linux-mm.kvack.org archive mirror
 help / color / mirror / Atom feed
From: David Hildenbrand <david@redhat.com>
To: Zi Yan <ziy@nvidia.com>
Cc: Michal Hocko <mhocko@suse.com>,
	linux-mm@kvack.org,
	"Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>,
	Rik van Riel <riel@surriel.com>, Roman Gushchin <guro@fb.com>,
	Matthew Wilcox <willy@infradead.org>,
	Shakeel Butt <shakeelb@google.com>,
	Yang Shi <shy828301@gmail.com>, Jason Gunthorpe <jgg@nvidia.com>,
	Mike Kravetz <mike.kravetz@oracle.com>,
	William Kucharski <william.kucharski@oracle.com>,
	Andrea Arcangeli <aarcange@redhat.com>,
	John Hubbard <jhubbard@nvidia.com>,
	David Nellans <dnellans@nvidia.com>,
	linux-kernel@vger.kernel.org
Subject: Re: [RFC PATCH v2 00/30] 1GB PUD THP support on x86_64
Date: Mon, 5 Oct 2020 20:48:03 +0200	[thread overview]
Message-ID: <52bc2d5d-eb8a-83de-1c93-abd329132d58@redhat.com> (raw)
In-Reply-To: <8850ABA0-0B42-41DB-9ADC-0E2BB1F841D0@nvidia.com>

> The real control of hugetlbfs comes from the interfaces provided by
> the kernel. If kernel provides similar interfaces to control page sizes
> of THPs, it should work the same as hugetlbfs. Mixing page sizes usually
> comes from system memory fragmentation and hugetlbfs does not have this
> mixture because of its special allocation pools not because of the code

With hugeltbfs, you have a guarantee that all pages within your VMA have
the same page size. This is an important property. With THP you have the
guarantee that any page can be operated on, as if it would be base-page
granularity.

Example: KVM on s390x

a) It cannot deal with THP. If you supply THP, the kernel will simply
split up all THP and prohibit new ones from getting formed. All works
well (well, no speedup because no THP).
b) It can deal with 1MB huge pages (in some configurations).
c) It cannot deal with 2G huge pages.

So user space really has to control which pagesize to use in case of
hugetlbfs.

> itself. If THPs are allocated from the same pools, they would act
> the same as hugetlbfs. What am I missing here?

Did I mention that I dislike taking THP from the CMA pool? ;)

> 
> I just do not get why hugetlbfs is so special that it can have pagesize
> fine control when normal pages cannot get. The “it should be invisible
> to userpsace” argument suddenly does not hold for hugetlbfs.

It's not about "cannot get", it's about "do we need it". We do have a
trigger "THP yes/no". I wonder in which cases that wouldn't be sufficient.


The name "Transparent" implies that they *should* be transparent to user
space. This, unfortunately, is not completely true:

1. Performance aspects: Breaking up THP is bad for performance. This can
be observed fairly easily by when using 4k-based memory ballooning in
virtualized environments. If we stick to the current THP size (e.g.,
2MB), we are mostly fine. Breaking up 1G THP into 2MB THP when required
 is completely acceptable.

2. Wasting memory: Touch a 4K page, get 2M populated. Somewhat
acceptable / controllable. Touch 4K, get 1G populated is not desirable.
And I think we mostly agree that we should operate only on
fully-populated ranges to replace by 1G THP.


But then, there is no observerable difference between 1G THP and 2M THP
from user space point of view except performance.

So we are debating about "Should the kernel tell us that we can use 1G
THP for a VMA".  What if we were suddenly to support 2G THP (look at
arm64 how they support all kinds of huge pages for hugetlbfs)? Do we
really need *another* trigger?

What Michal proposed (IIUC) is rather user space telling the kernel
"this large memory range here is *really* important for performance,
please try to optimize the memory layout, give me the best you've got".

MADV_HUGEPAGE_1GB is just ugly.


-- 
Thanks,

David / dhildenb



  reply	other threads:[~2020-10-05 18:48 UTC|newest]

Thread overview: 56+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2020-09-28 17:53 [RFC PATCH v2 00/30] 1GB PUD THP support on x86_64 Zi Yan
2020-09-28 17:53 ` [RFC PATCH v2 01/30] mm/pagewalk: use READ_ONCE when reading the PUD entry unlocked Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 02/30] mm: pagewalk: use READ_ONCE when reading the PMD " Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 03/30] mm: thp: use single linked list for THP page table page deposit Zi Yan
2020-09-28 19:34   ` Matthew Wilcox
2020-09-28 20:34     ` Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 04/30] mm: add new helper functions to allocate one PMD page with 512 PTE pages Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 05/30] mm: thp: add page table deposit/withdraw functions for PUD THP Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 06/30] mm: change thp_order and thp_nr as we will have not just PMD THPs Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 07/30] mm: thp: add anonymous PUD THP page fault support without enabling it Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 08/30] mm: thp: add PUD THP support for copy_huge_pud Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 09/30] mm: thp: add PUD THP support to zap_huge_pud Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 10/30] fs: proc: add PUD THP kpageflag Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 11/30] mm: thp: handling PUD THP reference bit Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 12/30] mm: rmap: add mappped/unmapped page order to anonymous page rmap functions Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 13/30] mm: rmap: add map_order to page_remove_anon_compound_rmap Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 14/30] mm: thp: add PUD THP split_huge_pud_page() function Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 15/30] mm: thp: add PUD THP to deferred split list when PUD mapping is gone Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 16/30] mm: debug: adapt dump_page to PUD THP Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 17/30] mm: thp: PUD THP COW splits PUD page and falls back to PMD page Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 18/30] mm: thp: PUD THP follow_p*d_page() support Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 19/30] mm: stats: make smap stats understand PUD THPs Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 20/30] mm: page_vma_walk: teach it about PMD-mapped PUD THP Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 21/30] mm: thp: PUD THP support in try_to_unmap() Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 22/30] mm: thp: split PUD THPs at page reclaim Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 23/30] mm: support PUD THP pagemap support Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 24/30] mm: madvise: add page size options to MADV_HUGEPAGE and MADV_NOHUGEPAGE Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 25/30] mm: vma: add VM_HUGEPAGE_PUD to vm_flags at bit 37 Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 26/30] mm: thp: add a global knob to enable/disable PUD THPs Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 27/30] mm: thp: make PUD THP size public Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 28/30] hugetlb: cma: move cma reserve function to cma.c Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 29/30] mm: thp: use cma reservation for pud thp allocation Zi Yan
2020-09-28 17:54 ` [RFC PATCH v2 30/30] mm: thp: enable anonymous PUD THP at page fault path Zi Yan
2020-09-30 11:55 ` [RFC PATCH v2 00/30] 1GB PUD THP support on x86_64 Michal Hocko
2020-10-01 15:14   ` Zi Yan
2020-10-02  7:32     ` Michal Hocko
2020-10-02  7:50       ` David Hildenbrand
2020-10-02  8:10         ` Michal Hocko
2020-10-02  8:30           ` David Hildenbrand
2020-10-05 15:03             ` Zi Yan
2020-10-05 15:55               ` Matthew Wilcox
2020-10-05 17:04                 ` Roman Gushchin
2020-10-05 19:12                 ` Zi Yan
2020-10-05 19:37                   ` Matthew Wilcox
2020-10-05 17:16               ` Roman Gushchin
2020-10-05 17:27                 ` David Hildenbrand
2020-10-05 18:25                   ` Roman Gushchin
2020-10-05 18:33                     ` David Hildenbrand
2020-10-05 19:11                       ` Roman Gushchin
2020-10-06  8:25                         ` David Hildenbrand
2020-10-05 17:39               ` David Hildenbrand
2020-10-05 18:05                 ` Zi Yan
2020-10-05 18:48                   ` David Hildenbrand [this message]
2020-10-06 11:59                   ` Michal Hocko
2020-10-05 15:34         ` Zi Yan
2020-10-05 17:30           ` David Hildenbrand

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=52bc2d5d-eb8a-83de-1c93-abd329132d58@redhat.com \
    --to=david@redhat.com \
    --cc=aarcange@redhat.com \
    --cc=dnellans@nvidia.com \
    --cc=guro@fb.com \
    --cc=jgg@nvidia.com \
    --cc=jhubbard@nvidia.com \
    --cc=kirill.shutemov@linux.intel.com \
    --cc=linux-kernel@vger.kernel.org \
    --cc=linux-mm@kvack.org \
    --cc=mhocko@suse.com \
    --cc=mike.kravetz@oracle.com \
    --cc=riel@surriel.com \
    --cc=shakeelb@google.com \
    --cc=shy828301@gmail.com \
    --cc=william.kucharski@oracle.com \
    --cc=willy@infradead.org \
    --cc=ziy@nvidia.com \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).