
DRAFT

Poptrie based Routing Table Lookup in Linux Kernel

MD Iftakharul Islam, Javed I Khan
Kent State University

mislam4@kent.edu, javed@cs.kent.edu

ABSTRACT
As the speed of network interface is growing rapidly, routing
table lookup has become a bottleneck. A 100Gb/s NIC can
receive 148.8 million packets per second. This is why Linux
kernel needs to able to perform 148.8 million routing table
lookup per second. Currently Linux kernel uses LC-trie for
routing table lookup which cannot achieve such fast routing
table lookup. Recently poptrie [1] has been proposed that
can improve the routing table lookup performance to a great
extent. However poptrie is implemented as an userspace li-
brary. This is why it is only useful to kernel bypass packet
processing frameworks such DPDK and VPP. In this paper,
we have implemented poptrie based routing table lookup in
Linux kernel. This will enable us to use Linux as a high
speed router. Our experimental results show that poptrie
based routing table lookup improves the lookup cost from
200-850 CPU cycles to 80-100 CPU cycles.

1. INTRODUCTION
Routing table lookup is a key functionality of a router.

A router needs to extract the destination IP address of in-
coming packets and find the destination NIC based on the
longest prefix match (LPM) algorithm. For instance, Table
1 shows an example routing table of a router. If the desti-
nation IP address of an incoming packet is 169.254.198.1,
then according to the longest prefix match algorithm, the
packet should be forwarded to eth4. Again if the destina-
tion IP address of an incoming packet is 169.254.190.5, then
the packet should be forwarded to eth3. Many of the com-
mercial routers these days use Ternary Content Addressable
Memory (TCAM) to implement the LPM algorithm. TCAM
based routers however suffer from high cost and high power
consumption. It is also not programmable. In modern ser-
vice provider routers, we need functionalities beyond LPM.
Those include network monitoring, traffic shaping, explicit
throughput allocation and so on. This is why it is desirable to
implement all the network functions in software rather than
hardware. The objective of this paper is to implement a high-
speed routing table lookup with general purpose computers.
Recently we have seen poptrie [1] based routing table lookup
which improves the lookup performance significantly. Pop-
trie however is implemented as an userspace library. This is

why Operating Systems cannot utilize it. Currently it is only
useful to kernel-bypass packet processing frameworks such
as DPDK [2] and VPP [7]. In this paper, we have imple-
mented poptrie based routing table lookup in Linux kernel.
This will enable us to use Linux as a high speed router. It is
noteworthy that Linux kernel also has an in-kernel dataplane
framework XDP [8]. Poptrie based fast routing table lookup
along with XDP will enable Linux to work as router without
needing any kernel-bypass dataplane framework.

The remaining of the paper proceeds as follows. In Section
II, we describe the challenges and previous research works
that have been done on routing table lookup. In Section III,
we describe how a poptrie is constructed from a routing ta-
ble. In Section IV, we describe the poptrie based routing
table lookup algorithm. Section V discusses the implemen-
tation and Section VI shows the experimental results. Finally
Section VII concludes the paper.

Table 1: Routing table (also known as FIB table)

Prefix Destination NIC
10.18.0.0/22 eth1

131.123.252.42/32 eth2

169.254.0.0/16 eth3

169.254.192.0/18 eth4

192.168.122.0/24 eth5

2. CHALLENGES AND RELATED WORKS
As the data rate of network interface is growing rapidly,

routing table lookup in a general purpose computer has be-
come a bottleneck. For instance, a 100Gb/s NIC produces
148.8 million packets per second. This is why, a CPU based
router needs to perform 148.8 million lookups per second.
Again the routing tables are also keep growing. According
to RIPE [6] network coordination center, a backbone router
may have about 500K routes in their routing tables. Fast
routing table lookup in such a large routing table is particu-
larly challenging.

Although performance of general purpose CPU have in-
creased significantly over last decade, DRAM latency re-
mains unchanged at roughly 50 ns. This is why, routing



DRAFT(a) Routing table (b) Binary tree generated from the routing table

(c) Level 3 and level 6 of the binary tree are represented as arrays (d) Poptrie constructed from the array
Figure 1: A Poptrie is constructed from routing table

table lookup algorithms need to exploit CPU cache in or-
der to achieve the desired performance. It is required that
routing table lookup data structure is small enough to fit in
CPU cache. Storing a big routing table (such as one with
500K routes) in CPU cache is particularly challenging. The
lookup operation also should require minimal CPU cycle.

Routing table lookup on general purpose computer how-
ever is a long standing problem. Linux currently uses LC-
trie [5] for routing table lookup. It however exhibits very
poor cache behavior for routing table lookup [1, 9]. Cisco
routers, on the other hand, use Tree Bitmap [3] for routing
table lookup. Tree Bitmap however cannot achieve desired
lookup performance needed for 100Gb/s NICs [1, 9]. Re-
cently we have seen several proposal that shows significant
improvement in lookup performance. These include DXR
[10], SAIL [9] and Poptrie [1]. DXR [10] is range search
algorithm utilized by multicore processor. SAIL [9] on the
other hand divides the routing table into multiple bitmap-
array. Although SAIL often performs very fast lookup, it
requires large on-chip memory (around 44 MB) [1]. This
is why, it often runs into cache-misses resulting degraded
lookup-performance. Poptrie [1] solve this problem by de-
signing a very memory efficient data structure which is small
enough to fit in a on-chip memory (CPU-cache). Poptrie also
requires very small number of CPU cycles for routing table
lookup. However poptrie is designed as an userspace library.
This is why it is only useful to kernel-bypass packet process-
ing frameworks succh as DPDK, VPP and so on. In this pa-

per, we have implemented Poptrie in Linux kernel. Our ex-
perimental results show that it outperforms LC-trie [5] which
is currently being used in Linux kernel.

3. POPTRIE CONSTRUCTION
This section describes how a poptrie is constructed from

a routing table. Figure 1a shows a routing table containing
prefixes and next-hops. The routing table is then represented
as a binary tree as in the Figure 1b. Here all the nodes that
have a next hop are called solid nodes. All the nodes that do
not have a next hop are called internal nodes. Note that, all
the solid nodes of level 0−2 are pushed to level 3 and all the
solid nodes of level 4−5 are pushed to level 6. This is called
level-pushing which was initially proposed in SAIL [9]. In
this example, we construct the poptrie based on level 3 and
level 6. However in actual implementation, we use level 6,
12, 18, 24, 30 and 36.

The nodes in level 3 and level 6 are represented as ar-
rays in Figure 1c. The solid_arr contains the next-hop and
child_arr contains the child ID for the next level (in this
case, level 6). SAIL [9] uses similar data structure for rout-
ing table lookup. Here we use solid_arri and child_arri
to represent the next-hop and child array of level i. Given
an IP address a, we use a(i,j) to denote the integer value of
the bit string of a from the i-th bit to the j-th bit. For in-
stance, if a = 11010..b, then a(0,2) = 6 (the integer value
of three left-most bit of the IP address). The lookup pro-
cess in the arrays in Figure 1c works as follows: for a given



DRAFT

IP address a, solid_arr3[a(0,2)] will contain the next-hop
for the the IP address. The lookup process also checks if
child_arr3[a(0,2)] > 0; if yes, then the lookup process will
continue the same process with the arrays in level 6. Let us
assume that the destination IP address of an incoming-packet
packet is 01010111...0b. In this case, a(0,2) = 2. As a result
the look process initially assumes that solid_arr3[2] con-
tains the next-hop for the IP address. But the lookup process
also checks if there is a longer prefix. As child_arr3[2] > 0;
it will continue the lookup process with the arrays in level 6.
child_arr3[2] = 2 indicates that it needs to lookup in child
2 (in level 6). As a(3,5) = 5, solid_arr6[5] of child 2 will
contain the next-hop for the IP address (in this case, it is P6).

The main drawback of array based lookup is that it re-
quires large arrays to be stored in CPU cache. As CPU
caches are very limited in size, it often results in cache-
miss which degrades lookup performance. Poptrie allows us
to represent the arrays with bitmaps that reduces the mem-
ory requirement significantly. The arrays in Figure 1c are
represented as Poptrie in Figure 1d. Here bitmap is con-
structed by setting i-th bit 1 if solid_arr[i] 6= 0. For in-
stance, ∀isolid_arr3[i] 6= 0 except i 6= 3. This is why,
equivalent bitmap is 11110111.

Note that level pushing results same prefix appears multi-
ple times in the solid_arr. For instance, there are two P1
and three P2 in solid_arr3. The problem is exacerbated
if we build tree based on level 6, level 12, level 18 and so
on. This consumes nontrivial amount of memory. Poptrie
solves this problem by having an array where redundant ele-
ments and empty elements (that are 0) are eliminated. Array
NH in Figure 1d is constructed from solid_arr by remov-
ing redundant elements and empty elements. Poptrie also
construct an another bitmap solid_bm for indicating start
of consecutive prefixes. For instance, solid_arr3 has four
consecutive prefixes, P1, P3, P2, and P5 that starts at in-
dex 0, 2, 4 and 7 respectively. This is why those bits are
set in solid_bm. solid_bm is used to calculate the index to
solid_arr for a give IP address. For instance, if a(0,2) = 5,
then solid_arr[POPCNT (11111b& solid_bm)] will con-
tain the next-hop for the IP address. Finally child_bm is
constructed by setting i-th bit if child_arr[i] 6= 0.

4. POPTRIE IMPLEMENTATION
An IP address is 32 and 64 bit long in IPv4 and IPv6 re-

spectively. Here we construct the Poptrie for IPv4 routing
table. However the same idea is also applicable to IPv6. We
construct poptrie for level 6, 12, 18, 24, 30 and 36. This
is why bitmaps in the poptrie are 64 (26) bit long. This al-
lows us to store them in 64-bit CPU register. Poptrie uses
POPCNT instruction, a special CPU instruction that counts
the number of bits set to 1. For instance, POPCNT (11100101b) =
5. Most of the modern CPUs can implement POPCNT in
2− 4 clock cycle [4].

4.1 Look up Process

Algorithm 1 shows the look up process in a Poptrie. The
process starts by extracting 6 bytes from the least significant
bits of the destination IP address (Line 5). It then creates
a bitmap (bm) and bit mask (mask) based on the extracted
value (Line 8 and 9). For instance, if a(0,5) = 12, then bm =
1000000000000b and mask = 11111111111b. The bm and
mask are used to find the corresponding next hop and child
node. Line 1 − 142 checks if there is a solid node for the
extracted value. If there is, it finds the next-hop. It then
checks if there is a child node for the IP address (Line 17).
If there is a child node, it repeats the same process with the
child node. If however it does not find the child node, it
indicates that the next-hop found in Line 14 is the desired
next-hop. Note that, Poptrie does not need to backtrack in
order to find the longest-prefix. This is because in each step
we check if there is a solid node; if yes, then we save the
corresponding next-hop. This next-hop will be replaced if
we find a solid node with longer prefix.

Algorithm 1 Routing Table Lookup
Input: Poptrie root root
Input: Destination IP address of the packet ip
Output: Next-hop nexthop

1: procedure LOOKUP(ip)
2: N ← root
3: while True do
4: /*Extract 6 bytes from ip */
5: index← ip & 63
6:
7: /*construct bitmap and bitmask */
8: bm← 1ULL << index
9: mask ← bm− 1

10:
11: /*Find corresponding solid node*/
12: if N.bitmap & bm then
13: i← POPCNT (N.solid_bp & mask)
14: nexthop← N.NH[i]

15:
16: /*Find corresponding child node*/
17: if N.child_bm & bm then
18: i← POPCNT (N.child_bm &mask)
19: N ← N.child_arr[i]
20: /*Need to extract next 6 bytes*/
21: ip← ip >> 6
22: Continue
23: return nexthop

5. REFERENCES
[1] H. Asai and Y. Ohara. Poptrie: A compressed trie with population

count for fast and scalable software IP routing table lookup. In ACM
SIGCOMM 2015.

[2] Data Plane Development Kit (DPDK). http://dpdk.org/.
[3] W. Eatherton, G. Varghese, and Z. Dittia. Tree bitmap:

hardware/software IP lookups with incremental updates. ACM

http://dpdk.org/


DRAFT

SIGCOMM, 34(2):97–122, 2004.
[4] A. Fog et al. Instruction tables: Lists of instruction latencies,

throughputs and micro-operation breakdowns for Intel, AMD and
VIA CPUs. Copenhagen University College of Engineering, 97:114,
2011.

[5] S. Nilsson and G. Karlsson. IP-address lookup using LC-tries. IEEE
Journal on selected Areas in Communications, 17(6):1083–1092,
1999.

[6] RIPE Network Coordination Centre. https://www.ripe.net/.
[7] Vector Packet Processing (VPP).

https://wiki.fd.io/view/VPP.
[8] XDP (eXpress Data path).

http://prototype-kernel.readthedocs.io/en/
latest/networking/XDP/introduction.html.

[9] T. Yang, G. Xie, Y. Li, Q. Fu, A. X. Liu, Q. Li, and L. Mathy.
Guarantee IP lookup performance with FIB explosion. In ACM
SIGCOMM 2014.

[10] M. Zec, L. Rizzo, and M. Mikuc. DXR: towards a billion routing
lookups per second in software. ACM SIGCOMM Computer
Communication Review, 42(5):29–36, 2012.

https://www.ripe.net/
https://wiki.fd.io/view/VPP
http://prototype-kernel.readthedocs.io/en/latest/networking/XDP/introduction.html
http://prototype-kernel.readthedocs.io/en/latest/networking/XDP/introduction.html

	Introduction
	Challenges and Related Works
	Poptrie Construction
	Poptrie Implementation
	Look up Process

	References

