linux-mm.kvack.org archive mirror
 help / color / mirror / Atom feed
From: Huang Shijie <shijie@os.amperecomputing.com>
To: Yu Zhao <yuzhao@google.com>
Cc: "Stephen Rothwell" <sfr@rothwell.id.au>,
	linux-mm@kvack.org, "Andi Kleen" <ak@linux.intel.com>,
	"Andrew Morton" <akpm@linux-foundation.org>,
	"Aneesh Kumar" <aneesh.kumar@linux.ibm.com>,
	"Barry Song" <21cnbao@gmail.com>,
	"Catalin Marinas" <catalin.marinas@arm.com>,
	"Dave Hansen" <dave.hansen@linux.intel.com>,
	"Hillf Danton" <hdanton@sina.com>, "Jens Axboe" <axboe@kernel.dk>,
	"Jesse Barnes" <jsbarnes@google.com>,
	"Johannes Weiner" <hannes@cmpxchg.org>,
	"Jonathan Corbet" <corbet@lwn.net>,
	"Linus Torvalds" <torvalds@linux-foundation.org>,
	"Matthew Wilcox" <willy@infradead.org>,
	"Mel Gorman" <mgorman@suse.de>,
	"Michael Larabel" <Michael@michaellarabel.com>,
	"Michal Hocko" <mhocko@kernel.org>,
	"Mike Rapoport" <rppt@kernel.org>,
	"Rik van Riel" <riel@surriel.com>,
	"Vlastimil Babka" <vbabka@suse.cz>,
	"Will Deacon" <will@kernel.org>,
	"Ying Huang" <ying.huang@intel.com>,
	linux-arm-kernel@lists.infradead.org, linux-doc@vger.kernel.org,
	linux-kernel@vger.kernel.org, page-reclaim@google.com,
	x86@kernel.org, "Brian Geffon" <bgeffon@google.com>,
	"Jan Alexander Steffens" <heftig@archlinux.org>,
	"Oleksandr Natalenko" <oleksandr@natalenko.name>,
	"Steven Barrett" <steven@liquorix.net>,
	"Suleiman Souhlal" <suleiman@google.com>,
	"Daniel Byrne" <djbyrne@mtu.edu>,
	"Donald Carr" <d@chaos-reins.com>,
	"Holger Hoffstätte" <holger@applied-asynchrony.com>,
	"Konstantin Kharlamov" <Hi-Angel@yandex.ru>,
	"Shuang Zhai" <szhai2@cs.rochester.edu>,
	"Sofia Trinh" <sofia.trinh@edi.works>,
	"Vaibhav Jain" <vaibhav@linux.ibm.com>
Subject: Re: [PATCH v10 14/14] mm: multi-gen LRU: design doc
Date: Thu, 7 Apr 2022 11:39:36 +0000	[thread overview]
Message-ID: <Yk7NeO2e3ryadNEu@hsj> (raw)
In-Reply-To: <20220407031525.2368067-15-yuzhao@google.com>

Hi Zhao Yu,
On Wed, Apr 06, 2022 at 09:15:26PM -0600, Yu Zhao wrote:
> [EXTERNAL EMAIL NOTICE: This email originated from an external sender. Please be mindful of safe email handling and proprietary information protection practices.]
> 
> 
> Add a design doc.
> 
> Signed-off-by: Yu Zhao <yuzhao@google.com>
> Acked-by: Brian Geffon <bgeffon@google.com>
> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name>
> Acked-by: Steven Barrett <steven@liquorix.net>
> Acked-by: Suleiman Souhlal <suleiman@google.com>
> Tested-by: Daniel Byrne <djbyrne@mtu.edu>
> Tested-by: Donald Carr <d@chaos-reins.com>
> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru>
> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu>
> Tested-by: Sofia Trinh <sofia.trinh@edi.works>
> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com>
> ---
>  Documentation/vm/index.rst        |   1 +
>  Documentation/vm/multigen_lru.rst | 160 ++++++++++++++++++++++++++++++
>  2 files changed, 161 insertions(+)
>  create mode 100644 Documentation/vm/multigen_lru.rst
> 
> diff --git a/Documentation/vm/index.rst b/Documentation/vm/index.rst
> index 44365c4574a3..b48434300226 100644
> --- a/Documentation/vm/index.rst
> +++ b/Documentation/vm/index.rst
> @@ -25,6 +25,7 @@ algorithms.  If you are looking for advice on simply allocating memory, see the
>     ksm
>     memory-model
>     mmu_notifier
> +   multigen_lru
>     numa
>     overcommit-accounting
>     page_migration
> diff --git a/Documentation/vm/multigen_lru.rst b/Documentation/vm/multigen_lru.rst
> new file mode 100644
> index 000000000000..9b29b87e1435
> --- /dev/null
> +++ b/Documentation/vm/multigen_lru.rst
> @@ -0,0 +1,160 @@
> +.. SPDX-License-Identifier: GPL-2.0
> +
> +=============
> +Multi-Gen LRU
> +=============
> +The multi-gen LRU is an alternative LRU implementation that optimizes
> +page reclaim and improves performance under memory pressure. Page
> +reclaim decides the kernel's caching policy and ability to overcommit
> +memory. It directly impacts the kswapd CPU usage and RAM efficiency.
> +
> +Design overview
> +===============
> +Objectives
> +----------
> +The design objectives are:
> +
> +* Good representation of access recency
> +* Try to profit from spatial locality
> +* Fast paths to make obvious choices
> +* Simple self-correcting heuristics
> +
> +The representation of access recency is at the core of all LRU
> +implementations. In the multi-gen LRU, each generation represents a
> +group of pages with similar access recency. Generations establish a
> +common frame of reference and therefore help make better choices,
> +e.g., between different memcgs on a computer or different computers in
> +a data center (for job scheduling).
> +
> +Exploiting spatial locality improves efficiency when gathering the
> +accessed bit. A rmap walk targets a single page and does not try to
> +profit from discovering a young PTE. A page table walk can sweep all
> +the young PTEs in an address space, but the address space can be too
> +large to make a profit. The key is to optimize both methods and use
> +them in combination.
> +
> +Fast paths reduce code complexity and runtime overhead. Unmapped pages
> +do not require TLB flushes; clean pages do not require writeback.
> +These facts are only helpful when other conditions, e.g., access
> +recency, are similar. With generations as a common frame of reference,
> +additional factors stand out. But obvious choices might not be good
> +choices; thus self-correction is required.
> +
> +The benefits of simple self-correcting heuristics are self-evident.
> +Again, with generations as a common frame of reference, this becomes
> +attainable. Specifically, pages in the same generation can be
> +categorized based on additional factors, and a feedback loop can
> +statistically compare the refault percentages across those categories
> +and infer which of them are better choices.
It is better if we add a picture here to show the overview.. 

> +
> +Assumptions
> +-----------
> +The protection of hot pages and the selection of cold pages are based
> +on page access channels and patterns. There are two access channels:
> +
> +* Accesses through page tables
> +* Accesses through file descriptors
> +
> +The protection of the former channel is by design stronger because:
> +
> +1. The uncertainty in determining the access patterns of the former
> +   channel is higher due to the approximation of the accessed bit.
> +2. The cost of evicting the former channel is higher due to the TLB
> +   flushes required and the likelihood of encountering the dirty bit.
> +3. The penalty of underprotecting the former channel is higher because
> +   applications usually do not prepare themselves for major page
> +   faults like they do for blocked I/O. E.g., GUI applications
> +   commonly use dedicated I/O threads to avoid blocking the rendering
> +   threads.
> +
> +There are also two access patterns:
> +
> +* Accesses exhibiting temporal locality
> +* Accesses not exhibiting temporal locality
> +
> +For the reasons listed above, the former channel is assumed to follow
> +the former pattern unless ``VM_SEQ_READ`` or ``VM_RAND_READ`` is
> +present, and the latter channel is assumed to follow the latter
> +pattern unless outlying refaults have been observed.
> +
> +Workflow overview
> +=================
> +Evictable pages are divided into multiple generations for each
> +``lruvec``. The youngest generation number is stored in
> +``lrugen->max_seq`` for both anon and file types as they are aged on
> +an equal footing. The oldest generation numbers are stored in
> +``lrugen->min_seq[]`` separately for anon and file types as clean file
> +pages can be evicted regardless of swap constraints. These three
> +variables are monotonically increasing.
> +
> +Generation numbers are truncated into ``order_base_2(MAX_NR_GENS+1)``
> +bits in order to fit into the gen counter in ``folio->flags``. Each
> +truncated generation number is an index to ``lrugen->lists[]``. The
> +sliding window technique is used to track at least ``MIN_NR_GENS`` and
> +at most ``MAX_NR_GENS`` generations. The gen counter stores a value
> +within ``[1, MAX_NR_GENS]`` while a page is on one of
> +``lrugen->lists[]``; otherwise it stores zero.
> +
> +Each generation is divided into multiple tiers. Tiers represent
> +different ranges of numbers of accesses through file descriptors. A
> +page accessed ``N`` times through file descriptors is in tier
> +``order_base_2(N)``. In contrast to moving across generations, which
> +requires the LRU lock, moving across tiers only requires operations on
> +``folio->flags`` and therefore has a negligible cost. A feedback loop
> +modeled after the PID controller monitors refaults over all the tiers
> +from anon and file types and decides which tiers from which types to
> +evict or protect.
> +
> +There are two conceptually independent procedures: the aging and the
> +eviction. They form a closed-loop system, i.e., the page reclaim.

ditto.

> +
> +Aging
> +-----
> +The aging produces young generations. Given an ``lruvec``, it
> +increments ``max_seq`` when ``max_seq-min_seq+1`` approaches
> +``MIN_NR_GENS``. The aging promotes hot pages to the youngest
> +generation when it finds them accessed through page tables; the
> +demotion of cold pages happens consequently when it increments
> +``max_seq``. The aging uses page table walks and rmap walks to find
> +young PTEs. For the former, it iterates ``lruvec_memcg()->mm_list``
> +and calls ``walk_page_range()`` with each ``mm_struct`` on this list
> +to scan PTEs. On finding a young PTE, it clears the accessed bit and
> +updates the gen counter of the page mapped by this PTE to
> +``(max_seq%MAX_NR_GENS)+1``. After each iteration of this list, it
> +increments ``max_seq``. For the latter, when the eviction walks the
> +rmap and finds a young PTE, the aging scans the adjacent PTEs and
> +follows the same steps just described.
> +
> +Eviction
> +--------
> +The eviction consumes old generations. Given an ``lruvec``, it
> +increments ``min_seq`` when ``lrugen->lists[]`` indexed by
> +``min_seq%MAX_NR_GENS`` becomes empty. To select a type and a tier to
> +evict from, it first compares ``min_seq[]`` to select the older type.
> +If both types are equally old, it selects the one whose first tier has
> +a lower refault percentage. The first tier contains single-use
> +unmapped clean pages, which are the best bet. The eviction sorts a
> +page according to the gen counter if the aging has found this page
> +accessed through page tables and updated the gen counter. It also
> +moves a page to the next generation, i.e., ``min_seq+1``, if this page
> +was accessed multiple times through file descriptors and the feedback
> +loop has detected outlying refaults from the tier this page is in. To
> +do this, the feedback loop uses the first tier as the baseline, for
> +the reason stated earlier.
> +

Thanks
Huang Shijie


  reply	other threads:[~2022-04-07  3:43 UTC|newest]

Thread overview: 99+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2022-04-07  3:15 [PATCH v10 00/14] Multi-Gen LRU Framework Yu Zhao
2022-04-07  3:15 ` [PATCH v10 01/14] mm: x86, arm64: add arch_has_hw_pte_young() Yu Zhao
2022-04-07  3:15 ` [PATCH v10 02/14] mm: x86: add CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG Yu Zhao
2022-04-07  3:15 ` [PATCH v10 03/14] mm/vmscan.c: refactor shrink_node() Yu Zhao
2022-04-16  6:48   ` Miaohe Lin
2022-04-07  3:15 ` [PATCH v10 04/14] Revert "include/linux/mm_inline.h: fold __update_lru_size() into its sole caller" Yu Zhao
2022-04-16  6:50   ` Miaohe Lin
2022-04-07  3:15 ` [PATCH v10 05/14] mm: multi-gen LRU: groundwork Yu Zhao
2022-04-12  2:16   ` Andrew Morton
2022-04-12  7:06     ` Peter Zijlstra
2022-04-20  0:39       ` Yu Zhao
2022-04-20 20:07         ` Linus Torvalds
2022-04-26 22:39     ` Yu Zhao
2022-04-26 23:42       ` Andrew Morton
2022-04-27  1:18         ` Yu Zhao
2022-04-27  1:34           ` Andrew Morton
2022-04-07  3:15 ` [PATCH v10 06/14] mm: multi-gen LRU: minimal implementation Yu Zhao
2022-04-14  6:03   ` Barry Song
2022-04-14 20:36     ` Yu Zhao
2022-04-14 21:39       ` Andrew Morton
2022-04-14 22:14         ` Yu Zhao
2022-04-15 10:15         ` Barry Song
2022-04-15 20:17           ` Yu Zhao
2022-04-15 10:26       ` Barry Song
2022-04-15 20:18         ` Yu Zhao
2022-04-14 11:47   ` Chen Wandun
2022-04-14 20:53     ` Yu Zhao
2022-04-15  2:23       ` Chen Wandun
2022-04-15  5:25         ` Yu Zhao
2022-04-15  6:31           ` Chen Wandun
2022-04-15  6:44             ` Yu Zhao
2022-04-15  9:27               ` Chen Wandun
2022-04-18  9:58   ` Barry Song
2022-04-19  0:53     ` Yu Zhao
2022-04-19  4:25       ` Barry Song
2022-04-19  4:36         ` Barry Song
2022-04-19 22:25           ` Yu Zhao
2022-04-19 22:20         ` Yu Zhao
2022-04-07  3:15 ` [PATCH v10 07/14] mm: multi-gen LRU: exploit locality in rmap Yu Zhao
2022-04-27  4:32   ` Aneesh Kumar K.V
2022-04-27  4:38     ` Yu Zhao
2022-04-27  5:31       ` Aneesh Kumar K V
2022-04-27  6:00         ` Yu Zhao
2022-04-07  3:15 ` [PATCH v10 08/14] mm: multi-gen LRU: support page table walks Yu Zhao
2022-04-12  2:16   ` Andrew Morton
2022-04-12  7:10     ` Peter Zijlstra
2022-04-15  5:30       ` Yu Zhao
2022-04-15  1:14     ` Yu Zhao
2022-04-15  1:56       ` Andrew Morton
2022-04-15  6:25         ` Yu Zhao
2022-04-15 19:15           ` Andrew Morton
2022-04-15 20:11             ` Yu Zhao
2022-04-15 21:32               ` Andrew Morton
2022-04-15 21:36                 ` Linus Torvalds
2022-04-15 22:57                   ` Yu Zhao
2022-04-15 23:03                     ` Linus Torvalds
2022-04-15 23:24                       ` [page-reclaim] " Jesse Barnes
2022-04-15 23:31                         ` Matthew Wilcox
2022-04-15 23:37                           ` Jesse Barnes
2022-04-15 23:49                       ` Yu Zhao
2022-04-16 16:32                 ` Justin Forbes
2022-04-19 22:32                   ` Yu Zhao
2022-04-29 14:10   ` zhong jiang
2022-04-30  8:34     ` Yu Zhao
2022-04-07  3:15 ` [PATCH v10 09/14] mm: multi-gen LRU: optimize multiple memcgs Yu Zhao
2022-04-07  3:15 ` [PATCH v10 10/14] mm: multi-gen LRU: kill switch Yu Zhao
2022-04-12  2:16   ` Andrew Morton
2022-04-26 20:57     ` Yu Zhao
2022-04-26 22:22       ` Andrew Morton
2022-04-27  1:11         ` Yu Zhao
2022-04-07  3:15 ` [PATCH v10 11/14] mm: multi-gen LRU: thrashing prevention Yu Zhao
2022-04-07  3:15 ` [PATCH v10 12/14] mm: multi-gen LRU: debugfs interface Yu Zhao
2022-04-12  2:16   ` Andrew Morton
2022-04-16  0:03     ` Yu Zhao
2022-04-16  4:20       ` Andrew Morton
2022-04-26  6:59         ` Yu Zhao
2022-04-26 21:30           ` Andrew Morton
2022-04-26 22:15             ` Yu Zhao
2022-04-07  3:15 ` [PATCH v10 13/14] mm: multi-gen LRU: admin guide Yu Zhao
2022-04-07 12:41   ` Bagas Sanjaya
2022-04-07 12:51     ` Jonathan Corbet
2022-04-12  2:16   ` Andrew Morton
2022-04-16  2:22     ` Yu Zhao
2022-04-07  3:15 ` [PATCH v10 14/14] mm: multi-gen LRU: design doc Yu Zhao
2022-04-07 11:39   ` Huang Shijie [this message]
2022-04-07 12:41   ` Bagas Sanjaya
2022-04-07 12:52     ` Jonathan Corbet
2022-04-08  4:48       ` Bagas Sanjaya
2022-04-12  2:16   ` Andrew Morton
2022-04-26  7:42     ` Yu Zhao
2022-04-07  3:24 ` [PATCH v10 00/14] Multi-Gen LRU Framework Yu Zhao
2022-04-07  8:31   ` Stephen Rothwell
2022-04-07  9:08     ` Yu Zhao
2022-04-07  9:41     ` Yu Zhao
2022-04-07 12:13       ` Stephen Rothwell
2022-04-08  2:08         ` Yu Zhao
2022-04-12  2:15 ` Andrew Morton
2022-04-14  5:06 ` Andrew Morton
2022-04-20  0:50   ` Yu Zhao

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=Yk7NeO2e3ryadNEu@hsj \
    --to=shijie@os.amperecomputing.com \
    --cc=21cnbao@gmail.com \
    --cc=Hi-Angel@yandex.ru \
    --cc=Michael@michaellarabel.com \
    --cc=ak@linux.intel.com \
    --cc=akpm@linux-foundation.org \
    --cc=aneesh.kumar@linux.ibm.com \
    --cc=axboe@kernel.dk \
    --cc=bgeffon@google.com \
    --cc=catalin.marinas@arm.com \
    --cc=corbet@lwn.net \
    --cc=d@chaos-reins.com \
    --cc=dave.hansen@linux.intel.com \
    --cc=djbyrne@mtu.edu \
    --cc=hannes@cmpxchg.org \
    --cc=hdanton@sina.com \
    --cc=heftig@archlinux.org \
    --cc=holger@applied-asynchrony.com \
    --cc=jsbarnes@google.com \
    --cc=linux-arm-kernel@lists.infradead.org \
    --cc=linux-doc@vger.kernel.org \
    --cc=linux-kernel@vger.kernel.org \
    --cc=linux-mm@kvack.org \
    --cc=mgorman@suse.de \
    --cc=mhocko@kernel.org \
    --cc=oleksandr@natalenko.name \
    --cc=page-reclaim@google.com \
    --cc=riel@surriel.com \
    --cc=rppt@kernel.org \
    --cc=sfr@rothwell.id.au \
    --cc=sofia.trinh@edi.works \
    --cc=steven@liquorix.net \
    --cc=suleiman@google.com \
    --cc=szhai2@cs.rochester.edu \
    --cc=torvalds@linux-foundation.org \
    --cc=vaibhav@linux.ibm.com \
    --cc=vbabka@suse.cz \
    --cc=will@kernel.org \
    --cc=willy@infradead.org \
    --cc=x86@kernel.org \
    --cc=ying.huang@intel.com \
    --cc=yuzhao@google.com \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).