Linux-mm Archive on lore.kernel.org
 help / color / Atom feed
From: Marco Elver <elver@google.com>
To: Alexander Potapenko <glider@google.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>,
	Dmitry Vyukov <dvyukov@google.com>,
	 Linux Memory Management List <linux-mm@kvack.org>,
	Al Viro <viro@zeniv.linux.org.uk>,
	adilger.kernel@dilger.ca,
	 Andrew Morton <akpm@linux-foundation.org>,
	Andrey Konovalov <andreyknvl@google.com>,
	 Andrey Ryabinin <aryabinin@virtuozzo.com>,
	Andy Lutomirski <luto@kernel.org>,
	 Ard Biesheuvel <ard.biesheuvel@linaro.org>,
	Arnd Bergmann <arnd@arndb.de>,
	hch@infradead.org, hch@lst.de,  darrick.wong@oracle.com,
	davem@davemloft.net, dmitry.torokhov@gmail.com,
	 ebiggers@google.com, Eric Dumazet <edumazet@google.com>,
	ericvh@gmail.com,  gregkh@linuxfoundation.org,
	harry.wentland@amd.com,  herbert@gondor.apana.org.au,
	iii@linux.ibm.com, mingo@elte.hu,  jasowang@redhat.com,
	axboe@kernel.dk, m.szyprowski@samsung.com,
	 Mark Rutland <mark.rutland@arm.com>,
	martin.petersen@oracle.com, schwidefsky@de.ibm.com,
	 Matthew Wilcox <willy@infradead.org>,
	mst@redhat.com, monstr@monstr.eu, pmladek@suse.com,
	 Qian Cai <cai@lca.pw>, Randy Dunlap <rdunlap@infradead.org>,
	robin.murphy@arm.com,  sergey.senozhatsky@gmail.com,
	Steven Rostedt <rostedt@goodmis.org>,
	tiwai@suse.com,  tytso@mit.edu,
	Thomas Gleixner <tglx@linutronix.de>,
	gor@linux.ibm.com, wsa@the-dreams.de
Subject: Re: [PATCH RFC v3 05/36] kmsan: add ReST documentation
Date: Wed, 27 Nov 2019 15:22:52 +0100
Message-ID: <CANpmjNMf5OXuCNvPeRd-5ucbkLBGwH-rr9ohKEiChp+ZzwGb7w@mail.gmail.com> (raw)
In-Reply-To: <20191122112621.204798-6-glider@google.com>

General comments:
* it's -> it is
* don't -> do not

On Fri, 22 Nov 2019 at 12:26, <glider@google.com> wrote:
[...]
> diff --git a/Documentation/dev-tools/index.rst b/Documentation/dev-tools/index.rst
> index b0522a4dd107..bc5e3fd87efa 100644
> --- a/Documentation/dev-tools/index.rst
> +++ b/Documentation/dev-tools/index.rst
> @@ -19,6 +19,7 @@ whole; patches welcome!
>     kcov
>     gcov
>     kasan
> +   kmsan
>     ubsan
>     kmemleak
>     gdb-kernel-debugging
> diff --git a/Documentation/dev-tools/kmsan.rst b/Documentation/dev-tools/kmsan.rst
> new file mode 100644
> index 000000000000..51f9c207cc2c
> --- /dev/null
> +++ b/Documentation/dev-tools/kmsan.rst
> @@ -0,0 +1,418 @@
> +=============================
> +KernelMemorySanitizer (KMSAN)
> +=============================
> +
> +KMSAN is a dynamic memory error detector aimed at finding uses of uninitialized
> +memory.
> +It is based on compiler instrumentation, and is quite similar to the userspace
> +MemorySanitizer tool (http://clang.llvm.org/docs/MemorySanitizer.html).

These should be real links:  `Memory sanitizer tool <...url...>`_.

> +KMSAN and Clang
> +===============
> +
> +In order for KMSAN to work the kernel must be
> +built with Clang, which is so far the only compiler that has KMSAN support.

"is so far" -> "so far is"

> +The kernel instrumentation pass is based on the userspace MemorySanitizer tool
> +(http://clang.llvm.org/docs/MemorySanitizer.html). Because of the

Should also be real link: `MemorySanitizer tool <..url..>`_

> +instrumentation complexity it's unlikely that any other compiler will support
> +KMSAN soon.
> +
> +Right now the instrumentation pass supports x86_64 only.
> +
> +How to build
> +============
> +
> +In order to build a kernel with KMSAN you'll need a fresh Clang (10.0.0+, trunk
> +version r365008 or greater). Please refer to
> +https://llvm.org/docs/GettingStarted.html for the instructions on how to build
> +Clang::
> +
> +  export KMSAN_CLANG_PATH=/path/to/clang
>
> +  # Now configure and build the kernel with CONFIG_KMSAN enabled.
> +  make CC=$KMSAN_CLANG_PATH -j64

I don't think '-j64' is necessary to build.  Also the 'export' is
technically not required AFAIK, but I don't think it bothers anyone.

> +How KMSAN works
> +===============
> +
> +KMSAN shadow memory
> +-------------------
> +
> +KMSAN associates a so-called shadow byte with every byte of kernel memory.

'shadow' memory may not be a well-defined term. More intuitive would
be saying that it's metadata associated with every byte of kernel
memory. From then on you can say it's shadow memory.

> +A bit in the shadow byte is set iff the corresponding bit of the kernel memory
> +byte is uninitialized.
> +Marking the memory uninitialized (i.e. setting its shadow bytes to 0xff) is
> +called poisoning, marking it initialized (setting the shadow bytes to 0x00) is
> +called unpoisoning.
> +
> +When a new variable is allocated on the stack, it's poisoned by default by
> +instrumentation code inserted by the compiler (unless it's a stack variable that
> +is immediately initialized). Any new heap allocation done without ``__GFP_ZERO``
> +is also poisoned.
> +
> +Compiler instrumentation also tracks the shadow values with the help from the
> +runtime library in ``mm/kmsan/``.
> +
> +The shadow value of a basic or compound type is an array of bytes of the same
> +length.
> +When a constant value is written into memory, that memory is unpoisoned.
> +When a value is read from memory, its shadow memory is also obtained and
> +propagated into all the operations which use that value. For every instruction
> +that takes one or more values the compiler generates code that calculates the
> +shadow of the result depending on those values and their shadows.
> +
> +Example::
> +
> +  int a = 0xff;
> +  int b;
> +  int c = a | b;
> +
> +In this case the shadow of ``a`` is ``0``, shadow of ``b`` is ``0xffffffff``,
> +shadow of ``c`` is ``0xffffff00``. This means that the upper three bytes of
> +``c`` are uninitialized, while the lower byte is initialized.
> +
> +
> +Origin tracking
> +---------------
> +
> +Every four bytes of kernel memory also have a so-called origin assigned to
> +them.
> +This origin describes the point in program execution at which the uninitialized
> +value was created. Every origin is associated with a creation stack, which lets
> +the user figure out what's going on.
> +
> +When an uninitialized variable is allocated on stack or heap, a new origin
> +value is created, and that variable's origin is filled with that value.
> +When a value is read from memory, its origin is also read and kept together
> +with the shadow. For every instruction that takes one or more values the origin
> +of the result is one of the origins corresponding to any of the uninitialized
> +inputs.
> +If a poisoned value is written into memory, its origin is written to the
> +corresponding storage as well.
> +
> +Example 1::
> +
> +  int a = 0;
> +  int b;
> +  int c = a + b;
> +
> +In this case the origin of ``b`` is generated upon function entry, and is
> +stored to the origin of ``c`` right before the addition result is written into
> +memory.
> +
> +Several variables may share the same origin address, if they are stored in the
> +same four-byte chunk.
> +In this case every write to either variable updates the origin for all of them.
> +
> +Example 2::
> +
> +  int combine(short a, short b) {
> +    union ret_t {
> +      int i;
> +      short s[2];
> +    } ret;
> +    ret.s[0] = a;
> +    ret.s[1] = b;
> +    return ret.i;
> +  }
> +
> +If ``a`` is initialized and ``b`` is not, the shadow of the result would be
> +0xffff0000, and the origin of the result would be the origin of ``b``.
> +``ret.s[0]`` would have the same origin, but it will be never used, because
> +that variable is initialized.
> +
> +If both function arguments are uninitialized, only the origin of the second
> +argument is preserved.
> +
> +Origin chaining
> +~~~~~~~~~~~~~~~
> +To ease the debugging, KMSAN creates a new origin for every memory store.

"the debugging" -> "debugging"

> +The new origin references both its creation stack and the previous origin the
> +memory location had.
> +This may cause increased memory consumption, so we limit the length of origin
> +chains in the runtime.
> +
> +Clang instrumentation API
> +-------------------------
> +
> +Clang instrumentation pass inserts calls to functions defined in
> +``mm/kmsan/kmsan_instr.c`` into the kernel code.

> +Shadow manipulation
> +~~~~~~~~~~~~~~~~~~~
> +For every memory access the compiler emits a call to a function that returns a
> +pair of pointers to the shadow and origin addresses of the given memory::
> +
> +  typedef struct {
> +    void *s, *o;
> +  } shadow_origin_ptr_t
> +
> +  shadow_origin_ptr_t __msan_metadata_ptr_for_load_{1,2,4,8}(void *addr)
> +  shadow_origin_ptr_t __msan_metadata_ptr_for_store_{1,2,4,8}(void *addr)
> +  shadow_origin_ptr_t __msan_metadata_ptr_for_load_n(void *addr, u64 size)
> +  shadow_origin_ptr_t __msan_metadata_ptr_for_store_n(void *addr, u64 size)
> +
> +The function name depends on the memory access size.
> +Each such function also checks if the shadow of the memory in the range
> +[``addr``, ``addr + n``) is contiguous and reports an error otherwise.
> +
> +The compiler makes sure that for every loaded value its shadow and origin
> +values are read from memory.
> +When a value is stored to memory, its shadow and origin are also stored using
> +the metadata pointers.
> +
> +Origin tracking
> +~~~~~~~~~~~~~~~
> +A special function is used to create a new origin value for a local variable
> +and set the origin of that variable to that value::
> +
> +  void __msan_poison_alloca(u64 address, u64 size, char *descr)
> +
> +Access to per-task data
> +~~~~~~~~~~~~~~~~~~~~~~~~~
> +
> +At the beginning of every instrumented function KMSAN inserts a call to
> +``__msan_get_context_state()``::
> +
> +  kmsan_context_state *__msan_get_context_state(void)
> +
> +``kmsan_context_state`` is declared in ``include/linux/kmsan.h``::
> +
> +  struct kmsan_context_s {
> +    char param_tls[KMSAN_PARAM_SIZE];
> +    char retval_tls[RETVAL_SIZE];
> +    char va_arg_tls[KMSAN_PARAM_SIZE];
> +    char va_arg_origin_tls[KMSAN_PARAM_SIZE];
> +    u64 va_arg_overflow_size_tls;
> +    depot_stack_handle_t param_origin_tls[PARAM_ARRAY_SIZE];
> +    depot_stack_handle_t retval_origin_tls;
> +    depot_stack_handle_t origin_tls;
> +  };
> +
> +This structure is used by KMSAN to pass parameter shadows and origins between
> +instrumented functions.
> +
> +String functions
> +~~~~~~~~~~~~~~~~
> +
> +The compiler replaces calls to ``memcpy()``/``memmove()``/``memset()`` with the
> +following functions. These functions are also called when data structures are
> +initialized or copied, making sure shadow and origin values are copied alongside
> +with the data::
> +
> +  void *__msan_memcpy(void *dst, void *src, u64 n)
> +  void *__msan_memmove(void *dst, void *src, u64 n)
> +  void *__msan_memset(void *dst, int c, size_t n)
> +
> +Error reporting
> +~~~~~~~~~~~~~~~
> +
> +For each pointer dereference and each condition the compiler emits a shadow
> +check that calls ``__msan_warning()`` in the case a poisoned value is being
> +used::
> +
> +  void __msan_warning(u32 origin)
> +
> +``__msan_warning()`` causes KMSAN runtime to print an error report.
> +
> +Inline assembly instrumentation
> +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> +
> +KMSAN instruments every inline assembly output with a call to::
> +
> +  void __msan_instrument_asm_store(u64 addr, u64 size)
> +
> +, which unpoisons the memory region.
> +
> +This approach may mask certain errors, but it also helps to avoid a lot of
> +false positives in bitwise operations, atomics etc.
> +
> +Sometimes the pointers passed into inline assembly don't point to valid memory.
> +In such cases they are ignored at runtime.
> +
> +Disabling the instrumentation
> +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> +A function can be marked with ``__no_sanitize_memory``.
> +Doing so doesn't remove KMSAN instrumentation from it, however it makes the
> +compiler ignore the uninitialized values coming from the function's inputs,
> +and initialize the function's outputs.
> +The compiler won't inline functions marked with this attribute into functions
> +not marked with it, and vice versa.
> +
> +It's also possible to disable KMSAN for a single file (e.g. main.o)::
> +
> +  KMSAN_SANITIZE_main.o := n
> +
> +or for the whole directory::
> +
> +  KMSAN_SANITIZE := n
> +
> +in the Makefile. This comes at a cost however: stack allocations from such files
> +and parameters of instrumented functions called from them will have incorrect
> +shadow/origin values. As a rule of thumb, avoid using KMSAN_SANITIZE.
> +
> +Runtime library
> +---------------
> +The code is located in ``mm/kmsan/``.
> +
> +Per-task KMSAN state
> +~~~~~~~~~~~~~~~~~~~~
> +
> +Every task_struct has an associated KMSAN task state that holds the KMSAN
> +context (see above) and a per-task flag disallowing KMSAN reports::
> +
> +  struct kmsan_task_state {
> +    ...
> +    bool allow_reporting;
> +    struct kmsan_context_state cstate;
> +    ...
> +  }
> +
> +  struct task_struct {
> +    ...
> +    struct kmsan_task_state kmsan;
> +    ...
> +  }
> +
> +
> +KMSAN contexts
> +~~~~~~~~~~~~~~
> +
> +When running in a kernel task context, KMSAN uses ``current->kmsan.cstate`` to
> +hold the metadata for function parameters and return values.
> +
> +But in the case the kernel is running in the interrupt, softirq or NMI context,
> +where ``current`` is unavailable, KMSAN switches to per-cpu interrupt state::
> +
> +  DEFINE_PER_CPU(kmsan_context_state[KMSAN_NESTED_CONTEXT_MAX],
> +                 kmsan_percpu_cstate);
> +
> +Metadata allocation
> +~~~~~~~~~~~~~~~~~~~
> +There are several places in the kernel for which the metadata is stored.
> +
> +1. Each ``struct page`` instance contains two pointers to its shadow and
> +origin pages::
> +
> +  struct page {
> +    ...
> +    struct page *shadow, *origin;
> +    ...
> +  };
> +
> +Every time a ``struct page`` is allocated, the runtime library allocates two
> +additional pages to hold its shadow and origins. This is done by adding hooks
> +to ``alloc_pages()``/``free_pages()`` in ``mm/page_alloc.c``.
> +To avoid allocating the metadata for non-interesting pages (right now only the
> +shadow/origin page themselves and stackdepot storage) the
> +``__GFP_NO_KMSAN_SHADOW`` flag is used.
> +
> +There is a problem related to this allocation algorithm: when two contiguous
> +memory blocks are allocated with two different ``alloc_pages()`` calls, their
> +shadow pages may not be contiguous. So, if a memory access crosses the boundary
> +of a memory block, accesses to shadow/origin memory may potentially corrupt
> +other pages or read incorrect values from them.
> +
> +As a workaround, we check the access size in
> +``__msan_metadata_ptr_for_XXX_YYY()`` and return a pointer to a fake shadow
> +region in the case of an error::
> +
> +  char dummy_load_page[PAGE_SIZE] __attribute__((aligned(PAGE_SIZE)));
> +  char dummy_store_page[PAGE_SIZE] __attribute__((aligned(PAGE_SIZE)));
> +
> +``dummy_load_page`` is zero-initialized, so reads from it always yield zeroes.
> +All stores to ``dummy_store_page`` are ignored.
> +
> +Unfortunately at boot time we need to allocate shadow and origin pages for the
> +kernel data (``.data``, ``.bss`` etc.) and percpu memory regions, the size of
> +which is not a power of 2. As a result, we have to allocate the metadata page by
> +page, so that it is also non-contiguous, although it may be perfectly valid to
> +access the corresponding kernel memory across page boundaries.
> +This can be probably fixed by allocating 1<<N pages at once, splitting them and
> +deallocating the rest.
> +
> +LSB of the ``shadow`` pointer in a ``struct page`` may be set to 1. In this case
> +shadow and origin pages are allocated, but KMSAN ignores accesses to them by
> +falling back to dummy pages. Allocating the metadata pages is still needed to
> +support ``vmap()/vunmap()`` operations on this struct page.
> +
> +2. For vmalloc memory and modules, there's a direct mapping between the memory
> +range, its shadow and origin. KMSAN lessens the vmalloc area by 3/4, making only
> +the first quarter available to ``vmalloc()``. The second quarter of the vmalloc
> +area contains shadow memory for the first quarter, the third one holds the
> +origins. A small part of the fourth quarter contains shadow and origins for the
> +kernel modules. Please refer to ``arch/x86/include/asm/pgtable_64_types.h`` for
> +more details.
> +
> +When an array of pages is mapped into a contiguous virtual memory space, their
> +shadow and origin pages are similarly mapped into contiguous regions.
> +
> +3. For CPU entry area there're separate per-CPU arrays that hold its metadata::
> +
> +  DEFINE_PER_CPU(char[CPU_ENTRY_AREA_SIZE], cpu_entry_area_shadow);
> +  DEFINE_PER_CPU(char[CPU_ENTRY_AREA_SIZE], cpu_entry_area_origin);

For some reason rst2html complains here that this is not a literal block.

> +When calculating shadow and origin addresses for a given memory address, the
> +runtime checks whether the address belongs to the physical page range, the
> +virtual page range or CPU entry area.
> +
> +Handling ``pt_regs``
> +~~~~~~~~~~~~~~~~~~~

This is missing a '~' (I ran it through rst2html to find).

> +Many functions receive a ``struct pt_regs`` holding the register state at a
> +certain point. Registers don't have (easily calculatable) shadow or origin
> +associated with them.
> +We can assume that the registers are always initialized.
> +
> +Example report
> +--------------
> +Here's an example of a real KMSAN report in ``packet_bind_spkt()``::

Shouldn't this section be somewhere at the top in a section such as
"usage". A user of KMSAN doesn't really care how KMSAN works.

> +  ==================================================================
> +  BUG: KMSAN: uninit-value in strlen
> +  CPU: 0 PID: 1074 Comm: packet Not tainted 4.8.0-rc6+ #1891
> +  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
> +   0000000000000000 ffff88006b6dfc08 ffffffff82559ae8 ffff88006b6dfb48
> +   ffffffff818a7c91 ffffffff85b9c870 0000000000000092 ffffffff85b9c550
> +   0000000000000000 0000000000000092 00000000ec400911 0000000000000002
> +  Call Trace:
> +   [<     inline     >] __dump_stack lib/dump_stack.c:15
> +   [<ffffffff82559ae8>] dump_stack+0x238/0x290 lib/dump_stack.c:51
> +   [<ffffffff818a6626>] kmsan_report+0x276/0x2e0 mm/kmsan/kmsan.c:1003
> +   [<ffffffff818a783b>] __msan_warning+0x5b/0xb0 mm/kmsan/kmsan_instr.c:424
> +   [<     inline     >] strlen lib/string.c:484
> +   [<ffffffff8259b58d>] strlcpy+0x9d/0x200 lib/string.c:144
> +   [<ffffffff84b2eca4>] packet_bind_spkt+0x144/0x230 net/packet/af_packet.c:3132
> +   [<ffffffff84242e4d>] SYSC_bind+0x40d/0x5f0 net/socket.c:1370
> +   [<ffffffff84242a22>] SyS_bind+0x82/0xa0 net/socket.c:1356
> +   [<ffffffff8515991b>] entry_SYSCALL_64_fastpath+0x13/0x8f arch/x86/entry/entry_64.o:?
> +  chained origin:
> +   [<ffffffff810bb787>] save_stack_trace+0x27/0x50 arch/x86/kernel/stacktrace.c:67
> +   [<     inline     >] kmsan_save_stack_with_flags mm/kmsan/kmsan.c:322
> +   [<     inline     >] kmsan_save_stack mm/kmsan/kmsan.c:334
> +   [<ffffffff818a59f8>] kmsan_internal_chain_origin+0x118/0x1e0 mm/kmsan/kmsan.c:527
> +   [<ffffffff818a7773>] __msan_set_alloca_origin4+0xc3/0x130 mm/kmsan/kmsan_instr.c:380
> +   [<ffffffff84242b69>] SYSC_bind+0x129/0x5f0 net/socket.c:1356
> +   [<ffffffff84242a22>] SyS_bind+0x82/0xa0 net/socket.c:1356
> +   [<ffffffff8515991b>] entry_SYSCALL_64_fastpath+0x13/0x8f arch/x86/entry/entry_64.o:?
> +  origin description: ----address@SYSC_bind (origin=00000000eb400911)
> +  ==================================================================
> +
> +The report tells that the local variable ``address`` was created uninitialized
> +in ``SYSC_bind()`` (the ``bind`` system call implementation). The lower stack
> +trace corresponds to the place where this variable was created.
> +
> +The upper stack shows where the uninit value was used - in ``strlen()``.
> +It turned out that the contents of ``address`` were partially copied from the
> +userspace, but the buffer wasn't zero-terminated and contained some trailing
> +uninitialized bytes.
> +``packet_bind_spkt()`` didn't check the length of the buffer, but called
> +``strlcpy()`` on it, which called ``strlen()``, which started reading the
> +buffer byte by byte till it hit the uninitialized memory.
> +
> +
> +References
> +==========
> +
> +E. Stepanov, K. Serebryany. MemorySanitizer: fast detector of uninitialized
> +memory use in C++.
> +In Proceedings of CGO 2015.

This should be turned into a link.


  reply index

Thread overview: 120+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2019-11-22 11:25 [PATCH RFC v3 00/36] Add KernelMemorySanitizer infrastructure glider
2019-11-22 11:25 ` [PATCH RFC v3 01/36] stackdepot: check depot_index before accessing the stack slab glider
2019-11-27 14:22   ` Marco Elver
2019-11-22 11:25 ` [PATCH RFC v3 02/36] stackdepot: build with -fno-builtin glider
2019-11-27 14:22   ` Marco Elver
2019-11-22 11:25 ` [PATCH RFC v3 03/36] kasan: stackdepot: move filter_irq_stacks() to stackdepot.c glider
2019-11-27 14:22   ` Marco Elver
2019-11-27 14:56     ` Alexander Potapenko
2019-11-22 11:25 ` [PATCH RFC v3 04/36] stackdepot: reserve 5 extra bits in depot_stack_handle_t glider
2019-11-27 14:23   ` Marco Elver
2019-11-22 11:25 ` [PATCH RFC v3 05/36] kmsan: add ReST documentation glider
2019-11-27 14:22   ` Marco Elver [this message]
2019-12-03 12:42     ` Alexander Potapenko
2019-11-22 11:25 ` [PATCH RFC v3 06/36] kmsan: gfp: introduce __GFP_NO_KMSAN_SHADOW glider
2019-11-27 14:48   ` Marco Elver
2019-12-03 12:57     ` Alexander Potapenko
2019-11-22 11:25 ` [PATCH RFC v3 07/36] kmsan: introduce __no_sanitize_memory and __SANITIZE_MEMORY__ glider
2019-11-28 13:13   ` Marco Elver
2019-11-29 16:09   ` Andrey Konovalov
2019-12-16 11:35     ` Alexander Potapenko
2019-11-22 11:25 ` [PATCH RFC v3 08/36] kmsan: reduce vmalloc space glider
2019-11-28 13:30   ` Marco Elver
2019-11-22 11:25 ` [PATCH RFC v3 09/36] kmsan: add KMSAN bits to struct page and struct task_struct glider
2019-11-28 13:44   ` Marco Elver
2019-11-28 14:05     ` Alexander Potapenko
2019-11-22 11:25 ` [PATCH RFC v3 10/36] kmsan: add KMSAN runtime glider
2019-11-24 19:44   ` Wolfram Sang
2019-11-25  9:14     ` Alexander Potapenko
2019-11-29 16:07   ` Marco Elver
2019-12-19 14:16     ` Alexander Potapenko
2019-12-02 15:39   ` Andrey Konovalov
2019-12-20 18:58     ` Alexander Potapenko
2019-12-03 14:34   ` Andrey Konovalov
2019-11-22 11:25 ` [PATCH RFC v3 11/36] kmsan: stackdepot: don't allocate KMSAN metadata for stackdepot glider
2019-11-29 14:52   ` Andrey Konovalov
2019-12-03 14:27     ` Alexander Potapenko
2019-11-22 11:25 ` [PATCH RFC v3 12/36] kmsan: define READ_ONCE_NOCHECK() glider
2019-12-02 10:03   ` Marco Elver
2019-12-03 12:45     ` Alexander Potapenko
2019-11-22 11:25 ` [PATCH RFC v3 13/36] kmsan: make READ_ONCE_TASK_STACK() return initialized values glider
2019-12-02 10:07   ` Marco Elver
2019-12-05 15:52     ` Alexander Potapenko
2019-11-22 11:25 ` [PATCH RFC v3 14/36] kmsan: x86: sync metadata pages on page fault glider
2019-11-22 11:26 ` [PATCH RFC v3 15/36] kmsan: add tests for KMSAN glider
2019-11-29 14:14   ` Andrey Konovalov
2019-12-05 14:30     ` Alexander Potapenko
2019-11-22 11:26 ` [PATCH RFC v3 16/36] crypto: kmsan: disable accelerated configs under KMSAN glider
2019-12-02 13:25   ` Marco Elver
2019-12-05 14:51     ` Alexander Potapenko
2019-11-22 11:26 ` [PATCH RFC v3 17/36] kmsan: x86: disable UNWINDER_ORC " glider
2019-12-02 13:30   ` Marco Elver
2019-11-22 11:26 ` [PATCH RFC v3 18/36] kmsan: disable LOCK_DEBUGGING_SUPPORT glider
2019-12-02 13:33   ` Marco Elver
2019-12-03 14:34     ` Alexander Potapenko
2019-12-03 15:00       ` Qian Cai
2019-12-03 15:14         ` Alexander Potapenko
2019-12-03 18:02           ` Qian Cai
2019-12-03 18:38           ` Steven Rostedt
2019-12-04  8:41             ` Alexander Potapenko
2019-12-04 12:22               ` Petr Mladek
2019-12-04 13:12                 ` Qian Cai
2019-12-04 16:24                   ` Alexander Potapenko
2019-12-04 18:03                     ` Qian Cai
2019-11-22 11:26 ` [PATCH RFC v3 20/36] kmsan: x86: increase stack sizes in KMSAN builds glider
2019-12-02 14:31   ` Marco Elver
2019-11-22 11:26 ` [PATCH RFC v3 21/36] kmsan: disable KMSAN instrumentation for certain kernel parts glider
2019-11-29 15:07   ` Andrey Konovalov
2019-12-10 10:35     ` Alexander Potapenko
2019-12-10 12:38       ` Alexander Potapenko
2019-12-10 12:43       ` Qian Cai
2019-11-22 11:26 ` [PATCH RFC v3 22/36] kmsan: mm: call KMSAN hooks from SLUB code glider
2019-12-02 15:36   ` Marco Elver
2019-12-10 12:07     ` Alexander Potapenko
2019-11-22 11:26 ` [PATCH RFC v3 23/36] kmsan: call KMSAN hooks where needed glider
2019-11-26 10:17   ` Petr Mladek
2019-11-26 10:52     ` Alexander Potapenko
2019-11-29 16:21   ` Andrey Konovalov
2019-12-16 11:30     ` Alexander Potapenko
2019-11-22 11:26 ` [PATCH RFC v3 24/36] kmsan: disable instrumentation of certain functions glider
2019-11-29 14:59   ` Andrey Konovalov
2019-12-18 10:02     ` Alexander Potapenko
2019-11-22 11:26 ` [PATCH RFC v3 25/36] kmsan: unpoison |tlb| in arch_tlb_gather_mmu() glider
2019-11-29 15:08   ` Andrey Konovalov
2019-12-03 14:19     ` Alexander Potapenko
2019-11-22 11:26 ` [PATCH RFC v3 26/36] kmsan: use __msan_memcpy() where possible glider
2019-11-29 15:13   ` Andrey Konovalov
2019-12-05 15:46     ` Alexander Potapenko
2019-11-22 11:26 ` [PATCH RFC v3 27/36] kmsan: hooks for copy_to_user() and friends glider
2019-11-29 15:34   ` Andrey Konovalov
2019-12-05 16:00     ` Alexander Potapenko
2019-12-05 16:44       ` Andrey Konovalov
2019-12-11 14:22         ` Alexander Potapenko
2019-11-22 11:26 ` [PATCH RFC v3 28/36] kmsan: enable KMSAN builds glider
2019-11-29 15:55   ` Andrey Konovalov
2019-12-11 12:51     ` Alexander Potapenko
2019-11-22 11:26 ` [PATCH RFC v3 29/36] kmsan: handle /dev/[u]random glider
2019-11-22 11:26 ` [PATCH RFC v3 30/36] kmsan: virtio: check/unpoison scatterlist in vring_map_one_sg() glider
2019-11-22 11:26 ` [PATCH RFC v3 31/36] kmsan: disable strscpy() optimization under KMSAN glider
2019-12-02 15:51   ` Marco Elver
2019-12-02 16:23     ` Alexander Potapenko
2019-12-03 11:19       ` Alexander Potapenko
2019-12-03 11:24         ` Marco Elver
2019-12-03 11:27           ` Alexander Potapenko
2019-11-22 11:26 ` [PATCH RFC v3 32/36] kmsan: add iomap support glider
2019-12-03 12:50   ` Marco Elver
2019-12-03 14:07     ` Alexander Potapenko
2019-11-22 11:26 ` [PATCH RFC v3 33/36] kmsan: dma: unpoison memory mapped by dma_direct_map_page() glider
2019-11-22 11:26 ` [PATCH RFC v3 34/36] kmsan: disable physical page merging in biovec glider
2019-12-03 12:54   ` Marco Elver
2019-12-03 13:38     ` Alexander Potapenko
2019-11-22 11:26 ` [PATCH RFC v3 35/36] kmsan: ext4: skip block merging logic in ext4_mpage_readpages for KMSAN glider
2019-11-25 16:05   ` Robin Murphy
2019-11-25 17:03     ` Alexander Potapenko
2019-12-03 14:22   ` Marco Elver
2019-12-05 14:31     ` Alexander Potapenko
2019-11-22 11:26 ` [PATCH RFC v3 36/36] net: kasan: kmsan: support CONFIG_GENERIC_CSUM on x86, enable it for KASAN/KMSAN glider
2019-12-03 14:17   ` Marco Elver
2019-12-05 14:37     ` Alexander Potapenko
2019-11-29 14:39 ` [PATCH RFC v3 00/36] Add KernelMemorySanitizer infrastructure Marco Elver
2019-12-02 16:02   ` Alexander Potapenko

Reply instructions:

You may reply publically to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=CANpmjNMf5OXuCNvPeRd-5ucbkLBGwH-rr9ohKEiChp+ZzwGb7w@mail.gmail.com \
    --to=elver@google.com \
    --cc=adilger.kernel@dilger.ca \
    --cc=akpm@linux-foundation.org \
    --cc=andreyknvl@google.com \
    --cc=ard.biesheuvel@linaro.org \
    --cc=arnd@arndb.de \
    --cc=aryabinin@virtuozzo.com \
    --cc=axboe@kernel.dk \
    --cc=cai@lca.pw \
    --cc=darrick.wong@oracle.com \
    --cc=davem@davemloft.net \
    --cc=dmitry.torokhov@gmail.com \
    --cc=dvyukov@google.com \
    --cc=ebiggers@google.com \
    --cc=edumazet@google.com \
    --cc=ericvh@gmail.com \
    --cc=glider@google.com \
    --cc=gor@linux.ibm.com \
    --cc=gregkh@linuxfoundation.org \
    --cc=harry.wentland@amd.com \
    --cc=hch@infradead.org \
    --cc=hch@lst.de \
    --cc=herbert@gondor.apana.org.au \
    --cc=iii@linux.ibm.com \
    --cc=jasowang@redhat.com \
    --cc=linux-mm@kvack.org \
    --cc=luto@kernel.org \
    --cc=m.szyprowski@samsung.com \
    --cc=mark.rutland@arm.com \
    --cc=martin.petersen@oracle.com \
    --cc=mingo@elte.hu \
    --cc=monstr@monstr.eu \
    --cc=mst@redhat.com \
    --cc=pmladek@suse.com \
    --cc=rdunlap@infradead.org \
    --cc=robin.murphy@arm.com \
    --cc=rostedt@goodmis.org \
    --cc=schwidefsky@de.ibm.com \
    --cc=sergey.senozhatsky@gmail.com \
    --cc=tglx@linutronix.de \
    --cc=tiwai@suse.com \
    --cc=tytso@mit.edu \
    --cc=vegard.nossum@oracle.com \
    --cc=viro@zeniv.linux.org.uk \
    --cc=willy@infradead.org \
    --cc=wsa@the-dreams.de \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link

Linux-mm Archive on lore.kernel.org

Archives are clonable:
	git clone --mirror https://lore.kernel.org/linux-mm/0 linux-mm/git/0.git

	# If you have public-inbox 1.1+ installed, you may
	# initialize and index your mirror using the following commands:
	public-inbox-init -V2 linux-mm linux-mm/ https://lore.kernel.org/linux-mm \
		linux-mm@kvack.org
	public-inbox-index linux-mm

Example config snippet for mirrors

Newsgroup available over NNTP:
	nntp://nntp.lore.kernel.org/org.kvack.linux-mm


AGPL code for this site: git clone https://public-inbox.org/public-inbox.git