From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org X-Spam-Level: X-Spam-Status: No, score=-12.8 required=3.0 tests=BAYES_00,DKIM_SIGNED, DKIM_VALID,HEADER_FROM_DIFFERENT_DOMAINS,INCLUDES_PATCH,MAILING_LIST_MULTI, SIGNED_OFF_BY,SPF_HELO_NONE,SPF_PASS,URIBL_BLOCKED,USER_AGENT_GIT autolearn=ham autolearn_force=no version=3.4.0 Received: from mail.kernel.org (mail.kernel.org [198.145.29.99]) by smtp.lore.kernel.org (Postfix) with ESMTP id 8B726C46466 for ; Mon, 5 Oct 2020 19:26:11 +0000 (UTC) Received: from alsa0.perex.cz (alsa0.perex.cz [77.48.224.243]) (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits)) (No client certificate requested) by mail.kernel.org (Postfix) with ESMTPS id AE530212CC for ; Mon, 5 Oct 2020 19:26:10 +0000 (UTC) Authentication-Results: mail.kernel.org; dkim=pass (1024-bit key) header.d=alsa-project.org header.i=@alsa-project.org header.b="GcLtAg9J" DMARC-Filter: OpenDMARC Filter v1.3.2 mail.kernel.org AE530212CC Authentication-Results: mail.kernel.org; dmarc=fail (p=none dis=none) header.from=intel.com Authentication-Results: mail.kernel.org; spf=pass smtp.mailfrom=alsa-devel-bounces@alsa-project.org Received: from alsa1.perex.cz (alsa1.perex.cz [207.180.221.201]) (using TLSv1.2 with cipher AECDH-AES256-SHA (256/256 bits)) (No client certificate requested) by alsa0.perex.cz (Postfix) with ESMTPS id D7DF317BF; Mon, 5 Oct 2020 21:25:18 +0200 (CEST) DKIM-Filter: OpenDKIM Filter v2.11.0 alsa0.perex.cz D7DF317BF DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/simple; d=alsa-project.org; s=default; t=1601925969; bh=XuuSxAEMXL7FUa+th1IzoNKx3ukNbLT1+luehqZaV5Q=; h=From:To:Subject:Date:In-Reply-To:References:Cc:List-Id: List-Unsubscribe:List-Archive:List-Post:List-Help:List-Subscribe: From; b=GcLtAg9JffnToavlVfv1yztPrtgkVVB85cZ6//5RxLBTczx3jEAbc8ReF1HEt+IOG J2p1YihqkA92c9rExwRZh736xWroUkShixpOlGtXgdeC4OAvaFlTzpae4wWYkmvKEN 5TnZC68Ox7ZcPiNfDuCCxraq1mejaOrQ2IVi1zmE= Received: from alsa1.perex.cz (localhost.localdomain [127.0.0.1]) by alsa1.perex.cz (Postfix) with ESMTP id 4A3E5F8026A; Mon, 5 Oct 2020 21:24:03 +0200 (CEST) Received: by alsa1.perex.cz (Postfix, from userid 50401) id 08C40F802EA; Mon, 5 Oct 2020 21:24:01 +0200 (CEST) Received: from mga01.intel.com (mga01.intel.com [192.55.52.88]) (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits)) (No client certificate requested) by alsa1.perex.cz (Postfix) with ESMTPS id 90D9BF800EF for ; Mon, 5 Oct 2020 21:23:51 +0200 (CEST) DKIM-Filter: OpenDKIM Filter v2.11.0 alsa1.perex.cz 90D9BF800EF IronPort-SDR: RkiUSrj6SPaPMtnsHziAYGcW3EGtxnMtarlkk2PWyj256EKJlzKUmDeSWx12ytoFm1e0w2Z+uK 95NkUprR7rVA== X-IronPort-AV: E=McAfee;i="6000,8403,9765"; a="181650145" X-IronPort-AV: E=Sophos;i="5.77,340,1596524400"; d="scan'208";a="181650145" X-Amp-Result: SKIPPED(no attachment in message) X-Amp-File-Uploaded: False Received: from fmsmga004.fm.intel.com ([10.253.24.48]) by fmsmga101.fm.intel.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 05 Oct 2020 12:19:29 -0700 IronPort-SDR: BT7SBxtn9bMCBkYRQCTmiDLe/ew3HuK27c2iRcGQVHMVYyglbvnIkn59LlNSHZ6RxKt4vsDhtN OG4tBZ3WS/iA== X-IronPort-AV: E=Sophos;i="5.77,340,1596524400"; d="scan'208";a="341302434" Received: from dmert-dev.jf.intel.com ([10.166.241.5]) by fmsmga004-auth.fm.intel.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 05 Oct 2020 11:26:42 -0700 From: Dave Ertman To: alsa-devel@alsa-project.org Subject: [PATCH v2 1/6] Add ancillary bus support Date: Mon, 5 Oct 2020 11:24:41 -0700 Message-Id: <20201005182446.977325-2-david.m.ertman@intel.com> X-Mailer: git-send-email 2.26.2 In-Reply-To: <20201005182446.977325-1-david.m.ertman@intel.com> References: <20201005182446.977325-1-david.m.ertman@intel.com> MIME-Version: 1.0 Content-Transfer-Encoding: 8bit Cc: parav@mellanox.com, tiwai@suse.de, netdev@vger.kernel.org, ranjani.sridharan@linux.intel.com, pierre-louis.bossart@linux.intel.com, fred.oh@linux.intel.com, linux-rdma@vger.kernel.org, dledford@redhat.com, broonie@kernel.org, jgg@nvidia.com, gregkh@linuxfoundation.org, kuba@kernel.org, dan.j.williams@intel.com, shiraz.saleem@intel.com, davem@davemloft.net, kiran.patil@intel.com X-BeenThere: alsa-devel@alsa-project.org X-Mailman-Version: 2.1.15 Precedence: list List-Id: "Alsa-devel mailing list for ALSA developers - http://www.alsa-project.org" List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Errors-To: alsa-devel-bounces@alsa-project.org Sender: "Alsa-devel" Add support for the Ancillary Bus, ancillary_device and ancillary_driver. It enables drivers to create an ancillary_device and bind an ancillary_driver to it. The bus supports probe/remove shutdown and suspend/resume callbacks. Each ancillary_device has a unique string based id; driver binds to an ancillary_device based on this id through the bus. Co-developed-by: Kiran Patil Signed-off-by: Kiran Patil Co-developed-by: Ranjani Sridharan Signed-off-by: Ranjani Sridharan Co-developed-by: Fred Oh Signed-off-by: Fred Oh Reviewed-by: Pierre-Louis Bossart Reviewed-by: Shiraz Saleem Reviewed-by: Parav Pandit Reviewed-by: Dan Williams Signed-off-by: Dave Ertman --- Documentation/driver-api/ancillary_bus.rst | 229 +++++++++++++++++++++ Documentation/driver-api/index.rst | 1 + drivers/bus/Kconfig | 3 + drivers/bus/Makefile | 3 + drivers/bus/ancillary.c | 225 ++++++++++++++++++++ include/linux/ancillary_bus.h | 69 +++++++ include/linux/mod_devicetable.h | 8 + scripts/mod/devicetable-offsets.c | 3 + scripts/mod/file2alias.c | 8 + 9 files changed, 549 insertions(+) create mode 100644 Documentation/driver-api/ancillary_bus.rst create mode 100644 drivers/bus/ancillary.c create mode 100644 include/linux/ancillary_bus.h diff --git a/Documentation/driver-api/ancillary_bus.rst b/Documentation/driver-api/ancillary_bus.rst new file mode 100644 index 000000000000..66f986e8672f --- /dev/null +++ b/Documentation/driver-api/ancillary_bus.rst @@ -0,0 +1,229 @@ +.. SPDX-License-Identifier: GPL-2.0-only + +============= +Ancillary Bus +============= + +In some subsystems, the functionality of the core device (PCI/ACPI/other) is +too complex for a single device to be managed as a monolithic block or a part of +the functionality needs to be exposed to a different subsystem. Splitting the +functionality into smaller orthogonal devices would make it easier to manage +data, power management and domain-specific interaction with the hardware. A key +requirement for such a split is that there is no dependency on a physical bus, +device, register accesses or regmap support. These individual devices split from +the core cannot live on the platform bus as they are not physical devices that +are controlled by DT/ACPI. The same argument applies for not using MFD in this +scenario as MFD relies on individual function devices being physical devices. + +An example for this kind of requirement is the audio subsystem where a single +IP is handling multiple entities such as HDMI, Soundwire, local devices such as +mics/speakers etc. The split for the core's functionality can be arbitrary or +be defined by the DSP firmware topology and include hooks for test/debug. This +allows for the audio core device to be minimal and focused on hardware-specific +control and communication. + +The ancillary bus is intended to be minimal, generic and avoid domain-specific +assumptions. Each ancillary_device represents a part of its parent +functionality. The generic behavior can be extended and specialized as needed +by encapsulating an ancillary_device within other domain-specific structures and +the use of .ops callbacks. Devices on the ancillary bus do not share any +structures and the use of a communication channel with the parent is +domain-specific. + +When Should the Ancillary Bus Be Used +===================================== + +The ancillary bus is to be used when a driver and one or more kernel modules, +who share a common header file with the driver, need a mechanism to connect and +provide access to a shared object allocated by the ancillary_device's +registering driver. The registering driver for the ancillary_device(s) and the +kernel module(s) registering ancillary_drivers can be from the same subsystem, +or from multiple subsystems. + +The emphasis here is on a common generic interface that keeps subsystem +customization out of the bus infrastructure. + +One example could be a multi-port PCI network device that is rdma-capable and +needs to export this functionality and attach to an rdma driver in another +subsystem. The PCI driver will allocate and register an ancillary_device for +each physical function on the NIC. The rdma driver will register an +ancillary_driver that will be matched with and probed for each of these +ancillary_devices. This will give the rdma driver access to the shared data/ops +in the PCI drivers shared object to establish a connection with the PCI driver. + +Another use case is for the PCI device to be split out into multiple sub +functions. For each sub function an ancillary_device will be created. A PCI +sub function driver will bind to such devices that will create its own one or +more class devices. A PCI sub function ancillary device will likely be +contained in a struct with additional attributes such as user defined sub +function number and optional attributes such as resources and a link to the +parent device. These attributes could be used by systemd/udev; and hence should +be initialized before a driver binds to an ancillary_device. + +Ancillary Device +================ + +An ancillary_device is created and registered to represent a part of its parent +device's functionality. It is given a name that, combined with the registering +drivers KBUILD_MODNAME, creates a match_name that is used for driver binding, +and an id that combined with the match_name provide a unique name to register +with the bus subsystem. + +Registering an ancillary_device is a two-step process. First you must call +ancillary_device_initialize(), which will check several aspects of the +ancillary_device struct and perform a device_initialize(). After this step +completes, any error state must have a call to put_device() in its resolution +path. The second step in registering an ancillary_device is to perform a call +to ancillary_device_add(), which will set the name of the device and add the +device to the bus. + +To unregister an ancillary_device, just a call to ancillary_device_unregister() +is used. This will perform both a device_del() and a put_device(). + +.. code-block:: c + + struct ancillary_device { + struct device dev; + const char *name; + u32 id; + }; + +If two ancillary_devices both with a match_name "mod.foo" are registered onto +the bus, they must have unique id values (e.g. "x" and "y") so that the +registered devices names will be "mod.foo.x" and "mod.foo.y". If match_name + +id are not unique, then the device_add will fail and generate an error message. + +The ancillary_device.dev.type.release or ancillary_device.dev.release must be +populated with a non-NULL pointer to successfully register the ancillary_device. + +The ancillary_device.dev.parent must also be populated. + +Ancillary Device Memory Model and Lifespan +------------------------------------------ + +When a kernel driver registers an ancillary_device on the ancillary bus, we will +use the nomenclature to refer to this kernel driver as a registering driver. It +is the entity that will allocate memory for the ancillary_device and register it +on the ancillary bus. It is important to note that, as opposed to the platform +bus, the registering driver is wholly responsible for the management for the +memory used for the driver object. + +A parent object, defined in the shared header file, will contain the +ancillary_device. It will also contain a pointer to the shared object(s), which +will also be defined in the shared header. Both the parent object and the +shared object(s) will be allocated by the registering driver. This layout +allows the ancillary_driver's registering module to perform a container_of() +call to go from the pointer to the ancillary_device, that is passed during the +call to the ancillary_driver's probe function, up to the parent object, and then +have access to the shared object(s). + +The memory for the ancillary_device will be freed only in its release() +callback flow as defined by its registering driver. + +The memory for the shared object(s) must have a lifespan equal to, or greater +than, the lifespan of the memory for the ancillary_device. The ancillary_driver +should only consider that this shared object is valid as long as the +ancillary_device is still registered on the ancillary bus. It is up to the +registering driver to manage (e.g. free or keep available) the memory for the +shared object beyond the life of the ancillary_device. + +Registering driver must unregister all ancillary devices before its registering +parent device's remove() is completed. + +Ancillary Drivers +================= + +Ancillary drivers follow the standard driver model convention, where +discovery/enumeration is handled by the core, and drivers +provide probe() and remove() methods. They support power management +and shutdown notifications using the standard conventions. + +.. code-block:: c + + struct ancillary_driver { + int (*probe)(struct ancillary_device *, + const struct ancillary_device_id *id); + int (*remove)(struct ancillary_device *); + void (*shutdown)(struct ancillary_device *); + int (*suspend)(struct ancillary_device *, pm_message_t); + int (*resume)(struct ancillary_device *); + struct device_driver driver; + const struct ancillary_device_id *id_table; + }; + +Ancillary drivers register themselves with the bus by calling +ancillary_driver_register(). The id_table contains the match_names of ancillary +devices that a driver can bind with. + +Example Usage +============= + +Ancillary devices are created and registered by a subsystem-level core device +that needs to break up its functionality into smaller fragments. One way to +extend the scope of an ancillary_device would be to encapsulate it within a +domain-specific structure defined by the parent device. This structure contains +the ancillary_device and any associated shared data/callbacks needed to +establish the connection with the parent. + +An example would be: + +.. code-block:: c + + struct foo { + struct ancillary_device ancildev; + void (*connect)(struct ancillary_device *ancildev); + void (*disconnect)(struct ancillary_device *ancildev); + void *data; + }; + +The parent device would then register the ancillary_device by calling +ancillary_device_initialize(), and then ancillary_device_add(), with the pointer +to the ancildev member of the above structure. The parent would provide a name +for the ancillary_device that, combined with the parent's KBUILD_MODNAME, will +create a match_name that will be used for matching and binding with a driver. + +Whenever an ancillary_driver is registered, based on the match_name, the +ancillary_driver's probe() is invoked for the matching devices. The +ancillary_driver can also be encapsulated inside custom drivers that make the +core device's functionality extensible by adding additional domain-specific ops +as follows: + +.. code-block:: c + + struct my_ops { + void (*send)(struct ancillary_device *ancildev); + void (*receive)(struct ancillary_device *ancildev); + }; + + + struct my_driver { + struct ancillary_driver ancillary_drv; + const struct my_ops ops; + }; + +An example of this type of usage would be: + +.. code-block:: c + + const struct ancillary_device_id my_ancillary_id_table[] = { + { .name = "foo_mod.foo_dev" }, + { }, + }; + + const struct my_ops my_custom_ops = { + .send = my_tx, + .receive = my_rx, + }; + + const struct my_driver my_drv = { + .ancillary_drv = { + .driver = { + .name = "myancillarydrv", + }, + .id_table = my_ancillary_id_table, + .probe = my_probe, + .remove = my_remove, + .shutdown = my_shutdown, + }, + .ops = my_custom_ops, + }; diff --git a/Documentation/driver-api/index.rst b/Documentation/driver-api/index.rst index 5ef2cfe3a16b..9584ac2ed1f5 100644 --- a/Documentation/driver-api/index.rst +++ b/Documentation/driver-api/index.rst @@ -74,6 +74,7 @@ available subsections can be seen below. thermal/index fpga/index acpi/index + ancillary_bus backlight/lp855x-driver.rst connector console diff --git a/drivers/bus/Kconfig b/drivers/bus/Kconfig index 0c262c2aeaf2..ba82a045b847 100644 --- a/drivers/bus/Kconfig +++ b/drivers/bus/Kconfig @@ -5,6 +5,9 @@ menu "Bus devices" +config ANCILLARY_BUS + tristate + config ARM_CCI bool diff --git a/drivers/bus/Makefile b/drivers/bus/Makefile index 397e35392bff..7c217eb1dbb7 100644 --- a/drivers/bus/Makefile +++ b/drivers/bus/Makefile @@ -3,6 +3,9 @@ # Makefile for the bus drivers. # +# Ancillary bus driver +obj-$(CONFIG_ANCILLARY_BUS) += ancillary.o + # Interconnect bus drivers for ARM platforms obj-$(CONFIG_ARM_CCI) += arm-cci.o obj-$(CONFIG_ARM_INTEGRATOR_LM) += arm-integrator-lm.o diff --git a/drivers/bus/ancillary.c b/drivers/bus/ancillary.c new file mode 100644 index 000000000000..93888ca36fb1 --- /dev/null +++ b/drivers/bus/ancillary.c @@ -0,0 +1,225 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Software based bus for Ancillary devices + * + * Copyright (c) 2019-2020 Intel Corporation + * + * Please see Documentation/driver-api/ancillary_bus.rst for more information. + */ + +#define pr_fmt(fmt) "%s:%s: " fmt, KBUILD_MODNAME, __func__ + +#include +#include +#include +#include +#include +#include +#include + +static const struct ancillary_device_id *ancillary_match_id(const struct ancillary_device_id *id, + const struct ancillary_device *ancildev) +{ + while (id->name[0]) { + const char *p = strrchr(dev_name(&ancildev->dev), '.'); + int match_size; + + if (!p) { + id++; + continue; + } + match_size = p - dev_name(&ancildev->dev); + + /* use dev_name(&ancildev->dev) prefix before last '.' char to match to */ + if (!strncmp(dev_name(&ancildev->dev), id->name, match_size)) + return id; + id++; + } + return NULL; +} + +static int ancillary_match(struct device *dev, struct device_driver *drv) +{ + struct ancillary_device *ancildev = to_ancillary_dev(dev); + struct ancillary_driver *ancildrv = to_ancillary_drv(drv); + + return !!ancillary_match_id(ancildrv->id_table, ancildev); +} + +static int ancillary_uevent(struct device *dev, struct kobj_uevent_env *env) +{ + const char *name, *p; + + name = dev_name(dev); + p = strrchr(name, '.'); + + return add_uevent_var(env, "MODALIAS=%s%.*s", ANCILLARY_MODULE_PREFIX, (int)(p - name), + name); +} + +static const struct dev_pm_ops ancillary_dev_pm_ops = { + SET_RUNTIME_PM_OPS(pm_generic_runtime_suspend, pm_generic_runtime_resume, NULL) + SET_SYSTEM_SLEEP_PM_OPS(pm_generic_suspend, pm_generic_resume) +}; + +struct bus_type ancillary_bus_type = { + .name = "ancillary", + .match = ancillary_match, + .uevent = ancillary_uevent, + .pm = &ancillary_dev_pm_ops, +}; + +/** + * ancillary_device_initialize - check ancillary_device and initialize + * @ancildev: ancillary device struct + * + * This is the first step in the two-step process to register an ancillary_device. + * + * When this function returns an error code, then the device_initialize will *not* have + * been performed, and the caller will be responsible to free any memory allocated for the + * ancillary_device in the error path directly. + * + * It returns 0 on success. On success, the device_initialize has been performed. + * After this point any error unwinding will need to include a call to put_device(). + * In this post-initialize error scenario, a call to the device's .release callback will be + * triggered by put_device(), and all memory clean-up is expected to be handled there. + */ +int ancillary_device_initialize(struct ancillary_device *ancildev) +{ + struct device *dev = &ancildev->dev; + + dev->bus = &ancillary_bus_type; + + if (!dev->parent) { + pr_err("ancillary_device has a NULL dev->parent\n"); + return -EINVAL; + } + + if (!ancildev->name) { + pr_err("acillary_device has a NULL name\n"); + return -EINVAL; + } + + if (!(dev->type && dev->type->release) && !dev->release) { + pr_err("ancillary_device does not have a release callback defined\n"); + return -EINVAL; + } + + device_initialize(&ancildev->dev); + return 0; +} +EXPORT_SYMBOL_GPL(ancillary_device_initialize); + +/** + * __ancillary_device_add - add an ancillary bus device + * @ancildev: ancillary bus device to add to the bus + * @modname: name of the parent device's driver module + * + * This is the second step in the two-step process to register an ancillary_device. + * + * This function must be called after a successful call to ancillary_device_initialize(), which + * will perform the device_initialize. This means that if this returns an error code, then a + * put_device must be performed so that the .release callback will be triggered to free the + * memory associated with the ancillary_device. + */ +int __ancillary_device_add(struct ancillary_device *ancildev, const char *modname) +{ + struct device *dev = &ancildev->dev; + int ret; + + if (!modname) { + pr_err("ancillary device modname is NULL\n"); + return -EINVAL; + } + + ret = dev_set_name(dev, "%s.%s.%d", modname, ancildev->name, ancildev->id); + if (ret) { + pr_err("ancillary device dev_set_name failed: %d\n", ret); + return ret; + } + + ret = device_add(dev); + if (ret) + dev_err(dev, "adding ancillary device failed!: %d\n", ret); + + return ret; +} +EXPORT_SYMBOL_GPL(__ancillary_device_add); + +static int ancillary_probe_driver(struct device *dev) +{ + struct ancillary_driver *ancildrv = to_ancillary_drv(dev->driver); + struct ancillary_device *ancildev = to_ancillary_dev(dev); + int ret; + + ret = dev_pm_domain_attach(dev, true); + if (ret) { + dev_warn(dev, "Failed to attach to PM Domain : %d\n", ret); + return ret; + } + + ret = ancildrv->probe(ancildev, ancillary_match_id(ancildrv->id_table, ancildev)); + if (ret) + dev_pm_domain_detach(dev, true); + + return ret; +} + +static int ancillary_remove_driver(struct device *dev) +{ + struct ancillary_driver *ancildrv = to_ancillary_drv(dev->driver); + struct ancillary_device *ancildev = to_ancillary_dev(dev); + int ret; + + ret = ancildrv->remove(ancildev); + dev_pm_domain_detach(dev, true); + + return ret; +} + +static void ancillary_shutdown_driver(struct device *dev) +{ + struct ancillary_driver *ancildrv = to_ancillary_drv(dev->driver); + struct ancillary_device *ancildev = to_ancillary_dev(dev); + + ancildrv->shutdown(ancildev); +} + +/** + * __ancillary_driver_register - register a driver for ancillary bus devices + * @ancildrv: ancillary_driver structure + * @owner: owning module/driver + */ +int __ancillary_driver_register(struct ancillary_driver *ancildrv, struct module *owner) +{ + if (WARN_ON(!ancildrv->probe) || WARN_ON(!ancildrv->remove) || + WARN_ON(!ancildrv->shutdown) || WARN_ON(!ancildrv->id_table)) + return -EINVAL; + + ancildrv->driver.owner = owner; + ancildrv->driver.bus = &ancillary_bus_type; + ancildrv->driver.probe = ancillary_probe_driver; + ancildrv->driver.remove = ancillary_remove_driver; + ancildrv->driver.shutdown = ancillary_shutdown_driver; + + return driver_register(&ancildrv->driver); +} +EXPORT_SYMBOL_GPL(__ancillary_driver_register); + +static int __init ancillary_bus_init(void) +{ + return bus_register(&ancillary_bus_type); +} + +static void __exit ancillary_bus_exit(void) +{ + bus_unregister(&ancillary_bus_type); +} + +module_init(ancillary_bus_init); +module_exit(ancillary_bus_exit); + +MODULE_LICENSE("GPL v2"); +MODULE_DESCRIPTION("Ancillary Bus"); +MODULE_AUTHOR("David Ertman "); +MODULE_AUTHOR("Kiran Patil "); diff --git a/include/linux/ancillary_bus.h b/include/linux/ancillary_bus.h new file mode 100644 index 000000000000..72169c8a5dfe --- /dev/null +++ b/include/linux/ancillary_bus.h @@ -0,0 +1,69 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * Copyright (c) 2019-2020 Intel Corporation + * + * Please see Documentation/driver-api/ancillary_bus.rst for more information. + */ + +#ifndef _ANCILLARY_BUS_H_ +#define _ANCILLARY_BUS_H_ + +#include +#include +#include + +struct ancillary_device { + struct device dev; + const char *name; + u32 id; +}; + +struct ancillary_driver { + int (*probe)(struct ancillary_device *ancildev, const struct ancillary_device_id *id); + int (*remove)(struct ancillary_device *ancildev); + void (*shutdown)(struct ancillary_device *ancildev); + int (*suspend)(struct ancillary_device *ancildev, pm_message_t state); + int (*resume)(struct ancillary_device *ancildev); + struct device_driver driver; + const struct ancillary_device_id *id_table; +}; + +static inline struct ancillary_device *to_ancillary_dev(struct device *dev) +{ + return container_of(dev, struct ancillary_device, dev); +} + +static inline struct ancillary_driver *to_ancillary_drv(struct device_driver *drv) +{ + return container_of(drv, struct ancillary_driver, driver); +} + +int ancillary_device_initialize(struct ancillary_device *ancildev); +int __ancillary_device_add(struct ancillary_device *ancildev, const char *modname); +#define ancillary_device_add(ancildev) __ancillary_device_add(ancildev, KBUILD_MODNAME) + +static inline void ancillary_device_unregister(struct ancillary_device *ancildev) +{ + device_unregister(&ancildev->dev); +} + +int __ancillary_driver_register(struct ancillary_driver *ancildrv, struct module *owner); +#define ancillary_driver_register(ancildrv) __ancillary_driver_register(ancildrv, THIS_MODULE) + +static inline void ancillary_driver_unregister(struct ancillary_driver *ancildrv) +{ + driver_unregister(&ancildrv->driver); +} + +/** + * module_ancillary_driver() - Helper macro for registering an ancillary driver + * @__ancillary_driver: ancillary driver struct + * + * Helper macro for ancillary drivers which do not do anything special in + * module init/exit. This eliminates a lot of boilerplate. Each module may only + * use this macro once, and calling it replaces module_init() and module_exit() + */ +#define module_ancillary_driver(__ancillary_driver) \ + module_driver(__ancillary_driver, ancillary_driver_register, ancillary_driver_unregister) + +#endif /* _ANCILLARY_BUS_H_ */ diff --git a/include/linux/mod_devicetable.h b/include/linux/mod_devicetable.h index 5b08a473cdba..7d596dc30833 100644 --- a/include/linux/mod_devicetable.h +++ b/include/linux/mod_devicetable.h @@ -838,4 +838,12 @@ struct mhi_device_id { kernel_ulong_t driver_data; }; +#define ANCILLARY_NAME_SIZE 32 +#define ANCILLARY_MODULE_PREFIX "ancillary:" + +struct ancillary_device_id { + char name[ANCILLARY_NAME_SIZE]; + kernel_ulong_t driver_data; +}; + #endif /* LINUX_MOD_DEVICETABLE_H */ diff --git a/scripts/mod/devicetable-offsets.c b/scripts/mod/devicetable-offsets.c index 27007c18e754..79e37c4c25b3 100644 --- a/scripts/mod/devicetable-offsets.c +++ b/scripts/mod/devicetable-offsets.c @@ -243,5 +243,8 @@ int main(void) DEVID(mhi_device_id); DEVID_FIELD(mhi_device_id, chan); + DEVID(ancillary_device_id); + DEVID_FIELD(ancillary_device_id, name); + return 0; } diff --git a/scripts/mod/file2alias.c b/scripts/mod/file2alias.c index 2417dd1dee33..99c4fcd82bf3 100644 --- a/scripts/mod/file2alias.c +++ b/scripts/mod/file2alias.c @@ -1364,6 +1364,13 @@ static int do_mhi_entry(const char *filename, void *symval, char *alias) { DEF_FIELD_ADDR(symval, mhi_device_id, chan); sprintf(alias, MHI_DEVICE_MODALIAS_FMT, *chan); + return 1; +} + +static int do_ancillary_entry(const char *filename, void *symval, char *alias) +{ + DEF_FIELD_ADDR(symval, ancillary_device_id, name); + sprintf(alias, ANCILLARY_MODULE_PREFIX "%s", *name); return 1; } @@ -1442,6 +1449,7 @@ static const struct devtable devtable[] = { {"tee", SIZE_tee_client_device_id, do_tee_entry}, {"wmi", SIZE_wmi_device_id, do_wmi_entry}, {"mhi", SIZE_mhi_device_id, do_mhi_entry}, + {"ancillary", SIZE_ancillary_device_id, do_ancillary_entry}, }; /* Create MODULE_ALIAS() statements. -- 2.26.2