

 Advanced Micro Devices

[Public]

Secure VM Service Module for
SEV-SNP Guests

Guest Communication Interface

 Publication # 58019 Revision: 0.61
 Issue Date: February 2023

[Public]

© 2022 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change
without notice. While every precaution has been taken in the preparation of this document, it
may contain technical inaccuracies, omissions and typographical errors, and AMD is under no
obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes
no representations or warranties with respect to the accuracy or completeness of the contents
of this document, and assumes no liability of any kind, including the implied warranties of
noninfringement, merchantability or fitness for particular purposes, with respect to the
operation or use of AMD hardware, software or other products described herein. No license,
including implied or arising by estoppel, to any intellectual property rights is granted by this
document. Terms and limitations applicable to the purchase or use of AMD’s products are as
set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions
of Sale.
Trademarks

AMD, the AMD Arrow logo, AMD EPYC, and combinations thereof are trademarks of Advanced
Micro Devices, Inc. Other product names used in this publication are for identification purposes
only and may be trademarks of their respective companies.

58019 Rev. 0.61 February 2023 Secure VM Service Module for SEV-SNP Guests

 3

[Public]

Specification Agreement

This Specification Agreement (this “Agreement”) is a legal agreement between Advanced Micro Devices, Inc.
(“AMD”) and “You” as the recipient of the attached AMD Specification (the “Specification”). If you are accessing the
Specification as part of your performance of work for another party, you acknowledge that you have authority to
bind such party to the terms and conditions of this Agreement. If you accessed the Specification by any means or
otherwise use or provide Feedback (defined below) on the Specification, You agree to the terms and conditions set
forth in this Agreement. If You do not agree to the terms and conditions set forth in this Agreement, you are not
licensed to use the Specification; do not use, access or provide Feedback about the Specification.

In consideration of Your use or access of the Specification (in whole or in part), the receipt and sufficiency of which
are acknowledged, You agree as follows:

1. You may review the Specification only (a) as a reference to assist You in planning and designing Your product,

service or technology (“Product”) to interface with an AMD product in compliance with the requirements as set

forth in the Specification and (b) to provide Feedback about the information disclosed in the Specification to

AMD.

2. Except as expressly set forth in Paragraph 1, all rights in and to the Specification are retained by AMD. This

Agreement does not give You any rights under any AMD patents, copyrights, trademarks or other intellectual

property rights. You may not (i) duplicate any part of the Specification; (ii) remove this Agreement or any

notices from the Specification, or (iii) give any part of the Specification, or assign or otherwise provide Your

rights under this Agreement, to anyone else.

3. The Specification may contain preliminary information, errors, or inaccuracies, or may not include certain

necessary information. Additionally, AMD reserves the right to discontinue or make changes to the

Specification and its products at any time without notice. The Specification is provided entirely “AS IS.” AMD

MAKES NO WARRANTY OF ANY KIND AND DISCLAIMS ALL EXPRESS, IMPLIED AND STATUTORY WARRANTIES,

INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE, NONINFRINGEMENT, TITLE OR THOSE WARRANTIES ARISING AS A COURSE OF DEALING OR CUSTOM

OF TRADE. AMD SHALL NOT BE LIABLE FOR DIRECT, INDIRECT, CONSEQUENTIAL, SPECIAL, INCIDENTAL,

PUNITIVE OR EXEMPLARY DAMAGES OF ANY KIND (INCLUDING LOSS OF BUSINESS, LOSS OF INFORMATION OR

DATA, LOST PROFITS, LOSS OF CAPITAL, LOSS OF GOODWILL) REGARDLESS OF THE FORM OF ACTION WHETHER

IN CONTRACT, TORT (INCLUDING NEGLIGENCE) AND STRICT PRODUCT LIABILITY OR OTHERWISE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

4. Furthermore, AMD’s products are not designed, intended, authorized or warranted for use as components in

systems intended for surgical implant into the body, or in other applications intended to support or sustain life,

or in any other application in which the failure of AMD’s product could create a situation where personal injury,

death, or severe property or environmental damage may occur.

Secure VM Service Module for SEV-SNP Guests 58019 Rev. 0.61 February 2023

4

[Public]

5. You have no obligation to give AMD any suggestions, comments or feedback (“Feedback”) relating to the

Specification. However, any Feedback You voluntarily provide may be used by AMD without restriction, fee or

obligation of confidentiality. Accordingly, if You do give AMD Feedback on any version of the Specification, You

agree AMD may freely use, reproduce, license, distribute, and otherwise commercialize Your Feedback in any

product, as well as has the right to sublicense third parties to do the same. Further, You will not give AMD any

Feedback that You may have reason to believe is (i) subject to any patent, copyright or other intellectual

property claim or right of any third party; or (ii) subject to license terms which seek to require any product or

intellectual property incorporating or derived from Feedback or any Product or other AMD intellectual property

to be licensed to or otherwise provided to any third party.

6. You shall adhere to all applicable U.S., European, and other export laws, including but not limited to the U.S.

Export Administration Regulations (“EAR”), (15 C.F.R. Sections 730 through 774), and E.U. Council Regulation

(EC) No 428/2009 of 5 May 2009. Further, pursuant to Section 740.6 of the EAR, You hereby certifies that,

except pursuant to a license granted by the United States Department of Commerce Bureau of Industry and

Security or as otherwise permitted pursuant to a License Exception under the U.S. Export Administration

Regulations ("EAR"), You will not (1) export, re-export or release to a national of a country in Country Groups

D:1, E:1 or E:2 any restricted technology, software, or source code You receive hereunder, or (2) export to

Country Groups D:1, E:1 or E:2 the direct product of such technology or software, if such foreign produced

direct product is subject to national security controls as identified on the Commerce Control List (currently

found in Supplement 1 to Part 774 of EAR). For the most current Country Group listings, or for additional

information about the EAR or Your obligations under those regulations, please refer to the U.S. Bureau of

Industry and Security’s website at http://www.bis.doc.gov/.

7. If You are a part of the U.S. Government, then the Specification is provided with “RESTRICTED RIGHTS” as set

forth in subparagraphs (c) (1) and (2) of the Commercial Computer Software-Restricted Rights clause at FAR

52.227-14 or subparagraph (c) (1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS

252.277-7013, as applicable.

8. This Agreement is governed by the laws of the State of California without regard to its choice of law principles.

Any dispute involving it must be brought in a court having jurisdiction of such dispute in Santa Clara County,

California, and You waive any defenses and rights allowing the dispute to be litigated elsewhere. If any part of

this agreement is unenforceable, it will be considered modified to the extent necessary to make it enforceable,

and the remainder shall continue in effect. The failure of AMD to enforce any rights granted hereunder or to

take action against You in the event of any breach hereunder shall not be deemed a waiver by AMD as to

subsequent enforcement of rights or subsequent actions in the event of future breaches. This Agreement is the

entire agreement between You and AMD concerning the Specification; it may be changed only by a written

document signed by both You and an authorized representative of AMD.

http://www.bis.doc.gov/

58019 Rev. 0.61 February 2023 Secure VM Service Module for SEV-SNP Guests

 5

[Public]

Acknowledgements

AMD would like to acknowledge Jon Lange for his work in creating the initial draft of the SVSM
specification. Thank you, Jon.

Secure VM Service Module for SEV-SNP Guests 58019 Rev. 0.61 February 2023

6

[Public]

Contents

Specification Agreement .. 3

Acknowledgements ... 5

1 Abstract .. 10

2 Scope of Document ... 11

3 Environment ... 12

4 Discovery .. 13

4.1 Boot 13

4.2 Post-Boot ... 14

5 Calling Convention .. 15

6 Core Protocol .. 18

6.1 SVSM_CORE_REMAP_CA Call ... 18

6.2 SVSM_CORE_PVALIDATE Call .. 19

6.3 SVSM_CORE_CREATE_VCPU Call .. 20

6.4 SVSM_CORE_DELETE_VCPU Call ... 21

6.5 SVSM_CORE_DEPOSIT_MEM Call ... 22

6.6 SVSM_CORE_WITHDRAW_MEM Call.. 23

6.7 SVSM_CORE_QUERY_PROTOCOL Call... 24

6.8 SVSM_CORE_CONFIGURE_VTOM Call .. 25

7 Attestation Protocol .. 27

7.1 SVSM_ATTEST_SERVICES Call .. 27

7.2 SVSM_ATTEST_SINGLE_SERVICE Call .. 30

8 vTPM Protocol ... 32

8.1 SVSM_VTPM_QUERY Call .. 32

8.2 SVSM_VTPM_CMD Call ... 33

8.2.1 TPM_SEND_COMMAND .. 33

8.3 Service Attestation Data ... 34

8.3.1 Service Attestation GUID ... 34

8.3.2 SVSM_ATTEST_SERVICES Manifest Data... 34

8.3.3 SVSM_ATTEST_SINGLE_SERVICE Manifest Data ... 34

58019 Rev. 0.61 February 2023 Secure VM Service Module for SEV-SNP Guests

 7

[Public]

Secure VM Service Module for SEV-SNP Guests 58019 Rev. 0.61 February 2023

8

[Public]

List of Tables

Table 1: Secrets Page Fields .. 13

Table 2: Calling Area .. 15

Table 3: Protocols .. 15

Table 4: Result Codes .. 16

Table 5: Core Protocol Services ... 18

Table 6: PVALIDATE Operation .. 19

Table 7: Deposit Memory Operation .. 22

Table 8: Withdraw Memory Operation ... 23

Table 9: vTOM Configuration Operation ... 25

Table 10: Attestation Protocol Services .. 27

Table 11: Attest Services operation .. 27

Table 12: Services Manifest ... 29

Table 13: Attest Single Service operation ... 30

Table 14: Attestation Protocol Services .. 32

Table 15: vTPM common request/response structure ... 33

Table 16: TPM_SEND_COMMAND request structure ... 34

Table 17: TPM_SEND_COMMAND response structure .. 34

Table 18: vTPM Service Manifest Data structure .. 35

58019 Rev. 0.61 February 2023 Secure VM Service Module for SEV-SNP Guests

 9

[Public]

Revision History

Date Revision Description

February 2023 0.61 • Incorporated feedback from 0.60 review
o Updated vTPM attestation information
o Added single service attestation call
o Support for returning attestation certificates
o Document clarifications

January 2023 0.60 • Attestation protocol added

• vTPM protocol added

• Core protocol updates

August 2022 0.50 • Initial public release

Secure VM Service Module for SEV-SNP Guests 58019 Rev. 0.61 February 2023

10

[Public]

1 Abstract

AMD’s Secure Encrypted Virtualization with Secure Nested Paging (SEV-SNP) offers powerful and
flexible support for isolation of a guest Virtual Machine (VM) state from an untrusted host
operating system. The VM Permission Level (VMPL) feature permits the inclusion of components
in the guest that can run with a higher privilege than the guest operating system, offering an
environment for secure, privileged code modules to run without interference from the bulk of
the guest. Such code modules are not part of the guest operating system and may be designed to
be modular, offering compatibility with a wide variety of guest configurations. For such a
modular design to be successful, a standard calling convention must exist to permit the guest
operating system and secure modules to communicate without interference from the untrusted
host environment. This document defines the standard by which these modules can exist
together and communicate within a single SNP guest.

58019 Rev. 0.61 February 2023 Secure VM Service Module for SEV-SNP Guests

 11

[Public]

2 Scope of Document

This document defines a Secure VM Service Module (SVSM) as an environment that can host
privileged modules within the guest, and it also defines mechanisms by which a guest operating
system can determine the presence of the SVSM, the set of services offered by the SVSM, and
the mechanism by which the guest can communicate with those services.

This document does not describe the internals of the SVSM. Multiple SVSM implementations are
encouraged; this document defines standards by which an SVSM communicates with a guest
operating system so that multiple SVSM implementations can be compatible with multiple guest
operating systems.

This document does not describe the mechanism by which the Virtual Machine Manager (VMM)
loads the SVSM. That mechanism is assumed to be specific to the host architecture. The SVSM
and the firmware are expected to be loaded and measured as part of the initial guest image so
that the specific identity of the SVSM and firmware associated with a guest can be verified
through measurement and attestation. It is expected that the following items will be measured:

• Items measured at VMPL0
o SVSM binary
o SVSM BSP VM Save Area (VMSA) as a VMSA page
o Firmware BSP VMSA as a Normal page
o Secrets page
o CPUID page

• Items measured at VMPL1+
o Firmware binary

The hypervisor can measure additional pages as needed.

This document does not describe mechanisms by which the VMM communicates with the SVSM
nor chooses to invoke the SVSM. Those details are assumed to be specific to the host
environment, though they could be standardized under a different specification.

This document does not describe the threading model of the SVSM. Some SVSM
implementations may choose a separate execution context (a unique VMSA) per guest vCPU,
while other SVSM implementations may choose a single execution context that services all guest
vCPUs. The negotiation of threading models between the SVSM and the host as well as the
mechanism by which the host indicates which guest vCPU makes a request are assumed to be
specific to the host environment, though they could be standardized under a different
specification.

Secure VM Service Module for SEV-SNP Guests 58019 Rev. 0.61 February 2023

12

[Public]

3 Environment

The SVSM is expected to execute in VMPL0 of the guest. To ensure privilege separation for
security-sensitive services, the bulk of the guest is expected to run at a VMPL other than zero.
The SVSM must offer services to proxy requests that would normally be made by a guest running
at VMPL0 but which are architecturally impossible when the guest is running at a VMPL other
than zero (e.g., use of the PVALIDATE instruction and creating VMSA pages using RMPADJUST).
Those services form part of the “core protocol.” (See the “Core Protocol” section on page 17.)

The SVSM image and its initial data are expected to occupy a contiguous portion of the guest
physical address (gPA) space. That memory must be configured with VMPL permissions that
grant access to VMPL0 but not to a less privileged VMPL (lower privilege VMPL levels have a
numerically higher number). The initial SVSM memory configuration must be sufficient to allow
the SVSM to initialize and offer all core protocol SVSM services. A mechanism is defined by which
the SVSM can obtain additional memory if required to support additional services that may be
requested by the guest OS.

58019 Rev. 0.61 February 2023 Secure VM Service Module for SEV-SNP Guests

 13

[Public]

4 Discovery

4.1 Boot

When the guest first starts, it is expected to execute in the context of the SVSM before any lower
VMPL is started. This permits the SVSM to initialize itself and make itself discoverable.

The SVSM advertises its presence by writing information into the secrets page, as described in
the following table. Note that the portions of the secrets page at byte offsets described here are
always zeroed during initial construction of the secrets page and reserved for use by the SVSM.
They will always be zero for every guest unless they are initialized by the SVSM.

Table 1: Secrets Page Fields

Byte
Offset

Size Field Name Description

0x140 8 bytes SVSM_BASE Base gPA of the SVSM area. This must be a multiple of
4 KB.

0x148 8 bytes SVSM_SIZE Number of bytes in the SVSM area. This must be a
multiple of 4 KB.

0x150 8 bytes SVSM_CAA gPA of an 8-byte area used for guest/SVSM
communication.

0x158 4 bytes SVSM_MAX_VERSION Maximum version of the core protocol supported by
the SVSM.

0x15C 1 byte SVSM_GUEST_VMPL Indicates the VMPL at which the guest is executing.

0x15D 3 bytes Reserved.

Note that the SVSM is expected to zero the portion of the secrets page that contains the VM
Platform Communication Key (VMPCK) associated with VMPL0, to prevent the guest OS from
intruding on any conversation between the SVSM and the PSP.

When the guest OS starts, it must first read the SVSM_SIZE field. If this field is zero, then no
SVSM is present. If this field is non-zero, indicating that an SVSM is present, then the guest must
note the memory range spanned by the SVSM so that it does not attempt to use any memory in
that range. (It may, for example, choose to identify that memory as EfiPlatformReserved.) It must
use the specified SVSM_CAA value for use in communication with the SVSM.

This specification assumes that the initial guest image contains only a single VMSA, used for the
startup vCPU, whose contents have been measured as part of the guest launch and validated by
the SVSM before executing the initial guest image. If the guest requires additional VMSAs, they
should be created dynamically. (See the section “SVSM_CORE_CREATE_VCPU Call” on page 20.)

Secure VM Service Module for SEV-SNP Guests 58019 Rev. 0.61 February 2023

14

[Public]

It is expected that the SVSM will examine the SEV_FEATURES specified for the guest and
terminate if unsupported features are enabled. For example, if SEV_FEATURES for the guest OS
has the VmsaRegProt feature enabled, but the SVSM does not have support for accessing such a
VMSA, then the SVSM can terminate.

4.2 Post-Boot

After boot, it may still be necessary for guest components that do not have access to the secrets
page (e.g., UEFI runtime services invoked after the guest OS has started and taken over the SVSM
interface) to perform calls to the SVSM. For those components, an alternate discovery
mechanism is required.

To support separate components, a discovery mechanism is defined that requires specific
handling of #VC exceptions. It is assumed that if the SVSM was discovered at boot, then the guest
component that implements the #VC handler is also aware of the SVSM and the location of its
Calling Area.

To discover whether an SVSM is present, the separate component must execute
CPUID(EAX=8000_001F). This will result in a #VC exception, and the #VC handler is expected to
set EAX[28]=1 in the response. When the component that executed the CPUID observes
EAX[28]=1 in the response, it will know that an SVSM is reachable. This CPUID response bit is
reserved for the purpose of enumerating the presence of an SVSM and will never be set by
hardware or in any CPUID data generated by the PSP.

To discover the location of the SVSM Calling Area, the separate component must read MSR
C001_F000. This will result in a #VC exception, and the #VC handler is expected to supply the gPA
of the SVSM Calling Area as the MSR value. Writes to the MSR are not expected, and the #VC
handler is not required to handle writes to the MSR. This MSR is reserved for the purpose of
exposing the gPA of the SVSM Calling Area and will never be implemented in hardware.

Once the SVSM Calling Area has been located, the separate component can issue calls to the
SVSM normally. The separate component should not alter the state of the SVSM in a way that is
not expected by the remainder of the guest (e.g., no component should issue the
SVSM_CORE_REMAP_CA command).

58019 Rev. 0.61 February 2023 Secure VM Service Module for SEV-SNP Guests

 15

[Public]

5 Calling Convention

Each call to the SVSM conveys data through a combination of the SVSM Calling Area (whose
address was first configured through the SVSM_CAA field of the secrets page) and registers. Use
of the Calling Area is necessary for the SVSM to detect the difference between a call that was
issued by the guest and a spurious invocation by a poorly behaved host. Registers are used for all
other parameters.

The initially configured SVSM Calling Area is a page of memory that lies outside the initial SVSM
memory range and has not had its VMPL permissions restricted in any way. The address is
guaranteed to be aligned to a 4 KB boundary, so the remainder of the page may be used by the
guest for memory-based parameter passing if desired.

The contents of the Calling Area are described in the following table:

Table 2: Calling Area

Byte
Offset

Size Name Description

0x000 1 byte SVSM_CALL_PENDING Indicates whether a call has been requested by the
guest (0=no call requested, 1=call requested).

0x001 1 byte SVSM_MEM_AVAILABLE Free memory is available to be withdrawn.

0x002 6 bytes Reserved. The SVSM is not required to verify that
these bytes are zero.

Each call is identified by a 32-bit protocol number and a 32-bit call identifier specific to the
protocol. The following protocols are defined:

Table 3: Protocols

Protocol Number Protocol Description

0 Core

1 Attestation

2 vTPM

0x8000_0000 –
0x8000_FFFF

Reserved for AMD reference implementation specific protocols

To make a call to the SVSM, the guest OS must load the RAX register with the identifier of the
call, where bits [63:32] hold the protocol number and bits [31:0] hold the call identifier within
the protocol. Additional registers and/or memory may need to be configured with values specific

Secure VM Service Module for SEV-SNP Guests 58019 Rev. 0.61 February 2023

16

[Public]

to the call being issued. Once all memory and registers have been prepared, the guest OS must
write a value of 1 to the SVSM_CALL_PENDING field of the Calling Area to indicate its readiness
to issue the call. Finally, the guest OS must execute VMGEXIT to request that the host execute
the SVSM on behalf of the calling vCPU (see the Guest-Hypervisor Communication Block
Standardization for details.)

When the SVSM receives the call, it is expected to set VMSA.EFER.SVME=0 for the calling vCPU of
the guest OS; this ensures that the host cannot attempt to reenter the calling vCPU while SVSM
call processing is underway. (An attempt to enter the guest would result in a failure due to
invalid VMSA contents.) The SVSM is then expected to examine the SVSM_CALL_PENDING field
to determine whether any call was actually requested by the guest OS; if the host illegally
entered the SVSM, this field will be zero. In such a case, no action will be taken by the SVSM
other than setting VMSA.EFER.SVME=1 for the calling vCPU and returning to the guest. In
addition, the SVSM is expected to examine VMSA.EXITCODE after setting VMSA.EFER.SVME=0 to
ensure that the guest is on the expected VMGEXIT instruction boundary before proceeding. If the
exit code does not indicate exiting due to VMGEXIT, the SVSM should reset VMSA.EFER.SVME=1
and take no further action before returning to the guest.

Once the SVSM determines that a calling request is legitimate, it will read the value of RAX from
the VMSA of the requesting vCPU and process the call accordingly. Upon completion of the call,
the SVSM will set RAX in the VMSA of the requesting vCPU to indicate the result of the call. It will
clear SVSM_CALL_PENDING in the Calling Area to indicate that the call was completed, set
VMSA.EFER.SVME=1 for the calling vCPU (only after VMSA.RAX and SVSM_CALL_PENDING fields
have been set), and return to the guest.

Upon its return, the guest must atomically clear the SVSM_CALL_PENDING field and examine the
previous value. The guest cannot trust that the host has executed the SVSM call as desired, nor
can it assume that the host will not attempt to execute the SVSM call at an inopportune time, so
the guest must clear the pending request at the same time that it extracts the previous value for
examination. If the previous value of SVSM_CALL_PENDING was non-zero, the guest knows that
the SVSM never executed the call and must either retry the call or accept the fact that the host
did not honor the request to execute the SVSM. If the previous value of SVSM_CALL_PENDING
was zero, then the guest knows that the call completed and can examine the value of RAX to
determine whether the call completed successfully.

Result values returned in RAX are 32-bit values (a 64-bit sign extension is ignored) divided into
three categories: successful completion with distinct completion information, unsuccessful
completion for a specified reason, and requests for additional memory. Most result codes are
specific to individual protocols, but a portion of the result space is reserved for common values.

Table 4: Result Codes

Result code Name Meaning

0x0000_0000 SVSM_SUCCESS The call completed successfully.

https://developer.amd.com/wp-content/resources/56421.pdf
https://developer.amd.com/wp-content/resources/56421.pdf

58019 Rev. 0.61 February 2023 Secure VM Service Module for SEV-SNP Guests

 17

[Public]

Result code Name Meaning

0x0000_0000 -
0x0000_0FFF

 Reserved for future use.

0x0000_1000 -
0x3FFF_FFFF

 Defined by the protocol that was invoked.

0x4000_0000 -
0x7FFF_FFFF

 Additional memory is required to complete
the requested operation. Bits 29:0 indicate
the number of 4 KB pages that are
required.

0x8000_0000 SVSM_ERR_INCOMPLETE The requested call was partially
performed. The guest must request
additional processing by setting
SVSM_CALL_PENDING and invoking the
SVSM again.

0x8000_0001 SVSM_ERR_UNSUPPORTED_PROTOCOL The requested protocol is not supported.

0x8000_0002 SVSM_ERR_UNSUPPORTED_CALL The requested call ID is not supported by
the requested protocol.

0x8000_0003 SVSM_ERR_INVALID_ADDRESS A gPA specified as part of a call is invalid.

0x8000_0004 SVSM_ERR_INVALID_FORMAT A reserved value was specified in
SVSM_CALL_PENDING.

0x8000_0005 SVSM_ERR_INVALID_PARAMETER One or more invalid parameters were
specified to a call.

0x8000_0006 SVSM_ERR_INVALID_REQUEST The request cannot be supported by the
protocol handler that was invoked.

0x8000_0007 SVSM_ERR_BUSY The request cannot be handled at this
time, the guest should issue the request
again.

0x8000_0008 -
0x8000_0FFF

 Reserved for future use.

0x8000_1000 -
0xFFFF_FFFF

 Defined by the protocol that was invoked.

Any input parameters that do not meet the alignment requirement, will return the
SVSM_ERR_INVALID_PARAMETER result value.

Returning the SVSM_ERR_BUSY result code is implementation dependent and not specifically
identified in any protocol call description. Any call returning this result code must not leave the
system in an intermediate state. Any call returning this result code is expected to either describe
the progress made or else be idempotent.

It is expected that any call that returns a result code in the 0x4000_0000 – 0x7FFF_FFFF will not
have left the system in an intermediate state. Any call returning one of these result codes is
expected to either describe the progress made or else be idempotent.

Secure VM Service Module for SEV-SNP Guests 58019 Rev. 0.61 February 2023

18

[Public]

6 Core Protocol

All SVSM implementations must support the core protocol, which has the protocol ID value zero.
The core protocol is versioned, permitting its extension over time; the initial version of the
protocol is version 1. Versioning of the core protocol is strictly additive, i.e., all calls present in
version 1 must be supported by all future implementations. The following table enumerates the
set of calls supported by the core protocol:

Table 5: Core Protocol Services

Call ID First version
supported

Name Function

0 1 SVSM_CORE_REMAP_CA Remap the SVSM Calling Area to a new
gPA.

1 1 SVSM_CORE_PVALIDATE Execute PVALIDATE.

2 1 SVSM_CORE_CREATE_VCPU Create a new vCPU.

3 1 SVSM_CORE_DELETE_VCPU Delete a vCPU.

4 1 SVSM_CORE_DEPOSIT_MEM Deposit additional memory for use by
the SVSM.

5 1 SVSM_CORE_WITHDRAW_MEM Withdraw unused memory no longer
required by the SVSM.

6 1 SVSM_CORE_QUERY_PROTOCOL Query the availability of a certain
protocol.

7 1 SVSM_CORE_CONFIGURE_VTOM Reconfigures the use of vTOM.

6.1 SVSM_CORE_REMAP_CA Call

This call is used to request that a new gPA be used for all future communication with the SVSM. It
affects the Calling Area for calling vCPU only.

Register Size
(Bytes)

Alignment
(Bytes)

In/Out Description

RAX 4 Out Result value

RCX 8 4 KB In gPA of the new Calling Area

Upon completion of the call, the SVSM_CALL_PENDING field of the previously configured Calling
Area is cleared to indicate that the call has completed. In addition, if the call is successful, the
SVSM will set the SVSM_CALL_PENDING field of the new Calling Area to zero so that a spurious
invocation by an uncooperative host cannot trick the SVSM into thinking that another call was
requested by the guest. The guest can examine RAX to determine whether the call was

58019 Rev. 0.61 February 2023 Secure VM Service Module for SEV-SNP Guests

 19

[Public]

successful. If so, the previously configured Calling Area will no longer be examined by the SVSM
and can be reused by the guest for any purpose.

6.2 SVSM_CORE_PVALIDATE Call

This call is used to request that the SVSM execute PVALIDATE on behalf of the guest.

Register Size
(Bytes)

Alignment
(Bytes)

In/Out Description

RAX 4 Out Result value

RCX 8 8 In gPA of the list of requested operations

The list of requested operations is specified according to the format of the following table.

Table 6: PVALIDATE Operation

Byte
Offset

Size
(Bytes)

Meaning

0x000 2 Number of entries in the list.

0x002 2 Index of the next entry in the list to be processed.

0x004 4 Reserved.

0x008 8 First entry in the list. Each entry specifies bits as follows:
Bits 1:0 Value of RCX for the PVALIDATE operation (0=4 KB page, 1=2 MB

page).

Bit 2 Value of RDX for the PVALIDATE operation (0=make invalid, 1=make

valid).

Bit 3 Ignore EFLAGS.CF warnings.

Bits 11:4 Reserved.

Bits 63:12 gPA page number. Note that bits [20:12] must be zero if the entry
describes 2 MB.

0x010 8 Second entry in the list, if any. Additional list entries follow.

The number of entries in the list must not be so large that the parameter list crosses a 4 KB
boundary. The number of entries must be at least 1. If the number of entries is not within a valid
range, the call will return SVSM_ERR_INVALID_PARAMETER.

The index of the next entry to be processed must be strictly less than the number of entries in
the list; otherwise, the call will return SVSM_ERR_INVALID_PARAMETER.

Upon completion of a call, the index of the next entry to be processed will indicate the number
of entries in the list that have been successfully processed. If the call returns
SVSM_ERR_INCOMPLETE, then the SVSM was unable to process the entire list in a single
operation, and the guest should reload RAX with the correct calling code (RCX will remain

Secure VM Service Module for SEV-SNP Guests 58019 Rev. 0.61 February 2023

20

[Public]

unmodified during the call) and issue the call again; the SVSM will continue processing based on
the index of the next entry to be processed. If the call returns any other error, the index of the
next entry will indicate the index of the entry that failed processing. If the call succeeds, the
index of the next entry will be equal to the number of entries in the list.

The SVSM is expected to check that the guest is not attempting to execute PVALIDATE on a gPA
that is assigned to the SVSM itself. If the SVSM detects that the guest is attempting to execute
PVALIDATE on an address that is assigned to the SVSM, the call will return
SVSM_ERR_INVALID_ADDRESS.

If an entry sets bit 2=0 (requesting invalidation of the page), the SVSM will first execute
RMPADJUST to revoke permission for all VMPLs other than VMPL0. This is necessary to ensure
that subsequent attempt to validate a page will observe a consistent VMPL permission state
regardless of whether the host executes RMPUPDATE at any point in time.

If invocation of a PVALIDATE instruction results in the instruction completing with EFLAGS.CF=1,
and if the entry that provoked the EFLAGS.CF=1 warning did not set the appropriate bit, the call
will fail with the error code 0x8000_1010.

If invocation of a PVALIDATE instruction (or RMPADJUST instruction) results in the instruction
completing with EAX != 0, the call will fail with an error code in the range 0x8000_1000 through
0x8000_100F, where the value is equal to (0x8000_1000 + EAX). PVALIDATE is architecturally
specified to return EAX error codes in the range 0x0000-0x000F; if PVALIDATE unexpectedly
returns a value outside of that range (e.g., due to architectural expansion of the error code space
in a future revision), the call will fail with the error code 0x8000_1011.

If invocation of PVALIDATE completes successfully, and if the entry sets bit 2=1 (requesting
validation of the page), the SVSM will additionally execute RMPADJUST to grant full permission
to the VMPL of the vCPU making the request, as well as all more privileged VMPLs (numerically
lower or equal to the requesting VMPL).

6.3 SVSM_CORE_CREATE_VCPU Call

This call is used to request creation of a new vCPU context.

Register Size
(Bytes)

Alignment
(Bytes)

In/Out Description

RAX 4 Out Result value

RCX 8 4 KB In gPA of the VMSA to be created for the vCPU

RDX 8 4 KB In gPA of the Calling Area associated with the vCPU

R8 4 In APIC ID of the vCPU

58019 Rev. 0.61 February 2023 Secure VM Service Module for SEV-SNP Guests

 21

[Public]

The SVSM will check that both gPA values specified do not conflict with any existing usage (SVSM
private pages, any active VMSA address or any active Calling Area address). If a conflict is
detected, the call will return SVSM_ERR_INVALID_ADDRESS.

The SVSM will revoke access to every VMPL other than itself to ensure that the VMSA page is not
tampered with during the process of VMSA validation and assignment.

The SVSM will validate the new VMSA:

• If VMSA.VMPL == 0, the call will return SVSM_ERR_INVALID_PARAMETER.

• If VMSA.EFER.SVME == 1, the call will return SVSM_ERR_INVALID_PARAMETER.

• If VMSA.SEV_FEATURES != startup vCPU VMSA.SEV_FEATURES, the call will return
SVSM_ERR_INVALID_PARAMETER.

If the VMSA checks pass, the SVSM will execute RMPADJUST to turn the page into a VMSA page
so it can be used immediately. The SVSM will cache the gPA of the Calling Area associated with
that vCPU for use by future calls to the SVSM.

Once a page is established as a VMSA page, it is treated as privately owned by the SVSM for the
purpose of detecting memory usage conflicts. Any call which specifies the gPA of a VMSA page as
an input gPA will fail with SVSM_ERR_INVALID_ADDRESS. This is also true of the VMSA of the
startup vCPU. (This VMSA is not required to be within the initial contiguous range of pages
assigned to the SVSM since the guest is expected to know where its own VMSA is located.)

6.4 SVSM_CORE_DELETE_VCPU Call

This call is used to delete a vCPU that was previously configured.

Register Size
(Bytes)

Alignment
(Bytes)

In/Out Description

RAX 4 Out Result value

RCX 8 4 KB In gPA of the VMSA to be deleted

The SVSM will verify that the specified gPA belongs to a known VMSA address. If the gPA is not a
known VMSA address, the call will return SVSM_ERR_INVALID_PARAMETER. The startup vCPU
can never be deleted. If the VMSA is associated with the startup vCPU, the call will return
SVSM_ERR_INVALID_PARAMETER.

The SVSM will set VMSA.EFER.SVME = 0. If the SVSM fails to set VMSA.EFER.SVME to 0 (because
the VMSA is currently executing), the call will return a result value of 0x80001003 (equivalent to
the FAIL_INUSE error code).

Secure VM Service Module for SEV-SNP Guests 58019 Rev. 0.61 February 2023

22

[Public]

The SVSM will execute RMPADJUST to convert the page from a VMSA page to a normal page and
ensure that full access is available to the VMPL of the requesting vCPU and all more privileged
VMPLs (numerically lower than or equal to the requesting VMPL).

Once deletion of the vCPU is complete, the previously configured VMSA and Calling Area will no
longer be examined by the SVSM and can be reused by the guest for any purpose.

6.5 SVSM_CORE_DEPOSIT_MEM Call

This call can be made to grant additional memory for exclusive use by the SVSM in case it
requires additional memory to perform its work. The guest can know when additional memory is
required because the SVSM will return a status code in the range 0x4nnn_nnnn, indicating the
number of additional 4 KB pages required.

The caller is responsible for coordinating calls to deposit or withdraw memory across all vCPUs.

Register Size
(Bytes)

Alignment
(Bytes)

In/Out Description

RAX 4 Out Result value

RCX 8 8 In gPA of the list of memory pages

The list of memory pages is specified according to the format of the following table.

Table 7: Deposit Memory Operation

Byte
Offset

Size Meaning

0x000 2 bytes Number of entries in the list.

0x002 2 bytes Index of the next entry in the list to be processed.

0x004 4 bytes Reserved.

0x008 8 bytes First entry in the list. Each entry specifies bits as follows:

Bits 1:0 Size of the memory range described by this entry (0=4 KB page,

1=2 MB page).

Bits 11:2 Reserved.

Bits 63:12 gPA page number. Note that bits [20:12] must be zero if the entry
describes 2 MB.

0x010 8 bytes Second entry in the list, if any. Additional list entries follow.

The number of entries in the list must not be so large that the parameter list crosses a 4 KB
boundary. The number of entries must be at least 1. If number of entries is not within a valid
range, the call will return SVSM_ERR_INVALID_PARAMETER.

58019 Rev. 0.61 February 2023 Secure VM Service Module for SEV-SNP Guests

 23

[Public]

The index of the next entry to be processed must be strictly less than the number of entries in
the list; otherwise, the call will return SVSM_ERR_INVALID_PARAMETER.

Upon completion of a call, the index of the next entry to be processed will indicate the number
of entries in the list that have been successfully processed. If the call returns
SVSM_ERR_INCOMPLETE, then the SVSM was unable to process the entire list in a single
operation, and the guest should reload RAX with the correct calling code (RCX will remain
unmodified during the call) and issue the call again; the SVSM will continue processing based on
the index of the next entry to be processed. If the call returns any other error, the index of the
next entry will indicate the index of the entry that failed processing. If the call succeeds, the
index of the next entry will be equal to the number of entries in the list.

For each entry in the list, the SVSM will verify that the memory described is not already private to
the SVSM and does not overlap any page that has been configured as a Calling Area. If any
overlap is detected, the call will return SVSM_ERR_INVALID_ADDRESS.

For each valid entry in the list, the SVSM will execute RMPADJUST to restrict VMPL permissions
so that the pages are only accessible to VMPL0, making the pages private to the SVSM.

The call may return failure with the value of the next entry index not being zero. This indicates
that some memory was successfully deposited with the SVSM, and some was not.

6.6 SVSM_CORE_WITHDRAW_MEM Call

This call permits the guest to reclaim memory that was made private to the SVSM but is no
longer needed by the SVSM. Any SVSM operation that results in free memory that can be
reclaimed will set the SVSM_MEM_AVAILABLE flag in the Calling Area.

The caller is responsible for coordinating calls to deposit or withdraw memory across all vCPUs.

Register Size
(Bytes)

Alignment
(Bytes)

In/Out Description

RAX 4 Out Result value

RCX 8 8 In gPA of an area to hold a list of memory pages

The list of memory pages is populated by the SVSM and is specified according to the format of
the following table.

Table 8: Withdraw Memory Operation

Byte
Offset

Size Meaning

0x000 2 bytes Number of entries in the list.

Secure VM Service Module for SEV-SNP Guests 58019 Rev. 0.61 February 2023

24

[Public]

Byte
Offset

Size Meaning

0x002 6 bytes Unused.

0x008 8 bytes x number of entries List of gPA values of 4 KB pages that are no longer in use.

The maximum number of entries returned is constrained so that the returned list will not cross a
4 KB boundary. If the parameter page is aligned such that there is no room for any entries (i.e.,
the parameter page gPA is aligned to a 4 KB boundary plus 0xFF8 bytes), the call will return
SVSM_ERR_INVALID_PARAMETER.

If no memory is available to withdraw, the number of entries will be zero. Unused entries beyond
the end of the list are not zeroed.

The SVSM must execute RMPADJUST for all memory being withdrawn to grant full access to the
VMPL of the requesting vCPU and to all more privileged VMPLs (numerically lower than or equal
to the requesting VMPL). Upon completion of the call, the SVSM will no longer access the pages,
which can then be reused by the guest for any purpose.

The SVSM_MEM_AVAILABLE flag of the Calling Area of the startup vCPU may be updated to
indicate whether additional memory remains available for withdrawal.

This call will never return SVSM_ERR_INCOMPLETE. If the SVSM is unable to withdraw all
available memory, the call must complete with SVSM_SUCCESS, and the SVSM_MEM_AVAILABLE
flag of the startup vCPU’s Calling Area will indicate that additional memory remains available for
withdrawal.

6.7 SVSM_CORE_QUERY_PROTOCOL Call

This call is used to determine the availability of a given protocol. Bits [63:32] of register RCX
contain the requested protocol number. Bits [31:0] of register RCX contain the desired version of
the requested protocol. Upon completion of the call, register RCX is set to indicate availability of
the requested protocol. If the protocol is unavailable at the requested version, register RCX will
contain the value zero. If the protocol is available at the requested version, bits [63:32] of
register RCX will support the maximum supported protocol version number, and bits [31:0] of
register RCX will support the minimum supported protocol version number.

This call will always return SVSM_SUCCESS since the availability of the protocol is advertised
through RCX. Querying for the presence of a protocol is not permitted to demand additional
SVSM memory. (Calls to that protocol may request memory to be deposited.)

58019 Rev. 0.61 February 2023 Secure VM Service Module for SEV-SNP Guests

 25

[Public]

6.8 SVSM_CORE_CONFIGURE_VTOM Call

This call is used to query or reconfigure the use of vTOM on the calling processor. To support a
transition between vTOM-based confidentiality and confidentiality determinations that rely
exclusively on the Page Table Entry’s C-bit, this call will also change the guest value of CR3, as
well as RIP and RSP, to permit a clean transition from one environment to another.

SVSM_CORE_CONFIGURE_VTOM calls take two forms: query and configure, as indicated by bit
zero of RCX. (RCX[0]=1 indicates query, while RCX[0]=0 indicates configure.) The register
convention for the calls is described in the following table.

Table 9: vTOM Configuration Operation

Register Contents

RCX on
entry

Query Bit 0 Must be one.

Bit 63:1 Must be zero.

Configure Bit 0 Must be zero.

Bit 1 Set to zero to disable vTOM, or set to one to enable vTOM.

Bit 2 If set to one, will cause VMSA.CR3 to be set to the value in

RDX upon successful completion of the call.

Bit 3 If set to one, will cause VMSA.RIP to be set to the value in R8

upon successful completion of the call.

Bit 4 If set to one, will cause VMSA.RSP to be set to the value in R9

upon successful completion of the call.

Bits 11:5 Must be zero.

Bits 63:12 Bits 63:12 of the desired vTOM value. Must be zero if vTOM

is being disabled.

RCX result Bit 0 Will be zero.

Bit 1 Will be one if vTOM configuration is supported; otherwise zero.

Bits 11:2 Will be zero.

Bits 19:12 vTOM alignment requirement as a power of two (value of 20 would indicate

that vTOM must be aligned to a 1 MB boundary).

Bits 63:20 Zero

RDX
result

Minimum valid vTOM value if vTOM configuration is supported; otherwise undefined.

R8 result Maximum valid vTOM value if vTOM configuration is supported; otherwise undefined.

If the call is successful, vTOM will be reported or reconfigured as requested. If vTOM is being
reconfigured, then CR3 and RSP will be updated as requested, and execution will continue at the
specified RIP with RAX containing the value SVSM_SUCCESS.

Secure VM Service Module for SEV-SNP Guests 58019 Rev. 0.61 February 2023

26

[Public]

If the call is unsuccessful, no VMSA changes will occur, and execution will continue at the
instruction following the VMGEXIT with RAX containing the appropriate error code.

The call may fail if any reserved bit RCX is set inappropriately; this will result in the call returning
SVSM_ERR_INVALID_PARAMETER.

The SVSM may choose to deny the call if it cannot support the request. For example, the SVSM
may be unable to reconfigure VTOM if more than a single vCPU has been configured or if the
requested configuration differs from configurations present on other vCPUs. This will result in
the call returning SVSM_ERR_INVALID_REQUEST. If the value of vTOM is one that cannot be
supported by the hosting environment, then the call will result in SVSM_ERR_INVALID_ADDRESS.

58019 Rev. 0.61 February 2023 Secure VM Service Module for SEV-SNP Guests

 27

[Public]

7 Attestation Protocol

The attestation protocol has protocol ID value one. The attestation protocol is versioned,
permitting its extension over time; the initial version of the attestation protocol is version 1.
Versioning of the attestation protocol is strictly additive, i.e., all calls present in version 1 must be
supported by all future implementations. The following table enumerates the set of calls
supported by the attestation protocol:

Table 10: Attestation Protocol Services

Call ID First version
supported

Name Function

0 1 SVSM_ATTEST_SERVICES Retrieve an attestation report for all
SVSM services (e.g. vTPM, etc.).

1 1 SVSM_ATTEST_SINGLE_SERVICE Retrieve an attestation report for a
single SVSM service

7.1 SVSM_ATTEST_SERVICES Call

This call is used to request a VMPL0 attestation report that includes a services manifest of the
services that are running in the SVSM as part of the report data. Optionally, a certificate data
buffer can be supplied. When supplied, the hypervisor can provide certificate data back to the
caller when processing the SNP Guest Request used to generate the attestation report.

Register Size
(Bytes)

Alignment
(Bytes)

In/Out Description

RAX 4 Out Result value

RCX 8 8 In gPA of the attestation services operation structure, see
Table 11: Attest Services operation

8 Out Services manifest size (in bytes)

RDX 8 Out Certificate data buffer size (in bytes)

The inputs associated with the attest services call are specified according to the format of the
following table.

Table 11: Attest Services operation

Byte
Offset

Size
(Bytes)

Alignment
(Bytes)

Meaning

0x000 8 4 KB Attestation report buffer gPA

Secure VM Service Module for SEV-SNP Guests 58019 Rev. 0.61 February 2023

28

[Public]

Byte
Offset

Size
(Bytes)

Alignment
(Bytes)

Meaning

0x008 4 Attestation report buffer size (in bytes)

0x00C 4 RESERVED – MBZ

0x010 8 Nonce gPA

0x018 2 Nonce size (in bytes)

0x01A 6 RESERVED – MBZ

0x020 8 4 KB Services manifest buffer gPA

0x028 4 Services manifest buffer size (in bytes)

0x02C 4 RESERVED – MBZ

0x030 8 4 KB Certificate data buffer gPA

0x038 4 Certificate data buffer size (in bytes)

0x03C 4 RESERVED – MBZ

The attest services operation structure must not cross a 4 KB boundary. If the gPA of the
structure is such that the structure crosses a 4 KB boundary, the call will return
SVSM_ERR_INVALID_PARAMETER.

The attestation report buffer will be treated as physically contiguous in the guest address space if
the buffer size is greater than 4 KB.

The nonce must not cross a 4 KB boundary. If the nonce crosses a 4 KB boundary, the call will
return SVSM_ERR_INVALID_PARAMETER.

The services manifest buffer will be treated as physically contiguous in the guest address space if
the buffer size is greater than 4 KB.

The certificate data buffer is optional. Its presence is indicated by setting the certificate data
buffer size to a non-zero value. If the certificate data buffer length is non-zero, the certificate
data buffer will be treated as physically contiguous in the guest address space if the buffer size is
greater than 4 KB.

All gPA values must not be gPA values that are assigned to the SVSM itself. If the SVSM detects
that the guest is specifying an address that is assigned to the SVSM, the call will return
SVSM_ERR_INVALID_ADDRESS.

The SVSM will assemble a services manifest that will be used as input to the attestation request.
Each service will produce a descriptive section for the manifest in a service-defined format. If the
size of the assembled services manifest exceeds the size of the supplied services manifest buffer,
RCX will be set to the size of the services manifest (in bytes) and the call will return
SVSM_ERR_INVALID_PARAMETER.

58019 Rev. 0.61 February 2023 Secure VM Service Module for SEV-SNP Guests

 29

[Public]

The services manifest is identified by a 16-byte GUID, 4-byte length and a 4-byte services count
at the beginning of the manifest. The services in the manifest, if any, are identified in a table
beginning at offset 24 (0x18) into the manifest. Each service entry consists of a 16-byte GUID, a
4-byte offset from the start of the manifest to the service data, and a 4-byte length of the service
data. A given SVSM binary must produce a services manifest with the services ordered and
assembled in the same manner across multiple calls to SVSM_ATTEST_SERVICES and across
different VM instances.

Table 12: Services Manifest

Byte
Offset

Size
(Bytes)

Meaning

0x000 16 Services manifest GUID: 63849ebb-3d92-4670-a1ff-58f9c94b87bb

0x010 4 Services manifest length

0x014 4 Number of services contained in the manifest

First service table entry, if any.

0x018 16 Service GUID

0x028 4 Service data offset

0x02C 4 Service data length

Next service table entry, if any. Additional table service table entries follow.

0x030

The minimum length of a services manifest (when there are no services present) is 24 (0x18)
bytes.

Each service will document its GUID value and the format of its manifest content. It is suggested
to use the same GUID/offset/length format as is used here.

The Input REPORT_DATA supplied on the SNP attestation request will be the SHA-512 digest of
the input nonce and the services manifest, SHA-512(Nonce || Services Manifest). The input
VMPL supplied on the SNP attestation request will be 0.

If a certificate data buffer was provided and if the size of the certificate data from the hypervisor
exceeds the size of the supplied certificate data buffer, RCX will be set to the size of the services
manifest and RDX will be set to the size of the certificate data (in bytes) and the call will return
SVSM_ERR_INVALID_PARAMETER.

Upon successful completion of the SNP attestation request, the attestation report will be copied
to the input attestation report buffer gPA, the services manifest will be copied to the input
services manifest buffer gPA, RCX will be set to the size of the services manifest and, if a
certificate data buffer was provided, the certificate data will be copied to the input certificate
data buffer gPA and RDX will be set to the size of the certificate data. Should the SNP attestation
request fail, RAX will be set to 0x8000_1000.

Secure VM Service Module for SEV-SNP Guests 58019 Rev. 0.61 February 2023

30

[Public]

7.2 SVSM_ATTEST_SINGLE_SERVICE Call

This call is used to request a VMPL0 attestation report that includes a service manifest for the
specified service that is running in the SVSM as part of the report data.

Register Size
(Bytes)

Alignment
(Bytes)

In/Out Description

RAX 4 Out Result value

RCX

8 8 In gPA of the attestation services operation structure, see
Table 11: Attest Services operation

8 Out Service manifest size (in bytes)

RDX 8 Out Certificate data size (in bytes)

The inputs associated with the attest single service call are specified according to the format of
the following table.

Table 13: Attest Single Service operation

Byte
Offset

Size
(Bytes)

Alignment
(Bytes)

Meaning

0x000 8 4 KB Attestation report buffer gPA

0x008 4 Attestation report buffer size (in bytes)

0x00C 4 RESERVED – MBZ

0x010 8 Nonce gPA

0x018 2 Nonce size (in bytes)

0x01A 6 Reserved

0x020 8 4 KB Service manifest buffer gPA

0x028 4 Service manifest buffer size (in bytes)

0x02C 4 RESERVED – MBZ

0x030 8 4 KB Certificate data buffer gPA

0x038 4 Certificate data buffer size (in bytes)

0x03C 4 RESERVED – MBZ

0x040 16 GUID of service to attest

0x050 4 Requested manifest version

0x054 4 RESERVED – MBZ

The attest single service operation structure must not cross a 4 KB boundary. If the gPA of the
structure is such that the structure crosses a 4 KB boundary, the call will return
SVSM_ERR_INVALID_PARAMETER.

The attestation report buffer will be treated as physically contiguous in the guest address space if
the buffer size is greater than 4 KB.

58019 Rev. 0.61 February 2023 Secure VM Service Module for SEV-SNP Guests

 31

[Public]

The nonce must not cross a 4 KB boundary. If the nonce crosses a 4 KB boundary, the call will
return SVSM_ERR_INVALID_PARAMETER.

The service manifest buffer will be treated as physically contiguous in the guest address space if
the buffer size is greater than 4 KB.

The certificate data buffer is optional. Its presence is indicated by setting the certificate data
buffer size to a non-zero value. If the certificate data buffer length is non-zero, the certificate
data buffer will be treated as physically contiguous in the guest address space if the buffer size is
greater than 4 KB.

All gPA values must not be gPA values that are assigned to the SVSM itself. If the SVSM detects
that the guest is specifying an address that is assigned to the SVSM, the call will return
SVSM_ERR_INVALID_ADDRESS.

The GUID of the service to be attested needs to be an available service of the SVSM. If the
requested service is not available, the call will return SVSM_ERR_INVALID_PARAMETER.

The SVSM service must support the version of the manifest requested. If the requested manifest
version is not supported, the call will return SVSM_ERR_INVALID_PARAMETER.

The SVSM will assemble a service manifest that will be used as input to the attestation request.
The service will produce a descriptive manifest in a service-defined format. If the size of the
assembled service manifest exceeds the size of the supplied service manifest buffer, RCX will be
set to the size of the service manifest (in bytes) and the call will return
SVSM_ERR_INVALID_PARAMETER.

The Input REPORT_DATA supplied on the SNP attestation request will be the SHA-512 digest of
the input nonce and the service manifest, SHA-512(Nonce || Service Manifest). The input VMPL
supplied on the SNP attestation request will be 0.

If a certificate data buffer was provided and if the size of the certificate data from the hypervisor
exceeds the size of the supplied certificate data buffer, RCX will be set to the size of the services
manifest and RDX will be set to the size of the certificate data (in bytes) and the call will return
SVSM_ERR_INVALID_PARAMETER.

Upon successful completion of the SNP attestation request, the attestation report will be copied
to the input attestation report buffer gPA, the service manifest will be copied to the input service
manifest buffer gPA, RCX will be set to the size of the service manifest, if a certificate data buffer
was provided, the certificate data will be copied to the input certificate data buffer gPA and RDX
will be set to the size of the certificate data. Should the SNP attestation request fail, RAX will be
set to 0x8000_1000.

Secure VM Service Module for SEV-SNP Guests 58019 Rev. 0.61 February 2023

32

[Public]

8 vTPM Protocol

The vTPM protocol has protocol ID value two. The vTPM protocol is versioned, permitting its
extension over time; the initial version of the vTPM protocol is version 1. Versioning of the vTPM
protocol is strictly additive, i.e., all calls present in version 1 must be supported by all future
implementations.

The vTPM protocol follows the Official TPM 2.0 Reference Implementation (by Microsoft)
simulator protocol.

The following table enumerates the set of calls supported by the vTPM protocol:

Table 14: Attestation Protocol Services

Call ID First version
supported

Name Function

0 1 SVSM_VTPM_QUERY Query vTPM command and feature
support.

1 1 SVSM_VTPM_CMD Execute a TPM command.

8.1 SVSM_VTPM_QUERY Call

This call is used to query the support provided by the vTPM.

Register Size
(Bytes)

Alignment
(Bytes)

In/Out Description

RAX 4 Out Result value

RCX 8 Out Supported vTPM platform commands

RCX 8 Out Supported vTPM features

RCX is used to indicate the supported platform commands. For each platform command
supported by the vTPM, the corresponding bit will be set in RCX. Bits for any unsupported and
undefined platform commands must be cleared. The platform command values follow the values
used by the Official TPM 2.0 Reference Implementation (by Microsoft) simulator protocol.

RDX is used to indicate support for vTPM features:

Bit Feature Description

63:0 Must-be-zero

https://github.com/microsoft/ms-tpm-20-ref
https://github.com/microsoft/ms-tpm-20-ref

58019 Rev. 0.61 February 2023 Secure VM Service Module for SEV-SNP Guests

 33

[Public]

8.2 SVSM_VTPM_CMD Call

This call is used to execute a vTPM operation.

Register Size
(Bytes)

Alignment
(Bytes)

In/Out Description

RAX 4 Out Result value

RCX 8 4 KB In gPA of the vTPM request/response structure

All command request buffers have a common structure as specified by the following table:

Table 15: vTPM common request/response structure

Byte
Offset

Size
(Bytes)

In/Out Description

0x000 4 In Platform command

Out Platform command response size

Each command can build upon this common request/response structure to create a structure
specific to the command. The commands that do this are:

• TPM_SIGNAL_HASH_DATA

• TPM_SEND_COMMAND

• TPM_REMOTE_HANDSHAKE

• TPM_SET_ALTERNATIVE_RESULT

Only the TPM_SEND_COMMAND will be documented in this specification.

If a vTPM request/response structure has not been supplied, the call will return
SVSM_ERR_INVALID_PARAMETER. It is expected that the request/response structure is large
enough to hold the expected output of the vTPM request. The vTPM request/response buffer will
be treated as physically contiguous in the guest address space.

The vTPM request/response structure gPA must not be gPA values that is assigned to the SVSM
itself. If the SVSM detects that the guest is specifying an address that is assigned to the SVSM,
the call will return SVSM_ERR_INVALID_ADDRESS.

If the specified platform command is not supported, the call will return
SVSM_ERR_INVALID_PARAMETER.

8.2.1 TPM_SEND_COMMAND

Execute a TPM command and return the results.

Secure VM Service Module for SEV-SNP Guests 58019 Rev. 0.61 February 2023

34

[Public]

For TPM_SEND_COMMAND, platform command 8, the request buffer is specified according to
the format of the following table.

Table 16: TPM_SEND_COMMAND request structure

Byte
Offset

Size
(Bytes)

Meaning

0x000 4 Platform command (8)

0x004 1 Locality (must-be-zero)

0x005 4 TPM Command size (in bytes)

0x009 Variable TPM Command

The response buffer is specified according to the format of the following table.

Table 17: TPM_SEND_COMMAND response structure

Byte
Offset

Size
(Bytes)

Meaning

0x000 4 Response size (in bytes)

0x004 Variable Response

Locality usage for the vTPM is not defined. If a Locality value other than zero is specified, the call
will return SVSM_ERR_INVALID_PARAMETER.

8.3 Service Attestation Data

8.3.1 Service Attestation GUID

The vTPM service attestation GUID is c476f1eb-0123-45a5-9641-b4e7dde5bfe3.

8.3.2 SVSM_ATTEST_SERVICES Manifest Data

The manifest data used in an SVSM_ATTEST_SERVICES call is the same format as the manifest
version 0 format of the SVSM_ATTEST_SINGLE_SERVICE call, see Table 18: vTPM Service Manifest
Data structure in section 8.3.3.1.

8.3.3 SVSM_ATTEST_SINGLE_SERVICE Manifest Data

8.3.3.1 Manifest Version 0

The manifest data used in an SVSM_ATTEST_SINGLE_SERVICE call for manifest version 0 is
specified according to the following table.

58019 Rev. 0.61 February 2023 Secure VM Service Module for SEV-SNP Guests

 35

[Public]

Table 18: vTPM Service Manifest Data structure

Byte
Offset

Size
(Bytes)

Meaning

0x000 Variable TPMT_PUBLIC structure of the endorsement key

	Specification Agreement
	Acknowledgements
	1 Abstract
	2 Scope of Document
	3 Environment
	4 Discovery
	4.1 Boot
	4.2 Post-Boot

	5 Calling Convention
	6 Core Protocol
	6.1 SVSM_CORE_REMAP_CA Call
	6.2 SVSM_CORE_PVALIDATE Call
	6.3 SVSM_CORE_CREATE_VCPU Call
	6.4 SVSM_CORE_DELETE_VCPU Call
	6.5 SVSM_CORE_DEPOSIT_MEM Call
	6.6 SVSM_CORE_WITHDRAW_MEM Call
	6.7 SVSM_CORE_QUERY_PROTOCOL Call
	6.8 SVSM_CORE_CONFIGURE_VTOM Call

	7 Attestation Protocol
	7.1 SVSM_ATTEST_SERVICES Call
	7.2 SVSM_ATTEST_SINGLE_SERVICE Call

	8 vTPM Protocol
	8.1 SVSM_VTPM_QUERY Call
	8.2 SVSM_VTPM_CMD Call
	8.2.1 TPM_SEND_COMMAND

	8.3 Service Attestation Data
	8.3.1 Service Attestation GUID
	8.3.2 SVSM_ATTEST_SERVICES Manifest Data
	8.3.3 SVSM_ATTEST_SINGLE_SERVICE Manifest Data
	8.3.3.1 Manifest Version 0

