I think they do follow the division in the docs. On Thu, Dec 5, 2019 at 2:28 PM Aleksandar Markovic < aleksandar.m.mail@gmail.com> wrote: > > > On Wednesday, November 27, 2019, Michael Rolnik wrote: > >> This includes: >> - LSR, ROR >> - ASR >> - SWAP >> - SBI, CBI >> - BST, BLD >> - BSET, BCLR >> >> Signed-off-by: Michael Rolnik >> --- >> target/avr/translate.c | 1123 ++++++++++++++++++++++++++++++++++++++++ >> 1 file changed, 1123 insertions(+) >> >> > Hello, Michael > > I said I am on vacation, and truly I am, but, fir the next version if the > series, I would like to ask you to extract "data transfer" instruction (as > defined in avr docs, MOV LD ST etc) from this patch, and create a new patch > for them - so that the patches follow the division from docs. > > Yours, > Aleksandar > > > > > >> diff --git a/target/avr/translate.c b/target/avr/translate.c >> index 48a42c984a..dc6a1af2fc 100644 >> --- a/target/avr/translate.c >> +++ b/target/avr/translate.c >> @@ -317,6 +317,15 @@ static void gen_goto_tb(DisasContext *ctx, int n, >> target_ulong dest) >> } >> >> >> +static void gen_rshift_ZNVSf(TCGv R) >> +{ >> + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ >> + tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */ >> + tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf); >> + tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ >> +} >> + >> + >> /* >> * Adds two registers without the C Flag and places the result in the >> * destination register Rd. >> @@ -1508,3 +1517,1117 @@ static bool trans_BRBS(DisasContext *ctx, >> arg_BRBS *a) >> return true; >> } >> >> + >> +/* >> + * This instruction makes a copy of one register into another. The >> source >> + * register Rr is left unchanged, while the destination register Rd is >> loaded >> + * with a copy of Rr. >> + */ >> +static bool trans_MOV(DisasContext *ctx, arg_MOV *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv Rr = cpu_r[a->rr]; >> + >> + tcg_gen_mov_tl(Rd, Rr); >> + >> + return true; >> +} >> + >> + >> +/* >> + * This instruction makes a copy of one register pair into another >> register >> + * pair. The source register pair Rr+1:Rr is left unchanged, while the >> + * destination register pair Rd+1:Rd is loaded with a copy of Rr + >> 1:Rr. This >> + * instruction is not available in all devices. Refer to the device >> specific >> + * instruction set summary. >> + */ >> +static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a) >> +{ >> + if (!avr_have_feature(ctx, AVR_FEATURE_MOVW)) { >> + return true; >> + } >> + >> + TCGv RdL = cpu_r[a->rd]; >> + TCGv RdH = cpu_r[a->rd + 1]; >> + TCGv RrL = cpu_r[a->rr]; >> + TCGv RrH = cpu_r[a->rr + 1]; >> + >> + tcg_gen_mov_tl(RdH, RrH); >> + tcg_gen_mov_tl(RdL, RrL); >> + >> + return true; >> +} >> + >> + >> +/* >> + * Loads an 8 bit constant directly to register 16 to 31. >> + */ >> +static bool trans_LDI(DisasContext *ctx, arg_LDI *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + int imm = a->imm; >> + >> + tcg_gen_movi_tl(Rd, imm); >> + >> + return true; >> +} >> + >> + >> +/* >> + * Loads one byte from the data space to a register. For parts with >> SRAM, >> + * the data space consists of the Register File, I/O memory and >> internal SRAM >> + * (and external SRAM if applicable). For parts without SRAM, the data >> space >> + * consists of the register file only. The EEPROM has a separate >> address space. >> + * A 16-bit address must be supplied. Memory access is limited to the >> current >> + * data segment of 64KB. The LDS instruction uses the RAMPD Register to >> access >> + * memory above 64KB. To access another data segment in devices with >> more than >> + * 64KB data space, the RAMPD in register in the I/O area has to be >> changed. >> + * This instruction is not available in all devices. Refer to the device >> + * specific instruction set summary. >> + */ >> +static bool trans_LDS(DisasContext *ctx, arg_LDS *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv addr = tcg_temp_new_i32(); >> + TCGv H = cpu_rampD; >> + a->imm = next_word(ctx); >> + >> + tcg_gen_mov_tl(addr, H); /* addr = H:M:L */ >> + tcg_gen_shli_tl(addr, addr, 16); >> + tcg_gen_ori_tl(addr, addr, a->imm); >> + >> + gen_data_load(ctx, Rd, addr); >> + >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +/* >> + * Loads one byte indirect from the data space to a register. For parts >> + * with SRAM, the data space consists of the Register File, I/O memory >> and >> + * internal SRAM (and external SRAM if applicable). For parts without >> SRAM, the >> + * data space consists of the Register File only. In some parts the >> Flash >> + * Memory has been mapped to the data space and can be read using this >> command. >> + * The EEPROM has a separate address space. The data location is >> pointed to by >> + * the X (16 bits) Pointer Register in the Register File. Memory access >> is >> + * limited to the current data segment of 64KB. To access another data >> segment >> + * in devices with more than 64KB data space, the RAMPX in register in >> the I/O >> + * area has to be changed. The X-pointer Register can either be left >> unchanged >> + * by the operation, or it can be post-incremented or predecremented. >> These >> + * features are especially suited for accessing arrays, tables, and >> Stack >> + * Pointer usage of the X-pointer Register. Note that only the low byte >> of the >> + * X-pointer is updated in devices with no more than 256 bytes data >> space. For >> + * such devices, the high byte of the pointer is not used by this >> instruction >> + * and can be used for other purposes. The RAMPX Register in the I/O >> area is >> + * updated in parts with more than 64KB data space or more than 64KB >> Program >> + * memory, and the increment/decrement is added to the entire 24-bit >> address on >> + * such devices. Not all variants of this instruction is available in >> all >> + * devices. Refer to the device specific instruction set summary. In >> the >> + * Reduced Core tinyAVR the LD instruction can be used to achieve the >> same >> + * operation as LPM since the program memory is mapped to the data >> memory >> + * space. >> + */ >> +static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv addr = gen_get_xaddr(); >> + >> + gen_data_load(ctx, Rd, addr); >> + >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv addr = gen_get_xaddr(); >> + >> + gen_data_load(ctx, Rd, addr); >> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ >> + >> + gen_set_xaddr(addr); >> + >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv addr = gen_get_xaddr(); >> + >> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ >> + gen_data_load(ctx, Rd, addr); >> + gen_set_xaddr(addr); >> + >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +static bool trans_STX1(DisasContext *ctx, arg_STX1 *a) >> +{ >> + TCGv Rd = cpu_r[a->rr]; >> + TCGv addr = gen_get_xaddr(); >> + >> + gen_data_store(ctx, Rd, addr); >> + >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> +static bool trans_STX2(DisasContext *ctx, arg_STX2 *a) >> +{ >> + TCGv Rd = cpu_r[a->rr]; >> + TCGv addr = gen_get_xaddr(); >> + >> + gen_data_store(ctx, Rd, addr); >> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ >> + gen_set_xaddr(addr); >> + >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> +static bool trans_STX3(DisasContext *ctx, arg_STX3 *a) >> +{ >> + TCGv Rd = cpu_r[a->rr]; >> + TCGv addr = gen_get_xaddr(); >> + >> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ >> + gen_data_store(ctx, Rd, addr); >> + gen_set_xaddr(addr); >> + >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +/* >> + * Loads one byte indirect with or without displacement from the data >> space >> + * to a register. For parts with SRAM, the data space consists of the >> Register >> + * File, I/O memory and internal SRAM (and external SRAM if >> applicable). For >> + * parts without SRAM, the data space consists of the Register File >> only. In >> + * some parts the Flash Memory has been mapped to the data space and >> can be >> + * read using this command. The EEPROM has a separate address space. >> The data >> + * location is pointed to by the Y (16 bits) Pointer Register in the >> Register >> + * File. Memory access is limited to the current data segment of 64KB. >> To >> + * access another data segment in devices with more than 64KB data >> space, the >> + * RAMPY in register in the I/O area has to be changed. The Y-pointer >> Register >> + * can either be left unchanged by the operation, or it can be >> post-incremented >> + * or predecremented. These features are especially suited for >> accessing >> + * arrays, tables, and Stack Pointer usage of the Y-pointer Register. >> Note that >> + * only the low byte of the Y-pointer is updated in devices with no >> more than >> + * 256 bytes data space. For such devices, the high byte of the pointer >> is not >> + * used by this instruction and can be used for other purposes. The >> RAMPY >> + * Register in the I/O area is updated in parts with more than 64KB >> data space >> + * or more than 64KB Program memory, and the >> increment/decrement/displacement >> + * is added to the entire 24-bit address on such devices. Not all >> variants of >> + * this instruction is available in all devices. Refer to the device >> specific >> + * instruction set summary. In the Reduced Core tinyAVR the LD >> instruction can >> + * be used to achieve the same operation as LPM since the program >> memory is >> + * mapped to the data memory space. >> + */ >> +static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv addr = gen_get_yaddr(); >> + >> + gen_data_load(ctx, Rd, addr); >> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ >> + >> + gen_set_yaddr(addr); >> + >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv addr = gen_get_yaddr(); >> + >> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ >> + gen_data_load(ctx, Rd, addr); >> + gen_set_yaddr(addr); >> + >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv addr = gen_get_yaddr(); >> + >> + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ >> + gen_data_load(ctx, Rd, addr); >> + >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +static bool trans_STY2(DisasContext *ctx, arg_STY2 *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv addr = gen_get_yaddr(); >> + >> + gen_data_store(ctx, Rd, addr); >> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ >> + gen_set_yaddr(addr); >> + >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +static bool trans_STY3(DisasContext *ctx, arg_STY3 *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv addr = gen_get_yaddr(); >> + >> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ >> + gen_data_store(ctx, Rd, addr); >> + gen_set_yaddr(addr); >> + >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +static bool trans_STDY(DisasContext *ctx, arg_STDY *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv addr = gen_get_yaddr(); >> + >> + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ >> + gen_data_store(ctx, Rd, addr); >> + >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +/* >> + * Loads one byte indirect with or without displacement from the data >> space >> + * to a register. For parts with SRAM, the data space consists of the >> Register >> + * File, I/O memory and internal SRAM (and external SRAM if >> applicable). For >> + * parts without SRAM, the data space consists of the Register File >> only. In >> + * some parts the Flash Memory has been mapped to the data space and >> can be >> + * read using this command. The EEPROM has a separate address space. >> The data >> + * location is pointed to by the Z (16 bits) Pointer Register in the >> Register >> + * File. Memory access is limited to the current data segment of 64KB. >> To >> + * access another data segment in devices with more than 64KB data >> space, the >> + * RAMPZ in register in the I/O area has to be changed. The Z-pointer >> Register >> + * can either be left unchanged by the operation, or it can be >> post-incremented >> + * or predecremented. These features are especially suited for Stack >> Pointer >> + * usage of the Z-pointer Register, however because the Z-pointer >> Register can >> + * be used for indirect subroutine calls, indirect jumps and table >> lookup, it >> + * is often more convenient to use the X or Y-pointer as a dedicated >> Stack >> + * Pointer. Note that only the low byte of the Z-pointer is updated in >> devices >> + * with no more than 256 bytes data space. For such devices, the high >> byte of >> + * the pointer is not used by this instruction and can be used for other >> + * purposes. The RAMPZ Register in the I/O area is updated in parts >> with more >> + * than 64KB data space or more than 64KB Program memory, and the >> + * increment/decrement/displacement is added to the entire 24-bit >> address on >> + * such devices. Not all variants of this instruction is available in >> all >> + * devices. Refer to the device specific instruction set summary. In >> the >> + * Reduced Core tinyAVR the LD instruction can be used to achieve the >> same >> + * operation as LPM since the program memory is mapped to the data >> memory >> + * space. For using the Z-pointer for table lookup in Program memory >> see the >> + * LPM and ELPM instructions. >> + */ >> +static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv addr = gen_get_zaddr(); >> + >> + gen_data_load(ctx, Rd, addr); >> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ >> + >> + gen_set_zaddr(addr); >> + >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv addr = gen_get_zaddr(); >> + >> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ >> + gen_data_load(ctx, Rd, addr); >> + >> + gen_set_zaddr(addr); >> + >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv addr = gen_get_zaddr(); >> + >> + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ >> + gen_data_load(ctx, Rd, addr); >> + >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +static bool trans_STZ2(DisasContext *ctx, arg_STZ2 *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv addr = gen_get_zaddr(); >> + >> + gen_data_store(ctx, Rd, addr); >> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ >> + >> + gen_set_zaddr(addr); >> + >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +static bool trans_STZ3(DisasContext *ctx, arg_STZ3 *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv addr = gen_get_zaddr(); >> + >> + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ >> + gen_data_store(ctx, Rd, addr); >> + >> + gen_set_zaddr(addr); >> + >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +static bool trans_STDZ(DisasContext *ctx, arg_STDZ *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv addr = gen_get_zaddr(); >> + >> + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ >> + gen_data_store(ctx, Rd, addr); >> + >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> + >> +/* >> + * Stores one byte from a Register to the data space. For parts with >> SRAM, >> + * the data space consists of the Register File, I/O memory and >> internal SRAM >> + * (and external SRAM if applicable). For parts without SRAM, the data >> space >> + * consists of the Register File only. The EEPROM has a separate >> address space. >> + * A 16-bit address must be supplied. Memory access is limited to the >> current >> + * data segment of 64KB. The STS instruction uses the RAMPD Register to >> access >> + * memory above 64KB. To access another data segment in devices with >> more than >> + * 64KB data space, the RAMPD in register in the I/O area has to be >> changed. >> + * This instruction is not available in all devices. Refer to the device >> + * specific instruction set summary. >> + */ >> +static bool trans_STS(DisasContext *ctx, arg_STS *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv addr = tcg_temp_new_i32(); >> + TCGv H = cpu_rampD; >> + a->imm = next_word(ctx); >> + >> + tcg_gen_mov_tl(addr, H); /* addr = H:M:L */ >> + tcg_gen_shli_tl(addr, addr, 16); >> + tcg_gen_ori_tl(addr, addr, a->imm); >> + >> + gen_data_store(ctx, Rd, addr); >> + >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +/* >> + * Loads one byte pointed to by the Z-register into the destination >> + * register Rd. This instruction features a 100% space effective >> constant >> + * initialization or constant data fetch. The Program memory is >> organized in >> + * 16-bit words while the Z-pointer is a byte address. Thus, the least >> + * significant bit of the Z-pointer selects either low byte (ZLSB = 0) >> or high >> + * byte (ZLSB = 1). This instruction can address the first 64KB (32K >> words) of >> + * Program memory. The Zpointer Register can either be left unchanged >> by the >> + * operation, or it can be incremented. The incrementation does not >> apply to >> + * the RAMPZ Register. Devices with Self-Programming capability can >> use the >> + * LPM instruction to read the Fuse and Lock bit values. Refer to the >> device >> + * documentation for a detailed description. The LPM instruction is not >> + * available in all devices. Refer to the device specific instruction >> set >> + * summary >> + */ >> +static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a) >> +{ >> + if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) { >> + return true; >> + } >> + >> + TCGv Rd = cpu_r[0]; >> + TCGv addr = tcg_temp_new_i32(); >> + TCGv H = cpu_r[31]; >> + TCGv L = cpu_r[30]; >> + >> + tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ >> + tcg_gen_or_tl(addr, addr, L); >> + >> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ >> + >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a) >> +{ >> + if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) { >> + return true; >> + } >> + >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv addr = tcg_temp_new_i32(); >> + TCGv H = cpu_r[31]; >> + TCGv L = cpu_r[30]; >> + >> + tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ >> + tcg_gen_or_tl(addr, addr, L); >> + >> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ >> + >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a) >> +{ >> + if (!avr_have_feature(ctx, AVR_FEATURE_LPMX)) { >> + return true; >> + } >> + >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv addr = tcg_temp_new_i32(); >> + TCGv H = cpu_r[31]; >> + TCGv L = cpu_r[30]; >> + >> + tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ >> + tcg_gen_or_tl(addr, addr, L); >> + >> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ >> + >> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ >> + >> + tcg_gen_andi_tl(L, addr, 0xff); >> + >> + tcg_gen_shri_tl(addr, addr, 8); >> + tcg_gen_andi_tl(H, addr, 0xff); >> + >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +/* >> + * Loads one byte pointed to by the Z-register and the RAMPZ Register in >> + * the I/O space, and places this byte in the destination register Rd. >> This >> + * instruction features a 100% space effective constant initialization >> or >> + * constant data fetch. The Program memory is organized in 16-bit words >> while >> + * the Z-pointer is a byte address. Thus, the least significant bit of >> the >> + * Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = >> 1). This >> + * instruction can address the entire Program memory space. The >> Z-pointer >> + * Register can either be left unchanged by the operation, or it can be >> + * incremented. The incrementation applies to the entire 24-bit >> concatenation >> + * of the RAMPZ and Z-pointer Registers. Devices with Self-Programming >> + * capability can use the ELPM instruction to read the Fuse and Lock >> bit value. >> + * Refer to the device documentation for a detailed description. This >> + * instruction is not available in all devices. Refer to the device >> specific >> + * instruction set summary. >> + */ >> +static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a) >> +{ >> + if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) { >> + return true; >> + } >> + >> + TCGv Rd = cpu_r[0]; >> + TCGv addr = gen_get_zaddr(); >> + >> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ >> + >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a) >> +{ >> + if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) { >> + return true; >> + } >> + >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv addr = gen_get_zaddr(); >> + >> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ >> + >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a) >> +{ >> + if (!avr_have_feature(ctx, AVR_FEATURE_ELPMX)) { >> + return true; >> + } >> + >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv addr = gen_get_zaddr(); >> + >> + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ >> + >> + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ >> + >> + gen_set_zaddr(addr); >> + >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +/* >> + * SPM can be used to erase a page in the Program memory, to write a >> page >> + * in the Program memory (that is already erased), and to set Boot >> Loader Lock >> + * bits. In some devices, the Program memory can be written one word at >> a time, >> + * in other devices an entire page can be programmed simultaneously >> after first >> + * filling a temporary page buffer. In all cases, the Program memory >> must be >> + * erased one page at a time. When erasing the Program memory, the >> RAMPZ and >> + * Z-register are used as page address. When writing the Program >> memory, the >> + * RAMPZ and Z-register are used as page or word address, and the R1:R0 >> + * register pair is used as data(1). When setting the Boot Loader Lock >> bits, >> + * the R1:R0 register pair is used as data. Refer to the device >> documentation >> + * for detailed description of SPM usage. This instruction can address >> the >> + * entire Program memory. The SPM instruction is not available in all >> devices. >> + * Refer to the device specific instruction set summary. Note: 1. R1 >> + * determines the instruction high byte, and R0 determines the >> instruction low >> + * byte. >> + */ >> +static bool trans_SPM(DisasContext *ctx, arg_SPM *a) >> +{ >> + /* TODO */ >> + if (!avr_have_feature(ctx, AVR_FEATURE_SPM)) { >> + return true; >> + } >> + >> + return true; >> +} >> + >> + >> +static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a) >> +{ >> + /* TODO */ >> + if (!avr_have_feature(ctx, AVR_FEATURE_SPMX)) { >> + return true; >> + } >> + >> + return true; >> +} >> + >> + >> +/* >> + * Loads data from the I/O Space (Ports, Timers, Configuration >> Registers, >> + * etc.) into register Rd in the Register File. >> + */ >> +static bool trans_IN(DisasContext *ctx, arg_IN *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv port = tcg_const_i32(a->imm); >> + >> + gen_helper_inb(Rd, cpu_env, port); >> + >> + tcg_temp_free_i32(port); >> + >> + return true; >> +} >> + >> + >> +/* >> + * Stores data from register Rr in the Register File to I/O Space >> (Ports, >> + * Timers, Configuration Registers, etc.). >> + */ >> +static bool trans_OUT(DisasContext *ctx, arg_OUT *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv port = tcg_const_i32(a->imm); >> + >> + gen_helper_outb(cpu_env, port, Rd); >> + >> + tcg_temp_free_i32(port); >> + >> + return true; >> +} >> + >> + >> +/* >> + * This instruction stores the contents of register Rr on the STACK. The >> + * Stack Pointer is post-decremented by 1 after the PUSH. This >> instruction is >> + * not available in all devices. Refer to the device specific >> instruction set >> + * summary. >> + */ >> +static bool trans_PUSH(DisasContext *ctx, arg_PUSH *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + >> + gen_data_store(ctx, Rd, cpu_sp); >> + tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); >> + >> + return true; >> +} >> + >> + >> +/* >> + * This instruction loads register Rd with a byte from the STACK. The >> Stack >> + * Pointer is pre-incremented by 1 before the POP. This instruction is >> not >> + * available in all devices. Refer to the device specific instruction >> set >> + * summary. >> + */ >> +static bool trans_POP(DisasContext *ctx, arg_POP *a) >> +{ >> + /* >> + * Using a temp to work around some strange behaviour: >> + * tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); >> + * gen_data_load(ctx, Rd, cpu_sp); >> + * seems to cause the add to happen twice. >> + * This doesn't happen if either the add or the load is removed. >> + */ >> + TCGv t1 = tcg_temp_new_i32(); >> + TCGv Rd = cpu_r[a->rd]; >> + >> + tcg_gen_addi_tl(t1, cpu_sp, 1); >> + gen_data_load(ctx, Rd, t1); >> + tcg_gen_mov_tl(cpu_sp, t1); >> + >> + return true; >> +} >> + >> + >> +/* >> + * Exchanges one byte indirect between register and data space. The >> data >> + * location is pointed to by the Z (16 bits) Pointer Register in the >> Register >> + * File. Memory access is limited to the current data segment of 64KB. >> To >> + * access another data segment in devices with more than 64KB data >> space, the >> + * RAMPZ in register in the I/O area has to be changed. The Z-pointer >> Register >> + * is left unchanged by the operation. This instruction is especially >> suited >> + * for writing/reading status bits stored in SRAM. >> + */ >> +static bool trans_XCH(DisasContext *ctx, arg_XCH *a) >> +{ >> + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { >> + return true; >> + } >> + >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv t0 = tcg_temp_new_i32(); >> + TCGv addr = gen_get_zaddr(); >> + >> + gen_data_load(ctx, t0, addr); >> + gen_data_store(ctx, Rd, addr); >> + tcg_gen_mov_tl(Rd, t0); >> + >> + tcg_temp_free_i32(t0); >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +/* >> + * Load one byte indirect from data space to register and set bits in >> data >> + * space specified by the register. The instruction can only be used >> towards >> + * internal SRAM. The data location is pointed to by the Z (16 bits) >> Pointer >> + * Register in the Register File. Memory access is limited to the >> current data >> + * segment of 64KB. To access another data segment in devices with more >> than >> + * 64KB data space, the RAMPZ in register in the I/O area has to be >> changed. >> + * The Z-pointer Register is left unchanged by the operation. This >> instruction >> + * is especially suited for setting status bits stored in SRAM. >> + */ >> +static bool trans_LAS(DisasContext *ctx, arg_LAS *a) >> +{ >> + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { >> + return true; >> + } >> + >> + TCGv Rr = cpu_r[a->rd]; >> + TCGv addr = gen_get_zaddr(); >> + TCGv t0 = tcg_temp_new_i32(); >> + TCGv t1 = tcg_temp_new_i32(); >> + >> + gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ >> + tcg_gen_or_tl(t1, t0, Rr); >> + >> + tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */ >> + gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ >> + >> + tcg_temp_free_i32(t1); >> + tcg_temp_free_i32(t0); >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +/* >> + * Load one byte indirect from data space to register and stores and >> clear >> + * the bits in data space specified by the register. The instruction can >> + * only be used towards internal SRAM. The data location is pointed to >> by >> + * the Z (16 bits) Pointer Register in the Register File. Memory access >> is >> + * limited to the current data segment of 64KB. To access another data >> + * segment in devices with more than 64KB data space, the RAMPZ in >> register >> + * in the I/O area has to be changed. The Z-pointer Register is left >> + * unchanged by the operation. This instruction is especially suited for >> + * clearing status bits stored in SRAM. >> + */ >> +static bool trans_LAC(DisasContext *ctx, arg_LAC *a) >> +{ >> + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { >> + return true; >> + } >> + >> + TCGv Rr = cpu_r[a->rd]; >> + TCGv addr = gen_get_zaddr(); >> + TCGv t0 = tcg_temp_new_i32(); >> + TCGv t1 = tcg_temp_new_i32(); >> + >> + gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ >> + /* t1 = t0 & (0xff - Rr) = t0 and ~Rr */ >> + tcg_gen_andc_tl(t1, t0, Rr); >> + >> + tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */ >> + gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ >> + >> + tcg_temp_free_i32(t1); >> + tcg_temp_free_i32(t0); >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +/* >> + * Load one byte indirect from data space to register and toggles bits >> in >> + * the data space specified by the register. The instruction can only >> be used >> + * towards SRAM. The data location is pointed to by the Z (16 bits) >> Pointer >> + * Register in the Register File. Memory access is limited to the >> current data >> + * segment of 64KB. To access another data segment in devices with more >> than >> + * 64KB data space, the RAMPZ in register in the I/O area has to be >> changed. >> + * The Z-pointer Register is left unchanged by the operation. This >> instruction >> + * is especially suited for changing status bits stored in SRAM. >> + */ >> +static bool trans_LAT(DisasContext *ctx, arg_LAT *a) >> +{ >> + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { >> + return true; >> + } >> + >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv addr = gen_get_zaddr(); >> + TCGv t0 = tcg_temp_new_i32(); >> + TCGv t1 = tcg_temp_new_i32(); >> + >> + gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ >> + tcg_gen_xor_tl(t1, t0, Rd); >> + >> + tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */ >> + gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ >> + >> + tcg_temp_free_i32(t1); >> + tcg_temp_free_i32(t0); >> + tcg_temp_free_i32(addr); >> + >> + return true; >> +} >> + >> + >> +/* >> + * Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit >> 0 is >> + * loaded into the C Flag of the SREG. This operation effectively >> divides an >> + * unsigned value by two. The C Flag can be used to round the result. >> + */ >> +static bool trans_LSR(DisasContext *ctx, arg_LSR *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + >> + tcg_gen_andi_tl(cpu_Cf, Rd, 1); >> + >> + tcg_gen_shri_tl(Rd, Rd, 1); >> + >> + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, Rd, 0); /* Zf = Rd == 0 */ >> + tcg_gen_movi_tl(cpu_Nf, 0); >> + tcg_gen_mov_tl(cpu_Vf, cpu_Cf); >> + tcg_gen_mov_tl(cpu_Sf, cpu_Vf); >> + >> + return true; >> +} >> + >> + >> +/* >> + * Shifts all bits in Rd one place to the right. The C Flag is shifted >> into >> + * bit 7 of Rd. Bit 0 is shifted into the C Flag. This operation, >> combined >> + * with ASR, effectively divides multi-byte signed values by two. >> Combined with >> + * LSR it effectively divides multi-byte unsigned values by two. The >> Carry Flag >> + * can be used to round the result. >> + */ >> +static bool trans_ROR(DisasContext *ctx, arg_ROR *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv t0 = tcg_temp_new_i32(); >> + >> + tcg_gen_shli_tl(t0, cpu_Cf, 7); >> + tcg_gen_andi_tl(cpu_Cf, Rd, 1); >> + tcg_gen_shri_tl(Rd, Rd, 1); >> + tcg_gen_or_tl(Rd, Rd, t0); >> + >> + gen_rshift_ZNVSf(Rd); >> + >> + tcg_temp_free_i32(t0); >> + >> + return true; >> +} >> + >> + >> +/* >> + * Shifts all bits in Rd one place to the right. Bit 7 is held >> constant. Bit 0 >> + * is loaded into the C Flag of the SREG. This operation effectively >> divides a >> + * signed value by two without changing its sign. The Carry Flag can be >> used to >> + * round the result. >> + */ >> +static bool trans_ASR(DisasContext *ctx, arg_ASR *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv t0 = tcg_temp_new_i32(); >> + >> + /* Cf */ >> + tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */ >> + >> + /* op */ >> + tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */ >> + tcg_gen_shri_tl(Rd, Rd, 1); >> + tcg_gen_or_tl(Rd, Rd, t0); >> + >> + gen_rshift_ZNVSf(Rd); >> + >> + tcg_temp_free_i32(t0); >> + >> + return true; >> +} >> + >> + >> +/* >> + * Swaps high and low nibbles in a register. >> + */ >> +static bool trans_SWAP(DisasContext *ctx, arg_SWAP *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv t0 = tcg_temp_new_i32(); >> + TCGv t1 = tcg_temp_new_i32(); >> + >> + tcg_gen_andi_tl(t0, Rd, 0x0f); >> + tcg_gen_shli_tl(t0, t0, 4); >> + tcg_gen_andi_tl(t1, Rd, 0xf0); >> + tcg_gen_shri_tl(t1, t1, 4); >> + tcg_gen_or_tl(Rd, t0, t1); >> + >> + tcg_temp_free_i32(t1); >> + tcg_temp_free_i32(t0); >> + >> + return true; >> +} >> + >> + >> +/* >> + * Sets a specified bit in an I/O Register. This instruction operates on >> + * the lower 32 I/O Registers -- addresses 0-31. >> + */ >> +static bool trans_SBI(DisasContext *ctx, arg_SBI *a) >> +{ >> + TCGv data = tcg_temp_new_i32(); >> + TCGv port = tcg_const_i32(a->reg); >> + >> + gen_helper_inb(data, cpu_env, port); >> + tcg_gen_ori_tl(data, data, 1 << a->bit); >> + gen_helper_outb(cpu_env, port, data); >> + >> + tcg_temp_free_i32(port); >> + tcg_temp_free_i32(data); >> + >> + return true; >> +} >> + >> + >> +/* >> + * Clears a specified bit in an I/O Register. This instruction operates >> on >> + * the lower 32 I/O Registers -- addresses 0-31. >> + */ >> +static bool trans_CBI(DisasContext *ctx, arg_CBI *a) >> +{ >> + TCGv data = tcg_temp_new_i32(); >> + TCGv port = tcg_const_i32(a->reg); >> + >> + gen_helper_inb(data, cpu_env, port); >> + tcg_gen_andi_tl(data, data, ~(1 << a->bit)); >> + gen_helper_outb(cpu_env, port, data); >> + >> + tcg_temp_free_i32(data); >> + tcg_temp_free_i32(port); >> + >> + return true; >> +} >> + >> + >> +/* >> + * Stores bit b from Rd to the T Flag in SREG (Status Register). >> + */ >> +static bool trans_BST(DisasContext *ctx, arg_BST *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + >> + tcg_gen_andi_tl(cpu_Tf, Rd, 1 << a->bit); >> + tcg_gen_shri_tl(cpu_Tf, cpu_Tf, a->bit); >> + >> + return true; >> +} >> + >> + >> +/* >> + * Copies the T Flag in the SREG (Status Register) to bit b in register >> Rd. >> + */ >> +static bool trans_BLD(DisasContext *ctx, arg_BLD *a) >> +{ >> + TCGv Rd = cpu_r[a->rd]; >> + TCGv t1 = tcg_temp_new_i32(); >> + >> + tcg_gen_andi_tl(Rd, Rd, ~(1u << a->bit)); /* clear bit */ >> + tcg_gen_shli_tl(t1, cpu_Tf, a->bit); /* create mask */ >> + tcg_gen_or_tl(Rd, Rd, t1); >> + >> + tcg_temp_free_i32(t1); >> + >> + return true; >> +} >> + >> + >> +/* >> + * Sets a single Flag or bit in SREG. >> + */ >> +static bool trans_BSET(DisasContext *ctx, arg_BSET *a) >> +{ >> + switch (a->bit) { >> + case 0x00: >> + tcg_gen_movi_tl(cpu_Cf, 0x01); >> + break; >> + case 0x01: >> + tcg_gen_movi_tl(cpu_Zf, 0x01); >> + break; >> + case 0x02: >> + tcg_gen_movi_tl(cpu_Nf, 0x01); >> + break; >> + case 0x03: >> + tcg_gen_movi_tl(cpu_Vf, 0x01); >> + break; >> + case 0x04: >> + tcg_gen_movi_tl(cpu_Sf, 0x01); >> + break; >> + case 0x05: >> + tcg_gen_movi_tl(cpu_Hf, 0x01); >> + break; >> + case 0x06: >> + tcg_gen_movi_tl(cpu_Tf, 0x01); >> + break; >> + case 0x07: >> + tcg_gen_movi_tl(cpu_If, 0x01); >> + break; >> + } >> + >> + return true; >> +} >> + >> + >> +/* >> + * Clears a single Flag in SREG. >> + */ >> +static bool trans_BCLR(DisasContext *ctx, arg_BCLR *a) >> +{ >> + switch (a->bit) { >> + case 0x00: >> + tcg_gen_movi_tl(cpu_Cf, 0x00); >> + break; >> + case 0x01: >> + tcg_gen_movi_tl(cpu_Zf, 0x00); >> + break; >> + case 0x02: >> + tcg_gen_movi_tl(cpu_Nf, 0x00); >> + break; >> + case 0x03: >> + tcg_gen_movi_tl(cpu_Vf, 0x00); >> + break; >> + case 0x04: >> + tcg_gen_movi_tl(cpu_Sf, 0x00); >> + break; >> + case 0x05: >> + tcg_gen_movi_tl(cpu_Hf, 0x00); >> + break; >> + case 0x06: >> + tcg_gen_movi_tl(cpu_Tf, 0x00); >> + break; >> + case 0x07: >> + tcg_gen_movi_tl(cpu_If, 0x00); >> + break; >> + } >> + >> + return true; >> +} >> -- >> 2.17.2 (Apple Git-113) >> >> -- Best Regards, Michael Rolnik