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Abstract 
 
TrulyProtect [1], Microsoft device guard [2], SGX[3] and others use the Hypervisor as a 

security technology. ARM's Hypervisor is a virtualization extension technology [4]. As 

ARM architecture is widely deployed in the mobile, homeland security, IoT, autonomous 

cars and other industries  We present a method to apply TrulyProtect thin Hypervisor 

technology as a generic security solution independent of the operating system and 

architecture. In this paper we will introduce TrulyProtect thin Hypervisor to the ARM 

platform and provide a performance benchmark. 

 

 
    

Introduction 
 
TrulyProtect thin Hypervisor is an implementation of the blue pill concept [5] for ARM. It 

is a thin layer of code which is invoked through traps (Exceptions in ARM) from a lower 

priority levels. 

The thin Hypervisor is implemented in an ARMv8-a 64bit processor. The Hypervisor can 

be considered as Trusted Execution Environment (TEE) in the sense that it offers an 

isolated execution environment of a decrypted code. 

 
 



This paper describes how an Truly’s Hypervisor is used to provide TEE. What are the 

downsides, what can be improved and what is expected next. 

 

ARMv8-a Hypervisor 
 
 
ARM architecture has four privileges levels, EL0,EL1,EL2 and EL3. EL0 privilege level 

is used to execute user space programs, EL1 is mostly used to execute kernel space, 

EL2 is used to execute Hypervisor code. EL3 , if used, contains the TrustZone firmware. 

  

The Hypervisor is a piece code which is loaded as a vector of execution entries. The 

vector address is kept in a register called VBAR_EL2. This vector holds 16 execution 

starting addresses, each of which is invoked when certain events take place.. 

 

 

Hypervisor installation 
 

When a processor boots the register VBAR_EL2 is not initialized. In order to fill it a code 

must execute in EL2 or EL3. For this reason, the Linux kernel is booted into EL2 mode 

and initializes VBAR_EL2 with an initial vector. This vector main use is to provide the 

facility to be replaced with a new vector. In the Linux case, KVM installs its vector. Truly 

puts its own vector instead of KVM’s. 

. 

 

 

 

 

 

 
 



Hypervisor vector format 
 

ARMv8 architecture presents three exception vectors for each of the three privileged 

levels, for EL1,EL2 and EL3. They are identical in their formation. Each vector is 

composed from 16 entries, consolidated in 4 groups. The entries are not pointers to 

functions but the actual blocks of code so they are restricted in their size. 

The vector formation is depicted in the below Figure ( Figure 1). Truly implements only 

two entries. These entries are explained in detail later in this paper. 

  

The first four entries, or the first group are exceptions which are invoked whenever an 

exception takes place and the executing code was using the SP0 stack ( user space 

stack ) while it was executing in EL2 ( current EL). In this group Truly implements the 

first entry. 

  

The second entry that Truly implements is the first function of the third group ( at offset 

0x400 ). This function is invoked whenever a user calls HVC (a hypervisor call ) from a 

lower level, mainly EL1, or when a predefined trap is being called from any other lower 

privilege level. 

To return from an exception the ERET command is used. 

 

 

 

 
 



 

 

Figure 1: EL2 Exception vector 
 

 

 

 

 
 



ARM’s Hypervisor memory explained 

 

ARMv8 Hypervisor is designed to run in a separate address space than the other levels. 

This means that EL2 code may use a different translation table [9] .This table is referred 

to by a register called TTBR0_EL2.  ARMv8 memory translation architecture defines 

two address space regimes – a single virtual address range and a two virtual address 

space ranges. 

  

1. The first regime is of 48 bits and it ranges from 0x0000000000000000 to 

0x0000FFFFFFFFFFFF. 

  

2. The second regime is a virtual address that ranges from 0x0000000000000000 to 

0x0000FFFFFFFFFFFF and another from 0xFFFF000000000000 to 

0xFFFFFFFFFFFFFFFF. 

  

EL1 translation regime is of the second type and it uses TTBR0_EL1 and TTBR1_EL1 

as translation tables. 

EL2 translation regime is of the first type. It uses TTBR0_EL2 register. This means that 

the address space of the Hypervisor cannot refer both to a Linux kernel address and a 

user space address at the same time so some modifications are made to support that ( 

ARMv8a-1 added support for that , known as VHE – virtual host extensions [7] ). This 

issue is discussed later in the paper. 

ARM defines an IPA (Indirect physical address) as the OA (output address) of stage 1 

translation and the IA (input address) of stage 2 translation. 

A code of an Hypervisor exception vector must be pre-configured and be aligned to 

2048 bytes. Also, the code must be mapped to the Hypervisor translation tables. To 

map any Hypervisor code in Linux we assign each function to a segment named 

hyp_text which is mapped to the Hypervisor translation tables during initialization.  This 

 
 



way, any C function prefixed by a “hyp_text” segment is mapped to the hypervisor and 

can be referenced and executed from the Hypervisor.   

  

But in-order to invoke a C function or access a global variable from the hypervisor the 

address must recalculated. As noted earlier, a kernel address cannot be accessed 

directly because of the single address space regime and thus these addresses are 

mapped to a certain offset =  0x4000000000. 

 

 
 
 
Figure 2: Translation regimes  
 
 
 
  

 
 



Related technologies 
 
Trust Zone 
  
ARMv8 presented [11] TrustZone as part of its architecture. TrustZone can be used in two 
distinct operational modes: 
 
1. A Monitor mode -  A separate operating system that runs concurrently with a 
generic operating system. The processor assigns time to the TrustZone operating 
system from time to time. 
 
2. A Passive library -  A monitor exception vector which is being activated through 
traps or SMC calls. 
It is possible to implement TrustZone as a virtual machine; However, TrustZone is 
designed to execute in an isolated environment in a higher privilege level than the 
hosting machine.  This way a bug in the hosting machine cannot be exploited while in 
the VM it is possible. 
  
Cells 
  
Cells [12] is a virtualization technology for mobile phones. It does not use a hypervisor but 
provides isolation of a namespace. It separates parts of the file system and it excels in 
low memory consumption. Cells runs on ARMv7.  
 
  

  

 
 



 

Truly Protect memory architecture  
 

IPA 

 
TrulyProtect sets a thin hypervisor that creates an IPA mapping during the kernel boot. 
The kernel is unaware that it moved from a single translation regime to a two stages 
translation regime. 
TrulyProtect defines the IPA as follows: IPA=PA. This equality applies only to 
addresses. Truly does not change the mapping but the access rights. For instance, a 
translation table in stage 1 may define a page to be readable and writable but in stage 2 
it may be only readable. This way a malicious user is prevented from accessing 
protected pages. 
  
In ARM, a page descriptor in a stage 2 table differs from stage 1 translation. In general, 
page attributes are divided to lower and upper parts.  Lower attributes are the lower 12 
bits, and the upper attributes are the top 16 bits. These differences makes it impossible 
to just copy page descriptors from stage1 to stage2.  
  
The starting address of the translation tables is cached in VTTBR0_EL2.  The memory 
that holds the tables is a page that does not need to be mapped to the hypervisor. The 
register VTTBR0_EL2 caches the physical address of the starting page.  
 

Memory Access  
 
Truly uses the Hypervisor’s translation table (referenced by TTBR0_EL2) to map a user 

space memory and a kernel space memory. 

At boot time, the initial exception vector is not activating the MMU. Later in the boot 

process the MMU is turned on. 

  

 
 



At boot Truly maps only the virtual machine state structure. This structure is cached in 

the TPIDR_EL2 register of each processor.  

Each time an encrypted process is loaded, it is essential to map parts of its code to the 

Hypervisor. User space code stack and global addresses must be mapped as they are 

without any additional offsets calculations because we do not want to modify the users 

program code to access addresses.  For example, if a user decrypted code accesses 

address 0x400100, this address must be mapped to the hypervisor translation table as 

it is, without an offset. 

  

However, since the memory accessed is both a user space memory and a kernel space 

memory, there can be address space collisions. 

  

User space address are in the range of 0x0000000000000000 to 

0x0000FFFFFFFFFFFF while kernel space addresses are in the range of 

0xFFFF000000000000 to 0xFFFFFFFFFFFFFFFF . TrulyProtect uses Linux KVM 

solution for accessing kernel space memory. Linux KVM sets all kernel memory 

addresses by adding 0x4000000000 to the addresses. So, for instance,  a user space 

address 0x400050000 can also be a kernel address 0x50000 mapped to the 

Hypervisor. 

  

The way we chose to solve this possible collision is by creating a so called “fake vmas”. 

A vma [8] is virtual contiguous address space that all of its pages share the same 

attributes and access rights. Each page in a fake vma has all of its permissions bits set 

to non-accessible.  This way we pre-allocate the addresses used by the Hypervisor *. 

 

 

 

 

* Fake VMAs are not implemented at the time of writing of this article.   

 
 



 

Protecting a program 
An encrypted is a program that was processed by TrulyProtect StaticAnalyzer[14]. The 
StaticAnalyzer replaces a designated function with the “brk #3 “command and adds the 
encrypted function code at the end of programs. The brk command is used by the 
debugger to generate an exception.  
  
For example, let us consider function for encrypting: 
  
int foo() { 

return 19; 
} 
  
  
We compile it with g++: 
  
_Z3foov(): 
  40bda8: 52800260   mov    w0, #0x13  // #19 
  40bdac: d65f03c0    ret 
  
  
And after processing it with the StaticAnalizer, all of the assembler commands are 
replaced by the brk assembler command. 
  
  
_Z3foov(): 
  40bda8: d4200060   brk #0x3 
  40bdac: d4200060   brk #0x3 
  
Figure 3: Padded Function 

  
The brk command causes an exception when the ninth bit (0x100) of the mdcr_el2 
register is set. And this bit is set only when an encrypted program is executed. 
  
During the time of the execution it would not be possible to set a breakpoint in any other 
program, this is because when the Hypervisor is trapped it must jump over the brk 

 
 



command or turn off the trap in the mdcr_el2 register. Thus, when trying to debug 
another program breakpoints will not work. This is one of the reasons we chose the brk 
command as it adds complexity of trying to debug the protected program.  
In x86 we chose the hlt command. There is no exact hlt command in ARM, the closest 
commands are wfi (wait for interrupt) and and wfe (wait for exception),which moves the 
processor to a sleep state and until  an exception or an interrupt happens. Though it is 
possible to use these commands they are extensively used by the Linux kernel. Each 
time a processor is put to sleep it uses these commands. So, if we trap wfi/wfe we 
change the expected behavior of the operating system. The Android kernel is a 
common example for which processors are turned off and on quite frequently. 
Another reason for choosing the mdcr is that it is an independent mechanism to 
generate a trap and it is independent from the interrupt controller. This way we reduce 
the overhead of processing virtual interrupts. 
Once the execution is completed then the ninth bit of mdcr_el2 register is turned off and 
one can debug programs regularly. 
 

Mapping a process to the Hypervisor 

 
As depicted in Figure 4, as soon as the encrypted program is detected, the pages that 
contain a copy of the encrypted function, the padded function and the fake vmas are 
mapped to the Hypervisor. The only memory allocation is the encrypted function so the 
memory footprint is the same size as padded function in pages granularity. 
 

 
 



 
 
 
 

Figure 4: Encrypted Process and Encrypted ELF  
 
 
 
In figure 5,we see that once the program counter (instruction pointer) reaches the brk 
(1) instruction then an exception takes place (2). By examining the syndrome register 
(3) the Hypervisor checks whether the exception is caused by a brk and if a Truly 
program caused it. If not then it exits. 
The verification of whether the program is Truly’s is done by checking if the ttbr0_el1 
holds the reference to the memory table of the protected process. In step 4 the 
Hypervisor decrypts the function on top of the padded code. In step 5 we make some 
preparations to jump to the decrypted code, mainly by setting the stack to the user 
space stack (SP0).  
 

 
 



 
Figure 5: Trap from EL0 to EL2 
 
In step 6 the Hypervisor actually starts executing the decrypted function code. It runs 
until the function ends or in the event of EL2 exception(7).  
 
In Figure 6 an exception took place in EL2. 
 
 
 

 
 



 
  
Figure 6: Trap from EL2 to EL2  
 
In step (8) an exception had taken place and the execution cannot continue in EL2. The 
Hypervisor puts back the padded code except for the command that caused the 
exception.  Then it sets elr_el2 to this address and ERETs. The elr_el2 register holds 
the address to return to after an ERET; 
  
At this point (9) the program continues to run until it executes the brk command once 
again(10). A common case is that the program runs some code in libc and then returns 
back to padded function. Once this happens the entire cycle starts again until the 
function finishes if any.  
  
 
 

Interrupts in EL2 
A Processor executing code in EL2 privilege level may be interrupted by peripheral 
devices or other processors. This means that the thin Hypervisor needs to handle FIQs 
or IRQs exceptions. But handling interrupts in EL2 is a complicated task.So it would be 
best to disable interrupts. Disabling interrupts altogether also means disabling 

 
 



exceptions and we cannot do that because the decrypted function code running in EL2 
must be able to fault into EL2. 
The best solution would be to disable interrupts only in EL2 while executing in EL2.   For 
this reason (and others which beyond the scope of this paper) the HCR_EL2.TGE (Trap 
General Exceptions) is zero.  When HCR_EL2.TGE is zero it means (Table D1-13 in 
[4]) that when a code executes in EL2 and the exception cannot be taken then the trap 
is put to pending mode. Once the processor changes to EL1 mode then the interrupt 
would be served. 
  
Disabling interrupts for long durations is considered a bad practice.  As noted before the 
thin Hypervisor maps only the encrypted code memory so that the code would run as 
less as possible in EL2. This way we reduce the amount of time we execute with 
interrupts disabled.  
 

Anti Reverse Engineering 
 
An attacker who wishes to examine the binary code may try to attach it a debugger or 
send a SIGSEGV signal to the process to generate a code dump. 
  
Attaching a debugger to the processes will not make the decrypted code observable 
because the decrypted function is executed in EL2 and as such cannot be accessed by 
the debugger. 
If the attacker will try to modify the padded function code by setting a breakpoint inside it 
this breakpoint will never be reached but will overrun by Hypervisor when decrypting the 
function. 
In general, it is not possible to debug TrulyProtect ARM programs because if a 
breakpoint is hit it would generate an exception to the Hypervisor; The hypervisor will 
set the program’s next instruction to be executed as the first instruction after the 
breakpoint and the program would run without stopping. 
  
If an attacker would try to disassemble the function he will see only the padded code. 
This is because the program is never decrypted when it does not run. 
  
If an attacker would try to core-dump the program by sending SIGSEGV signal then the 
signal will never reach the program when it runs the decrypted function. The program 
runs in EL2 outside the operating system and is not aware of any software signals. Only 

 
 



when the program exists EL2 it would process the SIGSEGV signal, but as shown 
previously in EL0 the program is always in its encrypted form.  
 
 
 

 

Keys Protection 

 
To protect the keys from an attacker we put the keys in registers that are accessible 
only from EL2 or EL3.If an attacker wishes to read and EL2 register he must access 
EL2 exception level. ARM architecture forbids direct access to a higher privilege level, 
for instance; trying to read or write to EL2 registers when executing in EL1 is an access 
violation. Also, TrulyProtect does not allow any code to replace its exception vector 
once it is set. 
  
The keys are expected to be available to the Hypervisor when an encrypted program 
runs. The origin of the keys is beyond the scope of this document.  
 
 

Processor State   
 
In a multiprocessors computer, a processor may move to a so-called deep sleep state 
by dropping to privilege level EL3. Unlike WFE/WFI this actually removes the processor 
from the operating system. When the operating system kernel decides to boot the 
processor back then it is important to set back VBAR_EL2 to Truly’s Hypervisor   

 
 



Miscellaneous  

Printing in EL2 
 
Any function that needs to be executed in EL2 privilege level must be mapped 
prematurely to the Hypervisor translation table. Many functions also use global variables 
so these variables must be mapped also. There are also variables which are 
dynamically allocated mapped and unmapped. To make the hypervisor accessible to 
generic routines like printk is too intrusive to the kernel code. For this reason, we’ve 
decided to implement el2_sprintf that would be executed in EL2 context but the actual 
printing would be performed in EL1 after exiting from EL2. Also, since sprintf format 
uses constant globals such as “foo foo %d” it means that all the read-only segment in 
the kernel must be mapped to the hypservisor. Due to this overhead, it is up to the 
programmer to choose whether he wants to el2_sprintf or not.  
  

Stack protector 
 
A stack protector is a gcc option that checks for stack corruptions. It adds a guard 
variable to a function. When a function is entered then the guard is initialized to some 
variable and when the function exists the guard is checked again. If the check fails then 
an error message is printed. 
The Linux kernel provides a stack protector configuration option.  When running a code 
in EL2 that executes function which is protected with a stack protector it would call 
functions that are not mapped to the Hypervisor. When this happens, the execution will 
fail. Failing when decrypting will crash the entire operating system. 
  
For this reason, it is not possible to compile the kernel with a stack protector.  
  
 
 

 

  

 
 



What Next  
    

Hardware 
 
It is not enough to boot the Linux Kernel on an ARMv8a to have an active Hypervisor. 
This is because the boot loader needs to run the kernel into EL2 [10]  and the kernel 
needs to fill VBAR_EL2 with an initial exception vector. 
At the moment Truly's technology runs on Hikey[9]  because Hikey’s bootloader was 
modified to boot into EL2.  Qualcomm Snapdragon SOMs do not boot into EL2 but into 
EL1.It is possible to set an hypervisor by accessing Qualcomm’s QSEE[13]  but this 
requires authentication from Qualcomm.  
 
 

Next Features 
 
 

Feature Description 

Virtual Interrupts It is essential to add support to VGIC. 

Threads Multi-threaded programs are not yet supported 

32  bit 32bit Programs over 64bit kernel are not yet supported. 

Thumb mode Thumb mode instructions are not yet supported 

Programming 
Languages 

Other programming languages than c and c++  such as Java 
are not yet supported, 

SMP SMP is not yet fully supported. If a process migrates from one 
processor to another then at the time of this writing it would 
probably crash or hang.  

 
 
 
 

 
 



BENCHMARKS 
 
We test the the IPA and TEE. The tests are conducted in a Hikey board [6]  . A Hikey is a 
small system on a chip ARM based computer manufactured by LeMaker.  It is ARM8a 
the boots the kernel into EL2 and can run kvm on ARM.  
 
 

SoC HiSilicon Kirin 620 

CPU ARM8a Cortex-A53 

CORES 8 Cores 

Frequency 1.2 GHz 

RAM 2GB 

RAP-TYPE LPDDR3 1.6 GHz 
 
The software used is: 
 

Linux Kernel 4.4.11 

Distribution Debian 

compiler gcc-linaro-4.9-2015.02-3-x86_64_aarch64-linux-gnu 
 
 
  
  
 
  

 
 



 

IPA 

This test measures the overhead of a two stage translation versys a one stage 
translation. The hardware used is Hikey and the test software is ramspeed.  The tests 
were conducted by two kernel with the same configuration.  
 
4.4.11 without truly 
4.4.11 + truly patches 
 
 
Single stage translation  
 
INTEGER   Copy: 2734.28 MB/s 
INTEGER   Scale: 1556.19 MB/s 
INTEGER   Add: 2604.85 MB/s 
INTEGER   Triad: 1471.42 MB/s 
--- 
INTEGER   AVERAGE:   2091.69 MB/s 
 
 
Two stage translation 
 
INTEGER   Copy: 2676.92 MB/s 
INTEGER   Scale: 1524.71 MB/s 
INTEGER   Add: 2536.69 MB/s 
INTEGER   Triad: 1441.91 MB/s 
INTEGER   AVERAGE:   2045.06 MB/s 
 
 

Conclusion 
It is easy to see that there is an overhead of 2% in favor of a single stage translation.  
 
  

 
 



  

Trusted Execution 

In theses tests we want to check the performance degradation of executing in TEE.  
 
 
Benchmark #1 : Execution and Decryption 
 
The test is an FFT code ( Fast Fourier function). We chose this routine because it traps 
to EL2 when first entered and then it traps to EL0 when it reaches its end.  There are no 
traps from EL2 to EL2 in this test.  
We devised two distinct versions of the hypervisor, the first one ( 4.4.11-rc1) decrypts in 
real time and the second  (4.4.11-rc4) caches the decryption into a buffer.  
 
The test program runs the FFT function a N times.  The values are in microseconds.  
 
 

Iterations Reference  4.4.11-rc1  4.4.11-rc4 

100 87 33124 1789 

1000 873 331056 17976 

 
 
We can see that constantly decrypting and flushing the cache is by a factor of 380. If we 
cache the the decrypted code and copy it each time by 20. This is a good improvement 
but not enough.  
 
 
 
  

 
 



 

Appendix 

Appendix A 

 
void fft(float input[16],float output[16] ) 
{ 
  float temp, out0, out1, out2, out3, out4, out5, out6, out7, out8; 
  float out9,out10,out11,out12,out13,out14,out15; 
 
  out0=input[0]+input[8];  
  out1=input[1]+input[9];  
  out2=input[2]+input[10]; 
  out3=input[3]+input[11]; 
  out4=input[4]+input[12]; 
  out5=input[5]+input[13]; 
  out6=input[6]+input[14]; 
  out7=input[7]+input[15]; 
  out8=input[0]-input[8];  
  out9=input[1]-input[9];  
  out10=input[2]-input[10];  
  out11=input[3]-input[11]; 
  out12=input[12]-input[4];  
  out13=input[13]-input[5];  
  out14=input[14]-input[6];  
  out15=input[15]-input[7]; 
  temp=(out13-out9)*(SIN_2PI_16); 
  out9=out9*(C_P_S_2PI_16)+temp; 
  out13=out13*(C_M_S_2PI_16)+temp; 
  out14*=(SIN_4PI_16); 
  out10*=(SIN_4PI_16); 
  out14=out14-out10; 
  out10=out14+out10+out10; 
  temp=(out15-out11)*(SIN_6PI_16); 
  out11=out11*(C_P_S_6PI_16)+temp; 
  out15=out15*(C_M_S_6PI_16)+temp; 
   out8+=out10; 
  out10=out8-out10-out10; 
  out12+=out14; 
  out14=out12-out14-out14; 

 
 



  out9+=out11; 
  out11=out9-out11-out11; 
  out13+=out15; 
  out15=out13-out15-out15; 
  output[1]=out8+out9; 
  output[7]=out8-out9; 
  output[9]=out12+out13; 
  output[15]=out13-out12; 
  output[5]=out10+out15;  
  output[13]=out14-out11;  
  output[3]=out10-out15;  
  output[11]=-out14-out11;  
  out0=out0+out4; 
  out4=out0-out4-out4; 
  out1=out1+out5; 
  out5=out1-out5-out5; 
  out2+=out6; 
  out6=out2-out6-out6; 
  out3+=out7; 
  out7=out3-out7-out7; 
  output[0]=out0+out2; 
  output[4]=out0-out2; 
  out1+=out3; 
  output[12]=out3+out3-out1; 
  output[0]+=out1;  
  output[8]=output[0]-out1-out1;  
  out5*=SIN_4PI_16; 
  out7*=SIN_4PI_16; 
  out5=out5-out7; 
  out7=out5+out7+out7; 
  output[14]=out6-out7;  
  output[2]=out5+out4;  
  output[6]=out4-out5;  
  output[10]=-out7-out6;  
} 
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