linux-mm.kvack.org archive mirror
 help / color / mirror / Atom feed
* [PATCH 00/34] Move LRU page reclaim from zones to nodes v9
@ 2016-07-08  9:34 Mel Gorman
  2016-07-08  9:34 ` [PATCH 01/34] mm, vmstat: add infrastructure for per-node vmstats Mel Gorman
                   ` (34 more replies)
  0 siblings, 35 replies; 109+ messages in thread
From: Mel Gorman @ 2016-07-08  9:34 UTC (permalink / raw)
  To: Andrew Morton, Linux-MM
  Cc: Rik van Riel, Vlastimil Babka, Johannes Weiner, Minchan Kim,
	Joonsoo Kim, LKML, Mel Gorman

Minor changes this time

Changelog since v8
o Cosmetic cleanups to comments
o Calculate node vmstat threshold based on the largest zone in the node
o Align retry checks with decisions made by the OOM killer
o Avoid tricks with -1 and kswapd_classzone_idx
o More consistent handling of buffer_heads_over_limit

Changelog since v7
o Rebase onto current mmots
o Avoid double accounting of stats in node and zone
o Kswapd will avoid more reclaim if an eligible zone is available
o Remove some duplications of sc->reclaim_idx and classzone_idx
o Print per-node stats in zoneinfo

Changelog since v6
o Correct reclaim_idx when direct reclaiming for memcg
o Also account LRU pages per zone for compaction/reclaim
o Add page_pgdat helper with more efficient lookup
o Init pgdat LRU lock only once
o Slight optimisation to wake_all_kswapds
o Always wake kcompactd when kswapd is going to sleep
o Rebase to mmotm as of June 15th, 2016

Changelog since v5
o Rebase and adjust to changes

Changelog since v4
o Rebase on top of v3 of page allocator optimisation series

Changelog since v3
o Rebase on top of the page allocator optimisation series
o Remove RFC tag

This is the latest version of a series that moves LRUs from the zones to
the node that is based upon 4.7-rc4 with Andrew's tree applied. While this
is a current rebase, the test results were based on mmotm as of June 23rd.
Conceptually, this series is simple but there are a lot of details. Some
of the broad motivations for this are;

1. The residency of a page partially depends on what zone the page was
   allocated from.  This is partially combatted by the fair zone allocation
   policy but that is a partial solution that introduces overhead in the
   page allocator paths.

2. Currently, reclaim on node 0 behaves slightly different to node 1. For
   example, direct reclaim scans in zonelist order and reclaims even if
   the zone is over the high watermark regardless of the age of pages
   in that LRU. Kswapd on the other hand starts reclaim on the highest
   unbalanced zone. A difference in distribution of file/anon pages due
   to when they were allocated results can result in a difference in 
   again. While the fair zone allocation policy mitigates some of the
   problems here, the page reclaim results on a multi-zone node will
   always be different to a single-zone node.
   it was scheduled on as a result.

3. kswapd and the page allocator scan zones in the opposite order to
   avoid interfering with each other but it's sensitive to timing.  This
   mitigates the page allocator using pages that were allocated very recently
   in the ideal case but it's sensitive to timing. When kswapd is allocating
   from lower zones then it's great but during the rebalancing of the highest
   zone, the page allocator and kswapd interfere with each other. It's worse
   if the highest zone is small and difficult to balance.

4. slab shrinkers are node-based which makes it harder to identify the exact
   relationship between slab reclaim and LRU reclaim.

The reason we have zone-based reclaim is that we used to have
large highmem zones in common configurations and it was necessary
to quickly find ZONE_NORMAL pages for reclaim. Today, this is much
less of a concern as machines with lots of memory will (or should) use
64-bit kernels. Combinations of 32-bit hardware and 64-bit hardware are
rare. Machines that do use highmem should have relatively low highmem:lowmem
ratios than we worried about in the past.

Conceptually, moving to node LRUs should be easier to understand. The
page allocator plays fewer tricks to game reclaim and reclaim behaves
similarly on all nodes. 

The series has been tested on a 16 core UMA machine and a 2-socket 48
core NUMA machine. The UMA results are presented in most cases as the NUMA
machine behaved similarly.

pagealloc
---------

This is a microbenchmark that shows the benefit of removing the fair zone
allocation policy. It was tested uip to order-4 but only orders 0 and 1 are
shown as the other orders were comparable.

                                           4.7.0-rc4                  4.7.0-rc4
                                      mmotm-20160623                 nodelru-v9
Min      total-odr0-1               490.00 (  0.00%)           457.00 (  6.73%)
Min      total-odr0-2               347.00 (  0.00%)           329.00 (  5.19%)
Min      total-odr0-4               288.00 (  0.00%)           273.00 (  5.21%)
Min      total-odr0-8               251.00 (  0.00%)           239.00 (  4.78%)
Min      total-odr0-16              234.00 (  0.00%)           222.00 (  5.13%)
Min      total-odr0-32              223.00 (  0.00%)           211.00 (  5.38%)
Min      total-odr0-64              217.00 (  0.00%)           208.00 (  4.15%)
Min      total-odr0-128             214.00 (  0.00%)           204.00 (  4.67%)
Min      total-odr0-256             250.00 (  0.00%)           230.00 (  8.00%)
Min      total-odr0-512             271.00 (  0.00%)           269.00 (  0.74%)
Min      total-odr0-1024            291.00 (  0.00%)           282.00 (  3.09%)
Min      total-odr0-2048            303.00 (  0.00%)           296.00 (  2.31%)
Min      total-odr0-4096            311.00 (  0.00%)           309.00 (  0.64%)
Min      total-odr0-8192            316.00 (  0.00%)           314.00 (  0.63%)
Min      total-odr0-16384           317.00 (  0.00%)           315.00 (  0.63%)
Min      total-odr1-1               742.00 (  0.00%)           712.00 (  4.04%)
Min      total-odr1-2               562.00 (  0.00%)           530.00 (  5.69%)
Min      total-odr1-4               457.00 (  0.00%)           433.00 (  5.25%)
Min      total-odr1-8               411.00 (  0.00%)           381.00 (  7.30%)
Min      total-odr1-16              381.00 (  0.00%)           356.00 (  6.56%)
Min      total-odr1-32              372.00 (  0.00%)           346.00 (  6.99%)
Min      total-odr1-64              372.00 (  0.00%)           343.00 (  7.80%)
Min      total-odr1-128             375.00 (  0.00%)           351.00 (  6.40%)
Min      total-odr1-256             379.00 (  0.00%)           351.00 (  7.39%)
Min      total-odr1-512             385.00 (  0.00%)           355.00 (  7.79%)
Min      total-odr1-1024            386.00 (  0.00%)           358.00 (  7.25%)
Min      total-odr1-2048            390.00 (  0.00%)           362.00 (  7.18%)
Min      total-odr1-4096            390.00 (  0.00%)           362.00 (  7.18%)
Min      total-odr1-8192            388.00 (  0.00%)           363.00 (  6.44%)

This shows a steady improvement throughout. The primary benefit is from
reduced system CPU usage which is obvious from the overall times;

           4.7.0-rc4   4.7.0-rc4
        mmotm-20160623nodelru-v8
User          189.19      191.80
System       2604.45     2533.56
Elapsed      2855.30     2786.39

The vmstats also showed that the fair zone allocation policy was definitely
removed as can be seen here;


                             4.7.0-rc3   4.7.0-rc3
                         mmotm-20160623 nodelru-v8
DMA32 allocs               28794729769           0
Normal allocs              48432501431 77227309877
Movable allocs                       0           0

tiobench on ext4
----------------

tiobench is a benchmark that artifically benefits if old pages remain resident
while new pages get reclaimed. The fair zone allocation policy mitigates this
problem so pages age fairly. While the benchmark has problems, it is important
that tiobench performance remains constant as it implies that page aging
problems that the fair zone allocation policy fixes are not re-introduced.

                                         4.7.0-rc4             4.7.0-rc4
                                    mmotm-20160623            nodelru-v9
Min      PotentialReadSpeed        89.65 (  0.00%)       90.21 (  0.62%)
Min      SeqRead-MB/sec-1          82.68 (  0.00%)       82.01 ( -0.81%)
Min      SeqRead-MB/sec-2          72.76 (  0.00%)       72.07 ( -0.95%)
Min      SeqRead-MB/sec-4          75.13 (  0.00%)       74.92 ( -0.28%)
Min      SeqRead-MB/sec-8          64.91 (  0.00%)       65.19 (  0.43%)
Min      SeqRead-MB/sec-16         62.24 (  0.00%)       62.22 ( -0.03%)
Min      RandRead-MB/sec-1          0.88 (  0.00%)        0.88 (  0.00%)
Min      RandRead-MB/sec-2          0.95 (  0.00%)        0.92 ( -3.16%)
Min      RandRead-MB/sec-4          1.43 (  0.00%)        1.34 ( -6.29%)
Min      RandRead-MB/sec-8          1.61 (  0.00%)        1.60 ( -0.62%)
Min      RandRead-MB/sec-16         1.80 (  0.00%)        1.90 (  5.56%)
Min      SeqWrite-MB/sec-1         76.41 (  0.00%)       76.85 (  0.58%)
Min      SeqWrite-MB/sec-2         74.11 (  0.00%)       73.54 ( -0.77%)
Min      SeqWrite-MB/sec-4         80.05 (  0.00%)       80.13 (  0.10%)
Min      SeqWrite-MB/sec-8         72.88 (  0.00%)       73.20 (  0.44%)
Min      SeqWrite-MB/sec-16        75.91 (  0.00%)       76.44 (  0.70%)
Min      RandWrite-MB/sec-1         1.18 (  0.00%)        1.14 ( -3.39%)
Min      RandWrite-MB/sec-2         1.02 (  0.00%)        1.03 (  0.98%)
Min      RandWrite-MB/sec-4         1.05 (  0.00%)        0.98 ( -6.67%)
Min      RandWrite-MB/sec-8         0.89 (  0.00%)        0.92 (  3.37%)
Min      RandWrite-MB/sec-16        0.92 (  0.00%)        0.93 (  1.09%)

           4.7.0-rc4   4.7.0-rc4
        mmotm-20160623 approx-v9
User          645.72      525.90
System        403.85      331.75
Elapsed      6795.36     6783.67

This shows that the series has little or not impact on tiobench which is
desirable and a reduction in system CPU usage. It indicates that the fair
zone allocation policy was removed in a manner that didn't reintroduce
one class of page aging bug. There were only minor differences in overall
reclaim activity

                             4.7.0-rc4   4.7.0-rc4
                          mmotm-20160623nodelru-v8
Minor Faults                    645838      647465
Major Faults                       573         640
Swap Ins                             0           0
Swap Outs                            0           0
DMA allocs                           0           0
DMA32 allocs                  46041453    44190646
Normal allocs                 78053072    79887245
Movable allocs                       0           0
Allocation stalls                   24          67
Stall zone DMA                       0           0
Stall zone DMA32                     0           0
Stall zone Normal                    0           2
Stall zone HighMem                   0           0
Stall zone Movable                   0          65
Direct pages scanned             10969       30609
Kswapd pages scanned          93375144    93492094
Kswapd pages reclaimed        93372243    93489370
Direct pages reclaimed           10969       30609
Kswapd efficiency                  99%         99%
Kswapd velocity              13741.015   13781.934
Direct efficiency                 100%        100%
Direct velocity                  1.614       4.512
Percentage direct scans             0%          0%

kswapd activity was roughly comparable. There were differences in direct
reclaim activity but negligible in the context of the overall workload
(velocity of 4 pages per second with the patches applied, 1.6 pages per
second in the baseline kernel).

pgbench read-only large configuration on ext4
---------------------------------------------

pgbench is a database benchmark that can be sensitive to page reclaim
decisions. This also checks if removing the fair zone allocation policy
is safe

pgbench Transactions
                        4.7.0-rc4             4.7.0-rc4
                   mmotm-20160623            nodelru-v8
Hmean    1       188.26 (  0.00%)      189.78 (  0.81%)
Hmean    5       330.66 (  0.00%)      328.69 ( -0.59%)
Hmean    12      370.32 (  0.00%)      380.72 (  2.81%)
Hmean    21      368.89 (  0.00%)      369.00 (  0.03%)
Hmean    30      382.14 (  0.00%)      360.89 ( -5.56%)
Hmean    32      428.87 (  0.00%)      432.96 (  0.95%)

Negligible differences again. As with tiobench, overall reclaim activity
was comparable.

bonnie++ on ext4
----------------

No interesting performance difference, negligible differences on reclaim
stats.

paralleldd on ext4
------------------

This workload uses varying numbers of dd instances to read large amounts of
data from disk.

                               4.7.0-rc3             4.7.0-rc3
                          mmotm-20160623            nodelru-v9
Amean    Elapsd-1       186.04 (  0.00%)      189.41 ( -1.82%)
Amean    Elapsd-3       192.27 (  0.00%)      191.38 (  0.46%)
Amean    Elapsd-5       185.21 (  0.00%)      182.75 (  1.33%)
Amean    Elapsd-7       183.71 (  0.00%)      182.11 (  0.87%)
Amean    Elapsd-12      180.96 (  0.00%)      181.58 ( -0.35%)
Amean    Elapsd-16      181.36 (  0.00%)      183.72 ( -1.30%)

           4.7.0-rc4   4.7.0-rc4
        mmotm-20160623 nodelru-v9
User         1548.01     1552.44
System       8609.71     8515.08
Elapsed      3587.10     3594.54

There is little or no change in performance but some drop in system CPU usage.

                             4.7.0-rc3   4.7.0-rc3
                        mmotm-20160623  nodelru-v9
Minor Faults                    362662      367360
Major Faults                      1204        1143
Swap Ins                            22           0
Swap Outs                         2855        1029
DMA allocs                           0           0
DMA32 allocs                  31409797    28837521
Normal allocs                 46611853    49231282
Movable allocs                       0           0
Direct pages scanned                 0           0
Kswapd pages scanned          40845270    40869088
Kswapd pages reclaimed        40830976    40855294
Direct pages reclaimed               0           0
Kswapd efficiency                  99%         99%
Kswapd velocity              11386.711   11369.769
Direct efficiency                 100%        100%
Direct velocity                  0.000       0.000
Percentage direct scans             0%          0%
Page writes by reclaim            2855        1029
Page writes file                     0           0
Page writes anon                  2855        1029
Page reclaim immediate             771        1628
Sector Reads                 293312636   293536360
Sector Writes                 18213568    18186480
Page rescued immediate               0           0
Slabs scanned                   128257      132747
Direct inode steals                181          56
Kswapd inode steals                 59        1131

It basically shows that kswapd was active at roughly the same rate in
both kernels. There was also comparable slab scanning activity and direct
reclaim was avoided in both cases. There appears to be a large difference
in numbers of inodes reclaimed but the workload has few active inodes and
is likely a timing artifact.

stutter
-------

stutter simulates a simple workload. One part uses a lot of anonymous
memory, a second measures mmap latency and a third copies a large file.
The primary metric is checking for mmap latency.

stutter
                             4.7.0-rc4             4.7.0-rc4
                        mmotm-20160623            nodelru-v8
Min         mmap     16.6283 (  0.00%)     13.4258 ( 19.26%)
1st-qrtle   mmap     54.7570 (  0.00%)     34.9121 ( 36.24%)
2nd-qrtle   mmap     57.3163 (  0.00%)     46.1147 ( 19.54%)
3rd-qrtle   mmap     58.9976 (  0.00%)     47.1882 ( 20.02%)
Max-90%     mmap     59.7433 (  0.00%)     47.4453 ( 20.58%)
Max-93%     mmap     60.1298 (  0.00%)     47.6037 ( 20.83%)
Max-95%     mmap     73.4112 (  0.00%)     82.8719 (-12.89%)
Max-99%     mmap     92.8542 (  0.00%)     88.8870 (  4.27%)
Max         mmap   1440.6569 (  0.00%)    121.4201 ( 91.57%)
Mean        mmap     59.3493 (  0.00%)     42.2991 ( 28.73%)
Best99%Mean mmap     57.2121 (  0.00%)     41.8207 ( 26.90%)
Best95%Mean mmap     55.9113 (  0.00%)     39.9620 ( 28.53%)
Best90%Mean mmap     55.6199 (  0.00%)     39.3124 ( 29.32%)
Best50%Mean mmap     53.2183 (  0.00%)     33.1307 ( 37.75%)
Best10%Mean mmap     45.9842 (  0.00%)     20.4040 ( 55.63%)
Best5%Mean  mmap     43.2256 (  0.00%)     17.9654 ( 58.44%)
Best1%Mean  mmap     32.9388 (  0.00%)     16.6875 ( 49.34%)

This shows a number of improvements with the worst-case outlier greatly
improved.

Some of the vmstats are interesting

                             4.7.0-rc4   4.7.0-rc4
                          mmotm-20160623nodelru-v8
Swap Ins                           163         502
Swap Outs                            0           0
DMA allocs                           0           0
DMA32 allocs                 618719206  1381662383
Normal allocs                891235743   564138421
Movable allocs                       0           0
Allocation stalls                 2603           1
Direct pages scanned            216787           2
Kswapd pages scanned          50719775    41778378
Kswapd pages reclaimed        41541765    41777639
Direct pages reclaimed          209159           0
Kswapd efficiency                  81%         99%
Kswapd velocity              16859.554   14329.059
Direct efficiency                  96%          0%
Direct velocity                 72.061       0.001
Percentage direct scans             0%          0%
Page writes by reclaim         6215049           0
Page writes file               6215049           0
Page writes anon                     0           0
Page reclaim immediate           70673          90
Sector Reads                  81940800    81680456
Sector Writes                100158984    98816036
Page rescued immediate               0           0
Slabs scanned                  1366954       22683

While this is not guaranteed in all cases, this particular test showed
a large reduction in direct reclaim activity. It's also worth noting
that no page writes were issued from reclaim context.

This series is not without its hazards. There are at least three areas
that I'm concerned with even though I could not reproduce any problems in
that area.

1. Reclaim/compaction is going to be affected because the amount of reclaim is
   no longer targetted at a specific zone. Compaction works on a per-zone basis
   so there is no guarantee that reclaiming a few THP's worth page pages will
   have a positive impact on compaction success rates.

2. The Slab/LRU reclaim ratio is affected because the frequency the shrinkers
   are called is now different. This may or may not be a problem but if it
   is, it'll be because shrinkers are not called enough and some balancing
   is required.

3. The anon/file reclaim ratio may be affected. Pages about to be dirtied are
   distributed between zones and the fair zone allocation policy used to do
   something very similar for anon. The distribution is now different but not
   necessarily in any way that matters but it's still worth bearing in mind.

 Documentation/cgroup-v1/memcg_test.txt        |   4 +-
 Documentation/cgroup-v1/memory.txt            |   4 +-
 arch/s390/appldata/appldata_mem.c             |   2 +-
 arch/tile/mm/pgtable.c                        |  18 +-
 drivers/base/node.c                           |  77 ++-
 drivers/staging/android/lowmemorykiller.c     |  12 +-
 drivers/staging/lustre/lustre/osc/osc_cache.c |   6 +-
 fs/fs-writeback.c                             |   4 +-
 fs/fuse/file.c                                |   8 +-
 fs/nfs/internal.h                             |   2 +-
 fs/nfs/write.c                                |   2 +-
 fs/proc/meminfo.c                             |  20 +-
 include/linux/backing-dev.h                   |   2 +-
 include/linux/memcontrol.h                    |  63 +-
 include/linux/mm.h                            |   5 +
 include/linux/mm_inline.h                     |  39 +-
 include/linux/mm_types.h                      |   2 +-
 include/linux/mmzone.h                        | 161 +++--
 include/linux/swap.h                          |  24 +-
 include/linux/topology.h                      |   2 +-
 include/linux/vm_event_item.h                 |  14 +-
 include/linux/vmstat.h                        | 111 +++-
 include/linux/writeback.h                     |   2 +-
 include/trace/events/vmscan.h                 |  63 +-
 include/trace/events/writeback.h              |  10 +-
 kernel/power/snapshot.c                       |  10 +-
 kernel/sysctl.c                               |   4 +-
 mm/backing-dev.c                              |  15 +-
 mm/compaction.c                               |  48 +-
 mm/filemap.c                                  |  16 +-
 mm/huge_memory.c                              |  12 +-
 mm/internal.h                                 |  11 +-
 mm/khugepaged.c                               |  14 +-
 mm/memcontrol.c                               | 215 +++----
 mm/memory-failure.c                           |   4 +-
 mm/memory_hotplug.c                           |   7 +-
 mm/mempolicy.c                                |   2 +-
 mm/migrate.c                                  |  35 +-
 mm/mlock.c                                    |  12 +-
 mm/page-writeback.c                           | 123 ++--
 mm/page_alloc.c                               | 349 +++++-----
 mm/page_idle.c                                |   4 +-
 mm/rmap.c                                     |  26 +-
 mm/shmem.c                                    |  14 +-
 mm/swap.c                                     |  64 +-
 mm/swap_state.c                               |   4 +-
 mm/util.c                                     |   4 +-
 mm/vmscan.c                                   | 893 +++++++++++++-------------
 mm/vmstat.c                                   | 411 +++++++++---
 mm/workingset.c                               |  54 +-
 50 files changed, 1690 insertions(+), 1318 deletions(-)

-- 
2.6.4

--
To unsubscribe, send a message with 'unsubscribe linux-mm' in
the body to majordomo@kvack.org.  For more info on Linux MM,
see: http://www.linux-mm.org/ .
Don't email: <a href=mailto:"dont@kvack.org"> email@kvack.org </a>

^ permalink raw reply	[flat|nested] 109+ messages in thread

end of thread, other threads:[~2016-08-31 17:33 UTC | newest]

Thread overview: 109+ messages (download: mbox.gz / follow: Atom feed)
-- links below jump to the message on this page --
2016-07-08  9:34 [PATCH 00/34] Move LRU page reclaim from zones to nodes v9 Mel Gorman
2016-07-08  9:34 ` [PATCH 01/34] mm, vmstat: add infrastructure for per-node vmstats Mel Gorman
2016-08-03 19:13   ` Reza Arbab
2016-07-08  9:34 ` [PATCH 02/34] mm, vmscan: move lru_lock to the node Mel Gorman
2016-07-12 11:06   ` Balbir Singh
2016-07-12 11:18     ` Mel Gorman
2016-07-13  5:50       ` Balbir Singh
2016-07-13  8:39         ` Vlastimil Babka
2016-07-08  9:34 ` [PATCH 03/34] mm, vmscan: move LRU lists to node Mel Gorman
2016-08-04 20:59   ` James Hogan
2016-08-05  8:41     ` Mel Gorman
2016-08-05 10:52       ` James Hogan
2016-08-05 11:55         ` Mel Gorman
2016-08-05 12:02           ` James Hogan
2016-07-08  9:34 ` [PATCH 04/34] mm, mmzone: clarify the usage of zone padding Mel Gorman
2016-07-12 13:49   ` Johannes Weiner
2016-07-08  9:34 ` [PATCH 05/34] mm, vmscan: begin reclaiming pages on a per-node basis Mel Gorman
2016-07-12 13:54   ` Johannes Weiner
2016-07-14  9:19   ` Vlastimil Babka
2016-07-08  9:34 ` [PATCH 06/34] mm, vmscan: have kswapd only scan based on the highest requested zone Mel Gorman
2016-07-12 14:05   ` Johannes Weiner
2016-07-13  8:37     ` Mel Gorman
2016-07-08  9:34 ` [PATCH 07/34] mm, vmscan: make kswapd reclaim in terms of nodes Mel Gorman
2016-08-29  9:38   ` Srikar Dronamraju
2016-08-30 12:07     ` Mel Gorman
2016-08-30 14:25       ` Srikar Dronamraju
2016-08-30 15:00         ` Mel Gorman
2016-08-31  6:09           ` Srikar Dronamraju
2016-08-31  8:49             ` Mel Gorman
2016-08-31 11:09               ` Michal Hocko
2016-08-31 12:46                 ` Mel Gorman
2016-08-31 17:33               ` Srikar Dronamraju
2016-07-08  9:34 ` [PATCH 08/34] mm, vmscan: remove balance gap Mel Gorman
2016-07-12 14:06   ` Johannes Weiner
2016-07-08  9:34 ` [PATCH 09/34] mm, vmscan: simplify the logic deciding whether kswapd sleeps Mel Gorman
2016-07-08  9:34 ` [PATCH 10/34] mm, vmscan: by default have direct reclaim only shrink once per node Mel Gorman
2016-07-08  9:34 ` [PATCH 11/34] mm, vmscan: remove duplicate logic clearing node congestion and dirty state Mel Gorman
2016-07-12 14:22   ` Johannes Weiner
2016-07-13  8:40     ` Mel Gorman
2016-07-14  9:45   ` Vlastimil Babka
2016-07-08  9:34 ` [PATCH 12/34] mm: vmscan: do not reclaim from kswapd if there is any eligible zone Mel Gorman
2016-07-12 14:29   ` Johannes Weiner
2016-07-13  8:47     ` Mel Gorman
2016-07-13 12:28       ` Johannes Weiner
2016-07-08  9:34 ` [PATCH 13/34] mm, vmscan: make shrink_node decisions more node-centric Mel Gorman
2016-07-12 14:32   ` Johannes Weiner
2016-07-13  8:48     ` Mel Gorman
2016-07-08  9:34 ` [PATCH 14/34] mm, memcg: move memcg limit enforcement from zones to nodes Mel Gorman
2016-07-12 14:38   ` Johannes Weiner
2016-07-08  9:34 ` [PATCH 15/34] mm, workingset: make working set detection node-aware Mel Gorman
2016-07-08  9:34 ` [PATCH 16/34] mm, page_alloc: consider dirtyable memory in terms of nodes Mel Gorman
2016-07-08  9:34 ` [PATCH 17/34] mm: move page mapped accounting to the node Mel Gorman
2016-07-12 14:42   ` Johannes Weiner
2016-07-08  9:34 ` [PATCH 18/34] mm: rename NR_ANON_PAGES to NR_ANON_MAPPED Mel Gorman
2016-07-12 14:58   ` Johannes Weiner
2016-07-13  8:55     ` Mel Gorman
2016-07-13 13:04       ` Johannes Weiner
2016-07-13 13:37         ` Mel Gorman
2016-07-13 21:13           ` Andrew Morton
2016-07-15 10:46             ` Mel Gorman
2016-07-15 22:35               ` Andrew Morton
2016-07-18 13:34                 ` Johannes Weiner
2016-07-14  1:27           ` Minchan Kim
2016-07-08  9:34 ` [PATCH 19/34] mm: move most file-based accounting to the node Mel Gorman
2016-07-12 15:11   ` Johannes Weiner
2016-07-08  9:34 ` [PATCH 20/34] mm: move vmscan writes and file write " Mel Gorman
2016-07-12 15:15   ` Johannes Weiner
2016-07-08  9:34 ` [PATCH 21/34] mm, vmscan: only wakeup kswapd once per node for the requested classzone Mel Gorman
2016-07-12 17:18   ` Johannes Weiner
2016-07-08  9:34 ` [PATCH 22/34] mm, page_alloc: wake kswapd based on the highest eligible zone Mel Gorman
2016-07-12 17:24   ` Johannes Weiner
2016-07-14 10:05   ` Vlastimil Babka
2016-07-08  9:34 ` [PATCH 23/34] mm: convert zone_reclaim to node_reclaim Mel Gorman
2016-07-12 17:28   ` Johannes Weiner
2016-07-08  9:35 ` [PATCH 24/34] mm, vmscan: avoid passing in classzone_idx unnecessarily to shrink_node Mel Gorman
2016-07-12 17:31   ` Johannes Weiner
2016-07-14 10:09   ` Vlastimil Babka
2016-07-08  9:35 ` [PATCH 25/34] mm, vmscan: avoid passing in classzone_idx unnecessarily to compaction_ready Mel Gorman
2016-07-12 18:01   ` Johannes Weiner
2016-07-14 12:12   ` Vlastimil Babka
2016-07-08  9:35 ` [PATCH 26/34] mm, vmscan: avoid passing in remaining unnecessarily to prepare_kswapd_sleep Mel Gorman
2016-07-12 18:06   ` Johannes Weiner
2016-07-14 12:48   ` Vlastimil Babka
2016-07-08  9:35 ` [PATCH 27/34] mm, vmscan: Have kswapd reclaim from all zones if reclaiming and buffer_heads_over_limit Mel Gorman
2016-07-12 18:10   ` Johannes Weiner
2016-07-14 12:54   ` Vlastimil Babka
2016-07-08  9:35 ` [PATCH 28/34] mm, vmscan: add classzone information to tracepoints Mel Gorman
2016-07-12 18:13   ` Johannes Weiner
2016-07-08  9:35 ` [PATCH 29/34] mm, page_alloc: remove fair zone allocation policy Mel Gorman
2016-07-12 18:18   ` Johannes Weiner
2016-07-08  9:35 ` [PATCH 30/34] mm: page_alloc: cache the last node whose dirty limit is reached Mel Gorman
2016-07-12 18:43   ` Johannes Weiner
2016-07-08  9:35 ` [PATCH 31/34] mm: vmstat: replace __count_zone_vm_events with a zone id equivalent Mel Gorman
2016-07-12 19:10   ` Johannes Weiner
2016-07-08  9:35 ` [PATCH 32/34] mm: vmstat: account per-zone stalls and pages skipped during reclaim Mel Gorman
2016-07-12 19:06   ` Johannes Weiner
2016-07-08  9:35 ` [PATCH 33/34] mm, vmstat: print node-based stats in zoneinfo file Mel Gorman
2016-07-12 19:18   ` Johannes Weiner
2016-07-14 12:56   ` Vlastimil Babka
2016-07-08  9:35 ` [PATCH 34/34] mm, vmstat: remove zone and node double accounting by approximating retries Mel Gorman
2016-07-14 13:40   ` Vlastimil Babka
2016-07-15  7:48     ` Mel Gorman
2016-07-15 12:20       ` Vlastimil Babka
2016-08-19 13:12 ` [PATCH 00/34] Move LRU page reclaim from zones to nodes v9 Andrea Arcangeli
2016-08-19 13:23   ` Vlastimil Babka
2016-08-19 13:55     ` Andrea Arcangeli
2016-08-19 14:53   ` Mel Gorman
2016-08-19 15:32     ` Andrea Arcangeli
2016-08-19 15:55       ` Mel Gorman

This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).