From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org X-Spam-Level: X-Spam-Status: No, score=-12.1 required=3.0 tests=BAYES_00,DKIMWL_WL_HIGH, DKIM_SIGNED,DKIM_VALID,DKIM_VALID_AU,MAILING_LIST_MULTI,MENTIONS_GIT_HOSTING, SPF_HELO_NONE,SPF_PASS,URIBL_BLOCKED,USER_AGENT_GIT autolearn=unavailable autolearn_force=no version=3.4.0 Received: from mail.kernel.org (mail.kernel.org [198.145.29.99]) by smtp.lore.kernel.org (Postfix) with ESMTP id 4A9E1C388F7 for ; Tue, 10 Nov 2020 15:15:05 +0000 (UTC) Received: from vger.kernel.org (vger.kernel.org [23.128.96.18]) by mail.kernel.org (Postfix) with ESMTP id E468E20797 for ; Tue, 10 Nov 2020 15:15:04 +0000 (UTC) Authentication-Results: mail.kernel.org; dkim=pass (1024-bit key) header.d=kernel.org header.i=@kernel.org header.b="S7osllAx" Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1731081AbgKJPPA (ORCPT ); Tue, 10 Nov 2020 10:15:00 -0500 Received: from mail.kernel.org ([198.145.29.99]:55938 "EHLO mail.kernel.org" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1730791AbgKJPPA (ORCPT ); Tue, 10 Nov 2020 10:15:00 -0500 Received: from aquarius.haifa.ibm.com (nesher1.haifa.il.ibm.com [195.110.40.7]) (using TLSv1.2 with cipher ECDHE-RSA-AES128-GCM-SHA256 (128/128 bits)) (No client certificate requested) by mail.kernel.org (Postfix) with ESMTPSA id 9A09120659; Tue, 10 Nov 2020 15:14:48 +0000 (UTC) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/simple; d=kernel.org; s=default; t=1605021298; bh=K6cy9a2ag23BSVHi1jaYoKMK6hkaa11Z2c9YlKuusZM=; h=From:To:Cc:Subject:Date:From; b=S7osllAx7P+0NH0/mlLrA19hxvwNIOjNVpixXk7gUWB8wFTgQVXXahwMxx9dyLG6O sjV5eU5/lWKVfjP6kU0eY4i8UtaZSqbzpJrO7WSn+p3OLEfNsYCi9I5YNjAOfEnpVI X0V8DoN/FRsLofsvv2S1GVGpNuGFuWalJvj+Vybc= From: Mike Rapoport To: Andrew Morton Cc: Alexander Viro , Andy Lutomirski , Arnd Bergmann , Borislav Petkov , Catalin Marinas , Christopher Lameter , Dan Williams , Dave Hansen , David Hildenbrand , Elena Reshetova , "H. Peter Anvin" , Ingo Molnar , James Bottomley , "Kirill A. Shutemov" , Matthew Wilcox , Mark Rutland , Mike Rapoport , Mike Rapoport , Michael Kerrisk , Palmer Dabbelt , Paul Walmsley , Peter Zijlstra , Rick Edgecombe , Shuah Khan , Thomas Gleixner , Tycho Andersen , Will Deacon , linux-api@vger.kernel.org, linux-arch@vger.kernel.org, linux-arm-kernel@lists.infradead.org, linux-fsdevel@vger.kernel.org, linux-mm@kvack.org, linux-kernel@vger.kernel.org, linux-kselftest@vger.kernel.org, linux-nvdimm@lists.01.org, linux-riscv@lists.infradead.org, x86@kernel.org Subject: [PATCH v8 0/9] mm: introduce memfd_secret system call to create "secret" memory areas Date: Tue, 10 Nov 2020 17:14:35 +0200 Message-Id: <20201110151444.20662-1-rppt@kernel.org> X-Mailer: git-send-email 2.28.0 MIME-Version: 1.0 Content-Transfer-Encoding: 8bit Precedence: bulk List-ID: X-Mailing-List: linux-api@vger.kernel.org From: Mike Rapoport Hi, This is an implementation of "secret" mappings backed by a file descriptor. The file descriptor backing secret memory mappings is created using a dedicated memfd_secret system call The desired protection mode for the memory is configured using flags parameter of the system call. The mmap() of the file descriptor created with memfd_secret() will create a "secret" memory mapping. The pages in that mapping will be marked as not present in the direct map and will have desired protection bits set in the user page table. For instance, current implementation allows uncached mappings. Although normally Linux userspace mappings are protected from other users, such secret mappings are useful for environments where a hostile tenant is trying to trick the kernel into giving them access to other tenants mappings. Additionally, in the future the secret mappings may be used as a mean to protect guest memory in a virtual machine host. For demonstration of secret memory usage we've created a userspace library https://git.kernel.org/pub/scm/linux/kernel/git/jejb/secret-memory-preloader.git that does two things: the first is act as a preloader for openssl to redirect all the OPENSSL_malloc calls to secret memory meaning any secret keys get automatically protected this way and the other thing it does is expose the API to the user who needs it. We anticipate that a lot of the use cases would be like the openssl one: many toolkits that deal with secret keys already have special handling for the memory to try to give them greater protection, so this would simply be pluggable into the toolkits without any need for user application modification. Hiding secret memory mappings behind an anonymous file allows (ab)use of the page cache for tracking pages allocated for the "secret" mappings as well as using address_space_operations for e.g. page migration callbacks. The anonymous file may be also used implicitly, like hugetlb files, to implement mmap(MAP_SECRET) and use the secret memory areas with "native" mm ABIs in the future. To limit fragmentation of the direct map to splitting only PUD-size pages, I've added an amortizing cache of PMD-size pages to each file descriptor that is used as an allocation pool for the secret memory areas. As the memory allocated by secretmem becomes unmovable, we use CMA to back large page caches so that page allocator won't be surprised by failing attempt to migrate these pages. v8: * Use CMA for all secretmem allocations as David suggested * Update memcg accounting after transtion to CMA * Prevent hibernation when there are active secretmem users * Add zeroing of the memory before releasing it back to cma/page allocator * Rebase on v5.10-rc2-mmotm-2020-11-07-21-40 v7: https://lore.kernel.org/lkml/20201026083752.13267-1-rppt@kernel.org * Use set_direct_map() instead of __kernel_map_pages() to ensure error handling in case the direct map update fails * Add accounting of large pages used to reduce the direct map fragmentation * Teach get_user_pages() and frieds to refuse get/pin secretmem pages v6: https://lore.kernel.org/lkml/20200924132904.1391-1-rppt@kernel.org * Silence the warning about missing syscall, thanks to Qian Cai * Replace spaces with tabs in Kconfig additions, per Randy * Add a selftest. v5: https://lore.kernel.org/lkml/20200916073539.3552-1-rppt@kernel.org * rebase on v5.9-rc5 * drop boot time memory reservation patch v4: https://lore.kernel.org/lkml/20200818141554.13945-1-rppt@kernel.org * rebase on v5.9-rc1 * Do not redefine PMD_PAGE_ORDER in fs/dax.c, thanks Kirill * Make secret mappings exclusive by default and only require flags to memfd_secret() system call for uncached mappings, thanks again Kirill :) v3: https://lore.kernel.org/lkml/20200804095035.18778-1-rppt@kernel.org * Squash kernel-parameters.txt update into the commit that added the command line option. * Make uncached mode explicitly selectable by architectures. For now enable it only on x86. v2: https://lore.kernel.org/lkml/20200727162935.31714-1-rppt@kernel.org * Follow Michael's suggestion and name the new system call 'memfd_secret' * Add kernel-parameters documentation about the boot option * Fix i386-tinyconfig regression reported by the kbuild bot. CONFIG_SECRETMEM now depends on !EMBEDDED to disable it on small systems from one side and still make it available unconditionally on architectures that support SET_DIRECT_MAP. v1: https://lore.kernel.org/lkml/20200720092435.17469-1-rppt@kernel.org Mike Rapoport (9): mm: add definition of PMD_PAGE_ORDER mmap: make mlock_future_check() global set_memory: allow set_direct_map_*_noflush() for multiple pages mm: introduce memfd_secret system call to create "secret" memory areas secretmem: use PMD-size pages to amortize direct map fragmentation secretmem: add memcg accounting PM: hibernate: disable when there are active secretmem users arch, mm: wire up memfd_secret system call were relevant secretmem: test: add basic selftest for memfd_secret(2) arch/Kconfig | 7 + arch/arm64/include/asm/cacheflush.h | 4 +- arch/arm64/include/asm/unistd.h | 2 +- arch/arm64/include/asm/unistd32.h | 2 + arch/arm64/include/uapi/asm/unistd.h | 1 + arch/arm64/mm/pageattr.c | 10 +- arch/riscv/include/asm/set_memory.h | 4 +- arch/riscv/include/asm/unistd.h | 1 + arch/riscv/mm/pageattr.c | 8 +- arch/x86/Kconfig | 1 + arch/x86/entry/syscalls/syscall_32.tbl | 1 + arch/x86/entry/syscalls/syscall_64.tbl | 1 + arch/x86/include/asm/set_memory.h | 4 +- arch/x86/mm/pat/set_memory.c | 8 +- fs/dax.c | 11 +- include/linux/pgtable.h | 3 + include/linux/secretmem.h | 30 ++ include/linux/set_memory.h | 4 +- include/linux/syscalls.h | 1 + include/uapi/asm-generic/unistd.h | 6 +- include/uapi/linux/magic.h | 1 + include/uapi/linux/secretmem.h | 8 + kernel/power/hibernate.c | 5 +- kernel/power/snapshot.c | 4 +- kernel/sys_ni.c | 2 + mm/Kconfig | 5 + mm/Makefile | 1 + mm/filemap.c | 2 +- mm/gup.c | 10 + mm/internal.h | 3 + mm/mmap.c | 5 +- mm/secretmem.c | 451 ++++++++++++++++++++++ mm/vmalloc.c | 5 +- scripts/checksyscalls.sh | 4 + tools/testing/selftests/vm/.gitignore | 1 + tools/testing/selftests/vm/Makefile | 3 +- tools/testing/selftests/vm/memfd_secret.c | 298 ++++++++++++++ tools/testing/selftests/vm/run_vmtests | 17 + 38 files changed, 895 insertions(+), 39 deletions(-) create mode 100644 include/linux/secretmem.h create mode 100644 include/uapi/linux/secretmem.h create mode 100644 mm/secretmem.c create mode 100644 tools/testing/selftests/vm/memfd_secret.c base-commit: 9f8ce377d420db12b19d6a4f636fecbd88a725a5 -- 2.28.0