

AMD64 Technology

Speculative Store Bypass

Disable

Extension

AMD Confidential – Advance Information

2 RDS Extension

© 2018 Advanced Micro Devices Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without

notice. While every precaution has been taken in the preparation of this document, it may contain

technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or

otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties

with respect to the accuracy or completeness of the contents of this document, and assumes no liability of

any kind, including the implied warranties of noninfringement, merchantability or fitness for particular

purposes, with respect to the operation or use of AMD hardware, software or other products described

herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted

by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set

forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

Trademarks
AMD, the AMD arrow logo, and combinations thereof are

trademarks of Advanced Micro Devices, Inc.

Other product names used in this publication are for identification purposes only and may be

trademarks of their respective companies.

AMD Confidential – Advance Information

3 RDS Extension

Speculative Store Bypass Disable Extension

As specified in the AMD64 Architectural Programmer’s Manual Vol.2 chapter 7 on Memory

System, reads from memory marked with the proper memory type can read memory out-of-order,

speculatively and before writes have occurred. This means there are occurrences where the loads can

read and pass forward in a speculative manner previous values of the memory location. The processor

has logic to correct this occurrence and provide the proper in-order response to the program. However,

speculation may occur based on that data and cause different cache lines to be accessed. The previous

value used by the processor will be a value that is within the context and privilege level of the current

program. This document describes a feature designed to mitigate speculation of a load instruction past

older store instructions with an unknown address.

Presence
This feature is implemented in 2 different ways on AMD processors to deal with legacy

processors. For future processors, a speculative store bypass disable (SSBD) bit is present in bit 2 of

SPEC_CTL (MSR 48h). This is indicated by presence by CPUID Function 8000_0008, EBX[24]=1. When

SPEC_CTL bit 2 is set, the processor keeps loads from speculating around older stores. For some legacy

usage, there is also a bit 2 in a new VIRT_SPEC_CTRL MSR (MSR C001_011F). When VIRT_SPEC_CTL bit 2

is set, the processor keeps loads from speculating around older stores. It is indicated by CPUID function

8000_0008, EBX[25]=1. AMD also provides a CPUID bit to indicate when speculative store bypass disable

is no longer needed to prevent speculative loads bypassing older stores on future processors. This is

indicated by CPUID Function 8000_0008, EBX[26]=1.

Usage
On AMD processors that support both SPEC_CTL and VIRT_SPEC_CTL, if bit 2 (SSBD) is 1 in either

MSR the processor keeps loads from speculating around older stores. However, it is preferred that in

this scenario the software use the SPEC_CTL version only. Software should follow the following

enumeration path to determine how to control SSBD on a given processor.

If (Fn8000_0008 EBX[26] =1) ; SSBD explicitly stated as not needed

 Return;

Else if (Fn8000_0008 EBX[24] =1) ; SSBD supported in SPEC_CTL bit 2 MSR 48

 {Set MSR 0x48 bit 2 with desired value;

 Return;

}

Else if (Fn8000_0008 EBX[25] =1) ; Use VIRT_SPEC_CTL bit 2 MSR C001_011F

 {Set MSR c001_011F bit 2 with desired value ;

 Return;

AMD Confidential – Advance Information

4 RDS Extension

 }

Else

 { Use non-architectural means (described later)

 Return;

}

Both SPEC_CTRL and VIRT_SPEC_CTRL are not architecturally serializing WRMSRs. They are still

execution serializing and prevent any execution of future instructions until they have completed.

For processors that support SPEC_CTRL bit 2 (SSBD) but don’t support either bit 1 or bit 0, the processor

will still allow reads and writes to bits 1 and 0 even though they dpn’t change processor behavior. Any

attempt to write bits 63:3 to a non-zero value will Gp fault.

For processors that support VIRT_SPEC_CTRL bit 2, writes are ignored to the non-supported bits and

reads are read as zero.

Hypervisor Usage Models
 In a similar method to the IBC use of SPEC_CTL bits 0 and 1, there is a host and guest version of

SPEC_CTL for bit 2. When the guest is running they are logically or-ed together to control the policy in

effect for the guest. When running in host mode only the host value applies. This keeps the needs of the

guest from affecting the host as well as giving the host absolute control for disablement without

intercepts.

Because some AMD processors only support a non-architectural means to allow SSBD to be

enabled, Hypervisor’s can virtualize the existence of VIRT_SPEC_CTRL to help deal with the lack of an

available architectural mechanism. This is accomplished by presenting the guest OS with the CPUID bit

Fn8000_0008 EBX[25] =1. Then when the guest requires SSBD support it will write VIRT_SPEC_CTRL

which can be intercepted to the hypervisor and the hypervisor can write the non-architectural bit or

update the host or guest version of SPEC_CTL bit 2 if the processor supports it. This allows the

traditional SPEC_CTL to remain as an MSR that does not need to be intercepted to the hypervisor. The

hypervisor should continue to intercept the non-architectural MSR (see Non-architectural MSR section)

in the guest and inject a GP fault if the guest tries to manipulate it directly.

Non-architectural MSRs
 AMD processors families 15h, 16h, and some models of family 17h have logic that allow loads to

bypass older stores but lack the architectural SPEC_CTRL or VIRT_SPEC_CTRL. For software that still

requires protection, software can directly manipulate non-architectural MSRs.

For Family 15h to enable SSBD , software should set bit 54 of MSR C001_1020 and to disable

SSBD software should clear the same bit. The full MSR is per logical processor and can be safely saved

and restored for software context switch. All other bits should be left in the state observed on a read.

AMD Confidential – Advance Information

5 RDS Extension

For Family 16h to enable SSBD, software should set bit 33 of MSR C001_1020 and to disable

SSBD software should clear the same bit. The full MSR is per logical processor and can be safely saved

and restored for context switch. All other bits should be left in the state observed on a read.

For Family 17h to enable SSBD software should set bit 10 of MSR C001_1020. If the family 17h

processor only supports 1 logical processor (CPUID fn8000_001E.EBX[15:8] =0), software should clear bit

10 of MSR C001_1020 to disable SSBD. The full MSR is per logical processor and can be safely saved and

restored for context switch. All other bits should be left in the state observed on a read. However, if the

family 17h supports 2 logical processors (CPUID fn8000_001E.EBX[15:8] =1), this MSR is shared between

the 2 logical processors on each logical core. Therefore, software must manage the SSBD needs of both

logical processors to prevent one logical processor from disabling SSBD when it is required for the other

logical processor. Here is an example for management, other optimization techniques can be applied:

If (Family 17h and CPUID fn8000_001E.EBX[15:8] = 1) ; Family 17 with 2 logical processors per

 {

 If (SSBD[my_logical_processor] != newval) ; value changing,

 {

 acquire_lock;

 If (newval==1) ; Enabling SSBD

 {

 SSBD[my_logical_processor]=1; ; set state of SSBD for this logical processor

 If (SSBD[my_sibling_processor]==0) ; bit 10 may not be set already

 {

 Rdmsr(val, C001_1020);

 If (val[10]=0) ; check bit 10 before writing as write is expensive.

 {

 val[10]=1;

 Wrmsr(val, C001_1020);

 }

 }

 }

 Else ; disabling SSBD

 {

 SSBD[my_logical_processor]=0; ; set my desired state of SSBD

AMD Confidential – Advance Information

6 RDS Extension

 If (SSBD[my_sibling_processor]==0) ; bit 10 can be cleared if both threads agree.

 {

 Rdmsr(val, C001_1020)

 If (val[10]=1)

 {

 Val[10]=0;

 Wrmsr(val, C001_1020);

 }

 }

 }

 Release_lock;

 }

 ; values were the same, nothing to do

}

AMD Confidential – Advance Information

7 RDS Extension

