On Sat, Feb 18, 2012 at 5:50 PM, Frederic Weisbecker wrote: > On a system with a TSC considered as unstable, one can encounter this > kind of warning: > >     $ perf sched rec pong 2 >     $ perf sched lat >     Warning: Timestamp below last timeslice flush > > This happens when trace events trigger with a potentially high period, > such as sched_stat_sleep, sched_stat_runtime, sched_stat_wait, etc... > The perf event core then implement that weight by sending as many events > as the given period. For example as many as the time the task has been > sleeping in sched_stat_sleep event. > > If this happens while irqs are disabled with an unstable tsc and this takes > more time than a jiffy, then the timestamps of the events get stuck to > the value of that next jiffy because sched_clock_local() bounds the timestamp > to that maximum. The local timer tick is supposed to update that boundary but > it can't given that irqs are disabled. > > We can then meet this kind of scenario in perf record: > > ===== CPU 0 =====      ==== CPU 1 ==== > >              PASS n >     ...                    ... >      1                      1 >      1                      2 >      1                      3 <-- max recorded > >           finished round event >            PASS n + 1 > >      1                      4 >      1                      5 >      1                      6 > >           finished round event >            PASS n + 2 > >      1                      7 >     ...                    ... > > CPU 0 is stuck sending events with irqs disabled and with the stale > timestamp. When we do the events reordering for perf script for example, > we flush all the events before timestamp 3 when we reach PASS n + 2, > considering we can't anymore have timestamps below 3 now. > But we still do have timestamps below 3 on PASS n + 2. > > To solve that issue, instead of considering that timestamps are globally > monotonic, we assume they are locally monotonic. Instead of recording > the max timestamp on each pass, we check the max one per CPU on each > pass and keep the smallest over these as the new barrier up to which > we flush the events on the PASS n + 2. This still relies on a bit of > global monotonicity because if some CPU doesn't have events in PASS n, > we expect it not to have event in PASS n + 2 past the barrier recorded > in PASS n. So this is still not a totally robust ordering but it's still > better than what we had before. > > The only way to have a deterministic and solid ordering will be to use > per cpu perf.data files. > > Reported-by: Stephane Eranian > Signed-off-by: Frederic Weisbecker > Cc: David Ahern > Cc: Peter Zijlstra > Cc: Stephane Eranian > Cc: Ingo Molnar > Cc: Arnaldo Carvalho de Melo > --- >  tools/perf/util/evsel.c   |    5 +- >  tools/perf/util/session.c |  146 +++++++++++++++++++++++++++++++++----------- >  tools/perf/util/session.h |    3 +- >  3 files changed, 115 insertions(+), 39 deletions(-) > > diff --git a/tools/perf/util/evsel.c b/tools/perf/util/evsel.c > index 302d49a..1c8eb4b 100644 > --- a/tools/perf/util/evsel.c > +++ b/tools/perf/util/evsel.c > @@ -119,9 +119,12 @@ void perf_evsel__config(struct perf_evsel *evsel, struct perf_record_opts *opts) >        if (opts->raw_samples) { >                attr->sample_type       |= PERF_SAMPLE_TIME; >                attr->sample_type       |= PERF_SAMPLE_RAW; > -               attr->sample_type       |= PERF_SAMPLE_CPU; >        } > I don't get this bit here. You may want CPU information when capturing in raw + per-thread mode. > +       /* Need to know the CPU for tools that need to order events */ > +       if (attr->sample_type & PERF_SAMPLE_TIME) > +               attr->sample_type       |= PERF_SAMPLE_CPU; > + >        if (opts->no_delay) { >                attr->watermark = 0; >                attr->wakeup_events = 1; > diff --git a/tools/perf/util/session.c b/tools/perf/util/session.c > index 9f833cf..f297342 100644 > --- a/tools/perf/util/session.c > +++ b/tools/perf/util/session.c > @@ -494,6 +494,8 @@ static void perf_session_free_sample_buffers(struct perf_session *session) >                list_del(&sq->list); >                free(sq); >        } > + > +       free(os->last_cpu_timestamp); >  } > >  static int perf_session_deliver_event(struct perf_session *session, > @@ -549,56 +551,89 @@ static void flush_sample_queue(struct perf_session *s, >  } > >  /* > - * When perf record finishes a pass on every buffers, it records this pseudo > - * event. > - * We record the max timestamp t found in the pass n. > - * Assuming these timestamps are monotonic across cpus, we know that if > - * a buffer still has events with timestamps below t, they will be all > - * available and then read in the pass n + 1. > - * Hence when we start to read the pass n + 2, we can safely flush every > - * events with timestamps below t. > + * We make the assumption that timestamps are not globally monotonic but locally > + * non-strictly monotonic. In practice, this is because if we are dealing with a > + * machine with unstable TSC, the kernel bounds the result of the tsc between > + * last_tick_time < tsc < next_tick_time. Thus, if a CPU disables interrupts for more > + * than one jiffy, all of its timestamps will be equal to next_tick_time after we > + * cross that jiffy, without any further progress whereas the other CPU continue > + * with normal timestamps. This can happen if a CPU sends crazillions of events > + * while interrupts are disabled. But there are potentially other random scenarios > + * with unstable TSC that drives us to assume the monotonicity of time only per CPU > + * and not globally. > + * > + * To solve this, when perf record finishes a round of write on every buffers, it > + * records a pseudo event named "finished round". The frame of events that happen > + * between two finished rounds is called a "pass". > + * We record the max timestamp T[cpu] per CPU found over the events in the pass n. > + * Then when we finish a round, we iterate over these T[cpu]and keep the smallest > + * one: min(T). > + * > + * Assuming these timestamps are locally monotonic (non strictly), we can flush all > + * queued events having a timestamp below min(T) when we start to process PASS n + 1. > + * But we actually wait until we start PASS n + 2 in case a CPU did not have any > + * event in PASS n but came in PASS n + 1 with events below min(T). We truly > + * hope no CPU will come with events below min(T) after pass n + 1. This > + * heuristicly rely on some minimal global consistancy. This should work in most > + * real world case, the only way to ensure a truly safe ordering with regular > + * flush will be to switch to per CPU record files. > + * >  * > - *    ============ PASS n ================= > - *       CPU 0         |   CPU 1 > - *                     | > - *    cnt1 timestamps  |   cnt2 timestamps > - *          1          |         2 > - *          2          |         3 > - *          -          |         4  <--- max recorded > + *    ========================== PASS n ============================ > + *       CPU 0                   |   CPU 1 > + *                               | > + *    cnt1 timestamps            |   cnt2 timestamps > + *          1                    |         2 > + *          2 <--- max recorded  |         3 > + *          -                    |         4 <--- max recorded > + *                          min(T) = 2 >  * > - *    ============ PASS n + 1 ============== > - *       CPU 0         |   CPU 1 > - *                     | > - *    cnt1 timestamps  |   cnt2 timestamps > - *          3          |         5 > - *          4          |         6 > - *          5          |         7 <---- max recorded > + *    ========================== PASS n + 1 ======================== > + *       CPU 0                   |   CPU 1 > + *                               | > + *    cnt1 timestamps            |   cnt2 timestamps > + *          3                    |         5 > + *          4                    |         6 > + *          5 <--- max record    |         7 <---- max recorded > + *                          min(T) = 5 >  * > - *      Flush every events below timestamp 4 > + *                Flush every events below timestamp 2 >  * > - *    ============ PASS n + 2 ============== > - *       CPU 0         |   CPU 1 > - *                     | > - *    cnt1 timestamps  |   cnt2 timestamps > - *          6          |         8 > - *          7          |         9 > - *          -          |         10 > + *    ========================== PASS n + 2 ======================== > + *       CPU 0                   |   CPU 1 > + *                               | > + *    cnt1 timestamps            |   cnt2 timestamps > + *          6                    |         8 > + *          7                    |         9 > + *          -                    |         10 >  * > - *      Flush every events below timestamp 7 > - *      etc... > + *                Flush every events below timestamp 5, etc... >  */ >  static int process_finished_round(struct perf_tool *tool, >                                  union perf_event *event __used, >                                  struct perf_session *session) >  { > +       unsigned int i; > +       u64 min = ULLONG_MAX; > +       struct ordered_samples *os = &session->ordered_samples; > + >        flush_sample_queue(session, tool); > -       session->ordered_samples.next_flush = session->ordered_samples.max_timestamp; > + > +       for (i = 0; i < session->nr_cpus; i++) { > +               if (os->last_cpu_timestamp[i] < min) > +                       min = os->last_cpu_timestamp[i]; > + > +               os->last_cpu_timestamp[i] = ULLONG_MAX; > +       } > + > +       if (min != ULLONG_MAX) > +               os->next_flush = min; > >        return 0; >  } > >  /* The queue is ordered by time */ > -static void __queue_event(struct sample_queue *new, struct perf_session *s) > +static void __queue_event(struct sample_queue *new, struct perf_session *s, int cpu) >  { >        struct ordered_samples *os = &s->ordered_samples; >        struct sample_queue *sample = os->last_sample; > @@ -607,10 +642,10 @@ static void __queue_event(struct sample_queue *new, struct perf_session *s) > >        ++os->nr_samples; >        os->last_sample = new; > +       os->last_cpu_timestamp[cpu] = timestamp; > >        if (!sample) { >                list_add(&new->list, &os->samples); > -               os->max_timestamp = timestamp; >                return; >        } > > @@ -624,7 +659,6 @@ static void __queue_event(struct sample_queue *new, struct perf_session *s) >                        p = sample->list.next; >                        if (p == &os->samples) { >                                list_add_tail(&new->list, &os->samples); > -                               os->max_timestamp = timestamp; >                                return; >                        } >                        sample = list_entry(p, struct sample_queue, list); > @@ -643,6 +677,34 @@ static void __queue_event(struct sample_queue *new, struct perf_session *s) >        } >  } > > +static int alloc_cpus_timestamp_array(struct perf_session *s, > +                                     struct perf_sample *sample, > +                                     struct ordered_samples *os) > +{ > +       int i; > +       int nr_cpus; > + > +       if (sample->cpu < s->nr_cpus) > +               return 0; > + > +       nr_cpus = sample->cpu + 1; > + > +       if (!os->last_cpu_timestamp) > +               os->last_cpu_timestamp = malloc(sizeof(u64) * nr_cpus); > +       else > +               os->last_cpu_timestamp = realloc(os->last_cpu_timestamp, > +                                                sizeof(u64) * nr_cpus); > +       if (!os->last_cpu_timestamp) > +               return -ENOMEM; > + > +       for (i = s->nr_cpus; i < nr_cpus; i++) > +               os->last_cpu_timestamp[i] = ULLONG_MAX; > + > +       s->nr_cpus = nr_cpus; > + > +       return 0; > +} > + >  #define MAX_SAMPLE_BUFFER      (64 * 1024 / sizeof(struct sample_queue)) > >  static int perf_session_queue_event(struct perf_session *s, union perf_event *event, > @@ -652,6 +714,12 @@ static int perf_session_queue_event(struct perf_session *s, union perf_event *ev >        struct list_head *sc = &os->sample_cache; >        u64 timestamp = sample->time; >        struct sample_queue *new; > +       int err; > + > +       if (!(s->sample_type & PERF_SAMPLE_CPU)) { > +               pr_err("Warning: Need to record CPU on samples for ordering\n"); > +               return -EINVAL; > +       } > >        if (!timestamp || timestamp == ~0ULL) >                return -ETIME; > @@ -661,6 +729,10 @@ static int perf_session_queue_event(struct perf_session *s, union perf_event *ev >                return -EINVAL; >        } > > +       err = alloc_cpus_timestamp_array(s, sample, os); > +       if (err) > +               return err; > + >        if (!list_empty(sc)) { >                new = list_entry(sc->next, struct sample_queue, list); >                list_del(&new->list); > @@ -681,7 +753,7 @@ static int perf_session_queue_event(struct perf_session *s, union perf_event *ev >        new->file_offset = file_offset; >        new->event = event; > > -       __queue_event(new, s); > +       __queue_event(new, s, sample->cpu); > >        return 0; >  } > diff --git a/tools/perf/util/session.h b/tools/perf/util/session.h > index c8d9017..642591b 100644 > --- a/tools/perf/util/session.h > +++ b/tools/perf/util/session.h > @@ -16,7 +16,7 @@ struct thread; >  struct ordered_samples { >        u64                     last_flush; >        u64                     next_flush; > -       u64                     max_timestamp; > +       u64                     *last_cpu_timestamp; >        struct list_head        samples; >        struct list_head        sample_cache; >        struct list_head        to_free; > @@ -50,6 +50,7 @@ struct perf_session { >        int                     cwdlen; >        char                    *cwd; >        struct ordered_samples  ordered_samples; > +       unsigned int            nr_cpus; >        char                    filename[1]; >  }; > > -- > 1.7.5.4 > {.n++%ݶw{.n+{G{ayʇڙ,jfhz_(階ݢj"mG?&~iOzv^m ?I