
DUPEFS: Leaking Data Over the Network With
Filesystem Deduplication Side Channels

Andrei Bacs† Saidgani Musaev† Kaveh Razavi‡ Cristiano Giuffrida† Herbert Bos†

† VUSec, Vrije Universiteit Amsterdam ‡ ETH Zurich

Abstract
To reduce the storage footprint with increasing data vol-

umes, modern filesystems internally use deduplication to store
a single copy of a data deduplication record, even if it is used
by multiple files. Unfortunately, its implementation in today’s
advanced filesystems such as ZFS and Btrfs yields timing
side channels that can reveal whether a chunk of data has
been deduplicated. In this paper, we present the DUPEFS
class of attacks to show that such side channels pose an unex-
pected security threat. In contrast to memory deduplication
attacks, filesystem accesses are performed asynchronously to
improve performance, which masks any potential signal due
to deduplication. To complicate matters further, filesystem
deduplication is often performed at large granularities, com-
plicating high-entropy information leakage. To address these
challenges, DUPEFS relies on carefully-crafted read/write
operations that show exploitation is not only feasible, but that
the signal can be amplified to mount byte-granular attacks
over the network. We show attackers can leak sensitive data at
the rate of ∼1.5 bytes per hour in a end-to-end remote attack,
to leak a long-lived (critical) OAuth access token from the
access log file of the nginx web server running on ZFS/HDD.
Finally, we propose mitigations where read/write operations
exhibit the same time-domain behavior, irrespective of the
pre-existence of the data handled during the operation.

1 Introduction

Modern filesystems such as ZFS [9] and Btrfs [47] rely on
deduplication to reduce the storage footprint for achieving
scalable storage systems [17, 38, 59]. The idea is both simple
and attractive: if two files both contain some data that is ex-
actly the same, we can save storage space by storing the corre-
sponding data once and maintaining shared references for the
two files. Superficially, such functionality resembles its mem-
ory deduplication counterpart, where operating systems and
hypervisors reduce the memory footprint by merging pages
with the same content into a single shared copy-on-write

(COW) page. Unfortunately, memory deduplication presents
security risks as researchers have shown that it is possible to
leak even high-entropy data by detecting when memory is
shared [7, 10, 22]. In response, cloud providers and operating
system vendors have simply disabled memory deduplication
to stop these attacks [10, 29]. In contrast, filesystem dedupli-
cation is still commonly deployed everywhere [39, 55]. The
question we ask in this paper is whether similar or even more
significant security risks exist for filesystem deduplication.

At first sight, the answer appears to be an easy no. After
all, memory and filesystem deduplication may have the same
high-level objective and modus operandi, but their behavior is
fundamentally different. In particular, filesystem operations
tend to be asynchronous for efficiency. As an example, a write
to a file, regardless of deduplication, is first absorbed in mem-
ory and will not prompt a write to the disk until much later.
Asynchronous operations, achieved through many layers of
caching, invariably blind any deduplication-related signals.
Besides such fundamental differences, filesystem dedupli-
cation also differs in other important practical aspects. For
instance, to reduce overhead, the granularity of filesystem
deduplication (often as large as 128 KB) vastly exceeds that
of memory deduplication (typically 4 KB). For an attacker,
large deduplication granularity requires non-trivial massag-
ing when leaking data at a desired byte granularity. Due to
these complexities, state-of-the-art storage-based deduplica-
tion attacks are limited to exploiting cloud application-level
deduplication for cross-user file fingerprinting [25, 40].

In this paper, we present DUPEFS, a class of attacks show-
ing that, despite these challenges, exploiting inline filesystem
deduplication is feasible. To this end, we describe novel prim-
itives to leak data via filesystem deduplication and analyze
their properties. Using these primitives, we build a number
of DUPEFS attacks, including one leaking arbitrary data at
byte granularity. Moreover, we show that we can expand the
threat model of such fine-grained attacks from local-only (as
done by memory deduplication) to fully remote attacks. This
is possible since, in production systems, filesystems are often
shared between multiple remote parties, either directly (e.g.,

a shared file server), or indirectly (e.g., when multiple clients
cause a web server to log accesses). In addition, access times
to filesystem storage are generally higher than accesses to
memory, and, as we will show, even amenable to further am-
plification by an attacker aware of filesystem internals. This
enables remote attacks, where a malicious client leaks secret
data from another remote victim client across the network.

To craft DUPEFS primitives and obtain secret file data
of other users, the attacker generates a carefully-chosen se-
quence of file operations, specifically tailored to the target
filesystem’s low-level implementation. The attacks rely solely
on timing and storage information available to unprivileged
users. We demonstrate the practicality of the side channel with
concrete attacks against two popular filesystems, ZFS [9] and
Btrfs [47], from different vantage points: local (attacker’s
code on the victim machine), LAN (attacker across the local-
area network), and WAN (attacker across the Internet). For
instance, we present an end-to-end DUPEFS attack against
an nginx web server running on ZFS/HDD during off-hours.
In this scenario, we can leak a (critical) long-lived OAuth ac-
cess token from the server’s access log file over LAN or even
WAN at a rate of around 1.5 and 1 byte per hour, respectively.

Finally, we discuss possible mitigations. In particular, we
propose to drastically reduce the timing side channel by mak-
ing filesystem operations that interact with the deduplication
subsystem pseudo-constant-time. The goal is to eliminate
remote exploitability in a practical way, preserving space sav-
ings and avoiding a complete filesystem redesign.

Contributions. We make the following contributions:

• We analyze filesystem deduplication side channels and
show that despite the asynchronous disk accesses and
large deduplication granularities, attackers can mount
byte-level data leak attacks across the network.

• We introduce DUPEFS’s novel attack primitives and
demonstrate their feasibility in end-to-end attacks to leak
data even across the Internet.

• We describe and analyze mitigations for such attacks.

2 Background

A filesystem is the operating system component that controls
the storage and retrieval of data to and from storage devices.
Compared to DRAM, accessing storage devices is slow. To
hide the latency, modern filesystems use a number of opti-
mizations. In particular, deduplication finds identical copies
of data and stores them as a single shared data record of pre-
determined size. The duplicates are replaced by references
to the single record and thus the filesystem reduces the data
footprint. More broadly, deduplication is a generic optimiza-
tion that is used at different levels of the storage hierarchy,
including caches [35, 54], cloud services [5, 33], and most

Data Application

Filesystem
compute

identi er(Data)

Add

reference

Storage

device

Data

exists

Yes No Store

identi er(Data)

Figure 1: Write path with deduplication.

importantly, directly in the filesystems themselves [30, 45].
In this paper, we are concerned with the latter.

Basic write workflow. Figure 1 presents a high-level
overview of the steps performed by a deduplicating filesystem
for an application-issued write operation. Upon receiving data
from a client application, the filesystem calculates a unique
identifier for the data (e.g., by calculating a hash over the
content), which it checks against a database of existing identi-
fiers. If none of the existing identifiers match, the new data is
written to storage and the identifier added to the deduplication
database. If the data exists, the filesystem updates its metadata
with a new reference to the existing data and returns control to
the application without writing the data to the storage device.

Deduplication mode. In this paper, we are interested in inline
deduplication, where the filesystem automatically checks for
duplicates during the I/O operation—e.g., when data is writ-
ten. In contrast, offline (or out of band) deduplication is typi-
cally a manual process whereby a user runs a deduplication
utility explicitly. While inline deduplication introduces some
overhead with the identifier lookup, it is the deduplication
commonly used in production since, in case of duplication,
only a reference is immediately written to storage instead of
the duplicate data, leading to space and time savings.

Data identifiers. To identify the content of a deduplication
record, the filesystem uses a hash function. Some implementa-
tions use collision-resistant cryptographic hash functions such
as SHA-256, while others rely on faster hash functions that are
not collision-resistant, such as fletcher4 [19]. The same func-
tion used for data identification is also used to detect dupli-
cates by computing hashes of candidate data to write and com-
paring it with the existing deduplication records [16, 31, 45].
Since hashing may incur collisions, some implementations
include an additional step to verify that the data inside the
matching deduplication records is identical [9].

Deduplication tables. A deduplicating filesystem keeps a
history of previously written deduplication records to identify
future duplicates. To this end, the filesystem stores the hash
values of existing deduplication records as unique identifiers
in a data structure called the deduplication table which can
be kept in memory, on disk, or both. For inline deduplication,
the filesystem accesses the table for every write operation.

2

Deduplication granularity. Filesystems store a large amount
of data. Since the size of the deduplication table is propor-
tional to the total amount of data, filesystems perform dedupli-
cation at a granularity (i.e., record size) that is a multiple of the
data block size. As a result, a sufficient number of data blocks
must be written to the filesystem to reach the deduplication
record size before the deduplication checks happen.

3 Threat Model

We assume an attacker who has direct or indirect (possibly re-
mote) access to the same filesystem as a victim, and the filesys-
tem performs inline deduplication. We assume the filesystem
to be free of bugs and that the configuration as well as the
access control settings are all correct.

We consider different local/remote attack scenarios, with
the attacker colocated with the victim on a given machine
(local), across a local-area network (LAN), or across the In-
ternet (WAN). The attacker wants to obtain secret data from
the victim’s files, even though the file permissions prevent
direct access. In the local scenario, the attacker interacts with
the filesystem through attacker-controlled (unprivileged) pro-
grams that write to and read from the underlying storage using
low-level system calls such as write(), read(), sync(), fsync().
In the remote scenario, the attacker interacts with the filesys-
tem through a program that is not under the attacker control.
For example, in the case of a server program, this is possible
through valid requests that lead to data being written to stor-
age on the attacker’s or victim’s behalf. We assume there is no
limit to the number of I/O operations that can be performed
by running programs or by sending requests to a server pro-
gram. Remote attacks, unlike local ones, require control over
the victim’s actions to perform successful attacks, e.g., the
attacker forcing a victim web server to write a secret into a
log file on the remote filesystem. We will discuss additional
attack-specific assumptions in the corresponding sections.

4 Exploiting Filesystem Deduplication

In this section, we discuss two general primitives and the
challenges to build attacks over deduplicating filesystems. In
Section 7, we will discuss how to craft such primitives for
modern file systems such as Btrfs and ZFS.

4.1 Primitives

The timed write primitive. Figure 1 shows that inline dedu-
plication handles the writing of unique data differently from
existing data on the write path. The common path consists of
computing the data identifier and checking whether it is new.
If so, the filesystem inserts both the new identifier and the data
itself. In contrast, if the data existed already, it is sufficient
to update the metadata with a new reference to existing data,

which is considerably cheaper. This timing difference forms
the basis for our timed write primitive. Similar to the COW
timing primitive on memory deduplication [7, 10], this primi-
tive allows attackers to leak whether certain data is present on
the filesystem during a write operation. Unlike prior memory
deduplication attacks, building filesystem-based timed write
primitives is complicated, as we soon discuss.

The timed read primitive. Prior memory deduplication at-
tacks [10, 42] show one can detect whether a memory page is
deduplicated via a read-based cache timing attacks. However,
this approach is not generally applicable to filesystem dedu-
plication. Deduplicated data from different files end up in
distinct physical memory pages as the page cache in popular
operating systems such as Linux operates at the file level. To
craft a filesystem-based timed read primitive, we observe that
if a block of a file becomes deduplicated, its physical location
on the disk differs from its surrounding blocks. We use this
observation as a basis for our timed read primitive. Building
it faces certain challenges which we discuss next.

4.2 Challenges

Modern filesystems perform many optimizations to improve
performance and reliability, resulting in a number of chal-
lenges to craft our timing-based deduplication primitives.

C1. Performance. In filesystems, the I/O operations are
mostly asynchronous to hide the latency of the underlying
storage and other internal filesystem operations from client
applications. For this reason, filesystems cache data which
complicates the construction of a timing attack significantly.
As we shall see, asynchronous operations may necessitate
additional attack preparation steps that massage the cache
before measuring time or attempting synchronous I/O.

C2. Reliability. To ensure that the system is in a sane state
when it crashes, filesystems typically write metadata along
with the user data to ensure the filesystem can be restored to
a consistent state when catastrophe strikes. Even if data is
deduplicated, the metadata still needs to be written to disk,
which interferes with our timing channel. This makes building
reliable timed write primitives particularly challenging.

C3. Capacity. To perform deduplication efficiently, filesys-
tems need to maintain an in-memory digest of existing stored
data. Given that a large number of digests may introduce unac-
ceptable overhead, modern filesystems perform deduplication
only across many blocks that are either temporally or spa-
tially close to each other, clustered together in a deduplication
record. This complicates building our primitives in two ways.
First, detecting a deduplication event across many blocks is
not trivial, especially for the timed write primitive. Second,
the large deduplication granularity significantly increases the
entropy of any target secret deduplication record.

3

deduplication block size

attacker controlled data

secret data

secret data attacker controlled data

a

b

c

secret data

attacker controlled data

Figure 2: Leaking secret data using deduplication.

5 DUPEFS Overview

To mount DUPEFS attacks, we develop our general primi-
tives into exploitation techniques for three classes of attacks:
(i) data fingerprinting, (ii) data exfiltration, (iii) data leak.

5.1 Data fingerprinting
In a data fingerprinting attack, DUPEFS relies on the general
timed read/write primitives to reveal the presence of existing
known but inaccessible data, such as an inaccessible file of
another user. Attackers may use fingerprinting to discover
known but embarrassing/compromising content on the server,
for instance for extortion purposes. Prior work has shown that
timing the writes of a client application may be used for data
fingerprinting, but always under the assumption that the client
application plays an active role in the deduplication. That
is, the client sends data to a cloud application server only if
the server does not already have a copy of the data, yielding
a timing side channel on write operations [25, 40, 57]. Of
course, this is not the case with deduplicating filesystems
such as ZFS and BtrFS. DUPEFS shows that similar attacks
are still possible, without relying on client applications and
application-level deduplication in any way. DUPEFS exploits
deduplication performed entirely in the filesystem and is com-
pletely agnostic to the applications running on top of the
storage stack.

5.2 Data exfiltration
In a data exfiltration attack, DUPEFS relies on the general
timed read/write primitives to exfiltrate secret data from a
system (or sandbox). The idea is to allow two colluding parties
with direct/indirect access to the same system to communicate
over a stealthy covert channel. For instance, the parties can
use a small number of data blocks with predetermined values
to encode messages of a communication protocol [25]. The
parties can then exploit timing side channels to find which
message was written by the other party. DUPEFS’s covert
channel can be used to exfiltrate data over LAN or WAN.

5.3 Data leak
In a data leak attack, DUPEFS can leak secret data from a
remote system by relying on two exploitation techniques:

alignment probing and secret spraying. The former reduces
the entropy of a target secret and enables byte-granular attacks.
The latter amplifies the signal and enables remote attacks over
LAN/WAN. We first introduce such techniques, then present
our example end-to-end data leak attack scenario.

Alignment probing. Figure 2 shows how to exploit alignment
probing to leak secret data by carefully aligning known data
and then probing for parts of the secret spilled next to it in
the same deduplication record (Figure 2-a). By controlling
how the data is written to storage, the attacker can stretch
controlled data to fill the deduplication record minus one or
more bytes of secret data (Figure 2-b). Next, the attacker is-
sues multiple writes with possible guesses for the secret (now
low-entropy) record to probe for the unknown byte values
until she triggers deduplication (Figure 2-c). At that point, the
attacker uses the timed read/write primitive to detect dedu-
plication and hence the correct guess for the unknown byte
values. Finally, the attacker repeats the process with multiple
alignments until the entire secret is leaked. The attacker relies
on the ability to make many instances of the secret appear at
various offsets within chunks of otherwise known data. Com-
pared to alignment probing techniques used in prior work in
the context of memory deduplication [10], DUPEFS enables
such techniques within the filesystem, which is more chal-
lenging given the difficulty of enforcing controlled alignment
in the storage stack and the coarser block-level interface.

Secret spraying. With basic alignment probing, an attacker
can leak part of a secret by timing an I/O operation on a sin-
gle duplicated or non-deduplicated record. While this may be
sufficient for local attacks, remote attacks over LAN/WAN
require a stronger signal. To this end, DUPEFS relies on se-
cret spraying, a novel deduplication-based exploitation tech-
nique for signal amplification. The key idea is to spray candi-
date secret values over many deduplication records and issue
many writes for the corresponding guesses to exploit multiple
deduplication events at once. In particular, N/2 secret dedu-
plication records and N/2 probe deduplication records are
carefully crafted with targeted mutations to ensure an attacker
can time an I/O operation on N/2 deduplicated records (if the
guessed probe values are correct) or N non-deduplicated dedu-
plication records (otherwise). Using this technique, DUPEFS
can amplify the original number of target deduplication events
and thus the signal by a factor of N/2.

End-to-end attack. For our example end-to-end remote data
leak attack, we target secret data stored in the access log file
of a remote (nginx) web server running on top of ZFS/HDD.
We specifically target a Single Sign-on (SSO) scenario based
on the OAuth protocol [3], where a victim browser accesses
an attacker-controlled website with a hidden iframe that re-
peatedly triggers security-sensitive HTTP requests from the
victim’s browser to an SSO-based service running the ng-
inx web server. In particular, each request URL includes a
22-character OAuth access token, which is the target secret

4

stored in the web server’s access log file. DUPEFS relies on
the primitives and exploitation techniques introduced earlier
to repeatedly interact with the web server and leak the token.
Section 8 shows how we address all the aforementioned chal-
lenges to mount the attack over LAN or WAN. Before that, we
provide necessary internal information about ZFS and Btrfs
(Section 6), which we use to build the filesystem-specific
timed read/write primitives (Section 7).

6 Deduplication in Modern File Systems

In this section, we discuss how modern filesystems such as
ZFS and Btrfs perform basic I/O operations, with a focus
on deduplication. In practice, deduplication operates at the
granularity of multiple disk blocks, a unit that we generally
refer to as deduplication record, but that Btrfs calls a dedupe
block and ZFS calls record. To identify deduplication records,
these filesystems use a hash function, typically SHA-256,
and keep the metadata in hash tables, which, borrowing ZFS
terminology, we will refer to as deduplication table (DDT).

ZFS. The Zettabyte File System (ZFS) [9] is a mature transac-
tional copy-on-write filesystem that implements features such
as volume management, deduplication, data compression, and
snapshots. To support transactions, changes to on-disk data
are first inserted in a transaction queue and processed later.
Upon transaction completion, ZFS updates the metadata to re-
flect the changes and finalize the operation. ZFS implements
inline deduplication, hence checks for data uniqueness are on
the write path, as part of a transaction. ZFS keeps the dedu-
plication table in memory (for ease of access) and on the disk
(for reliability). A file in ZFS consists of aligned records of
128 KB in size and deduplication records are also 128 KB by
default. It may take multiple transactions to fill a record, but
when filled with data, the record becomes deduplicatable—
prompting ZFS to look up its hash in the DDT.

Btrfs. The B-tree filesystem (Btrfs) [1, 47] is a modern Linux
copy-on-write (COW) filesystem that implements features
similar to ZFS and uses B-trees along with COW semantics
to update the data on the disk. The B-trees are optimized
for COW semantics and contain both data and bookkeep-
ing information. The data in Btrfs are stored in extents. An
extent consists of contiguous, aligned, on-disk data blocks,
checksummed for integrity. Like ZFS, Btrfs is transactional.
It collects data block changes in memory until the number of
collected changes exceeds a threshold or a timeout occurs, at
which point it flushes the changes to a new location on the
disk. The filesystem state is kept in checkpoints that update
the superblock, while extents store metadata such as the file
creation checkpoint, the disk area corresponding to a file, the
logical offset, and the number of data blocks in the extent.
Deduplication in Btrfs works at the level of extents, which be-
come candidate deduplication records when their size reaches
the deduplication record size of 128 KB (default).

User

Kernel

Application

read()/write()

VFS

ZPL

DMUZIL

ARC

ZIO

disk

ZFS

w
ri
te

re
a
d

Figure 3: ZFS read/write paths

User

Kernel

Application

read()/write()

VFS

Block

allocator

Block grp

cache

I/O sched

disk

Btrfs

w
ri

te

re
a
d

Figure 4: Btrfs read/write paths

6.1 Writes in Deduplicating Filesystems

Write operations in modern filesystems can be either syn-
chronous or asynchronous. An asynchronous write operation
does not block the application, which can resume its execu-
tion as soon as the data reaches the kernel. Meanwhile, the
filesystem dispatches the operation through multiple layers of
buffering and writes the data to storage later. In contrast, syn-
chronous writes block and while the data still passes through
intermediary buffers, the control returns to the application
only after the data is written. When an application calls the
write syscall, the data is moved from the application’s buffers
to kernel space, in the page cache of the Virtual File System
(VFS), with its pages marked dirty. Next, the kernel dispatches
the operation to the specific filsystem (e.g., ZFS or Btrfs).

Writes in ZFS. The left-side of Figure 3 describes the data
path for such writes in ZFS. After placing the write in the
ZFS Intent Log (ZIL) on disk, the kernel returns from the
syscall. The write remains there until, at a later time, ZFS
processes the ZIL by passing the data to the ZFS I/O (ZIO)
layer and updating the deduplication table. In particular, ZFS
uses an on-disk ZIL for reliability and an in-memory ZIL for
efficiency. Write requests are committed to the on-disk ZIL in
the following cases: the write is synchronous, the application
calls the fsync syscall, or five seconds have elapsed. Finally,
to prevent applications from overwhelming the filesystem,
ZFS implements write throttling, which temporarily blocks
aggressive writers to process outstanding writes.

With respect to the challenges in Section 4.2, challenge
C1 stems from the ZIL introducing asynchronous behavior
even for synchronous writes as a performance optimization,
challenge C2 stems from metadata management in the ZIL
and deduplication table for reliability reasons, and challenge
C3 stems from the large 128 KB deduplication records that
ZFS uses for capacity reasons. Finally, write throttling and
ZIL flushing both introduce additional noise.

Writes in Btrfs. Figure 4 describes the equivalent data paths
in Btrfs, with the write operation passing through the dedupli-
cation checks when the filesystem writes the data to disk [13].

5

In the default filesystem settings [14], Btrfs deduplicates data
using the inline deduplication record size of 128 KB. After
looking up the identifier in the deduplication table, it writes
both data and metadata to disk if the data is new, or only the
metadata if the data already exists.

The extents in Btrfs are contiguous on-disk data blocks and
each file consists of one or more extents. In case of a large
write, only the full extents are candidates for deduplication,
while any remaining bytes become an extent with a smaller
size. If the application subsequently appends data to the file,
the new data is not merged with the small extent, but placed
in a new extent. Btrfs does not support modifying or splitting
extents and a write in an existing extent will trigger the cre-
ation of a new extent with the new data and an update of the
file indexing information. For instance, when an application
overwrites the first 100 bytes of a file, the copy-on-write be-
havior creates a new extent of one disk block which contains
the new 100 bytes plus the rest of the first disk block of the
original extent. When the file is read, Btrfs returns the first
disk block of the new extent while taking the remainder of
the data from the original extent.

With respect to the challenges identified in Section 4.2,
we see again that the asynchronous transaction introduces
challenge C1, the metadata handling for reliability introduces
challenge C2, and the large deduplication records introduce
challenge C3. Furthermore, partially filled extents, if any, and
alignment issues complicate the attack.

6.2 Reads in Deduplicating Filesystems

When the kernel handles a read syscall, it retrieves the data
either from the filesystem cache or from the disk.

Reads in ZFS. After the read syscall has passed through the
VFS layer and the ZFS Posix Layer, ZFS checks if the data
exists in the Adaptive Replacement Cache(ARC) and, if so
(right-hand side of Fig. 3), returns the data to the application.
Otherwise, it transfers control to the ZFS I/O (ZIO) layer
which retrieves the data from the disk.

Reads in Btrfs. In Btrfs, after the read syscall has passed
through the VFS layer, Btrfs performs a search in the “block
group cache”. In case of a miss, Btrfs retrieves the data from
the disk. As mentioned, Btrfs may create new, partially-filled
extents in case of file modifications and, in that case, the read
may access more extents than one would expect.

For both filesystems the COW behavior creates an on-disk
layout that is non-sequential for deduplicated data and typ-
ically sequential otherwise. Reading the contents of a file
with deduplicated data involves random accesses on the disk
which is usually measurably slower than sequential accesses.
However the partially filled extents that result from file modifi-
cations also incur non-sequential accesses and generate noise.

7 Attack Primitives

This section introduces the general timed write/read prim-
itives for ZFS and Btrfs to perform DUPEFS attacks. To
exploit the timing side channel, an attacker writes data to
the filesystem using carefully crafted patterns that massage
the filesystem into an exploitation-friendly state. In partic-
ular, to handle transactional behavior potentially delaying
write operations, the attacker performs multiple writes to flush
each transaction. To handle copy-on-write behavior and the
coarse deduplication granularity, the attacker writes a suf-
ficient amount of data to trigger deduplication checks. To
handle caching behavior, the attacker uses sync operations
to force a cache flush where possible (locally on Btrfs) or
massages the cache with enough I/O operations otherwise.
Finally, to handle concurrent operations from other applica-
tions, the attacker repeatedly measures filesystem operations
to confirm deduplication.

a b ctimed write

write(prepare_records)

time()

write(test_record)

time()

time()

write(test_record)

sync()

time()

write(test_record+pad)

time()

read(test_record)

time()

timed sync write timed read

Figure 5: DUPEFS attack primitives

Overview. Figure 5 details our attack primitives in pseu-
docode. Each primitive describes I/O operations on multiple
deduplication records to trigger deduplication checks. The
test deduplication record is the record of 128 KB (by default)
an attacker writes to the filesystem and then measures the im-
pact of the operation in the time domain (by timing the write
itself or subsequent operations). In the write operation, the test
deduplication record can be padded with other deduplication
records that help with filesystem massaging (e.g., flushing
caches), alignment probing, and secret spraying. Depending
on the attack, the content of the test deduplication record is
known (e.g., data fingerprinting) or mostly known except for,
say, 1 byte the attacker needs to guess (e.g., data leak).

In details, Figure 5-a presents a timed write primitive (avail-
able on ZFS). First, the attacker writes multiple controlled
deduplication records to the filesystem in a prepare phase.
This is to cause a transaction cache flush (absent sync support
in ZFS) and prepare alignment. Next, the attacker issues (and
times) a write of the test deduplication record.

Figure 5-b presents a timed synchronous write primitive
(available on Btrfs). First, the attacker issues a sync operation
to flush the caches. Next, the attacker issues (and times) a
write of the test deduplication record. This primitive is avail-
able only in exploitation scenarios where the attacker can
trigger sync operations. This is nontrivial in remote data leak
attacks, where the only (unlikely) option is to lure a victim
server program into issuing an explicit sync operation.

Figure 5-c presents a timed read primitive (available on
Btrfs), which can probe for deduplication events after the

6

fact. First, the attacker writes a test deduplication record (plus
padding) to the filesystem, which may trigger deduplication.
Next, the attacker reads back the same data. If deduplication
did happen, the (random-access) read will take longer than
the (sequential-access) read for the nondeduplicated case.

In the next section, we analyze the timing side channel for
the different primitives on an SSD (Corsair Force LS SSD
S9FM02.6) and a magnetic HDD (model ST1000). The latter
is obviously slower, but still a popular type of storage medium,
especially in server environments [6]. Unless otherwise noted,
we consider default configurations of ZFS and Btrfs, with a
deduplication record size of 128 KB. We repeat experiments
several times and find marginal deviations in results.

Timing differences on Btrfs. To verify the existence of the
timing side channel on Btrfs, we evaluate Btrfs running on
Linux (v4.20). In our experiments, we issue 500 synchronous
write operations (thanks to the Btrfs-supported sync) of iden-
tical (deduplicated) deduplication records and 500 write oper-
ations of unique deduplication records. We obtain an average
timing difference between deduplicated and unique write op-
erations of 0.57 ms for the SSD and 24.5 ms for the HDD.
Repeating the same experiment with asynchronous write oper-
ations leads to no statistically meaningful difference. As such,
we do not further consider this configuration in our analysis.
Nonetheless, this experiment confirms a realistic signal for
our (synchronous) Btrfs write primitive on Linux.

On the same setup, we issue 500 read operations for dedu-
plicated records and 500 read operations for nondeduplicated
records. We obtain an average timing difference between
deduplicated and nondeduplicated read operations of 0.7 ms
for the SSD and 17.22 ms for the HDD. This experiment con-
firms a realistic signal for our Btrfs read primitive on Linux.

Timing differences on ZFS. To verify the existence of the
timing side channel on ZFS, we first consider ZFS running
in its natural FreeBSD (10.4) habitat. In our experiments, we
perform asynchronous write operations using both identical
(i.e., deduplicatable) and unique records. We write enough
data in the 5 second time interval before the in-memory ZIL
is flushed to disk and measure the time to complete the indi-
vidual write operations.

We issue 500 write operations of identical (deduplicated)
records and 500 write operations of unique records. We ob-
tain an average timing difference between deduplicated and
unique write operations of 0.04 ms for the SSD and 2.6 ms
for the HDD. This experiment confirms a realistic signal for
our ZFS write primitive on FreeBSD. While the SSD signal
seems weak at first glance, this is just due to the larger default
transaction cache size on ZFS. This simply means we need a
larger number of writes for a strong signal. We confirm this
by repeating the SSD experiment with a smaller transaction
cache of 10 deduplication records and measuring a timing
difference of 1.23 ms.

Due to different licensing models (CDDL vs. GPL), ZFS

is not directly included in the Linux kernel. As a result, the
Linux implementation contains more software layers that col-
lectively dampen the signal for our timing side channel. To
confirm this intuition, we re-run our last experiment on Linux
(v4.20)-based ZFS and report an average timing difference be-
tween deduplicated and unique writes of 0.16 ms on HDD and
no statistically meaningful difference on SSD. Similarly, ZFS’
efficient read implementation does not yield a meaningful
signal on HDD or SSD. As such, we do not further consider
Linux/ZFS or ZFS-based read primitives in our analysis.

8 DUPEFS Exploitation

To illustrate the severity of DUPEFS, we exemplify attacks
for data fingerprinting, data exfiltration, and data leakage.

8.1 Data fingerprinting
We exemplify a data fingerprinting attack using our Btrfs-
based synchronous write primitive in a local exploitation
scenario1. A local unprivileged attacker seeks to detect the ex-
istence of an inaccessible file (or deduplication record within
a file) with known content. This is useful to detect specific
system binaries or configuration files and fingerprint vulner-
able programs running on the victim system. The attacker
first prepares an oracle of target files with a size matching or
larger than the deduplication record size. Next, the attacker
runs an unprivileged program on the target system to repeat-
edly effect the timed write primitive for each file. Using the
syncfs and write syscalls, the attacker synchronously writes
each file to the victim filesystem and times the operation to
detect deduplication indicating the presence of the file.

8.2 Data exfiltration / covert channel
We exemplify a data exfiltration attack using our Btrfs-based
synchronous write primitive in a local exploitation scenario2.
A local unprivileged attacker (or “sender”) seeks to exfiltrate
data from a sandbox over a covert channel. The receiver is an
unprivileged colluding party running on the same system. For
simplicity, the two communicating parties run a basic covert
channel protocol and synchronize using the system clock.

First, the sender writes N deduplication records for each
bit of data to a file. Each record is filled with a predeter-
mined deduplication record prefix, a [0...N−1] deduplication
record ID, and the [0− 1] bit value. Next, the receiver uses
the timed write primitive on another file in order to test for
each unknown bit value across the same number of (N) dedu-
plication records. The receiver uses the same record format as
the sender and tests for 0-bit deduplication records. A signal
(or its absence) determines the transfer of a 0-bit (1-bit) value.

1We have also reproduced the attack on the ZFS write primitive
2We have also reproduced the attack on the ZFS write primitive

7

After the receiver has stored the leaked bits, the protocol
repeats with the sender writing new data-encoding deduplica-
tion records. For example, to exchange 1 byte of information
using N = 10, the sender writes 10∗8 deduplication records
to a file. The receiver then uses the timed write primitive with
10∗8 0-bit test deduplication records on a separate file. Fast
(deduplicating) writes on the first 10 deduplication records
signal a 0 value for the first bit, slow (nondeduplicating) writes
signal a 1 value for the second bit, and so on. We use multiple
(N) records to transfer a single bit to amplify the signal and
thus reduce the error rate of the covert channel. We use dif-
ferent deduplication record IDs to prevent the deduplication
records written by the sender (or receiver) from deduplicating
against themselves.

8.3 Remote data leak
We exemplify a data leak attack using our ZFS-based write
primitive in a remote exploitation scenario3. The attacker
seeks to leak an OAuth access token [3] from the access log
of a remote nginx web server running on ZFS/HDD 4. The ng-
inx web server hosts a website (e.g., https://someapp.com)
which the victim has granted access to an authenticated
third-party service (e.g., https://github.com) via long-
lived OAuth access tokens. At a high level, to implement
the attack, the attacker lures a victim browser into an attacker-
controlled website, which repeatedly (but transparently to
the user) forces the browser to access the nginx web server
with the secret OAuth access token encoded in the URL. As
such, the secret is repeatedly spilled on the nginx access log
stored on ZFS, enabling alignment probing and secret spray-
ing. Meanwhile, the attacker concurrently and independently
probes the nginx web server to leak the secret OAuth token
one byte at the time. With the token, the attacker can gain
access to the third-party service with the victim’s credentials.

Attack scenario. The end-to-end attack scenario in our ex-
ample has the following actors: the victim browser, a Single
Sign On (SSO) server, an SSO client running nginx on top
of ZFS, a third-party service the SSO client has been granted
access to on the victim’s behalf via SSO access tokens, and
a malicious website under the control of the attacker (say
https://attacker.com). Specifically, we target SSO access
tokens from the OAuth 2.0 implicit grant access scheme [3]
and assume such access tokens do not expire for the entire
duration of the attack. This is a sensible assumption, as many
third-party services use long-lived access tokens that never ex-
pire [2]. To mount the attack, the attacker-controlled website
includes a hidden iframe which repeatedly forces the browser
to connect to the SSO client with the secret OAuth token. This
is legal behavior, but defenses against clickjacking, X-Frame-
Options (XFO) in particular, may prevent such accesses from

3This primitive provided the best signal for remote attacks
4In our experiments, the HDD setup was necessary for a realistic signal

across the Internet

victim attacker.com SSO client

(nginx+ZFS)

SSO

Server

SSO auth

victim authenticated

. . .

GET attacker.com

JS + hidden iframe

iframe GET <domain>?access_token=wrong

Redirect to SSO server

SSO auth

Redirect to SSO client with access_token=correct

GET <domain>?access_token=correct

GET <domain>?access_token=probe

probes response

iframe GET <domain>?access_token=wrong

. . .
Figure 6: Data leak attack request sequence

Attacker

Victim

nginx

access.log

storage w ZFS

(1)

(4)
(2)

(3)

SSO client

(5)

(6)

Figure 7: Data flows
in the SSO client

an iframe. In our example attack scenario, we assume the
victim server does not offer XFO (which is very common
even in modern websites [26]), or the victim browser’s XFO
implementation is bypassable (e.g., Microsoft Edge [15]).

Attack workflow. Figure 6 presents all the requests ex-
changed between the victim browser, the attacker-controlled
website, the SSO client, and the SSO server before and during
the attack. Before the attack, the victim has already obtained
an OAuth access token for the third-party service by authenti-
cating with the SSO server. In the first stage of the attack, the
victim browser is lured to the attacker-controlled website. The
website serves the victim browser some attacker-controlled
JavaScript and a hidden iframe. The latter issues an HTTP
request to the SSO client using an incorrect access token.

Upon receiving the incorrect access token, the SSO client
redirects the iframe of the victim browser to the SSO server
to obtain a new valid access token. When the SSO server
receives the request, it simply acknowledges that the victim
browser is already authenticated and redirects the iframe again
to the original SSO client. The redirect causes the iframe to
issue an HTTP GET request with the correct (and secret)
OAuth access token to the SSO client. Since the access token
is encoded in the URL and the URL is logged in the access log
of the SSO client’s nginx web server by default, the request
ultimately spills the target secret on the victim ZFS filesystem.
At that point, the attacker can independently issue multiple
GET requests to the SSO client in order to probe for the secret
byte values of the access token. Meanwhile, the malicious
JavaScript from the victim browser can reload the iframe
and the entire sequence repeats, until the attacker obtains the
secret access token using the timed write primitive for ZFS
across the network.

Inside the SSO client. We now focus on the SSO client,
which runs the nginx web server and stores its access log
on the target ZFS filesystem. The requests that the attacker
directly or indirectly sends to the SSO client reach nginx,
which, in turn, uses system calls to write each HTTP request
to the access log. The data flows for the attacker and victim
inside the SSO client are shown as (1)-(3) and (4)-(6) in

8

https://someapp.com
https://github.com
https://attacker.com

Figure 7. The sequence of events above results in different
classes of attacker-controlled entries being spilled into the
access log: initial GET requests issued by the browser with
an incorrect access token, second-stage GET requests issued
by the browser with the correct access token, GET requests
issued and timed by the attacker to probe for the secret bytes.

The attacker carefully massages the workflow above to in-
terleave the different classes of GET requests and implement
the required primitives. In particular, the attacker first issues
a number of wrong-access-token requests causing nginx to
carefully align the access log entries. By massaging the align-
ment (starting from a baseline of known access log alignment
leaked with timed write primitive), the attacker can ensure the
next GET request with the correct access token fills an entire
access log deduplication record and spills the last byte of the
access token into the next deduplication record. The attacker
then performs additional GET requests to nginx to fill the
rest of the deduplication record. At that point, the attacker
can time specially-crafted GET requests to probe for each of
the possible byte values. Figure 9 presents the access log file
layout of nginx induced by the proposed attack patterns. Since
OAuth uses 22-character access tokens, the entire process is
repeated 22 times [3], leaking 1 byte value (from the base64
alphabet) of the access token per iteration.

Since we control both the browser- and the attacker-issued
requests to nginx (using controlled iframe refreshes or inde-
pendent client requests from an attacker-controlled machine),
we can repeat the individual steps many times. This enables
secret spraying for amplification (simply mutating the origi-
nal wrong-access-token requests to cause the browser to send
different variations of the correct-access-token requests to ng-
inx) and repeated alignment probing (shifting the alignment
by 1 byte every time) to leak all the bytes of the secret.

For every byte value of the secret access token probed, the
attacker runs a number of P probes per byte using the pattern
described in Figure 9 and measures the time to complete
the individual network requests. Whenever the in-memory
ZIL is flushed to disk a peak can be observed in the timing
measurements of the attacker as feedback directly from the
VFS layer. The attacker can analyze the real-time duration
of the ZIL flush by observing the peaks in real time. The
duration of the peak is larger when nondeduplicated data
is flushed than when there is deduplicated data. To amplify
the difference the attacker uses the secret spraying technique
to submit large amounts of data to ZIL. Figure 8 shows an
example of the width (duration) difference for 2 consecutive
peaks, for both the deduplicated and nondeduplicted case,
separated by a 5-second interval. The attacker picks the byte
value that produces the peak with a duration that is below a
threshold as the correct byte value of the secret access token.
The threshold is discovered empirically by the attacker (e.g.,
a peak duration of at least 0.5s to signal the correct byte value
for the data in Fig. 8) and depends on the network bandwidth.

To improve performance of the logging feature, nginx uses

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14

 0 1 2 3 4 5 6 7

T
im

e
 (

m
s
)

seconds(s)

NON-DEDUP

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14

 0 1 2 3 4 5 6 7

T
im

e
 (

m
s
)

seconds(s)

DEDUP

Figure 8: Dedup vs non-dedup peaks: the duration differs noticeably

attacker data

dedup block(128KB) 128KB

attacker controlled data

last byte of victim data

victim data

byte probed by attacker

Victim request Attacker requests

128KB

Attacker requests

victim data attacker data
attacker

data

Attacker

requests

Figure 9: Crafted attack patterns in the nginx access log

an intermediary buffer which collects I/O operations before
sending them to ZFS. The buffer is limited to 5 requests
irrespective of their size and works as a FIFO queue: once a
new request comes in, the oldest request is pushed out and
submitted to the VFS layer to be written to disk. To deal
with buffering, the attacker floods the intermediary buffer and
controls when the write operation (including deduplication
checks) is performed. In fact, nginx’ use of the intermediary
buffer helps the attacker, as it is easier to control alignment
(within the buffer) and generate single large writes.

Note that the attacker controls most of the data that is writ-
ten to the log, namely: the url of the requested resource, the
user agent field, the request body, etc., which allows the at-
tacker to reduce the entropy of probing to that of the secret.
Some data, such as the timestamp, is not directly controlled
by the attacker. However, the attacker learns it, at second gran-
ularity, from the Date header field in the HTTP reply—which
is mandatory according to RFC2616. Based on the acquired
timestamps, the attacker can synchronize the requests with
the server, eliminating entropy.

9 Evaluation

We evaluate our DUPEFS attacks on a system equipped with
an Intel Core i5-8250U CPU (4 CPU cores), 16 GB of RAM,
an SSD (Corsair Force LS SSD S9FM02.6), and a magnetic
HDD (Seagate ST1000). We run our target filesystem im-
plementations in their default settings (with a deduplication
record size of 128 KB) and on their natural operating sys-
tem platforms, namely FreeBSD (10.4) for ZFS and Linux
(v4.20) for Btrfs. ZFS, in particular, uses the default amount

9

Table 1: File fingerprinting

File Type Size Success
config-4.11.3-200.fc25.x86_64 text 181 KB 70%
lena_color.gif binary 223 KB 55%
libz3.so binary 22 MB 99%
x86_64-redhat-linux-c++ binary 1 MB 99%

Table 2: Covert channel

N Bit errors Time BR BER I/O
20 13 375s 0.320 bps 10.83% 76.8MB
40 14 746s 0.160 bps 11.66% 153.6MB
60 12 1591s 0.075 bps 10.00% 230.4MB

100 6 1873s 0.064 bps 5.00% 384.0MB
120 3 2387s 0.050 bps 2.50% 460.8MB

of memory for dirty data (10% of the RAM size) and its reli-
ability configuration using sync=always, which ensures that
the in-memory ZIL is also saved to disk—enabling recovery
after a crash. We repeat all experiments multiple times on a
quiescent server and report the mean values.

9.1 Data Fingerprinting
We evaluate our data fingerprinting attack using the Btrfs-
based write primitive over HDD. We have reproduced these
experiments on SSDs and using the ZFS write primitive, ob-
serving similar results, which we omit for space reasons. For
our experiments, we consider an unprivileged attacker inter-
ested in probing for a number of sensitive files (larger than the
deduplication record size of 128KB) on the running sytem.

Table 1 presents our results. We consider 3 different binary
files (a picture, a shared library, and a binary executable) and
one text file (the kernel configuration file) for our analysis.
Note that, most of the contents of the kernel configuration
file is predictable, given that each line normally refers to a
configuration OPTION in one of the following 4 variants:

1. #CONFIG_OPTION is not set
2. CONFIG_OPTION=y
3. CONFIG_OPTION=m
4. CONFIG_OPTION=n

DUPEFS reliably figerprints individual (128 KB) fragments
of the target files. The table presents success rates for finger-
printing the entire file. DUPEFS can reliably fingerprint the
target data except the last sub-128 KB chunk of a file. Thus
the small (181 KB and 223 KB) files have lower success rates.

9.2 Data Exfiltration
We now evaluate our data exfiltration attack, again using the
Btrfs-based write primitive over HDD. As we shall see, other
configurations again yield comparable results. For our ex-
periments, we consider two unprivileged colluding parties
running on the same machine. Both parties exchange infor-
mation using the covert channel protocol introduced earlier.

Table 3: LAN 1 byte data leak

Success Attack time/byte Probes/byte val I/O
50% 19.2 min 200 4.9 GB
80% 25.6 min 300 7.3 GB
92% 42.6 min 400 9.8 GB
96% 78.9 min 800 19.6 GB

Table 4: WAN 1 byte data leak

Success Attack time/byte Probes/byte val I/O
64% 24.5 min 200 4.9 GB
87% 38.4 min 300 7.3 GB
94% 59.7 min 400 9.8 GB
94% 110.9 min 800 19.6 GB

To evaluate the channel, we transfer chunks of 15 bytes from
the sender to the receiver, measuring the bit rate and bit error
rate. We repeat the measurements for different numbers of
deduplication records (N, determining the number of probes
per bit) to investigate the throughput/reliability tradeoff.

Table 2 presents our findings, including the amount of I/O
involved in the transfer. Our results show that the bit rate starts
from 0.32 bit/s for 20 probes per bit with a bit error rate of
10.83% and drops to 0.05 bit/s for 120 probes per bit with a bit
error rate of 2.5%. We also reproduced these results on SSDs
and using the ZFS write primitive, with a proportional signal,
matching the trend detailed in Section 7. Our results confirm
the covert channel can be used for realistic data exfiltration
attacks. Note that the bit errors in the covert channel can be
compensated by running a simple error correction protocol.

9.3 Data leak
We now evaluate our remote data leak attack, using the ZFS-
based write primitive. In many environments, this would be
the most worrying attack. The goal of the attacker is to leak
the access token, as used commonly on the web, from an SSO
client across the network. The SSO client runs nginx version
1.14.0_12,2 with the default settings, logging HTTP requests
to the access log, over ZFS/HDD. We consider 2 locations for
the attacker: one where the attacker is on a wide area network
(WAN), far from the server, and one where the attacker is
in the same local network (LAN). In the WAN attack, the
attacker is located 12 hops away from the victim with an RTT
of 2 ms, measured using traceroute with TCP SYN probes. In
the LAN scenario, the attacker is located 1 hop away from the
victim with an RTT of 0.1ms. The attacker probes for OAuth
secrets of 22 bytes encoded in base64.

To evaluate the attack success rate and attack time, we vary
the number of probes per byte value from 200 to 800. Tables 3
and 4 present the success rate (out of 50 attempts) and the
total attack time for 1 byte in a LAN and WAN setting.

LAN attack. Table 3 presents the success rate to discover 1
byte over a LAN, the time needed to leak 1 byte given the
number of probes/byte value used, and the amount of I/O

10

(in GB) used in this attack scenario. The attacker can tune
the attack to obtain a desired attack performance-reliability
tradeoff. Given a success rate of 92%, the attacker, using the
configuration of 400 probes/byte value, leaks 1 byte over the
network in roughly 42 min and the full 22-character OAuth
access token in around 15 hours.While high success rates
require substantial amounts of I/O, such attacks are already
within reach of attackers today and will be even more so as
the speed of file systems and networks increases.

WAN attack. Table 4 presents the success rate and time
needed to guess 1 byte over a WAN, given the number of
probes per byte value used, and the corresponding amount of
I/O. As shown, the attacker has different options to select the
reliability-performance tradeoff for a desired success rate. For
example, for a success rate of 94%, the attacker can use 400
probes/byte value, resulting in approx 1h to leak 1 byte and
around 21h to leak the full 22-character OAuth access token.

Noise. As well-established in literature [18, 20, 21, 42], the
signal progressively degrades in the presence of noise (i.e.,
concurrent I/O workloads). As a result, in noisy environments,
the attack, when not conducted during off-peak/idle times,
would require more repetitions and hence more time [20]. For
example, in a LAN setting, we generated concurrent load by
continuosly reading data from /dev/random and writing it to
disk. The attack used 800 probes per byte value. The attack
duration was ≈91 min (up from 78.9 min), the success rate
dropped to 90% (down from 96%), and the I/O performed
was 19.6 GB by the attacker and 6 GB by the script.

10 Mitigation

Similar to prior side-channel attacks, DUPEFS attacks are not
very stealthy and could be detected by an intrusion detection
system (IDS) monitoring I/O activity. Nonetheless, as ob-
served in literature [50], it is difficult to design such an IDS to
guarantee no false negatives and no false positives in practice.
As such, we now consider more principled mitigations that
can provide security-by-design guarantees.

An ideal implementation of filesystem deduplication would
save space and have constant-time behavior. In other words,
all the deduplication-aware I/O operations need to imple-
ment a same-behavior policy [42]. This essentially translates
to each operation traversing the storage stack in the same
amount of time regardless of whether data handled by the
operation has been deduplicated or not. In practice, a strict
same-behavior policy is neither desirable—as it would hurt
space savings—nor practical—as it would not only require
a redesign of the filesystem, but also of the physical storage
devices. Our goal here is instead to discuss a practical, pseudo-
same-behavior, mitigation strategy that drastically reduces
the (I/O-based) signal and deters remote attacks.

A mitigation for the write path would change the behavior
described in Figure 1 for the case when the deduplication

checks conclude that the data exist to update the reference and
then still perform the write operation to the disk. The duplicate
data is simply overwritten. To investigate the practicality of
this strategy, we have experimented with Btrfs implemented
in the Linux kernel (v4.20) [12].

Write path. In Btrfs, the submit_compressed_extents func-
tion contains the program point where the write code path
diverges in a deduplication-dependent way and induces dif-
ferent behavior in the time domain. Inside this function the
block allocation is followed by the dedupe_hash_hit check
which determines whether to finalize deduplication or else
write a nondeduplicated block to disk. To bring the implemen-
tation as close to the same-behavior policy as possible with
few code changes, we propose a patch to also perform the
write operation on the else branch of dedupe_hash_hit, simply
overwriting existing on-disk data. With a 5 LOC change, we
preserve space savings, only slow down deduplicated write
paths (mirroring the execution time of non-deduplicated write
paths), and eliminate the classic deduplicated write path side
channel. We have verified the proposed strategy is sufficient
to cripple the SSD/HDD signal for remote attacks.

To verify the performance impact of our proposed miti-
gation we ran microbenchmarks on a system with an SSD,
using 5,000 synchronous write operations with deduplicated
data (worst-case scenario)—with and without our mitigation
enabled. When the mitigation is enabled, the median perfor-
mance overhead is as low as 6.7% compared to the mitigation
disabled case. Note that performing redundant I/O reduces de-
vice longevity compared to the deduplication=on baseline
(but is equivalent to the deduplication=off baseline).

Read path. For this path, the mitigation has to enforce pseudo-
same-behavior for disk access patterns. For this purpose, we
need to patch the btrfs_readpages function, which reads the
extents of a file. Since a strict same-behavior policy would
require random access for each read operation (with possible
performance loss), our strategy here is to introduce time jitter
on the read path. We implemented this strategy with a 2 LOC
change. We have verified (by running similar microbench-
marks as done for the write path) that even low jitter values
are sufficient to cripple the SSD/HDD signal for remote at-
tacks, while introducing no observable performance impact.
Note that applying the same jitter-based mitigation on the
write path is, in contrast, ineffective (as we have experimen-
tally confirmed), since the write-path signal is too strong to
be efficiently eliminated using jitter.

Limitations. With less than 10 LOC changed in the large
Btrfs codebase, we believe our mitigation proposal is practi-
cal and has a chance at mainline inclusion. Nevertheless, we
emphasize these changes only seek to deter remote attacks
but cannot completely eradicate the signal for local attacks.
For instance, the write path mitigation only enforces a same-
behavior policy from the disk perspective. It does not eradi-
cate all the code differences on the write path. We believe this

11

limitation still offers a good compromise, since, on a local
setting, there are already more powerful side channels (e.g.,
cache side channels) to mount practical end-to-end attacks.

Another limitation is the mitigation operating only in the
time domain (similar to prior secure memory deduplication
systems [42]). There may be other side channels that escape
our same-behavior policy in other domains. For instance, tools
reporting free disk space information to unprivileged users
may re-enable very reliable (local) attacks. Free disk space or
similar leaky filesystem information should be restricted to
privileged users to deter practical side-channel attacks.

11 Related Work

Deduplication is used to efficiently store data in different
types of memory, ranging from desktop computers [4, 39] to
caches [35, 54] and cloud services [5, 33].

Deduplication Attacks. Many recent efforts investigate the
security of deduplication from both an offensive and defensive
perspective [27, 28, 34, 40, 44, 46]. Existing storage-based
attacks exploit deduplication in the cloud application layer,
mostly to detect the presence of particular files. Harnik et
al. [25] describe deduplication-based attacks to identify files
on the cloud side by observing the amount of data transferred
by the client. Mulazzani et al. [40] exploit the hashing mech-
anism of the Dropbox storage provider to obtain information
about the existence of a file. Access to it can be obtained
by providing the hash to the service. The attacks exploit the
application-level cross-user deduplication performed by Drop-
box. In contrast, DUPEFS targets low-level deduplication in
modern filesystems, enabling application- and cloud-agnostic
attacks leaking arbitrary byte-granular data.

Memory deduplication is a technique used by modern hy-
pervisors or operating systems to reduce main memory usage.
Memory deduplication attacks can locally fingerprint appli-
cations [22, 52], operating systems [43], or defeat ASLR [7].
Dedup Est Machina is a more advanced memory deduplica-
tion attack [10], which can read arbitrary data from the local
system’s memory using alignment probing and other memory-
specific exploitation techniques. In contrast, DUPEFS repur-
poses alignment probing to exploit filesystem deduplication
and combines it with secret spraying to enable byte-granular
data leak attacks across the network for the first time.

Deduplication Defenses. Rabotka [46] identifies 4 classes
of countermeasures against traditional storage-based dedupli-
cation attacks: encryption enforced by the client [37, 51]
or by a third party [56], noise added by probabilistic up-
loads [24, 25, 60], proof of ownership [24, 58], and obfusca-
tion enforced by an intermediate gateway in the network [27].
All these mitigations are only applicable to cloud application
scenarios where the client plays an active role in the dedupli-
cation. As such, they are ineffective against DUPEFS’ attacks
based on filesystem deduplication. VUSion [42] proposes a

memory deduplication redesign based on same-behavior (i.e.,
constant-time sensitive operations) and other principles to
cripple both side-channel and Rowhammer attacks. In con-
trast, we show enforcing a pseudo-same-behavior policy—
sufficient to deter remote attacks—is feasible with small
changes rather than a complete filesystem redesign.

Network Side-channel Attacks. Many prior efforts propose
remote network side-channel attacks. Early attacks leak sen-
sitive (cryptographic) data but only target vulnerable server
applications [8, 11, 41]. More recently, NetSpectre [48] and
NetCAT [32] exploit cache side channels over the network.
The former targets a vulnerable (or cooperative) server appli-
cation containing specific gadgets, while the latter assumes
specialized hardware (Intel DDIO and RDMA)—similar to
state-of-the-art network-based Rowhammer attacks [36, 53].
Page cache attacks [23] can exploit the operating system’s
page cache to implement a covert channel between cooperat-
ing parties over the network. In contrast to all these attacks,
DUPEFS can target arbitrary noncooperative applications run-
ning on top of a commodity hardware/software stack and can
leak sensitive byte-granular data over LAN/WAN. In con-
current work, Schwarzl et al. [49] showcase similar remote
attacks exploiting memory (rather than) storage deduplication
and operate byte-by-byte disclosure at comparable speeds.

12 Conclusion

In this paper, we showed that deduplication in commodity
filesystem implementations poses a nontrivial security threat.
Specifically, we presented evidence that such implementations
yield timing side channels that can be abused to remotely leak
arbitrary data at byte granularity. To substantiate our claims,
we presented DUPEFS, a class of filesystem deduplication-
based attacks for remote data fingerprinting, exfiltration, and
disclosure. Our end-to-end data leak attack demonstrates
DUPEFS can disclose sensitive data from a remote server
program even across the Internet. Finally, we investigated
mitigations and showed that implementing a pseudo-same-
behavior policy for all the I/O operations in the time domain
is practical without a full filesystem redesign.

Disclosure

We have disclosed our findings to the affected parties.

Acknowledgements

We thank our shepherd, Carl Waldspurger, and the anonymous
reviewers for their comments, as well as Ilias Diamantakos
for early signal testing. This work was supported by the EU’s
Horizon 2020 programme under grant agreement No. 825377
(UNICORE), Intel Corporation through the Side Channel
Vulnerability ISRA, and NWO through project “Intersect”.

12

References

[1] btrfs Wiki. https://btrfs.wiki.kernel.org/
index.php/Main_Page.

[2] Github: Creating a personal ac-
cess token for the command line.
https://help.github.com/en/github/authenticating-
to-github/creating-a-personal-access-token-for-the-
command-line.

[3] The oauth 2.0 authorization framework.
https://tools.ietf.org/html/rfc6749.

[4] Nitin Agrawal, William J. Bolosky, John R. Douceur,
and Jacob R. Lorch. A five-year study of file-system
metadata. ACM Trans. Storage, 2007.

[5] Frederik Armknecht, Jens-Matthias Bohli, Ghassan O.
Karame, and Franck Youssef. Transparent Data Dedu-
plication in the Cloud. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’15, pages 886–900, New York, NY, USA,
2015. ACM.

[6] Backblaze. Backblaze hard drive stats q2 2019.
https://www.backblaze.com/blog/hard-drive-
stats-q2-2019, 2019.

[7] Antonio Barresi, Kaveh Razavi, Mathias Payer, and
Thomas R. Gross. CAIN: Silently Breaking ASLR
in the Cloud. WOOT’15, 2015.

[8] Daniel J. Bernstein. Cache-timing attacks on AES. Tech-
nical report, The University of Illinois at Chicago, 2005.

[9] Jeff Bonwick, Matt Ahrens, Val Henson, Mark Maybee,
and Mark Shellenbaum. The zettabyte file sys-
tem. https://pdfs.semanticscholar.org/27f8/
1148ecbcd04dd97cebd717c8921e5f2a4373.pdf,
2003.

[10] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Dedup Est Machina: Memory Deduplication
as an Advanced Exploitation Vector. SP’16, 2016.

[11] David Brumley and Dan Boneh. Remote timing attacks
are practical. Computer Networks, 48(5):701–716, 2005.

[12] Btrfs Contributors. Linux fork for in-line dedupe.
https://github.com/littleroad/linux/tree/
dedupe_latest, 2019.

[13] btrfs Wiki. Dedupe design notes. https:
//btrfs.wiki.kernel.org/index.php/
Design_notes_on_dedupe.

[14] btrfs Wiki. User notes on dedupe.
https://btrfs.wiki.kernel.org/index.php/
User_notes_on_dedupe.

[15] Stefano Calzavara, Sebastian Roth, Alvise Rabitti,
Michael Backes, and Ben Stock. A tale of two headers:
A formal analysis of inconsistent click-jacking protec-
tion on the web. In USENIX Security, 2020.

[16] Feng Chen, Tian Luo, and Xiaodong Zhang. Caftl: A
content-aware flash translation layer enhancing the lifes-
pan of flash memory based solid state drives. In Pro-
ceedings of the 9th USENIX Conference on File and
Stroage Technologies, FAST’11, pages 6–6, Berkeley,
CA, USA, 2011. USENIX Association.

[17] Zhuan Chen and Kai Shen. Ordermergededup: Effi-
cient, failure-consistent deduplication on flash. In 14th
USENIX Conference on File and Storage Technologies
(FAST 16), pages 291–299, Santa Clara, CA, February
2016. USENIX Association.

[18] David Cock, Qian Ge, Toby Murray, and Gernot Heiser.
The last mile: An empirical study of timing channels on
seL4. CCS’14, 2014.

[19] John Fletcher. An arithmetic checksum for serial trans-
missions. IEEE Transactions on Communications,
30(1):247 – 252, January 1982.

[20] Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert
Bos, and Kaveh Razavi. ABSynthe: Automatic black-
box side-channel synthesis on commodity microarchi-
tectures. In NDSS, 2020.

[21] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos,
and Cristiano Giuffrida. ASLR on the Line: Practical
Cache Attacks on the MMU. NDSS’17.

[22] Daniel Gruss, David Bidner, and Stefan Mangard. Prac-
tical Memory Deduplication Attacks in Sandboxed
Javascript. ESORICS’15. 2015.

[23] Daniel Gruss, Erik Kraft, Trishita Tiwari, Michael
Schwarz, Ari Trachtenberg, Jason Hennessey, Alex
Ionescu, and Anders Fogh. Page cache attacks. In
CCS, 2019.

[24] Shai Halevi, Danny Harnik, Benny Pinkas, and Alexan-
dra Shulman-Peleg. Proofs of ownership in remote stor-
age systems. In Proceedings of the 18th ACM Confer-
ence on Computer and Communications Security, CCS
’11, 2011.

[25] D. Harnik, B. Pinkas, and A. Shulman-Peleg. Side Chan-
nels in Cloud Services: Deduplication in Cloud Storage.
IEEE Security Privacy, 8(6):40–47, November 2010.

[26] Mohammadreza Hazhirpasand, Mohammad Ghafari,
and Oscar Nierstrasz. Tricking johnny into granting
web permissions. In Proceedings of the Evaluation and
Assessment in Software Engineering, pages 276–281.
2020.

13

https://btrfs.wiki.kernel.org/index.php/Main_Page
https://btrfs.wiki.kernel.org/index.php/Main_Page
https://www.backblaze.com/blog/hard-drive-stats-q2-2019
https://www.backblaze.com/blog/hard-drive-stats-q2-2019
https://pdfs.semanticscholar.org/27f8/1148ecbcd04dd97cebd717c8921e5f2a4373.pdf
https://pdfs.semanticscholar.org/27f8/1148ecbcd04dd97cebd717c8921e5f2a4373.pdf
https://github.com/littleroad/linux/tree/dedupe_latest
https://github.com/littleroad/linux/tree/dedupe_latest
https://btrfs.wiki.kernel.org/index.php/Design_notes_on_dedupe
https://btrfs.wiki.kernel.org/index.php/Design_notes_on_dedupe
https://btrfs.wiki.kernel.org/index.php/Design_notes_on_dedupe
https://btrfs.wiki.kernel.org/index.php/User_notes_on_dedupe
https://btrfs.wiki.kernel.org/index.php/User_notes_on_dedupe

[27] O. Heen, C. Neumann, L. Montalvo, and S. Defrance.
Improving the resistance to side-channel attacks on
cloud storage services. In 2012 5th International Con-
ference on New Technologies, Mobility and Security
(NTMS), 2012.

[28] J. Hur, D. Koo, Y. Shin, and K. Kang. Secure data
deduplication with dynamic ownership management in
cloud storage. IEEE Transactions on Knowledge and
Data Engineering, 2016.

[29] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar.
Jackpot stealing information from large caches via huge
pages. Cryptology ePrint Archive, Report 2014/970,
2014. https://eprint.iacr.org/2014/970.

[30] Keren Jin and Ethan L. Miller. The effectiveness of
deduplication on virtual machine disk images. In Pro-
ceedings of SYSTOR 2009: The Israeli Experimental
Systems Conference, SYSTOR ’09, pages 7:1–7:12, New
York, NY, USA, 2009. ACM.

[31] Ricardo Koller and Raju Rangaswami. I/o deduplication:
Utilizing content similarity to improve i/o performance.
Trans. Storage, 6(3):13:1–13:26, September 2010.

[32] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano
Giuffrida, Herbert Bos, and Kaveh Razavi. Netcat: Prac-
tical cache attacks from the network. In S&P, 2020.

[33] W. Leesakul, P. Townend, and J. Xu. Dynamic Data
Deduplication in Cloud Storage. In 2014 IEEE 8th
International Symposium on Service Oriented System
Engineering, pages 320–325, 2014.

[34] Jin Li, Xiaofeng Chen, Fatos Xhafa, and Leonard Barolli.
Secure deduplication storage systems supporting key-
word search. J. Comput. Syst. Sci., 2015.

[35] Wenji Li, Gregory Jean-Baptise, Juan Riveros, Giri
Narasimhan, Tony Zhang, and Ming Zhao. Cachededup:
In-line deduplication for flash caching. In 14th USENIX
Conference on File and Storage Technologies (FAST
16), pages 301–314, Santa Clara, CA, 2016. USENIX
Association.

[36] Moritz Lipp, Misiker Tadesse Aga, Michael Schwarz,
Daniel Gruss, Clémentine Maurice, Lukas Raab, and
Lukas Lamster. Nethammer: Inducing rowhammer
faults through network requests. arXiv preprint
arXiv:1805.04956, 2018.

[37] Jian Liu, N. Asokan, and Benny Pinkas. Secure dedupli-
cation of encrypted data without additional independent
servers. In Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’15, 2015.

[38] Dirk Meister, Andre Brinkmann, and Tim Süß. File
recipe compression in data deduplication systems. In
Presented as part of the 11th USENIX Conference on
File and Storage Technologies (FAST 13), pages 175–
182, San Jose, CA, 2013. USENIX.

[39] Dutch T. Meyer and William J. Bolosky. A study of
practical deduplication. Trans. Storage, 2012.

[40] Martin Mulazzani, Sebastian Schrittwieser, Manuel Lei-
thner, Markus Huber, and Edgar Weippl. Dark Clouds
on the Horizon: Using Cloud Storage As Attack Vector
and Online Slack Space. In Proceedings of the 20th
USENIX Conference on Security, SEC’11, pages 5–5,
Berkeley, CA, USA, 2011. USENIX Association.

[41] Michael Neve, Jean-Pierre Seifert, and Zhenghong
Wang. Cache time-behavior analysis on aes. Selected
Area of Cryptology, 2006.

[42] Marco Oliverio, Kaveh Razavi, Herbert Bos, and Cris-
tiano Giuffrida. Secure Page Fusion with VUsion.
SOSP’17.

[43] R. Owens and Weichao Wang. Non-interactive OS fin-
gerprinting through memory de-duplication technique
in virtual machines. IPCCC’11, 2011.

[44] P. Puzio, R. Molva, M. Önen, and S. Loureiro. Cloud-
edup: Secure deduplication with encrypted data for
cloud storage. In 2013 IEEE 5th International Con-
ference on Cloud Computing Technology and Science,
2013.

[45] Sean Quinlan and Sean Dorward. Venti: A new approach
to archival storage. In Proceedings of the Conference on
File and Storage Technologies, FAST ’02, pages 89–101,
Berkeley, CA, USA, 2002. USENIX Association.

[46] Vladimir Rabotka and Mohammad Mannan. An eval-
uation of recent secure deduplication proposals. J. Inf.
Secur. Appl., 2016.

[47] Ohad Rodeh, Josef Bacik, and Chris Mason. Btrfs: The
linux b-tree filesystem. Trans. Storage, 9(3):9:1–9:32,
August 2013.

[48] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon
Masters, and Daniel Gruss. Netspectre: Read arbitrary
memory over network. In ESORICS, 2019.

[49] Martin Schwarzl, Erik Kraft, Moritz Lipp, and Daniel
Gruss. Remote memory-deduplication attacks. In NDSS,
2022.

[50] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh,
Nagendra Modadugu, and Dan Boneh. On the Effective-
ness of Address-Space Randomization. In CCS, 2004.

14

https://eprint.iacr.org/2014/970

[51] Z. Sheng, Z. Ma, L. Gu, and A. Li. A privacy-protecting
file system on public cloud storage. In 2011 Interna-
tional Conference on Cloud and Service Computing,
2011.

[52] Kuniyasu Suzaki, Kengo Iijima, Toshiki Yagi, and
Cyrille Artho. Memory Deduplication As a Threat to
the Guest OS. EUROSEC’11, 2011.

[53] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athana-
sopoulos, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. Throwhammer: Rowhammer attacks over the
network and defenses. In USENIX ATC, 2018.

[54] Yingying Tian, Samira M. Khan, Daniel A. Jiménez,
and Gabriel H. Loh. Last-level Cache Deduplication. In
Proceedings of the 28th ACM International Conference
on Supercomputing, ICS ’14, pages 53–62, New York,
NY, USA, 2014. ACM.

[55] W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y. Hua,
M. Fu, Y. Zhang, and Y. Zhou. A comprehensive study
of the past, present, and future of data deduplication.
Proceedings of the IEEE, 104(9):1681–1710, 2016.

[56] J. Xiong, Y. Zhang, S. Tang, X. Liu, and Z. Yao. Secure
encrypted data with authorized deduplication in cloud.
IEEE Access, 2019.

[57] Jia Xu, Ee-Chien Chang, and Jianying Zhou. Weak
Leakage-resilient Client-side Deduplication of En-
crypted Data in Cloud Storage. In Proceedings of the
8th ACM SIGSAC Symposium on Information, Computer
and Communications Security, ASIA CCS ’13, pages
195–206, New York, NY, USA, 2013. ACM.

[58] Jia Xu, Ee-Chien Chang, and Jianying Zhou. Weak
leakage-resilient client-side deduplication of encrypted
data in cloud storage. In Proceedings of the 8th ACM
SIGSAC Symposium on Information, Computer and
Communications Security, ASIA CCS ’13, 2013.

[59] Yucheng Zhang, Wen Xia, Dan Feng, Hong Jiang,
Yu Hua, and Qiang Wang. Finesse: Fine-grained fea-
ture locality based fast resemblance detection for post-
deduplication delta compression. In 17th USENIX Con-
ference on File and Storage Technologies (FAST 19),
pages 121–128, Boston, MA, February 2019. USENIX
Association.

[60] P. Zuo, Y. Hua, C. Wang, W. Xia, S. Cao, Y. Zhou, and
Y. Sun. Mitigating traffic-based side channel attacks
in bandwidth-efficient cloud storage. In 2018 IEEE
International Parallel and Distributed Processing Sym-
posium (IPDPS), 2018.

15

	Introduction
	Background
	Threat Model
	Exploiting Filesystem Deduplication
	Primitives
	Challenges

	DupeFS Overview
	Data fingerprinting
	Data exfiltration
	Data leak

	Deduplication in Modern File Systems
	Writes in Deduplicating Filesystems
	Reads in Deduplicating Filesystems

	Attack Primitives
	DupeFS Exploitation
	Data fingerprinting
	Data exfiltration / covert channel
	Remote data leak

	Evaluation
	Data Fingerprinting
	Data Exfiltration
	Data leak

	Mitigation
	Related Work
	Conclusion

