linux-fsdevel.vger.kernel.org archive mirror
 help / color / mirror / Atom feed
* [PATCH 0/2] mm: put_user_page() call site conversion first
@ 2019-02-08  7:56 john.hubbard
  2019-02-08  7:56 ` [PATCH 1/2] mm: introduce put_user_page*(), placeholder versions john.hubbard
                   ` (2 more replies)
  0 siblings, 3 replies; 7+ messages in thread
From: john.hubbard @ 2019-02-08  7:56 UTC (permalink / raw)
  To: Andrew Morton, linux-mm
  Cc: Al Viro, Christian Benvenuti, Christoph Hellwig,
	Christopher Lameter, Dan Williams, Dave Chinner,
	Dennis Dalessandro, Doug Ledford, Jan Kara, Jason Gunthorpe,
	Jerome Glisse, Matthew Wilcox, Michal Hocko, Mike Rapoport,
	Mike Marciniszyn, Ralph Campbell, Tom Talpey, LKML,
	linux-fsdevel, John Hubbard

From: John Hubbard <jhubbard@nvidia.com>

Hi,

It seems about time to post these initial patches: I think we have pretty
good consensus on the concept and details of the put_user_pages() approach.
Therefore, here are the first two patches, to get started on converting the
get_user_pages() call sites to use put_user_page(), instead of put_page().
This is in order to implement tracking of get_user_page() pages.

A discussion of the overall problem is below.

As mentioned in patch 0001, the steps are to fix the problem are:

1) Provide put_user_page*() routines, intended to be used
   for releasing pages that were pinned via get_user_pages*().

2) Convert all of the call sites for get_user_pages*(), to
   invoke put_user_page*(), instead of put_page(). This involves dozens of
   call sites, and will take some time.

3) After (2) is complete, use get_user_pages*() and put_user_page*() to
   implement tracking of these pages. This tracking will be separate from
   the existing struct page refcounting.

4) Use the tracking and identification of these pages, to implement
   special handling (especially in writeback paths) when the pages are
   backed by a filesystem.

This write up is lifted from the RFC v2 patchset cover letter [1]:

Overview
========

Some kernel components (file systems, device drivers) need to access
memory that is specified via process virtual address. For a long time, the
API to achieve that was get_user_pages ("GUP") and its variations. However,
GUP has critical limitations that have been overlooked; in particular, GUP
does not interact correctly with filesystems in all situations. That means
that file-backed memory + GUP is a recipe for potential problems, some of
which have already occurred in the field.

GUP was first introduced for Direct IO (O_DIRECT), allowing filesystem code
to get the struct page behind a virtual address and to let storage hardware
perform a direct copy to or from that page. This is a short-lived access
pattern, and as such, the window for a concurrent writeback of GUP'd page
was small enough that there were not (we think) any reported problems.
Also, userspace was expected to understand and accept that Direct IO was
not synchronized with memory-mapped access to that data, nor with any
process address space changes such as munmap(), mremap(), etc.

Over the years, more GUP uses have appeared (virtualization, device
drivers, RDMA) that can keep the pages they get via GUP for a long period
of time (seconds, minutes, hours, days, ...). This long-term pinning makes
an underlying design problem more obvious.

In fact, there are a number of key problems inherent to GUP:

Interactions with file systems
==============================

File systems expect to be able to write back data, both to reclaim pages,
and for data integrity. Allowing other hardware (NICs, GPUs, etc) to gain
write access to the file memory pages means that such hardware can dirty
the pages, without the filesystem being aware. This can, in some cases
(depending on filesystem, filesystem options, block device, block device
options, and other variables), lead to data corruption, and also to kernel
bugs of the form:

    kernel BUG at /build/linux-fQ94TU/linux-4.4.0/fs/ext4/inode.c:1899!
    backtrace:
        ext4_writepage
        __writepage
        write_cache_pages
        ext4_writepages
        do_writepages
        __writeback_single_inode
        writeback_sb_inodes
        __writeback_inodes_wb
        wb_writeback
        wb_workfn
        process_one_work
        worker_thread
        kthread
        ret_from_fork

...which is due to the file system asserting that there are still buffer
heads attached:

        ({                                                      \
                BUG_ON(!PagePrivate(page));                     \
                ((struct buffer_head *)page_private(page));     \
        })

Dave Chinner's description of this is very clear:

    "The fundamental issue is that ->page_mkwrite must be called on every
    write access to a clean file backed page, not just the first one.
    How long the GUP reference lasts is irrelevant, if the page is clean
    and you need to dirty it, you must call ->page_mkwrite before it is
    marked writeable and dirtied. Every. Time."

This is just one symptom of the larger design problem: filesystems do not
actually support get_user_pages() being called on their pages, and letting
hardware write directly to those pages--even though that pattern has been
going on since about 2005 or so.

Long term GUP
=============

Long term GUP is an issue when FOLL_WRITE is specified to GUP (so, a
writeable mapping is created), and the pages are file-backed. That can lead
to filesystem corruption. What happens is that when a file-backed page is
being written back, it is first mapped read-only in all of the CPU page
tables; the file system then assumes that nobody can write to the page, and
that the page content is therefore stable. Unfortunately, the GUP callers
generally do not monitor changes to the CPU pages tables; they instead
assume that the following pattern is safe (it's not):

    get_user_pages()

    Hardware can keep a reference to those pages for a very long time,
    and write to it at any time. Because "hardware" here means "devices
    that are not a CPU", this activity occurs without any interaction
    with the kernel's file system code.

    for each page
        set_page_dirty
        put_page()

In fact, the GUP documentation even recommends that pattern.

Anyway, the file system assumes that the page is stable (nothing is writing
to the page), and that is a problem: stable page content is necessary for
many filesystem actions during writeback, such as checksum, encryption,
RAID striping, etc. Furthermore, filesystem features like COW (copy on
write) or snapshot also rely on being able to use a new page for as memory
for that memory range inside the file.

Corruption during write back is clearly possible here. To solve that, one
idea is to identify pages that have active GUP, so that we can use a bounce
page to write stable data to the filesystem. The filesystem would work
on the bounce page, while any of the active GUP might write to the
original page. This would avoid the stable page violation problem, but note
that it is only part of the overall solution, because other problems
remain.

Other filesystem features that need to replace the page with a new one can
be inhibited for pages that are GUP-pinned. This will, however, alter and
limit some of those filesystem features. The only fix for that would be to
require GUP users to monitor and respond to CPU page table updates.
Subsystems such as ODP and HMM do this, for example. This aspect of the
problem is still under discussion.

Direct IO
=========

Direct IO can cause corruption, if userspace does Direct-IO that writes to
a range of virtual addresses that are mmap'd to a file.  The pages written
to are file-backed pages that can be under write back, while the Direct IO
is taking place.  Here, Direct IO races with a write back: it calls
GUP before page_mkclean() has replaced the CPU pte with a read-only entry.
The race window is pretty small, which is probably why years have gone by
before we noticed this problem: Direct IO is generally very quick, and
tends to finish up before the filesystem gets around to do anything with
the page contents.  However, it's still a real problem.  The solution is
to never let GUP return pages that are under write back, but instead,
force GUP to take a write fault on those pages.  That way, GUP will
properly synchronize with the active write back.  This does not change the
required GUP behavior, it just avoids that race.


[1] https://lkml.kernel.org/r/20190204052135.25784-1-jhubbard@nvidia.com

Cc: Christian Benvenuti <benve@cisco.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Christopher Lameter <cl@linux.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dennis Dalessandro <dennis.dalessandro@intel.com>
Cc: Doug Ledford <dledford@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Mike Marciniszyn <mike.marciniszyn@intel.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Tom Talpey <tom@talpey.com>

John Hubbard (2):
  mm: introduce put_user_page*(), placeholder versions
  infiniband/mm: convert put_page() to put_user_page*()

 drivers/infiniband/core/umem.c              |  7 +-
 drivers/infiniband/core/umem_odp.c          |  2 +-
 drivers/infiniband/hw/hfi1/user_pages.c     | 11 +--
 drivers/infiniband/hw/mthca/mthca_memfree.c |  6 +-
 drivers/infiniband/hw/qib/qib_user_pages.c  | 11 +--
 drivers/infiniband/hw/qib/qib_user_sdma.c   |  6 +-
 drivers/infiniband/hw/usnic/usnic_uiom.c    |  7 +-
 include/linux/mm.h                          | 24 ++++++
 mm/swap.c                                   | 82 +++++++++++++++++++++
 9 files changed, 129 insertions(+), 27 deletions(-)

-- 
2.20.1


^ permalink raw reply	[flat|nested] 7+ messages in thread

* [PATCH 1/2] mm: introduce put_user_page*(), placeholder versions
  2019-02-08  7:56 [PATCH 0/2] mm: put_user_page() call site conversion first john.hubbard
@ 2019-02-08  7:56 ` john.hubbard
  2019-02-08 10:32   ` Mike Rapoport
  2019-02-08  7:56 ` [PATCH 2/2] infiniband/mm: convert put_page() to put_user_page*() john.hubbard
  2019-02-15  0:23 ` [PATCH 0/2] mm: put_user_page() call site conversion first Ira Weiny
  2 siblings, 1 reply; 7+ messages in thread
From: john.hubbard @ 2019-02-08  7:56 UTC (permalink / raw)
  To: Andrew Morton, linux-mm
  Cc: Al Viro, Christian Benvenuti, Christoph Hellwig,
	Christopher Lameter, Dan Williams, Dave Chinner,
	Dennis Dalessandro, Doug Ledford, Jan Kara, Jason Gunthorpe,
	Jerome Glisse, Matthew Wilcox, Michal Hocko, Mike Rapoport,
	Mike Marciniszyn, Ralph Campbell, Tom Talpey, LKML,
	linux-fsdevel, John Hubbard

From: John Hubbard <jhubbard@nvidia.com>

Introduces put_user_page(), which simply calls put_page().
This provides a way to update all get_user_pages*() callers,
so that they call put_user_page(), instead of put_page().

Also introduces put_user_pages(), and a few dirty/locked variations,
as a replacement for release_pages(), and also as a replacement
for open-coded loops that release multiple pages.
These may be used for subsequent performance improvements,
via batching of pages to be released.

This is the first step of fixing a problem (also described in [1] and
[2]) with interactions between get_user_pages ("gup") and filesystems.

Problem description: let's start with a bug report. Below, is what happens
sometimes, under memory pressure, when a driver pins some pages via gup,
and then marks those pages dirty, and releases them. Note that the gup
documentation actually recommends that pattern. The problem is that the
filesystem may do a writeback while the pages were gup-pinned, and then the
filesystem believes that the pages are clean. So, when the driver later
marks the pages as dirty, that conflicts with the filesystem's page
tracking and results in a BUG(), like this one that I experienced:

    kernel BUG at /build/linux-fQ94TU/linux-4.4.0/fs/ext4/inode.c:1899!
    backtrace:
        ext4_writepage
        __writepage
        write_cache_pages
        ext4_writepages
        do_writepages
        __writeback_single_inode
        writeback_sb_inodes
        __writeback_inodes_wb
        wb_writeback
        wb_workfn
        process_one_work
        worker_thread
        kthread
        ret_from_fork

...which is due to the file system asserting that there are still buffer
heads attached:

        ({                                                      \
                BUG_ON(!PagePrivate(page));                     \
                ((struct buffer_head *)page_private(page));     \
        })

Dave Chinner's description of this is very clear:

    "The fundamental issue is that ->page_mkwrite must be called on every
    write access to a clean file backed page, not just the first one.
    How long the GUP reference lasts is irrelevant, if the page is clean
    and you need to dirty it, you must call ->page_mkwrite before it is
    marked writeable and dirtied. Every. Time."

This is just one symptom of the larger design problem: filesystems do not
actually support get_user_pages() being called on their pages, and letting
hardware write directly to those pages--even though that patter has been
going on since about 2005 or so.

The steps are to fix it are:

1) (This patch): provide put_user_page*() routines, intended to be used
   for releasing pages that were pinned via get_user_pages*().

2) Convert all of the call sites for get_user_pages*(), to
   invoke put_user_page*(), instead of put_page(). This involves dozens of
   call sites, and will take some time.

3) After (2) is complete, use get_user_pages*() and put_user_page*() to
   implement tracking of these pages. This tracking will be separate from
   the existing struct page refcounting.

4) Use the tracking and identification of these pages, to implement
   special handling (especially in writeback paths) when the pages are
   backed by a filesystem.

[1] https://lwn.net/Articles/774411/ : "DMA and get_user_pages()"
[2] https://lwn.net/Articles/753027/ : "The Trouble with get_user_pages()"

Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Christopher Lameter <cl@linux.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>

Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
---
 include/linux/mm.h | 24 ++++++++++++++
 mm/swap.c          | 82 ++++++++++++++++++++++++++++++++++++++++++++++
 2 files changed, 106 insertions(+)

diff --git a/include/linux/mm.h b/include/linux/mm.h
index 80bb6408fe73..809b7397d41e 100644
--- a/include/linux/mm.h
+++ b/include/linux/mm.h
@@ -993,6 +993,30 @@ static inline void put_page(struct page *page)
 		__put_page(page);
 }
 
+/**
+ * put_user_page() - release a gup-pinned page
+ * @page:            pointer to page to be released
+ *
+ * Pages that were pinned via get_user_pages*() must be released via
+ * either put_user_page(), or one of the put_user_pages*() routines
+ * below. This is so that eventually, pages that are pinned via
+ * get_user_pages*() can be separately tracked and uniquely handled. In
+ * particular, interactions with RDMA and filesystems need special
+ * handling.
+ *
+ * put_user_page() and put_page() are not interchangeable, despite this early
+ * implementation that makes them look the same. put_user_page() calls must
+ * be perfectly matched up with get_user_page() calls.
+ */
+static inline void put_user_page(struct page *page)
+{
+	put_page(page);
+}
+
+void put_user_pages_dirty(struct page **pages, unsigned long npages);
+void put_user_pages_dirty_lock(struct page **pages, unsigned long npages);
+void put_user_pages(struct page **pages, unsigned long npages);
+
 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
 #define SECTION_IN_PAGE_FLAGS
 #endif
diff --git a/mm/swap.c b/mm/swap.c
index 4929bc1be60e..7c42ca45bb89 100644
--- a/mm/swap.c
+++ b/mm/swap.c
@@ -133,6 +133,88 @@ void put_pages_list(struct list_head *pages)
 }
 EXPORT_SYMBOL(put_pages_list);
 
+typedef int (*set_dirty_func)(struct page *page);
+
+static void __put_user_pages_dirty(struct page **pages,
+				   unsigned long npages,
+				   set_dirty_func sdf)
+{
+	unsigned long index;
+
+	for (index = 0; index < npages; index++) {
+		struct page *page = compound_head(pages[index]);
+
+		if (!PageDirty(page))
+			sdf(page);
+
+		put_user_page(page);
+	}
+}
+
+/**
+ * put_user_pages_dirty() - release and dirty an array of gup-pinned pages
+ * @pages:  array of pages to be marked dirty and released.
+ * @npages: number of pages in the @pages array.
+ *
+ * "gup-pinned page" refers to a page that has had one of the get_user_pages()
+ * variants called on that page.
+ *
+ * For each page in the @pages array, make that page (or its head page, if a
+ * compound page) dirty, if it was previously listed as clean. Then, release
+ * the page using put_user_page().
+ *
+ * Please see the put_user_page() documentation for details.
+ *
+ * set_page_dirty(), which does not lock the page, is used here.
+ * Therefore, it is the caller's responsibility to ensure that this is
+ * safe. If not, then put_user_pages_dirty_lock() should be called instead.
+ *
+ */
+void put_user_pages_dirty(struct page **pages, unsigned long npages)
+{
+	__put_user_pages_dirty(pages, npages, set_page_dirty);
+}
+EXPORT_SYMBOL(put_user_pages_dirty);
+
+/**
+ * put_user_pages_dirty_lock() - release and dirty an array of gup-pinned pages
+ * @pages:  array of pages to be marked dirty and released.
+ * @npages: number of pages in the @pages array.
+ *
+ * For each page in the @pages array, make that page (or its head page, if a
+ * compound page) dirty, if it was previously listed as clean. Then, release
+ * the page using put_user_page().
+ *
+ * Please see the put_user_page() documentation for details.
+ *
+ * This is just like put_user_pages_dirty(), except that it invokes
+ * set_page_dirty_lock(), instead of set_page_dirty().
+ *
+ */
+void put_user_pages_dirty_lock(struct page **pages, unsigned long npages)
+{
+	__put_user_pages_dirty(pages, npages, set_page_dirty_lock);
+}
+EXPORT_SYMBOL(put_user_pages_dirty_lock);
+
+/**
+ * put_user_pages() - release an array of gup-pinned pages.
+ * @pages:  array of pages to be marked dirty and released.
+ * @npages: number of pages in the @pages array.
+ *
+ * For each page in the @pages array, release the page using put_user_page().
+ *
+ * Please see the put_user_page() documentation for details.
+ */
+void put_user_pages(struct page **pages, unsigned long npages)
+{
+	unsigned long index;
+
+	for (index = 0; index < npages; index++)
+		put_user_page(pages[index]);
+}
+EXPORT_SYMBOL(put_user_pages);
+
 /*
  * get_kernel_pages() - pin kernel pages in memory
  * @kiov:	An array of struct kvec structures
-- 
2.20.1


^ permalink raw reply related	[flat|nested] 7+ messages in thread

* [PATCH 2/2] infiniband/mm: convert put_page() to put_user_page*()
  2019-02-08  7:56 [PATCH 0/2] mm: put_user_page() call site conversion first john.hubbard
  2019-02-08  7:56 ` [PATCH 1/2] mm: introduce put_user_page*(), placeholder versions john.hubbard
@ 2019-02-08  7:56 ` john.hubbard
  2019-02-15  0:23 ` [PATCH 0/2] mm: put_user_page() call site conversion first Ira Weiny
  2 siblings, 0 replies; 7+ messages in thread
From: john.hubbard @ 2019-02-08  7:56 UTC (permalink / raw)
  To: Andrew Morton, linux-mm
  Cc: Al Viro, Christian Benvenuti, Christoph Hellwig,
	Christopher Lameter, Dan Williams, Dave Chinner,
	Dennis Dalessandro, Doug Ledford, Jan Kara, Jason Gunthorpe,
	Jerome Glisse, Matthew Wilcox, Michal Hocko, Mike Rapoport,
	Mike Marciniszyn, Ralph Campbell, Tom Talpey, LKML,
	linux-fsdevel, John Hubbard, Jason Gunthorpe

From: John Hubbard <jhubbard@nvidia.com>

For infiniband code that retains pages via get_user_pages*(),
release those pages via the new put_user_page(), or
put_user_pages*(), instead of put_page()

This is a tiny part of the second step of fixing the problem described
in [1]. The steps are:

1) Provide put_user_page*() routines, intended to be used
   for releasing pages that were pinned via get_user_pages*().

2) Convert all of the call sites for get_user_pages*(), to
   invoke put_user_page*(), instead of put_page(). This involves dozens of
   call sites, and will take some time.

3) After (2) is complete, use get_user_pages*() and put_user_page*() to
   implement tracking of these pages. This tracking will be separate from
   the existing struct page refcounting.

4) Use the tracking and identification of these pages, to implement
   special handling (especially in writeback paths) when the pages are
   backed by a filesystem. Again, [1] provides details as to why that is
   desirable.

[1] https://lwn.net/Articles/753027/ : "The Trouble with get_user_pages()"

Cc: Doug Ledford <dledford@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Mike Marciniszyn <mike.marciniszyn@intel.com>
Cc: Dennis Dalessandro <dennis.dalessandro@intel.com>
Cc: Christian Benvenuti <benve@cisco.com>

Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Dennis Dalessandro <dennis.dalessandro@intel.com>
Acked-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
---
 drivers/infiniband/core/umem.c              |  7 ++++---
 drivers/infiniband/core/umem_odp.c          |  2 +-
 drivers/infiniband/hw/hfi1/user_pages.c     | 11 ++++-------
 drivers/infiniband/hw/mthca/mthca_memfree.c |  6 +++---
 drivers/infiniband/hw/qib/qib_user_pages.c  | 11 ++++-------
 drivers/infiniband/hw/qib/qib_user_sdma.c   |  6 +++---
 drivers/infiniband/hw/usnic/usnic_uiom.c    |  7 ++++---
 7 files changed, 23 insertions(+), 27 deletions(-)

diff --git a/drivers/infiniband/core/umem.c b/drivers/infiniband/core/umem.c
index c6144df47ea4..c2898bc7b3b2 100644
--- a/drivers/infiniband/core/umem.c
+++ b/drivers/infiniband/core/umem.c
@@ -58,9 +58,10 @@ static void __ib_umem_release(struct ib_device *dev, struct ib_umem *umem, int d
 	for_each_sg(umem->sg_head.sgl, sg, umem->npages, i) {
 
 		page = sg_page(sg);
-		if (!PageDirty(page) && umem->writable && dirty)
-			set_page_dirty_lock(page);
-		put_page(page);
+		if (umem->writable && dirty)
+			put_user_pages_dirty_lock(&page, 1);
+		else
+			put_user_page(page);
 	}
 
 	sg_free_table(&umem->sg_head);
diff --git a/drivers/infiniband/core/umem_odp.c b/drivers/infiniband/core/umem_odp.c
index acb882f279cb..d32757c1f77e 100644
--- a/drivers/infiniband/core/umem_odp.c
+++ b/drivers/infiniband/core/umem_odp.c
@@ -663,7 +663,7 @@ int ib_umem_odp_map_dma_pages(struct ib_umem_odp *umem_odp, u64 user_virt,
 					ret = -EFAULT;
 					break;
 				}
-				put_page(local_page_list[j]);
+				put_user_page(local_page_list[j]);
 				continue;
 			}
 
diff --git a/drivers/infiniband/hw/hfi1/user_pages.c b/drivers/infiniband/hw/hfi1/user_pages.c
index e341e6dcc388..99ccc0483711 100644
--- a/drivers/infiniband/hw/hfi1/user_pages.c
+++ b/drivers/infiniband/hw/hfi1/user_pages.c
@@ -121,13 +121,10 @@ int hfi1_acquire_user_pages(struct mm_struct *mm, unsigned long vaddr, size_t np
 void hfi1_release_user_pages(struct mm_struct *mm, struct page **p,
 			     size_t npages, bool dirty)
 {
-	size_t i;
-
-	for (i = 0; i < npages; i++) {
-		if (dirty)
-			set_page_dirty_lock(p[i]);
-		put_page(p[i]);
-	}
+	if (dirty)
+		put_user_pages_dirty_lock(p, npages);
+	else
+		put_user_pages(p, npages);
 
 	if (mm) { /* during close after signal, mm can be NULL */
 		down_write(&mm->mmap_sem);
diff --git a/drivers/infiniband/hw/mthca/mthca_memfree.c b/drivers/infiniband/hw/mthca/mthca_memfree.c
index 112d2f38e0de..99108f3dcf01 100644
--- a/drivers/infiniband/hw/mthca/mthca_memfree.c
+++ b/drivers/infiniband/hw/mthca/mthca_memfree.c
@@ -481,7 +481,7 @@ int mthca_map_user_db(struct mthca_dev *dev, struct mthca_uar *uar,
 
 	ret = pci_map_sg(dev->pdev, &db_tab->page[i].mem, 1, PCI_DMA_TODEVICE);
 	if (ret < 0) {
-		put_page(pages[0]);
+		put_user_page(pages[0]);
 		goto out;
 	}
 
@@ -489,7 +489,7 @@ int mthca_map_user_db(struct mthca_dev *dev, struct mthca_uar *uar,
 				 mthca_uarc_virt(dev, uar, i));
 	if (ret) {
 		pci_unmap_sg(dev->pdev, &db_tab->page[i].mem, 1, PCI_DMA_TODEVICE);
-		put_page(sg_page(&db_tab->page[i].mem));
+		put_user_page(sg_page(&db_tab->page[i].mem));
 		goto out;
 	}
 
@@ -555,7 +555,7 @@ void mthca_cleanup_user_db_tab(struct mthca_dev *dev, struct mthca_uar *uar,
 		if (db_tab->page[i].uvirt) {
 			mthca_UNMAP_ICM(dev, mthca_uarc_virt(dev, uar, i), 1);
 			pci_unmap_sg(dev->pdev, &db_tab->page[i].mem, 1, PCI_DMA_TODEVICE);
-			put_page(sg_page(&db_tab->page[i].mem));
+			put_user_page(sg_page(&db_tab->page[i].mem));
 		}
 	}
 
diff --git a/drivers/infiniband/hw/qib/qib_user_pages.c b/drivers/infiniband/hw/qib/qib_user_pages.c
index 16543d5e80c3..1a5c64c8695f 100644
--- a/drivers/infiniband/hw/qib/qib_user_pages.c
+++ b/drivers/infiniband/hw/qib/qib_user_pages.c
@@ -40,13 +40,10 @@
 static void __qib_release_user_pages(struct page **p, size_t num_pages,
 				     int dirty)
 {
-	size_t i;
-
-	for (i = 0; i < num_pages; i++) {
-		if (dirty)
-			set_page_dirty_lock(p[i]);
-		put_page(p[i]);
-	}
+	if (dirty)
+		put_user_pages_dirty_lock(p, num_pages);
+	else
+		put_user_pages(p, num_pages);
 }
 
 /*
diff --git a/drivers/infiniband/hw/qib/qib_user_sdma.c b/drivers/infiniband/hw/qib/qib_user_sdma.c
index 31c523b2a9f5..a1a1ec4adffc 100644
--- a/drivers/infiniband/hw/qib/qib_user_sdma.c
+++ b/drivers/infiniband/hw/qib/qib_user_sdma.c
@@ -320,7 +320,7 @@ static int qib_user_sdma_page_to_frags(const struct qib_devdata *dd,
 		 * the caller can ignore this page.
 		 */
 		if (put) {
-			put_page(page);
+			put_user_page(page);
 		} else {
 			/* coalesce case */
 			kunmap(page);
@@ -634,7 +634,7 @@ static void qib_user_sdma_free_pkt_frag(struct device *dev,
 			kunmap(pkt->addr[i].page);
 
 		if (pkt->addr[i].put_page)
-			put_page(pkt->addr[i].page);
+			put_user_page(pkt->addr[i].page);
 		else
 			__free_page(pkt->addr[i].page);
 	} else if (pkt->addr[i].kvaddr) {
@@ -709,7 +709,7 @@ static int qib_user_sdma_pin_pages(const struct qib_devdata *dd,
 	/* if error, return all pages not managed by pkt */
 free_pages:
 	while (i < j)
-		put_page(pages[i++]);
+		put_user_page(pages[i++]);
 
 done:
 	return ret;
diff --git a/drivers/infiniband/hw/usnic/usnic_uiom.c b/drivers/infiniband/hw/usnic/usnic_uiom.c
index 49275a548751..2ef8d31dc838 100644
--- a/drivers/infiniband/hw/usnic/usnic_uiom.c
+++ b/drivers/infiniband/hw/usnic/usnic_uiom.c
@@ -77,9 +77,10 @@ static void usnic_uiom_put_pages(struct list_head *chunk_list, int dirty)
 		for_each_sg(chunk->page_list, sg, chunk->nents, i) {
 			page = sg_page(sg);
 			pa = sg_phys(sg);
-			if (!PageDirty(page) && dirty)
-				set_page_dirty_lock(page);
-			put_page(page);
+			if (dirty)
+				put_user_pages_dirty_lock(&page, 1);
+			else
+				put_user_page(page);
 			usnic_dbg("pa: %pa\n", &pa);
 		}
 		kfree(chunk);
-- 
2.20.1


^ permalink raw reply related	[flat|nested] 7+ messages in thread

* Re: [PATCH 1/2] mm: introduce put_user_page*(), placeholder versions
  2019-02-08  7:56 ` [PATCH 1/2] mm: introduce put_user_page*(), placeholder versions john.hubbard
@ 2019-02-08 10:32   ` Mike Rapoport
  2019-02-08 20:44     ` John Hubbard
  0 siblings, 1 reply; 7+ messages in thread
From: Mike Rapoport @ 2019-02-08 10:32 UTC (permalink / raw)
  To: john.hubbard
  Cc: Andrew Morton, linux-mm, Al Viro, Christian Benvenuti,
	Christoph Hellwig, Christopher Lameter, Dan Williams,
	Dave Chinner, Dennis Dalessandro, Doug Ledford, Jan Kara,
	Jason Gunthorpe, Jerome Glisse, Matthew Wilcox, Michal Hocko,
	Mike Marciniszyn, Ralph Campbell, Tom Talpey, LKML,
	linux-fsdevel, John Hubbard

On Thu, Feb 07, 2019 at 11:56:48PM -0800, john.hubbard@gmail.com wrote:
> From: John Hubbard <jhubbard@nvidia.com>
> 
> Introduces put_user_page(), which simply calls put_page().
> This provides a way to update all get_user_pages*() callers,
> so that they call put_user_page(), instead of put_page().
> 
> Also introduces put_user_pages(), and a few dirty/locked variations,
> as a replacement for release_pages(), and also as a replacement
> for open-coded loops that release multiple pages.
> These may be used for subsequent performance improvements,
> via batching of pages to be released.
> 
> This is the first step of fixing a problem (also described in [1] and
> [2]) with interactions between get_user_pages ("gup") and filesystems.
> 
> Problem description: let's start with a bug report. Below, is what happens
> sometimes, under memory pressure, when a driver pins some pages via gup,
> and then marks those pages dirty, and releases them. Note that the gup
> documentation actually recommends that pattern. The problem is that the
> filesystem may do a writeback while the pages were gup-pinned, and then the
> filesystem believes that the pages are clean. So, when the driver later
> marks the pages as dirty, that conflicts with the filesystem's page
> tracking and results in a BUG(), like this one that I experienced:
> 
>     kernel BUG at /build/linux-fQ94TU/linux-4.4.0/fs/ext4/inode.c:1899!
>     backtrace:
>         ext4_writepage
>         __writepage
>         write_cache_pages
>         ext4_writepages
>         do_writepages
>         __writeback_single_inode
>         writeback_sb_inodes
>         __writeback_inodes_wb
>         wb_writeback
>         wb_workfn
>         process_one_work
>         worker_thread
>         kthread
>         ret_from_fork
> 
> ...which is due to the file system asserting that there are still buffer
> heads attached:
> 
>         ({                                                      \
>                 BUG_ON(!PagePrivate(page));                     \
>                 ((struct buffer_head *)page_private(page));     \
>         })
> 
> Dave Chinner's description of this is very clear:
> 
>     "The fundamental issue is that ->page_mkwrite must be called on every
>     write access to a clean file backed page, not just the first one.
>     How long the GUP reference lasts is irrelevant, if the page is clean
>     and you need to dirty it, you must call ->page_mkwrite before it is
>     marked writeable and dirtied. Every. Time."
> 
> This is just one symptom of the larger design problem: filesystems do not
> actually support get_user_pages() being called on their pages, and letting
> hardware write directly to those pages--even though that patter has been
> going on since about 2005 or so.
> 
> The steps are to fix it are:
> 
> 1) (This patch): provide put_user_page*() routines, intended to be used
>    for releasing pages that were pinned via get_user_pages*().
> 
> 2) Convert all of the call sites for get_user_pages*(), to
>    invoke put_user_page*(), instead of put_page(). This involves dozens of
>    call sites, and will take some time.
> 
> 3) After (2) is complete, use get_user_pages*() and put_user_page*() to
>    implement tracking of these pages. This tracking will be separate from
>    the existing struct page refcounting.
> 
> 4) Use the tracking and identification of these pages, to implement
>    special handling (especially in writeback paths) when the pages are
>    backed by a filesystem.
> 
> [1] https://lwn.net/Articles/774411/ : "DMA and get_user_pages()"
> [2] https://lwn.net/Articles/753027/ : "The Trouble with get_user_pages()"
> 
> Cc: Al Viro <viro@zeniv.linux.org.uk>
> Cc: Christoph Hellwig <hch@infradead.org>
> Cc: Christopher Lameter <cl@linux.com>
> Cc: Dan Williams <dan.j.williams@intel.com>
> Cc: Dave Chinner <david@fromorbit.com>
> Cc: Jan Kara <jack@suse.cz>
> Cc: Jason Gunthorpe <jgg@ziepe.ca>
> Cc: Jerome Glisse <jglisse@redhat.com>
> Cc: Matthew Wilcox <willy@infradead.org>
> Cc: Michal Hocko <mhocko@kernel.org>
> Cc: Mike Rapoport <rppt@linux.ibm.com>
> Cc: Ralph Campbell <rcampbell@nvidia.com>
> 
> Reviewed-by: Jan Kara <jack@suse.cz>
> Signed-off-by: John Hubbard <jhubbard@nvidia.com>
> ---
>  include/linux/mm.h | 24 ++++++++++++++
>  mm/swap.c          | 82 ++++++++++++++++++++++++++++++++++++++++++++++
>  2 files changed, 106 insertions(+)
> 
> diff --git a/include/linux/mm.h b/include/linux/mm.h
> index 80bb6408fe73..809b7397d41e 100644
> --- a/include/linux/mm.h
> +++ b/include/linux/mm.h
> @@ -993,6 +993,30 @@ static inline void put_page(struct page *page)
>  		__put_page(page);
>  }
>  
> +/**
> + * put_user_page() - release a gup-pinned page
> + * @page:            pointer to page to be released
> + *
> + * Pages that were pinned via get_user_pages*() must be released via
> + * either put_user_page(), or one of the put_user_pages*() routines
> + * below. This is so that eventually, pages that are pinned via
> + * get_user_pages*() can be separately tracked and uniquely handled. In
> + * particular, interactions with RDMA and filesystems need special
> + * handling.
> + *
> + * put_user_page() and put_page() are not interchangeable, despite this early
> + * implementation that makes them look the same. put_user_page() calls must

I just hope we'll remember to update when the real implementation will be
merged ;-)

Other than that, feel free to add

Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>	# docs 

> + * be perfectly matched up with get_user_page() calls.
> + */
> +static inline void put_user_page(struct page *page)
> +{
> +	put_page(page);
> +}
> +
> +void put_user_pages_dirty(struct page **pages, unsigned long npages);
> +void put_user_pages_dirty_lock(struct page **pages, unsigned long npages);
> +void put_user_pages(struct page **pages, unsigned long npages);
> +
>  #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
>  #define SECTION_IN_PAGE_FLAGS
>  #endif
> diff --git a/mm/swap.c b/mm/swap.c
> index 4929bc1be60e..7c42ca45bb89 100644
> --- a/mm/swap.c
> +++ b/mm/swap.c
> @@ -133,6 +133,88 @@ void put_pages_list(struct list_head *pages)
>  }
>  EXPORT_SYMBOL(put_pages_list);
>  
> +typedef int (*set_dirty_func)(struct page *page);
> +
> +static void __put_user_pages_dirty(struct page **pages,
> +				   unsigned long npages,
> +				   set_dirty_func sdf)
> +{
> +	unsigned long index;
> +
> +	for (index = 0; index < npages; index++) {
> +		struct page *page = compound_head(pages[index]);
> +
> +		if (!PageDirty(page))
> +			sdf(page);
> +
> +		put_user_page(page);
> +	}
> +}
> +
> +/**
> + * put_user_pages_dirty() - release and dirty an array of gup-pinned pages
> + * @pages:  array of pages to be marked dirty and released.
> + * @npages: number of pages in the @pages array.
> + *
> + * "gup-pinned page" refers to a page that has had one of the get_user_pages()
> + * variants called on that page.
> + *
> + * For each page in the @pages array, make that page (or its head page, if a
> + * compound page) dirty, if it was previously listed as clean. Then, release
> + * the page using put_user_page().
> + *
> + * Please see the put_user_page() documentation for details.
> + *
> + * set_page_dirty(), which does not lock the page, is used here.
> + * Therefore, it is the caller's responsibility to ensure that this is
> + * safe. If not, then put_user_pages_dirty_lock() should be called instead.
> + *
> + */
> +void put_user_pages_dirty(struct page **pages, unsigned long npages)
> +{
> +	__put_user_pages_dirty(pages, npages, set_page_dirty);
> +}
> +EXPORT_SYMBOL(put_user_pages_dirty);
> +
> +/**
> + * put_user_pages_dirty_lock() - release and dirty an array of gup-pinned pages
> + * @pages:  array of pages to be marked dirty and released.
> + * @npages: number of pages in the @pages array.
> + *
> + * For each page in the @pages array, make that page (or its head page, if a
> + * compound page) dirty, if it was previously listed as clean. Then, release
> + * the page using put_user_page().
> + *
> + * Please see the put_user_page() documentation for details.
> + *
> + * This is just like put_user_pages_dirty(), except that it invokes
> + * set_page_dirty_lock(), instead of set_page_dirty().
> + *
> + */
> +void put_user_pages_dirty_lock(struct page **pages, unsigned long npages)
> +{
> +	__put_user_pages_dirty(pages, npages, set_page_dirty_lock);
> +}
> +EXPORT_SYMBOL(put_user_pages_dirty_lock);
> +
> +/**
> + * put_user_pages() - release an array of gup-pinned pages.
> + * @pages:  array of pages to be marked dirty and released.
> + * @npages: number of pages in the @pages array.
> + *
> + * For each page in the @pages array, release the page using put_user_page().
> + *
> + * Please see the put_user_page() documentation for details.
> + */
> +void put_user_pages(struct page **pages, unsigned long npages)
> +{
> +	unsigned long index;
> +
> +	for (index = 0; index < npages; index++)
> +		put_user_page(pages[index]);
> +}
> +EXPORT_SYMBOL(put_user_pages);
> +
>  /*
>   * get_kernel_pages() - pin kernel pages in memory
>   * @kiov:	An array of struct kvec structures
> -- 
> 2.20.1
> 

-- 
Sincerely yours,
Mike.


^ permalink raw reply	[flat|nested] 7+ messages in thread

* Re: [PATCH 1/2] mm: introduce put_user_page*(), placeholder versions
  2019-02-08 10:32   ` Mike Rapoport
@ 2019-02-08 20:44     ` John Hubbard
  0 siblings, 0 replies; 7+ messages in thread
From: John Hubbard @ 2019-02-08 20:44 UTC (permalink / raw)
  To: Mike Rapoport, john.hubbard
  Cc: Andrew Morton, linux-mm, Al Viro, Christian Benvenuti,
	Christoph Hellwig, Christopher Lameter, Dan Williams,
	Dave Chinner, Dennis Dalessandro, Doug Ledford, Jan Kara,
	Jason Gunthorpe, Jerome Glisse, Matthew Wilcox, Michal Hocko,
	Mike Marciniszyn, Ralph Campbell, Tom Talpey, LKML,
	linux-fsdevel

On 2/8/19 2:32 AM, Mike Rapoport wrote:
> On Thu, Feb 07, 2019 at 11:56:48PM -0800, john.hubbard@gmail.com wrote:
>> From: John Hubbard <jhubbard@nvidia.com>
[...]
>> +/**
>> + * put_user_page() - release a gup-pinned page
>> + * @page:            pointer to page to be released
>> + *
>> + * Pages that were pinned via get_user_pages*() must be released via
>> + * either put_user_page(), or one of the put_user_pages*() routines
>> + * below. This is so that eventually, pages that are pinned via
>> + * get_user_pages*() can be separately tracked and uniquely handled. In
>> + * particular, interactions with RDMA and filesystems need special
>> + * handling.
>> + *
>> + * put_user_page() and put_page() are not interchangeable, despite this early
>> + * implementation that makes them look the same. put_user_page() calls must
> 
> I just hope we'll remember to update when the real implementation will be
> merged ;-)
> 
> Other than that, feel free to add
> 
> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>	# docs
> 

Thanks for the review!

Yes, the follow-on patch that turns this into a real implementation is
posted [1], and its documentation is updated accordingly.

(I've already changed "@Returns" to "@Return" locally in that patch, btw.)

[1] https://lore.kernel.org/r/20190204052135.25784-5-jhubbard@nvidia.com

thanks,
-- 
John Hubbard
NVIDIA

^ permalink raw reply	[flat|nested] 7+ messages in thread

* Re: [PATCH 0/2] mm: put_user_page() call site conversion first
  2019-02-08  7:56 [PATCH 0/2] mm: put_user_page() call site conversion first john.hubbard
  2019-02-08  7:56 ` [PATCH 1/2] mm: introduce put_user_page*(), placeholder versions john.hubbard
  2019-02-08  7:56 ` [PATCH 2/2] infiniband/mm: convert put_page() to put_user_page*() john.hubbard
@ 2019-02-15  0:23 ` Ira Weiny
  2019-02-15  0:54   ` John Hubbard
  2 siblings, 1 reply; 7+ messages in thread
From: Ira Weiny @ 2019-02-15  0:23 UTC (permalink / raw)
  To: john.hubbard
  Cc: Andrew Morton, linux-mm, Al Viro, Christian Benvenuti,
	Christoph Hellwig, Christopher Lameter, Dan Williams,
	Dave Chinner, Dennis Dalessandro, Doug Ledford, Jan Kara,
	Jason Gunthorpe, Jerome Glisse, Matthew Wilcox, Michal Hocko,
	Mike Rapoport, Mike Marciniszyn, Ralph Campbell, Tom Talpey,
	LKML, linux-fsdevel, John Hubbard

On Thu, Feb 07, 2019 at 11:56:47PM -0800, john.hubbard@gmail.com wrote:
> From: John Hubbard <jhubbard@nvidia.com>
> 
> Hi,
> 
> It seems about time to post these initial patches: I think we have pretty
> good consensus on the concept and details of the put_user_pages() approach.
> Therefore, here are the first two patches, to get started on converting the
> get_user_pages() call sites to use put_user_page(), instead of put_page().
> This is in order to implement tracking of get_user_page() pages.
> 
> A discussion of the overall problem is below.
> 
> As mentioned in patch 0001, the steps are to fix the problem are:
> 
> 1) Provide put_user_page*() routines, intended to be used
>    for releasing pages that were pinned via get_user_pages*().
> 
> 2) Convert all of the call sites for get_user_pages*(), to
>    invoke put_user_page*(), instead of put_page(). This involves dozens of
>    call sites, and will take some time.
> 
> 3) After (2) is complete, use get_user_pages*() and put_user_page*() to
>    implement tracking of these pages. This tracking will be separate from
>    the existing struct page refcounting.
> 
> 4) Use the tracking and identification of these pages, to implement
>    special handling (especially in writeback paths) when the pages are
>    backed by a filesystem.
> 
> This write up is lifted from the RFC v2 patchset cover letter [1]:
> 
> Overview
> ========
> 
> Some kernel components (file systems, device drivers) need to access
> memory that is specified via process virtual address. For a long time, the
> API to achieve that was get_user_pages ("GUP") and its variations. However,
> GUP has critical limitations that have been overlooked; in particular, GUP
> does not interact correctly with filesystems in all situations. That means
> that file-backed memory + GUP is a recipe for potential problems, some of
> which have already occurred in the field.
> 
> GUP was first introduced for Direct IO (O_DIRECT), allowing filesystem code
> to get the struct page behind a virtual address and to let storage hardware
> perform a direct copy to or from that page. This is a short-lived access
> pattern, and as such, the window for a concurrent writeback of GUP'd page
> was small enough that there were not (we think) any reported problems.
> Also, userspace was expected to understand and accept that Direct IO was
> not synchronized with memory-mapped access to that data, nor with any
> process address space changes such as munmap(), mremap(), etc.
> 
> Over the years, more GUP uses have appeared (virtualization, device
> drivers, RDMA) that can keep the pages they get via GUP for a long period
> of time (seconds, minutes, hours, days, ...). This long-term pinning makes
> an underlying design problem more obvious.
> 
> In fact, there are a number of key problems inherent to GUP:
> 
> Interactions with file systems
> ==============================
> 
> File systems expect to be able to write back data, both to reclaim pages,
> and for data integrity. Allowing other hardware (NICs, GPUs, etc) to gain
> write access to the file memory pages means that such hardware can dirty
> the pages, without the filesystem being aware. This can, in some cases
> (depending on filesystem, filesystem options, block device, block device
> options, and other variables), lead to data corruption, and also to kernel
> bugs of the form:
> 
>     kernel BUG at /build/linux-fQ94TU/linux-4.4.0/fs/ext4/inode.c:1899!
>     backtrace:
>         ext4_writepage
>         __writepage
>         write_cache_pages
>         ext4_writepages
>         do_writepages
>         __writeback_single_inode
>         writeback_sb_inodes
>         __writeback_inodes_wb
>         wb_writeback
>         wb_workfn
>         process_one_work
>         worker_thread
>         kthread
>         ret_from_fork
> 
> ...which is due to the file system asserting that there are still buffer
> heads attached:
> 
>         ({                                                      \
>                 BUG_ON(!PagePrivate(page));                     \
>                 ((struct buffer_head *)page_private(page));     \
>         })
> 
> Dave Chinner's description of this is very clear:
> 
>     "The fundamental issue is that ->page_mkwrite must be called on every
>     write access to a clean file backed page, not just the first one.
>     How long the GUP reference lasts is irrelevant, if the page is clean
>     and you need to dirty it, you must call ->page_mkwrite before it is
>     marked writeable and dirtied. Every. Time."
> 
> This is just one symptom of the larger design problem: filesystems do not
> actually support get_user_pages() being called on their pages, and letting
> hardware write directly to those pages--even though that pattern has been
> going on since about 2005 or so.
> 
> Long term GUP
> =============
> 
> Long term GUP is an issue when FOLL_WRITE is specified to GUP (so, a
> writeable mapping is created), and the pages are file-backed. That can lead
> to filesystem corruption. What happens is that when a file-backed page is
> being written back, it is first mapped read-only in all of the CPU page
> tables; the file system then assumes that nobody can write to the page, and
> that the page content is therefore stable. Unfortunately, the GUP callers
> generally do not monitor changes to the CPU pages tables; they instead
> assume that the following pattern is safe (it's not):
> 
>     get_user_pages()
> 
>     Hardware can keep a reference to those pages for a very long time,
>     and write to it at any time. Because "hardware" here means "devices
>     that are not a CPU", this activity occurs without any interaction
>     with the kernel's file system code.
> 
>     for each page
>         set_page_dirty
>         put_page()
> 
> In fact, the GUP documentation even recommends that pattern.
> 
> Anyway, the file system assumes that the page is stable (nothing is writing
> to the page), and that is a problem: stable page content is necessary for
> many filesystem actions during writeback, such as checksum, encryption,
> RAID striping, etc. Furthermore, filesystem features like COW (copy on
> write) or snapshot also rely on being able to use a new page for as memory
> for that memory range inside the file.
> 
> Corruption during write back is clearly possible here. To solve that, one
> idea is to identify pages that have active GUP, so that we can use a bounce
> page to write stable data to the filesystem. The filesystem would work
> on the bounce page, while any of the active GUP might write to the
> original page. This would avoid the stable page violation problem, but note
> that it is only part of the overall solution, because other problems
> remain.
> 
> Other filesystem features that need to replace the page with a new one can
> be inhibited for pages that are GUP-pinned. This will, however, alter and
> limit some of those filesystem features. The only fix for that would be to
> require GUP users to monitor and respond to CPU page table updates.
> Subsystems such as ODP and HMM do this, for example. This aspect of the
> problem is still under discussion.
> 
> Direct IO
> =========
> 
> Direct IO can cause corruption, if userspace does Direct-IO that writes to
> a range of virtual addresses that are mmap'd to a file.  The pages written
> to are file-backed pages that can be under write back, while the Direct IO
> is taking place.  Here, Direct IO races with a write back: it calls
> GUP before page_mkclean() has replaced the CPU pte with a read-only entry.
> The race window is pretty small, which is probably why years have gone by
> before we noticed this problem: Direct IO is generally very quick, and
> tends to finish up before the filesystem gets around to do anything with
> the page contents.  However, it's still a real problem.  The solution is
> to never let GUP return pages that are under write back, but instead,
> force GUP to take a write fault on those pages.  That way, GUP will
> properly synchronize with the active write back.  This does not change the
> required GUP behavior, it just avoids that race.
> 
> 
> [1] https://lkml.kernel.org/r/20190204052135.25784-1-jhubbard@nvidia.com
> 
> Cc: Christian Benvenuti <benve@cisco.com>
> Cc: Christoph Hellwig <hch@infradead.org>
> Cc: Christopher Lameter <cl@linux.com>
> Cc: Dan Williams <dan.j.williams@intel.com>
> Cc: Dave Chinner <david@fromorbit.com>
> Cc: Dennis Dalessandro <dennis.dalessandro@intel.com>
> Cc: Doug Ledford <dledford@redhat.com>
> Cc: Jan Kara <jack@suse.cz>
> Cc: Jason Gunthorpe <jgg@ziepe.ca>
> Cc: Jérôme Glisse <jglisse@redhat.com>
> Cc: Matthew Wilcox <willy@infradead.org>
> Cc: Michal Hocko <mhocko@kernel.org>
> Cc: Mike Rapoport <rppt@linux.ibm.com>
> Cc: Mike Marciniszyn <mike.marciniszyn@intel.com>
> Cc: Ralph Campbell <rcampbell@nvidia.com>
> Cc: Tom Talpey <tom@talpey.com>
> 
> John Hubbard (2):
>   mm: introduce put_user_page*(), placeholder versions
>   infiniband/mm: convert put_page() to put_user_page*()

A bit late but, FWIW:

Reviewed-by: Ira Weiny <ira.weiny@intel.com>

John these are the pages sitting in your gup_dma/first_steps branch here,
correct?

https://github.com/johnhubbard/linux.git

> 
>  drivers/infiniband/core/umem.c              |  7 +-
>  drivers/infiniband/core/umem_odp.c          |  2 +-
>  drivers/infiniband/hw/hfi1/user_pages.c     | 11 +--
>  drivers/infiniband/hw/mthca/mthca_memfree.c |  6 +-
>  drivers/infiniband/hw/qib/qib_user_pages.c  | 11 +--
>  drivers/infiniband/hw/qib/qib_user_sdma.c   |  6 +-
>  drivers/infiniband/hw/usnic/usnic_uiom.c    |  7 +-
>  include/linux/mm.h                          | 24 ++++++
>  mm/swap.c                                   | 82 +++++++++++++++++++++
>  9 files changed, 129 insertions(+), 27 deletions(-)
> 
> -- 
> 2.20.1
> 

^ permalink raw reply	[flat|nested] 7+ messages in thread

* Re: [PATCH 0/2] mm: put_user_page() call site conversion first
  2019-02-15  0:23 ` [PATCH 0/2] mm: put_user_page() call site conversion first Ira Weiny
@ 2019-02-15  0:54   ` John Hubbard
  0 siblings, 0 replies; 7+ messages in thread
From: John Hubbard @ 2019-02-15  0:54 UTC (permalink / raw)
  To: Ira Weiny, john.hubbard
  Cc: Andrew Morton, linux-mm, Al Viro, Christian Benvenuti,
	Christoph Hellwig, Christopher Lameter, Dan Williams,
	Dave Chinner, Dennis Dalessandro, Doug Ledford, Jan Kara,
	Jason Gunthorpe, Jerome Glisse, Matthew Wilcox, Michal Hocko,
	Mike Rapoport, Mike Marciniszyn, Ralph Campbell, Tom Talpey,
	LKML, linux-fsdevel

On 2/14/19 4:23 PM, Ira Weiny wrote:
> On Thu, Feb 07, 2019 at 11:56:47PM -0800, john.hubbard@gmail.com wrote:
>> From: John Hubbard <jhubbard@nvidia.com>
[...]
>>   mm: introduce put_user_page*(), placeholder versions
>>   infiniband/mm: convert put_page() to put_user_page*()
> 
> A bit late but, FWIW:
> 
> Reviewed-by: Ira Weiny <ira.weiny@intel.com>
> 
> John these are the pages sitting in your gup_dma/first_steps branch here,
> correct?
> 
> https://github.com/johnhubbard/linux.git
> 

That's an old branch. In fact, just deleted it now, in order to avoid further
confusion.

This is the current branch: 

    gup_dma_core 

in that same git repo. It has the current set of call site conversions. 
Please note that there are a lot of conversions that are either incomplete
or likely just plain wrong, at this point, but it is sufficient to at least 
boot up and run things such as fio(1).



thanks,
-- 
John Hubbard
NVIDIA

^ permalink raw reply	[flat|nested] 7+ messages in thread

end of thread, other threads:[~2019-02-15  0:54 UTC | newest]

Thread overview: 7+ messages (download: mbox.gz / follow: Atom feed)
-- links below jump to the message on this page --
2019-02-08  7:56 [PATCH 0/2] mm: put_user_page() call site conversion first john.hubbard
2019-02-08  7:56 ` [PATCH 1/2] mm: introduce put_user_page*(), placeholder versions john.hubbard
2019-02-08 10:32   ` Mike Rapoport
2019-02-08 20:44     ` John Hubbard
2019-02-08  7:56 ` [PATCH 2/2] infiniband/mm: convert put_page() to put_user_page*() john.hubbard
2019-02-15  0:23 ` [PATCH 0/2] mm: put_user_page() call site conversion first Ira Weiny
2019-02-15  0:54   ` John Hubbard

This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).