_set,
	.set_config = drm_crtc_helper_set_config,
	.destroy = intel_crtc_destroy,
	.page_flip = intel_crtc_page_flip,
};

static void intel_sanitize_modesetting(struct drm_device *dev,
				       int pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 reg, val;

	if (HAS_PCH_SPLIT(dev))
		return;

	/* Who knows what state these registers were left in by the BIOS or
	 * grub?
	 *
	 * If we leave the registers in a conflicting state (e.g. with the
	 * display plane reading from the other pipe than the one we intend
	 * to use) then when we attempt to teardown the active mode, we will
	 * not disable the pipes and planes in the correct order -- leaving
	 * a plane reading from a disabled pipe and possibly leading to
	 * undefined behaviour.
	 */

	reg = DSPCNTR(plane);
	val = I915_READ(reg);

	if ((val & DISPLAY_PLANE_ENABLE) == 0)
		return;
	if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
		return;

	/* This display plane is active and attached to the other CPU pipe. */
	pipe = !pipe;

	/* Disable the plane and wait for it to stop reading from the pipe. */
	I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
	intel_flush_display_plane(dev, plane);

	if (IS_GEN2(dev))
		intel_wait_for_vblank(dev, pipe);

	if (pipe == 0 && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
		return;

	/* Switch off the pipe. */
	reg = PIPECONF(pipe);
	val = I915_READ(reg);
	if (val & PIPECONF_ENABLE) {
		I915_WRITE(reg, val & ~PIPECONF_ENABLE);
		intel_wait_for_pipe_off(dev, pipe);
	}
}

static void intel_crtc_init(struct drm_device *dev, int pipe)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc;
	int i;

	intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
	if (intel_crtc == NULL)
		return;

	drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);

	drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
	for (i = 0; i < 256; i++) {
		intel_crtc->lut_r[i] = i;
		intel_crtc->lut_g[i] = i;
		intel_crtc->lut_b[i] = i;
	}

	/* Swap pipes & planes for FBC on pre-965 */
	intel_crtc->pipe = pipe;
	intel_crtc->plane = pipe;
	if (IS_MOBILE(dev) && IS_GEN3(dev)) {
		DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
		intel_crtc->plane = !pipe;
	}

	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
	       dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
	dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
	dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;

	//intel_crtc->cursor_addr = 0;
	//intel_crtc->dpms_mode = -1;
	intel_crtc->active = true; // force the pipe off on setup_init_config

	printk("intel_crtc %p\n", intel_crtc);

	intel_crtc_reset(&intel_crtc->base);

	if (HAS_PCH_SPLIT(dev)) {
		intel_helper_funcs.prepare = ironlake_crtc_prepare;
		intel_helper_funcs.commit = ironlake_crtc_commit;
	} else {
		intel_helper_funcs.prepare = i9xx_crtc_prepare;
		intel_helper_funcs.commit = i9xx_crtc_commit;
	}

	drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);

	intel_crtc->busy = false;

	setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
		    (unsigned long)intel_crtc);

	intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
}

int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
				struct drm_file *file)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
	struct drm_mode_object *drmmode_obj;
	struct intel_crtc *crtc;

	if (!dev_priv) {
		DRM_ERROR("called with no initialization\n");
		return -EINVAL;
	}

	drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
			DRM_MODE_OBJECT_CRTC);

	if (!drmmode_obj) {
		DRM_ERROR("no such CRTC id\n");
		return -EINVAL;
	}

	crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
	pipe_from_crtc_id->pipe = crtc->pipe;

	return 0;
}

static int intel_encoder_clones(struct drm_device *dev, int type_mask)
{
	struct intel_encoder *encoder;
	int index_mask = 0;
	int entry = 0;

	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
		if (type_mask & encoder->clone_mask)
			index_mask |= (1 << entry);
		entry++;
	}

	return index_mask;
}

static bool has_edp_a(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!IS_MOBILE(dev))
		return false;

	if ((I915_READ(DP_A) & DP_DETECTED) == 0)
		return false;

	if (IS_GEN5(dev) &&
	    (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
		return false;

	return true;
}

static void intel_setup_outputs(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_encoder *encoder;
	bool dpd_is_edp = false;
	bool has_lvds = false;

	if (IS_MOBILE(dev) && !IS_I830(dev))
		has_lvds = intel_lvds_init(dev);
	if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
		/* disable the panel fitter on everything but LVDS */
		I915_WRITE(PFIT_CONTROL, 0);
	}

	if (HAS_PCH_SPLIT(dev)) {
		dpd_is_edp = intel_dpd_is_edp(dev);

		if (has_edp_a(dev))
			intel_dp_init(dev, DP_A);

		if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
			intel_dp_init(dev, PCH_DP_D);
	}

	intel_crt_init(dev);

	if (HAS_PCH_SPLIT(dev)) {
		int found;

		if (I915_READ(HDMIB) & PORT_DETECTED) {
			/* PCH SDVOB multiplex with HDMIB */
			found = intel_sdvo_init(dev, PCH_SDVOB);
			if (!found)
				intel_hdmi_init(dev, HDMIB);
			if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
				intel_dp_init(dev, PCH_DP_B);
		}

		if (I915_READ(HDMIC) & PORT_DETECTED)
			intel_hdmi_init(dev, HDMIC);

		if (I915_READ(HDMID) & PORT_DETECTED)
			intel_hdmi_init(dev, HDMID);

		if (I915_READ(PCH_DP_C) & DP_DETECTED)
			intel_dp_init(dev, PCH_DP_C);

		if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
			intel_dp_init(dev, PCH_DP_D);

	} else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
		bool found = false;

		if (I915_READ(SDVOB) & SDVO_DETECTED) {
			DRM_DEBUG_KMS("probing SDVOB\n");
			found = intel_sdvo_init(dev, SDVOB);
			if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
				DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
				intel_hdmi_init(dev, SDVOB);
			}

			if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
				DRM_DEBUG_KMS("probing DP_B\n");
				intel_dp_init(dev, DP_B);
			}
		}

		/* Before G4X SDVOC doesn't have its own detect register */

		if (I915_READ(SDVOB) & SDVO_DETECTED) {
			DRM_DEBUG_KMS("probing SDVOC\n");
			found = intel_sdvo_init(dev, SDVOC);
		}

		if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {

			if (SUPPORTS_INTEGRATED_HDMI(dev)) {
				DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
				intel_hdmi_init(dev, SDVOC);
			}
			if (SUPPORTS_INTEGRATED_DP(dev)) {
				DRM_DEBUG_KMS("probing DP_C\n");
				intel_dp_init(dev, DP_C);
			}
		}

		if (SUPPORTS_INTEGRATED_DP(dev) &&
		    (I915_READ(DP_D) & DP_DETECTED)) {
			DRM_DEBUG_KMS("probing DP_D\n");
			intel_dp_init(dev, DP_D);
		}
	} else if (IS_GEN2(dev))
		intel_dvo_init(dev);

	if (SUPPORTS_TV(dev))
		intel_tv_init(dev);

	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
		encoder->base.possible_crtcs = encoder->crtc_mask;
		encoder->base.possible_clones =
			intel_encoder_clones(dev, encoder->clone_mask);
	}

	intel_panel_setup_backlight(dev);
}

static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
{
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);

	drm_framebuffer_cleanup(fb);
	drm_gem_object_unreference_unlocked(&intel_fb->obj->base);

	kfree(intel_fb);
}

static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
						struct drm_file *file,
						unsigned int *handle)
{
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;

	return drm_gem_handle_create(file, &obj->base, handle);
}

static const struct drm_framebuffer_funcs intel_fb_funcs = {
	.destroy = intel_user_framebuffer_destroy,
	.create_handle = intel_user_framebuffer_create_handle,
};

int intel_framebuffer_init(struct drm_device *dev,
			   struct intel_framebuffer *intel_fb,
			   struct drm_mode_fb_cmd *mode_cmd,
			   struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->tiling_mode == I915_TILING_Y)
		return -EINVAL;

	if (mode_cmd->pitch & 63)
		return -EINVAL;

	switch (mode_cmd->bpp) {
	case 8:
	case 16:
	case 24:
	case 32:
		break;
	default:
		return -EINVAL;
	}

	ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
	if (ret) {
		DRM_ERROR("framebuffer init failed %d\n", ret);
		return ret;
	}

	drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
	intel_fb->obj = obj;
	return 0;
}

static struct drm_framebuffer *
intel_user_framebuffer_create(struct drm_device *dev,
			      struct drm_file *filp,
			      struct drm_mode_fb_cmd *mode_cmd)
{
	struct drm_i915_gem_object *obj;
	struct intel_framebuffer *intel_fb;
	int ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
	if (!obj)
		return ERR_PTR(-ENOENT);

	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
	if (!intel_fb)
		return ERR_PTR(-ENOMEM);

	ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
	if (ret) {
		drm_gem_object_unreference_unlocked(&obj->base);
		kfree(intel_fb);
		return ERR_PTR(ret);
	}

	return &intel_fb->base;
}

static const struct drm_mode_config_funcs intel_mode_funcs = {
	.fb_create = intel_user_framebuffer_create,
	.output_poll_changed = intel_fb_output_poll_changed,
};

static struct drm_i915_gem_object *
intel_alloc_context_page(struct drm_device *dev)
{
	struct drm_i915_gem_object *ctx;
	int ret;

	ctx = i915_gem_alloc_object(dev, 4096);
	if (!ctx) {
		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
		return NULL;
	}

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_object_pin(ctx, 4096, true);
	if (ret) {
		DRM_ERROR("failed to pin power context: %d\n", ret);
		goto err_unref;
	}

	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
	if (ret) {
		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
		goto err_unpin;
	}
	mutex_unlock(&dev->struct_mutex);

	return ctx;

err_unpin:
	i915_gem_object_unpin(ctx);
err_unref:
	drm_gem_object_unreference(&ctx->base);
	mutex_unlock(&dev->struct_mutex);
	return NULL;
}

bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

void ironlake_enable_drps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
		PXVFREQ_PX_SHIFT;

	dev_priv->fmax = fmax; /* IPS callback will increase this */
	dev_priv->fstart = fstart;

	dev_priv->max_delay = fstart;
	dev_priv->min_delay = fmin;
	dev_priv->cur_delay = fstart;

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

	if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
		DRM_ERROR("stuck trying to change perf mode\n");
	msleep(1);

	ironlake_set_drps(dev, fstart);

	dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
		I915_READ(0x112e0);
	dev_priv->last_time1 = jiffies_to_msecs(jiffies);
	dev_priv->last_count2 = I915_READ(0x112f4);
	getrawmonotonic(&dev_priv->last_time2);
}

void ironlake_disable_drps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl = I915_READ16(MEMSWCTL);

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
	ironlake_set_drps(dev, dev_priv->fstart);
	msleep(1);
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
	msleep(1);

}

void gen6_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 swreq;

	swreq = (val & 0x3ff) << 25;
	I915_WRITE(GEN6_RPNSWREQ, swreq);
}

void gen6_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
	I915_WRITE(GEN6_PMIER, 0);
	I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
}

static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

void intel_init_emon(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
		I915_WRITE(PEW + (i * 4), 0);
	for (i = 0; i < 3; i++)
		I915_WRITE(DEW + (i * 4), 0);

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
		I915_WRITE(PXW + (i * 4), val);
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
		I915_WRITE(PXWL + (i * 4), 0);

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

	dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
}

void gen6_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
	u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
	u32 pcu_mbox;
	int cur_freq, min_freq, max_freq;
	int i;

	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);
	__gen6_force_wake_get(dev_priv);

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for (i = 0; i < I915_NUM_RINGS; i++)
		I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
	I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
	I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_RC6p_ENABLE |
		   GEN6_RC_CTL_RC6_ENABLE |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

	I915_WRITE(GEN6_RPNSWREQ,
		   GEN6_FREQUENCY(10) |
		   GEN6_OFFSET(0) |
		   GEN6_AGGRESSIVE_TURBO);
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   GEN6_FREQUENCY(12));

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   18 << 24 |
		   6 << 16);
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 90000);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 100000);
	I915_WRITE(GEN6_RP_UP_EI, 100000);
	I915_WRITE(GEN6_RP_DOWN_EI, 300000);
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_USE_NORMAL_FREQ |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_MAX |
		   GEN6_RP_DOWN_BUSY_MIN);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500))
		DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");

	I915_WRITE(GEN6_PCODE_DATA, 0);
	I915_WRITE(GEN6_PCODE_MAILBOX,
		   GEN6_PCODE_READY |
		   GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500))
		DRM_ERROR("timeout waiting for pcode mailbox to finish\n");

	min_freq = (rp_state_cap & 0xff0000) >> 16;
	max_freq = rp_state_cap & 0xff;
	cur_freq = (gt_perf_status & 0xff00) >> 8;

	/* Check for overclock support */
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500))
		DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
	pcu_mbox = I915_READ(GEN6_PCODE_DATA);
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500))
		DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
	if (pcu_mbox & (1<<31)) { /* OC supported */
		max_freq = pcu_mbox & 0xff;
		DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 100);
	}

	/* In units of 100MHz */
	dev_priv->max_delay = max_freq;
	dev_priv->min_delay = min_freq;
	dev_priv->cur_delay = cur_freq;

	/* requires MSI enabled */
	I915_WRITE(GEN6_PMIER,
		   GEN6_PM_MBOX_EVENT |
		   GEN6_PM_THERMAL_EVENT |
		   GEN6_PM_RP_DOWN_TIMEOUT |
		   GEN6_PM_RP_UP_THRESHOLD |
		   GEN6_PM_RP_DOWN_THRESHOLD |
		   GEN6_PM_RP_UP_EI_EXPIRED |
		   GEN6_PM_RP_DOWN_EI_EXPIRED);
	I915_WRITE(GEN6_PMIMR, 0);
	/* enable all PM interrupts */
	I915_WRITE(GEN6_PMINTRMSK, 0);

	__gen6_force_wake_put(dev_priv);
}

void intel_enable_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * Disable clock gating reported to work incorrectly according to the
	 * specs, but enable as much else as we can.
	 */
	if (HAS_PCH_SPLIT(dev)) {
		uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;

		if (IS_GEN5(dev)) {
			/* Required for FBC */
			dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
				DPFCRUNIT_CLOCK_GATE_DISABLE |
				DPFDUNIT_CLOCK_GATE_DISABLE;
			/* Required for CxSR */
			dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;

			I915_WRITE(PCH_3DCGDIS0,
				   MARIUNIT_CLOCK_GATE_DISABLE |
				   SVSMUNIT_CLOCK_GATE_DISABLE);
			I915_WRITE(PCH_3DCGDIS1,
				   VFMUNIT_CLOCK_GATE_DISABLE);
		}

		I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);

		/*
		 * On Ibex Peak and Cougar Point, we need to disable clock
		 * gating for the panel power sequencer or it will fail to
		 * start up when no ports are active.
		 */
		I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);

		/*
		 * According to the spec the following bits should be set in
		 * order to enable memory self-refresh
		 * The bit 22/21 of 0x42004
		 * The bit 5 of 0x42020
		 * The bit 15 of 0x45000
		 */
		if (IS_GEN5(dev)) {
			I915_WRITE(ILK_DISPLAY_CHICKEN2,
					(I915_READ(ILK_DISPLAY_CHICKEN2) |
					ILK_DPARB_GATE | ILK_VSDPFD_FULL));
			I915_WRITE(ILK_DSPCLK_GATE,
					(I915_READ(ILK_DSPCLK_GATE) |
						ILK_DPARB_CLK_GATE));
			I915_WRITE(DISP_ARB_CTL,
					(I915_READ(DISP_ARB_CTL) |
						DISP_FBC_WM_DIS));
			I915_WRITE(WM3_LP_ILK, 0);
			I915_WRITE(WM2_LP_ILK, 0);
			I915_WRITE(WM1_LP_ILK, 0);
		}
		/*
		 * Based on the document from hardware guys the following bits
		 * should be set unconditionally in order to enable FBC.
		 * The bit 22 of 0x42000
		 * The bit 22 of 0x42004
		 * The bit 7,8,9 of 0x42020.
		 */
		if (IS_IRONLAKE_M(dev)) {
			I915_WRITE(ILK_DISPLAY_CHICKEN1,
				   I915_READ(ILK_DISPLAY_CHICKEN1) |
				   ILK_FBCQ_DIS);
			I915_WRITE(ILK_DISPLAY_CHICKEN2,
				   I915_READ(ILK_DISPLAY_CHICKEN2) |
				   ILK_DPARB_GATE);
			I915_WRITE(ILK_DSPCLK_GATE,
				   I915_READ(ILK_DSPCLK_GATE) |
				   ILK_DPFC_DIS1 |
				   ILK_DPFC_DIS2 |
				   ILK_CLK_FBC);
		}

		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_ELPIN_409_SELECT);

		if (IS_GEN5(dev)) {
			I915_WRITE(_3D_CHICKEN2,
				   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
				   _3D_CHICKEN2_WM_READ_PIPELINED);
		}

		if (IS_GEN6(dev)) {
			I915_WRITE(WM3_LP_ILK, 0);
			I915_WRITE(WM2_LP_ILK, 0);
			I915_WRITE(WM1_LP_ILK, 0);

			/*
			 * According to the spec the following bits should be
			 * set in order to enable memory self-refresh and fbc:
			 * The bit21 and bit22 of 0x42000
			 * The bit21 and bit22 of 0x42004
			 * The bit5 and bit7 of 0x42020
			 * The bit14 of 0x70180
			 * The bit14 of 0x71180
			 */
			I915_WRITE(ILK_DISPLAY_CHICKEN1,
				   I915_READ(ILK_DISPLAY_CHICKEN1) |
				   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
			I915_WRITE(ILK_DISPLAY_CHICKEN2,
				   I915_READ(ILK_DISPLAY_CHICKEN2) |
				   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
			I915_WRITE(ILK_DSPCLK_GATE,
				   I915_READ(ILK_DSPCLK_GATE) |
				   ILK_DPARB_CLK_GATE  |
				   ILK_DPFD_CLK_GATE);

			I915_WRITE(DSPACNTR,
				   I915_READ(DSPACNTR) |
				   DISPPLANE_TRICKLE_FEED_DISABLE);
			I915_WRITE(DSPBCNTR,
				   I915_READ(DSPBCNTR) |
				   DISPPLANE_TRICKLE_FEED_DISABLE);
		}
	} else if (IS_G4X(dev)) {
		uint32_t dspclk_gate;
		I915_WRITE(RENCLK_GATE_D1, 0);
		I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		       GS_UNIT_CLOCK_GATE_DISABLE |
		       CL_UNIT_CLOCK_GATE_DISABLE);
		I915_WRITE(RAMCLK_GATE_D, 0);
		dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
			OVRUNIT_CLOCK_GATE_DISABLE |
			OVCUNIT_CLOCK_GATE_DISABLE;
		if (IS_GM45(dev))
			dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
		I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
	} else if (IS_CRESTLINE(dev)) {
		I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
		I915_WRITE(RENCLK_GATE_D2, 0);
		I915_WRITE(DSPCLK_GATE_D, 0);
		I915_WRITE(RAMCLK_GATE_D, 0);
		I915_WRITE16(DEUC, 0);
	} else if (IS_BROADWATER(dev)) {
		I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		       I965_RCC_CLOCK_GATE_DISABLE |
		       I965_RCPB_CLOCK_GATE_DISABLE |
		       I965_ISC_CLOCK_GATE_DISABLE |
		       I965_FBC_CLOCK_GATE_DISABLE);
		I915_WRITE(RENCLK_GATE_D2, 0);
	} else if (IS_GEN3(dev)) {
		u32 dstate = I915_READ(D_STATE);

		dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
			DSTATE_DOT_CLOCK_GATING;
		I915_WRITE(D_STATE, dstate);
	} else if (IS_I85X(dev) || IS_I865G(dev)) {
		I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
	} else if (IS_I830(dev)) {
		I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
	}
}

void intel_disable_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->renderctx) {
		struct drm_i915_gem_object *obj = dev_priv->renderctx;

		I915_WRITE(CCID, 0);
		POSTING_READ(CCID);

		i915_gem_object_unpin(obj);
		drm_gem_object_unreference(&obj->base);
		dev_priv->renderctx = NULL;
	}

	if (dev_priv->pwrctx) {
		struct drm_i915_gem_object *obj = dev_priv->pwrctx;

		I915_WRITE(PWRCTXA, 0);
		POSTING_READ(PWRCTXA);

		i915_gem_object_unpin(obj);
		drm_gem_object_unreference(&obj->base);
		dev_priv->pwrctx = NULL;
	}
}

static void ironlake_disable_rc6(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
	wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
		 10);
	POSTING_READ(CCID);
	I915_WRITE(PWRCTXA, 0);
	POSTING_READ(PWRCTXA);
	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
	POSTING_READ(RSTDBYCTL);
	i915_gem_object_unpin(dev_priv->renderctx);
	drm_gem_object_unreference(&dev_priv->renderctx->base);
	dev_priv->renderctx = NULL;
	i915_gem_object_unpin(dev_priv->pwrctx);
	drm_gem_object_unreference(&dev_priv->pwrctx->base);
	dev_priv->pwrctx = NULL;
}

void ironlake_enable_rc6(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	/*
	 * GPU can automatically power down the render unit if given a page
	 * to save state.
	 */
	ret = BEGIN_LP_RING(6);
	if (ret) {
		ironlake_disable_rc6(dev);
		return;
	}
	OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
	OUT_RING(MI_SET_CONTEXT);
	OUT_RING(dev_priv->renderctx->gtt_offset |
		 MI_MM_SPACE_GTT |
		 MI_SAVE_EXT_STATE_EN |
		 MI_RESTORE_EXT_STATE_EN |
		 MI_RESTORE_INHIBIT);
	OUT_RING(MI_SUSPEND_FLUSH);
	OUT_RING(MI_NOOP);
	OUT_RING(MI_FLUSH);
	ADVANCE_LP_RING();

	I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
}

/* Set up chip specific display functions */
static void intel_init_display(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* We always want a DPMS function */
	if (HAS_PCH_SPLIT(dev))
		dev_priv->display.dpms = ironlake_crtc_dpms;
	else
		dev_priv->display.dpms = i9xx_crtc_dpms;

	if (I915_HAS_FBC(dev)) {
		if (HAS_PCH_SPLIT(dev)) {
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
			dev_priv->display.enable_fbc = ironlake_enable_fbc;
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
		} else if (IS_GM45(dev)) {
			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
			dev_priv->display.enable_fbc = g4x_enable_fbc;
			dev_priv->display.disable_fbc = g4x_disable_fbc;
		} else if (IS_CRESTLINE(dev)) {
			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
			dev_priv->display.enable_fbc = i8xx_enable_fbc;
			dev_priv->display.disable_fbc = i8xx_disable_fbc;
		}
		/* 855GM needs testing */
	}

	/* Returns the core display clock speed */
	if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
		dev_priv->display.get_display_clock_speed =
			i945_get_display_clock_speed;
	else if (IS_I915G(dev))
		dev_priv->display.get_display_clock_speed =
			i915_get_display_clock_speed;
	else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
		dev_priv->display.get_display_clock_speed =
			i9xx_misc_get_display_clock_speed;
	else if (IS_I915GM(dev))
		dev_priv->display.get_display_clock_speed =
			i915gm_get_display_clock_speed;
	else if (IS_I865G(dev))
		dev_priv->display.get_display_clock_speed =
			i865_get_display_clock_speed;
	else if (IS_I85X(dev))
		dev_priv->display.get_display_clock_speed =
			i855_get_display_clock_speed;
	else /* 852, 830 */
		dev_priv->display.get_display_clock_speed =
			i830_get_display_clock_speed;

	/* For FIFO watermark updates */
	if (HAS_PCH_SPLIT(dev)) {
		if (IS_GEN5(dev)) {
			if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
				dev_priv->display.update_wm = ironlake_update_wm;
			else {
				DRM_DEBUG_KMS("Failed to get proper latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
		} else if (IS_GEN6(dev)) {
			if (SNB_READ_WM0_LATENCY()) {
				dev_priv->display.update_wm = sandybridge_update_wm;
			} else {
				DRM_DEBUG_KMS("Failed to read display plane latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
		} else
			dev_priv->display.update_wm = NULL;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3": "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
			pineview_disable_cxsr(dev);
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
	} else if (IS_G4X(dev))
		dev_priv->display.update_wm = g4x_update_wm;
	else if (IS_GEN4(dev))
		dev_priv->display.update_wm = i965_update_wm;
	else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
	} else if (IS_I85X(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i85x_get_fifo_size;
	} else {
		dev_priv->display.update_wm = i830_update_wm;
		if (IS_845G(dev))
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
		else
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
	}
}

/*
 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
 * resume, or other times.  This quirk makes sure that's the case for
 * affected systems.
 */
static void quirk_pipea_force (struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	dev_priv->quirks |= QUIRK_PIPEA_FORCE;
	DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
}

struct intel_quirk {
	int device;
	int subsystem_vendor;
	int subsystem_device;
	void (*hook)(struct drm_device *dev);
};

struct intel_quirk intel_quirks[] = {
	/* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
	{ 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
	/* HP Mini needs pipe A force quirk (LP: #322104) */
	{ 0x27ae,0x103c, 0x361a, quirk_pipea_force },

	/* Thinkpad R31 needs pipe A force quirk */
	{ 0x3577, 0x1014, 0x0505, quirk_pipea_force },
	/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
	{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },

	/* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
	{ 0x3577,  0x1014, 0x0513, quirk_pipea_force },
	/* ThinkPad X40 needs pipe A force quirk */

	/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
	{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },

	/* 855 & before need to leave pipe A & dpll A up */
	{ 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
	{ 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
};

static void intel_init_quirks(struct drm_device *dev)
{
	struct pci_dev *d = dev->pdev;
	int i;

	for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
		struct intel_quirk *q = &intel_quirks[i];

		if (d->device == q->device &&
		    (d->subsystem_vendor == q->subsystem_vendor ||
		     q->subsystem_vendor == PCI_ANY_ID) &&
		    (d->subsystem_device == q->subsystem_device ||
		     q->subsystem_device == PCI_ANY_ID))
			q->hook(dev);
	}
}

/* Disable the VGA plane that we never use */
static void i915_disable_vga(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u8 sr1;
	u32 vga_reg;

	if (HAS_PCH_SPLIT(dev))
		vga_reg = CPU_VGACNTRL;
	else
		vga_reg = VGACNTRL;

	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
	outb(1, VGA_SR_INDEX);
	sr1 = inb(VGA_SR_DATA);
	outb(sr1 | 1<<5, VGA_SR_DATA);
	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
	udelay(300);

	I915_WRITE(vga_reg, VGA_DISP_DISABLE);
	POSTING_READ(vga_reg);
}

void intel_modeset_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

	drm_mode_config_init(dev);

	dev->mode_config.min_width = 0;
	dev->mode_config.min_height = 0;

	dev->mode_config.funcs = (void *)&intel_mode_funcs;

	intel_init_quirks(dev);

	intel_init_display(dev);

	if (IS_GEN2(dev)) {
		dev->mode_config.max_width = 2048;
		dev->mode_config.max_height = 2048;
	} else if (IS_GEN3(dev)) {
		dev->mode_config.max_width = 4096;
		dev->mode_config.max_height = 4096;
	} else {
		dev->mode_config.max_width = 8192;
		dev->mode_config.max_height = 8192;
	}
	dev->mode_config.fb_base = dev->agp->base;

	if (IS_MOBILE(dev) || !IS_GEN2(dev))
		dev_priv->num_pipe = 2;
	else
		dev_priv->num_pipe = 1;
	DRM_DEBUG_KMS("%d display pipe%s available.\n",
		      dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");

	for (i = 0; i < dev_priv->num_pipe; i++) {
		intel_crtc_init(dev, i);
	}

	intel_setup_outputs(dev);

	intel_enable_clock_gating(dev);

	/* Just disable it once at startup */
	i915_disable_vga(dev);

	if (IS_IRONLAKE_M(dev)) {
		ironlake_enable_drps(dev);
		intel_init_emon(dev);
	}

	if (IS_GEN6(dev))
		gen6_enable_rps(dev_priv);

	if (IS_IRONLAKE_M(dev)) {
		dev_priv->renderctx = intel_alloc_context_page(dev);
		if (!dev_priv->renderctx)
			goto skip_rc6;
		dev_priv->pwrctx = intel_alloc_context_page(dev);
		if (!dev_priv->pwrctx) {
			i915_gem_object_unpin(dev_priv->renderctx);
			drm_gem_object_unreference(&dev_priv->renderctx->base);
			dev_priv->renderctx = NULL;
			goto skip_rc6;
		}
		ironlake_enable_rc6(dev);
	}

skip_rc6:
	INIT_WORK(&dev_priv->idle_work, intel_idle_update);
	setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
		    (unsigned long)dev);

	intel_setup_overlay(dev);
}

void intel_modeset_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	struct intel_crtc *intel_crtc;

	drm_kms_helper_poll_fini(dev);
	mutex_lock(&dev->struct_mutex);

	intel_unregister_dsm_handler();


	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		/* Skip inactive CRTCs */
		if (!crtc->fb)
			continue;

		intel_crtc = to_intel_crtc(crtc);
		intel_increase_pllclock(crtc);
	}

	if (dev_priv->display.disable_fbc)
		dev_priv->display.disable_fbc(dev);

	if (IS_IRONLAKE_M(dev))
		ironlake_disable_drps(dev);
	if (IS_GEN6(dev))
		gen6_disable_rps(dev);

	if (IS_IRONLAKE_M(dev))
		ironlake_disable_rc6(dev);

	mutex_unlock(&dev->struct_mutex);

	/* Disable the irq before mode object teardown, for the irq might
	 * enqueue unpin/hotplug work. */
	drm_irq_uninstall(dev);
	cancel_work_sync(&dev_priv->hotplug_work);

	/* Shut off idle work before the crtcs get freed. */
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		del_timer_sync(&intel_crtc->idle_timer);
	}
	del_timer_sync(&dev_priv->idle_timer);
	cancel_work_sync(&dev_priv->idle_work);

	drm_mode_config_cleanup(dev);
}

/*
 * Return which encoder is currently attached for connector.
 */
struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
{
	return &intel_attached_encoder(connector)->base;
}

void intel_connector_attach_encoder(struct intel_connector *connector,
				    struct intel_encoder *encoder)
{
	connector->encoder = encoder;
	drm_mode_connector_attach_encoder(&connector->base,
					  &encoder->base);
}

/*
 * set vga decode state - true == enable VGA decode
 */
int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 gmch_ctrl;

	pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
	if (state)
		gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
	else
		gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
	pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
	return 0;
}

#ifdef CONFIG_DEBUG_FS
#include <linux/seq_file.h>

struct intel_display_error_state {
	struct intel_cursor_error_state {
		u32 control;
		u32 position;
		u32 base;
		u32 size;
	} cursor[2];

	struct intel_pipe_error_state {
		u32 conf;
		u32 source;

		u32 htotal;
		u32 hblank;
		u32 hsync;
		u32 vtotal;
		u32 vblank;
		u32 vsync;
	} pipe[2];

	struct intel_plane_error_state {
		u32 control;
		u32 stride;
		u32 size;
		u32 pos;
		u32 addr;
		u32 surface;
		u32 tile_offset;
	} plane[2];
};

struct intel_display_error_state *
intel_display_capture_error_state(struct drm_device *dev)
{
        drm_i915_private_t *dev_priv = dev->dev_private;
	struct intel_display_error_state *error;
	int i;

	error = kmalloc(sizeof(*error), GFP_ATOMIC);
	if (error == NULL)
		return NULL;

	for (i = 0; i < 2; i++) {
		error->cursor[i].control = I915_READ(CURCNTR(i));
		error->cursor[i].position = I915_READ(CURPOS(i));
		error->cursor[i].base = I915_READ(CURBASE(i));

		error->plane[i].control = I915_READ(DSPCNTR(i));
		error->plane[i].stride = I915_READ(DSPSTRIDE(i));
		error->plane[i].size = I915_READ(DSPSIZE(i));
		error->plane[i].pos= I915_READ(DSPPOS(i));
		error->plane[i].addr = I915_READ(DSPADDR(i));
		if (INTEL_INFO(dev)->gen >= 4) {
			error->plane[i].surface = I915_READ(DSPSURF(i));
			error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
		}

		error->pipe[i].conf = I915_READ(PIPECONF(i));
		error->pipe[i].source = I915_READ(PIPESRC(i));
		error->pipe[i].htotal = I915_READ(HTOTAL(i));
		error->pipe[i].hblank = I915_READ(HBLANK(i));
		error->pipe[i].hsync = I915_READ(HSYNC(i));
		error->pipe[i].vtotal = I915_READ(VTOTAL(i));
		error->pipe[i].vblank = I915_READ(VBLANK(i));
		error->pipe[i].vsync = I915_READ(VSYNC(i));
	}

	return error;
}

void
intel_display_print_error_state(struct seq_file *m,
				struct drm_device *dev,
				struct intel_display_error_state *error)
{
	int i;

	for (i = 0; i < 2; i++) {
		seq_printf(m, "Pipe [%d]:\n", i);
		seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
		seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
		seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
		seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
		seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
		seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
		seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
		seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);

		seq_printf(m, "Plane [%d]:\n", i);
		seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
		seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
		seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
		seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
		seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
		if (INTEL_INFO(dev)->gen >= 4) {
			seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
			seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
		}

		seq_printf(m, "Cursor [%d]:\n", i);
		seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
		seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
		seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
	}
}
#endif

  reply	other threads:[~2011-02-07  8:36 UTC|newest]

Thread overview: 39+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2011-02-06  1:50 Commit 500f7147cf5bafd139056d521536b10c2bc2e154 breaks _resume_ Jeff Chua
2011-02-06  8:19 ` Marc Koschewski
2011-02-06 11:02   ` Takashi Iwai
2011-02-06 11:06     ` Dave Airlie
2011-02-06 12:21       ` Marc Koschewski
2011-02-06 13:04         ` Rafael J. Wysocki
2011-02-06 13:44           ` Marc Koschewski
2011-02-06 13:55             ` Rafael J. Wysocki
2011-02-06 11:00 ` Takashi Iwai
2011-02-06 12:24   ` Marc Koschewski
2011-02-06 13:19     ` Takashi Iwai
2011-02-06 14:01   ` Jeff Chua
2011-02-06 14:47     ` Chris Wilson
2011-02-06 14:51       ` Jeff Chua
2011-02-06 14:49     ` Jeff Chua
2011-02-06 15:27       ` Chris Wilson
2011-02-07  4:48         ` Jeff Chua
2011-02-07  5:02           ` Jeff Chua
2011-02-07  8:25             ` Takashi Iwai
2011-02-07  8:36               ` Jeff Chua [this message]
2011-02-07  8:45                 ` Jeff Chua
2011-02-07  8:54                   ` Takashi Iwai
2011-02-07  8:52                 ` Takashi Iwai
2011-02-07 10:15                   ` Takashi Iwai
2011-02-07 13:38                     ` Jeff Chua
2011-02-07 14:11                       ` Jeff Chua
2011-02-07 21:20                         ` Rafael J. Wysocki
2011-02-08  1:40                           ` Jeff Chua
2011-02-08 13:36                         ` Chris Wilson
2011-02-09  0:55                           ` Jeff Chua
2011-02-09  1:05                             ` Jeff Chua
2011-02-09  2:56                               ` Indan Zupancic
2011-02-09  5:45                                 ` Jeff Chua
2011-02-09  9:42                                   ` Indan Zupancic
2011-02-09  9:32                                 ` Chris Wilson
2011-02-09 10:20                                   ` Indan Zupancic
2011-02-07 10:02               ` Marc Koschewski
2011-02-07 10:06                 ` Takashi Iwai
2011-02-07 10:09                   ` Marc Koschewski

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to='AANLkTi=KGMJ9vLaLfkzGQrc-F2eB5CRmDX1L5UohPTZ=@mail.gmail.com' \
    --to=jeff.chua.linux@gmail.com \
    --cc=chris@chris-wilson.co.uk \
    --cc=lenb@kernel.org \
    --cc=linux-kernel@vger.kernel.org \
    --cc=rjw@sisk.pl \
    --cc=tiwai@suse.de \
    --cc=torvalds@linux-foundation.org \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.