From mboxrd@z Thu Jan 1 00:00:00 1970 From: Ashish Kumar Subject: RE: [PATCH v8 1/5] spi: spi-mem: Add driver for NXP FlexSPI controller Date: Fri, 25 Jan 2019 07:17:37 +0000 Message-ID: References: <1547553487-9936-1-git-send-email-yogeshnarayan.gaur@nxp.com> <1547553487-9936-2-git-send-email-yogeshnarayan.gaur@nxp.com> Mime-Version: 1.0 Content-Type: text/plain; charset="us-ascii" Content-Transfer-Encoding: quoted-printable Cc: "mark.rutland@arm.com" , "robh@kernel.org" , Yogesh Narayan Gaur , "linux-kernel@vger.kernel.org" , "frieder.schrempf@kontron.de" , "computersforpeace@gmail.com" , "shawnguo@kernel.org" , "linux-arm-kernel@lists.infradead.org" To: Yogesh Narayan Gaur , "linux-mtd@lists.infradead.org" , "bbrezillon@kernel.org" , "marek.vasut@gmail.com" , "broonie@kernel.org" , "linux-spi@vger.kernel.org" , "devicetree@vger.kernel.org" Return-path: In-Reply-To: <1547553487-9936-2-git-send-email-yogeshnarayan.gaur@nxp.com> Content-Language: en-US Sender: linux-kernel-owner@vger.kernel.org List-Id: linux-spi.vger.kernel.org > -----Original Message----- > From: linux-mtd On Behalf Of Yoge= sh > Narayan Gaur > Sent: Tuesday, January 15, 2019 5:30 PM > To: linux-mtd@lists.infradead.org; bbrezillon@kernel.org; > marek.vasut@gmail.com; broonie@kernel.org; linux-spi@vger.kernel.org; > devicetree@vger.kernel.org > Cc: mark.rutland@arm.com; robh@kernel.org; Yogesh Narayan Gaur > ; linux-kernel@vger.kernel.org; > frieder.schrempf@kontron.de; computersforpeace@gmail.com; > shawnguo@kernel.org; linux-arm-kernel@lists.infradead.org > Subject: [PATCH v8 1/5] spi: spi-mem: Add driver for NXP FlexSPI controll= er >=20 > - Add driver for NXP FlexSPI host controller >=20 > (0) What is the FlexSPI controller? > FlexSPI is a flexsible SPI host controller which supports two SPI chann= els and up > to 4 external devices. Each channel supports Single/Dual/Quad/Octal mode= data > transfer (1/2/4/8 bidirectional data lines) i.e. FlexSPI acts as an inte= rface to > external devices, maximum 4, each with up to 8 bidirectional data lines. >=20 > It uses new SPI memory interface of the SPI framework to issue flash me= mory > operations to up to four connected flash devices (2 buses with 2 CS each= ). >=20 > (1) Tested this driver with the mtd_debug and JFFS2 filesystem utility o= n NXP > LX2160ARDB and LX2160AQDS targets. > LX2160ARDB is having two NOR slave device connected on single bus A i.e= . A0 > and A1 (CS0 and CS1). > LX2160AQDS is having two NOR slave device connected on separate buses o= ne > flash on A0 and second on B1 i.e. (CS0 and CS3). > Verified this driver on following SPI NOR flashes: > Micron, mt35xu512ab, [Read - 1 bit mode] > Cypress, s25fl512s, [Read - 1/2/4 bit mode] >=20 > Signed-off-by: Yogesh Narayan Gaur > Reviewed-by: Frieder Schrempf > Reviewed-by: Boris Brezillon >=20 > --- > Changes for v8: > - Typo review comments changes > - Fix logic of read data for case when read size is less than 8 bytes. > - Add correct email address of Boris > - Add r-o-b tag of Frieder and Boris Tested on LX2160ARDB in 1-bit mode for read, write and erase Tested-by: Ashish Kumar Regards Ashish=20 > Changes for v7: > - Add func pointer for '.get_name' for struct spi_controller_mem_ops > - Add input address range check as per controller memory mapped space > - Update _fill_txfifo/_read_rxfifo funcs as per Frieder review comments C= hanges > for v6: > - Rebase on top of v5.0-rc1 > - Updated as per Frieder review comments and perform code cleanup > - Updated _fill_txfifo/_read_rxfifo func write/read logic Changes for v5: > - Rebase on top of v4.20-rc2 > - Modified fspi_readl_poll_tout() as per review comments > - Arrange header file in alphabetical order > - Removed usage of read()/write() function callback pointer > - Add support for 1 and 2 byte address length > - Change Frieder e-mail to new e-mail address Changes for v4: > - Incorporate Boris review comments > * Use readl_poll_timeout() instead of busy looping. > * Re-define register masking as per comment. > * Drop fspi_devtype enum. > Changes for v3: > - Added endianness flag in platform specific structure instead of DTS. > - Modified nxp_fspi_read_ahb(), removed remapping code. > - Added Boris and Frieder as Author and provided reference of spi-fsl-qsp= i.c > Changes for v2: > - Incorporated Boris review comments. > - Remove dependency of driver over connected flash device size. > - Modified the logic to select requested CS. > - Remove SPI-Octal Macros. > drivers/spi/Kconfig | 10 + > drivers/spi/Makefile | 1 + > drivers/spi/spi-nxp-fspi.c | 1105 ++++++++++++++++++++++++++++++++++++ > 3 files changed, 1116 insertions(+) > create mode 100644 drivers/spi/spi-nxp-fspi.c >=20 > diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig index > dc67eda1788a..fc4cc7a65c33 100644 > --- a/drivers/spi/Kconfig > +++ b/drivers/spi/Kconfig > @@ -279,6 +279,16 @@ config SPI_FSL_QUADSPI > This controller does not support generic SPI messages. It only > supports the high-level SPI memory interface. >=20 > +config SPI_NXP_FLEXSPI > + tristate "NXP Flex SPI controller" > + depends on ARCH_LAYERSCAPE || HAS_IOMEM > + help > + This enables support for the Flex SPI controller in master mode. > + Up to four slave devices can be connected on two buses with two > + chipselects each. > + This controller does not support generic SPI messages and only > + supports the high-level SPI memory interface. > + > config SPI_GPIO > tristate "GPIO-based bitbanging SPI Master" > depends on GPIOLIB || COMPILE_TEST > diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile index > 2a857cb9aa81..5c5af4676279 100644 > --- a/drivers/spi/Makefile > +++ b/drivers/spi/Makefile > @@ -64,6 +64,7 @@ obj-$(CONFIG_SPI_MXIC) +=3D spi-mxic.o > obj-$(CONFIG_SPI_MXS) +=3D spi-mxs.o > obj-$(CONFIG_SPI_NPCM_PSPI) +=3D spi-npcm-pspi.o > obj-$(CONFIG_SPI_NUC900) +=3D spi-nuc900.o > +obj-$(CONFIG_SPI_NXP_FLEXSPI) +=3D spi-nxp-fspi.o > obj-$(CONFIG_SPI_OC_TINY) +=3D spi-oc-tiny.o > spi-octeon-objs :=3D spi-cavium.o spi-cavium-octeon.o > obj-$(CONFIG_SPI_OCTEON) +=3D spi-octeon.o > diff --git a/drivers/spi/spi-nxp-fspi.c b/drivers/spi/spi-nxp-fspi.c new = file mode > 100644 index 000000000000..b8f19bab3b66 > --- /dev/null > +++ b/drivers/spi/spi-nxp-fspi.c > @@ -0,0 +1,1105 @@ > +// SPDX-License-Identifier: GPL-2.0+ > + > +/* > + * NXP FlexSPI(FSPI) controller driver. > + * > + * Copyright 2019 NXP. > + * > + * FlexSPI is a flexsible SPI host controller which supports two SPI > + * channels and up to 4 external devices. Each channel supports > + * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional > + * data lines). > + * > + * FlexSPI controller is driven by the LUT(Look-up Table) registers > + * LUT registers are a look-up-table for sequences of instructions. > + * A valid sequence consists of four LUT registers. > + * Maximum 32 LUT sequences can be programmed simultaneously. > + * > + * LUTs are being created at run-time based on the commands passed > + * from the spi-mem framework, thus using single LUT index. > + * > + * Software triggered Flash read/write access by IP Bus. > + * > + * Memory mapped read access by AHB Bus. > + * > + * Based on SPI MEM interface and spi-fsl-qspi.c driver. > + * > + * Author: > + * Yogesh Narayan Gaur > + * Boris Brezillion > + * Frieder Schrempf > + */ > + > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > + > +#include > +#include > + > +/* > + * The driver only uses one single LUT entry, that is updated on > + * each call of exec_op(). Index 0 is preset at boot with a basic > + * read operation, so let's use the last entry (31). > + */ > +#define SEQID_LUT 31 > + > +/* Registers used by the driver */ > +#define FSPI_MCR0 0x00 > +#define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24) > +#define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16) > +#define FSPI_MCR0_LEARN_EN BIT(15) > +#define FSPI_MCR0_SCRFRUN_EN BIT(14) > +#define FSPI_MCR0_OCTCOMB_EN BIT(13) > +#define FSPI_MCR0_DOZE_EN BIT(12) > +#define FSPI_MCR0_HSEN BIT(11) > +#define FSPI_MCR0_SERCLKDIV BIT(8) > +#define FSPI_MCR0_ATDF_EN BIT(7) > +#define FSPI_MCR0_ARDF_EN BIT(6) > +#define FSPI_MCR0_RXCLKSRC(x) ((x) << 4) > +#define FSPI_MCR0_END_CFG(x) ((x) << 2) > +#define FSPI_MCR0_MDIS BIT(1) > +#define FSPI_MCR0_SWRST BIT(0) > + > +#define FSPI_MCR1 0x04 > +#define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16) > +#define FSPI_MCR1_AHB_TIMEOUT(x) (x) > + > +#define FSPI_MCR2 0x08 > +#define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24) > +#define FSPI_MCR2_SAMEDEVICEEN BIT(15) > +#define FSPI_MCR2_CLRLRPHS BIT(14) > +#define FSPI_MCR2_ABRDATSZ BIT(8) > +#define FSPI_MCR2_ABRLEARN BIT(7) > +#define FSPI_MCR2_ABR_READ BIT(6) > +#define FSPI_MCR2_ABRWRITE BIT(5) > +#define FSPI_MCR2_ABRDUMMY BIT(4) > +#define FSPI_MCR2_ABR_MODE BIT(3) > +#define FSPI_MCR2_ABRCADDR BIT(2) > +#define FSPI_MCR2_ABRRADDR BIT(1) > +#define FSPI_MCR2_ABR_CMD BIT(0) > + > +#define FSPI_AHBCR 0x0c > +#define FSPI_AHBCR_RDADDROPT BIT(6) > +#define FSPI_AHBCR_PREF_EN BIT(5) > +#define FSPI_AHBCR_BUFF_EN BIT(4) > +#define FSPI_AHBCR_CACH_EN BIT(3) > +#define FSPI_AHBCR_CLRTXBUF BIT(2) > +#define FSPI_AHBCR_CLRRXBUF BIT(1) > +#define FSPI_AHBCR_PAR_EN BIT(0) > + > +#define FSPI_INTEN 0x10 > +#define FSPI_INTEN_SCLKSBWR BIT(9) > +#define FSPI_INTEN_SCLKSBRD BIT(8) > +#define FSPI_INTEN_DATALRNFL BIT(7) > +#define FSPI_INTEN_IPTXWE BIT(6) > +#define FSPI_INTEN_IPRXWA BIT(5) > +#define FSPI_INTEN_AHBCMDERR BIT(4) > +#define FSPI_INTEN_IPCMDERR BIT(3) > +#define FSPI_INTEN_AHBCMDGE BIT(2) > +#define FSPI_INTEN_IPCMDGE BIT(1) > +#define FSPI_INTEN_IPCMDDONE BIT(0) > + > +#define FSPI_INTR 0x14 > +#define FSPI_INTR_SCLKSBWR BIT(9) > +#define FSPI_INTR_SCLKSBRD BIT(8) > +#define FSPI_INTR_DATALRNFL BIT(7) > +#define FSPI_INTR_IPTXWE BIT(6) > +#define FSPI_INTR_IPRXWA BIT(5) > +#define FSPI_INTR_AHBCMDERR BIT(4) > +#define FSPI_INTR_IPCMDERR BIT(3) > +#define FSPI_INTR_AHBCMDGE BIT(2) > +#define FSPI_INTR_IPCMDGE BIT(1) > +#define FSPI_INTR_IPCMDDONE BIT(0) > + > +#define FSPI_LUTKEY 0x18 > +#define FSPI_LUTKEY_VALUE 0x5AF05AF0 > + > +#define FSPI_LCKCR 0x1C > + > +#define FSPI_LCKER_LOCK 0x1 > +#define FSPI_LCKER_UNLOCK 0x2 > + > +#define FSPI_BUFXCR_INVALID_MSTRID 0xE > +#define FSPI_AHBRX_BUF0CR0 0x20 > +#define FSPI_AHBRX_BUF1CR0 0x24 > +#define FSPI_AHBRX_BUF2CR0 0x28 > +#define FSPI_AHBRX_BUF3CR0 0x2C > +#define FSPI_AHBRX_BUF4CR0 0x30 > +#define FSPI_AHBRX_BUF5CR0 0x34 > +#define FSPI_AHBRX_BUF6CR0 0x38 > +#define FSPI_AHBRX_BUF7CR0 0x3C > +#define FSPI_AHBRXBUF0CR7_PREF BIT(31) > + > +#define FSPI_AHBRX_BUF0CR1 0x40 > +#define FSPI_AHBRX_BUF1CR1 0x44 > +#define FSPI_AHBRX_BUF2CR1 0x48 > +#define FSPI_AHBRX_BUF3CR1 0x4C > +#define FSPI_AHBRX_BUF4CR1 0x50 > +#define FSPI_AHBRX_BUF5CR1 0x54 > +#define FSPI_AHBRX_BUF6CR1 0x58 > +#define FSPI_AHBRX_BUF7CR1 0x5C > + > +#define FSPI_FLSHA1CR0 0x60 > +#define FSPI_FLSHA2CR0 0x64 > +#define FSPI_FLSHB1CR0 0x68 > +#define FSPI_FLSHB2CR0 0x6C > +#define FSPI_FLSHXCR0_SZ_KB 10 > +#define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB) > + > +#define FSPI_FLSHA1CR1 0x70 > +#define FSPI_FLSHA2CR1 0x74 > +#define FSPI_FLSHB1CR1 0x78 > +#define FSPI_FLSHB2CR1 0x7C > +#define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16) > +#define FSPI_FLSHXCR1_CAS(x) ((x) << 11) > +#define FSPI_FLSHXCR1_WA BIT(10) > +#define FSPI_FLSHXCR1_TCSH(x) ((x) << 5) > +#define FSPI_FLSHXCR1_TCSS(x) (x) > + > +#define FSPI_FLSHA1CR2 0x80 > +#define FSPI_FLSHA2CR2 0x84 > +#define FSPI_FLSHB1CR2 0x88 > +#define FSPI_FLSHB2CR2 0x8C > +#define FSPI_FLSHXCR2_CLRINSP BIT(24) > +#define FSPI_FLSHXCR2_AWRWAIT BIT(16) > +#define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13 > +#define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8 > +#define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5 > +#define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0 > + > +#define FSPI_IPCR0 0xA0 > + > +#define FSPI_IPCR1 0xA4 > +#define FSPI_IPCR1_IPAREN BIT(31) > +#define FSPI_IPCR1_SEQNUM_SHIFT 24 > +#define FSPI_IPCR1_SEQID_SHIFT 16 > +#define FSPI_IPCR1_IDATSZ(x) (x) > + > +#define FSPI_IPCMD 0xB0 > +#define FSPI_IPCMD_TRG BIT(0) > + > +#define FSPI_DLPR 0xB4 > + > +#define FSPI_IPRXFCR 0xB8 > +#define FSPI_IPRXFCR_CLR BIT(0) > +#define FSPI_IPRXFCR_DMA_EN BIT(1) > +#define FSPI_IPRXFCR_WMRK(x) ((x) << 2) > + > +#define FSPI_IPTXFCR 0xBC > +#define FSPI_IPTXFCR_CLR BIT(0) > +#define FSPI_IPTXFCR_DMA_EN BIT(1) > +#define FSPI_IPTXFCR_WMRK(x) ((x) << 2) > + > +#define FSPI_DLLACR 0xC0 > +#define FSPI_DLLACR_OVRDEN BIT(8) > + > +#define FSPI_DLLBCR 0xC4 > +#define FSPI_DLLBCR_OVRDEN BIT(8) > + > +#define FSPI_STS0 0xE0 > +#define FSPI_STS0_DLPHB(x) ((x) << 8) > +#define FSPI_STS0_DLPHA(x) ((x) << 4) > +#define FSPI_STS0_CMD_SRC(x) ((x) << 2) > +#define FSPI_STS0_ARB_IDLE BIT(1) > +#define FSPI_STS0_SEQ_IDLE BIT(0) > + > +#define FSPI_STS1 0xE4 > +#define FSPI_STS1_IP_ERRCD(x) ((x) << 24) > +#define FSPI_STS1_IP_ERRID(x) ((x) << 16) > +#define FSPI_STS1_AHB_ERRCD(x) ((x) << 8) > +#define FSPI_STS1_AHB_ERRID(x) (x) > + > +#define FSPI_AHBSPNST 0xEC > +#define FSPI_AHBSPNST_DATLFT(x) ((x) << 16) > +#define FSPI_AHBSPNST_BUFID(x) ((x) << 1) > +#define FSPI_AHBSPNST_ACTIVE BIT(0) > + > +#define FSPI_IPRXFSTS 0xF0 > +#define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16) > +#define FSPI_IPRXFSTS_FILL(x) (x) > + > +#define FSPI_IPTXFSTS 0xF4 > +#define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16) > +#define FSPI_IPTXFSTS_FILL(x) (x) > + > +#define FSPI_RFDR 0x100 > +#define FSPI_TFDR 0x180 > + > +#define FSPI_LUT_BASE 0x200 > +#define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4) > +#define FSPI_LUT_REG(idx) \ > + (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4) > + > +/* register map end */ > + > +/* Instruction set for the LUT register. */ > +#define LUT_STOP 0x00 > +#define LUT_CMD 0x01 > +#define LUT_ADDR 0x02 > +#define LUT_CADDR_SDR 0x03 > +#define LUT_MODE 0x04 > +#define LUT_MODE2 0x05 > +#define LUT_MODE4 0x06 > +#define LUT_MODE8 0x07 > +#define LUT_NXP_WRITE 0x08 > +#define LUT_NXP_READ 0x09 > +#define LUT_LEARN_SDR 0x0A > +#define LUT_DATSZ_SDR 0x0B > +#define LUT_DUMMY 0x0C > +#define LUT_DUMMY_RWDS_SDR 0x0D > +#define LUT_JMP_ON_CS 0x1F > +#define LUT_CMD_DDR 0x21 > +#define LUT_ADDR_DDR 0x22 > +#define LUT_CADDR_DDR 0x23 > +#define LUT_MODE_DDR 0x24 > +#define LUT_MODE2_DDR 0x25 > +#define LUT_MODE4_DDR 0x26 > +#define LUT_MODE8_DDR 0x27 > +#define LUT_WRITE_DDR 0x28 > +#define LUT_READ_DDR 0x29 > +#define LUT_LEARN_DDR 0x2A > +#define LUT_DATSZ_DDR 0x2B > +#define LUT_DUMMY_DDR 0x2C > +#define LUT_DUMMY_RWDS_DDR 0x2D > + > +/* > + * Calculate number of required PAD bits for LUT register. > + * > + * The pad stands for the number of IO lines [0:7]. > + * For example, the octal read needs eight IO lines, > + * so you should use LUT_PAD(8). This macro > + * returns 3 i.e. use eight (2^3) IP lines for read. > + */ > +#define LUT_PAD(x) (fls(x) - 1) > + > +/* > + * Macro for constructing the LUT entries with the following > + * register layout: > + * > + * --------------------------------------------------- > + * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | > + * --------------------------------------------------- > + */ > +#define PAD_SHIFT 8 > +#define INSTR_SHIFT 10 > +#define OPRND_SHIFT 16 > + > +/* Macros for constructing the LUT register. */ > +#define LUT_DEF(idx, ins, pad, opr) \ > + ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \ > + (opr)) << (((idx) % 2) * OPRND_SHIFT)) > + > +#define POLL_TOUT 5000 > +#define NXP_FSPI_MAX_CHIPSELECT 4 > + > +struct nxp_fspi_devtype_data { > + unsigned int rxfifo; > + unsigned int txfifo; > + unsigned int ahb_buf_size; > + unsigned int quirks; > + bool little_endian; > +}; > + > +static const struct nxp_fspi_devtype_data lx2160a_data =3D { > + .rxfifo =3D SZ_512, /* (64 * 64 bits) */ > + .txfifo =3D SZ_1K, /* (128 * 64 bits) */ > + .ahb_buf_size =3D SZ_2K, /* (256 * 64 bits) */ > + .quirks =3D 0, > + .little_endian =3D true, /* little-endian */ > +}; > + > +struct nxp_fspi { > + void __iomem *iobase; > + void __iomem *ahb_addr; > + u32 memmap_phy; > + u32 memmap_phy_size; > + struct clk *clk, *clk_en; > + struct device *dev; > + struct completion c; > + const struct nxp_fspi_devtype_data *devtype_data; > + struct mutex lock; > + struct pm_qos_request pm_qos_req; > + int selected; > +}; > + > +/* > + * R/W functions for big- or little-endian registers: > + * The FSPI controller's endianness is independent of > + * the CPU core's endianness. So far, although the CPU > + * core is little-endian the FSPI controller can use > + * big-endian or little-endian. > + */ > +static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem > +*addr) { > + if (f->devtype_data->little_endian) > + iowrite32(val, addr); > + else > + iowrite32be(val, addr); > +} > + > +static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr) { > + if (f->devtype_data->little_endian) > + return ioread32(addr); > + else > + return ioread32be(addr); > +} > + > +static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id) { > + struct nxp_fspi *f =3D dev_id; > + u32 reg; > + > + /* clear interrupt */ > + reg =3D fspi_readl(f, f->iobase + FSPI_INTR); > + fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR); > + > + if (reg & FSPI_INTR_IPCMDDONE) > + complete(&f->c); > + > + return IRQ_HANDLED; > +} > + > +static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width) { > + switch (width) { > + case 1: > + case 2: > + case 4: > + case 8: > + return 0; > + } > + > + return -ENOTSUPP; > +} > + > +static bool nxp_fspi_supports_op(struct spi_mem *mem, > + const struct spi_mem_op *op) > +{ > + struct nxp_fspi *f =3D spi_controller_get_devdata(mem->spi->master); > + int ret; > + > + ret =3D nxp_fspi_check_buswidth(f, op->cmd.buswidth); > + > + if (op->addr.nbytes) > + ret |=3D nxp_fspi_check_buswidth(f, op->addr.buswidth); > + > + if (op->dummy.nbytes) > + ret |=3D nxp_fspi_check_buswidth(f, op->dummy.buswidth); > + > + if (op->data.nbytes) > + ret |=3D nxp_fspi_check_buswidth(f, op->data.buswidth); > + > + if (ret) > + return false; > + > + /* > + * The number of address bytes should be equal to or less than 4 bytes. > + */ > + if (op->addr.nbytes > 4) > + return false; > + > + /* > + * If requested address value is greater than controller assigned > + * memory mapped space, return error as it didn't fit in the range > + * of assigned address space. > + */ > + if (op->addr.val >=3D f->memmap_phy_size) > + return false; > + > + /* Max 64 dummy clock cycles supported */ > + if (op->dummy.buswidth && > + (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) > + return false; > + > + /* Max data length, check controller limits and alignment */ > + if (op->data.dir =3D=3D SPI_MEM_DATA_IN && > + (op->data.nbytes > f->devtype_data->ahb_buf_size || > + (op->data.nbytes > f->devtype_data->rxfifo - 4 && > + !IS_ALIGNED(op->data.nbytes, 8)))) > + return false; > + > + if (op->data.dir =3D=3D SPI_MEM_DATA_OUT && > + op->data.nbytes > f->devtype_data->txfifo) > + return false; > + > + return true; > +} > + > +/* Instead of busy looping invoke readl_poll_timeout functionality. */ > +static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base, > + u32 mask, u32 delay_us, > + u32 timeout_us, bool c) > +{ > + u32 reg; > + > + if (!f->devtype_data->little_endian) > + mask =3D (u32)cpu_to_be32(mask); > + > + if (c) > + return readl_poll_timeout(base, reg, (reg & mask), > + delay_us, timeout_us); > + else > + return readl_poll_timeout(base, reg, !(reg & mask), > + delay_us, timeout_us); > +} > + > +/* > + * If the slave device content being changed by Write/Erase, need to > + * invalidate the AHB buffer. This can be achieved by doing the reset > + * of controller after setting MCR0[SWRESET] bit. > + */ > +static inline void nxp_fspi_invalid(struct nxp_fspi *f) { > + u32 reg; > + int ret; > + > + reg =3D fspi_readl(f, f->iobase + FSPI_MCR0); > + fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0); > + > + /* w1c register, wait unit clear */ > + ret =3D fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, > + FSPI_MCR0_SWRST, 0, POLL_TOUT, false); > + WARN_ON(ret); > +} > + > +static void nxp_fspi_prepare_lut(struct nxp_fspi *f, > + const struct spi_mem_op *op) > +{ > + void __iomem *base =3D f->iobase; > + u32 lutval[4] =3D {}; > + int lutidx =3D 1, i; > + > + /* cmd */ > + lutval[0] |=3D LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), > + op->cmd.opcode); > + > + /* addr bytes */ > + if (op->addr.nbytes) { > + lutval[lutidx / 2] |=3D LUT_DEF(lutidx, LUT_ADDR, > + LUT_PAD(op->addr.buswidth), > + op->addr.nbytes * 8); > + lutidx++; > + } > + > + /* dummy bytes, if needed */ > + if (op->dummy.nbytes) { > + lutval[lutidx / 2] |=3D LUT_DEF(lutidx, LUT_DUMMY, > + /* > + * Due to FlexSPI controller limitation number of PAD for > dummy > + * buswidth needs to be programmed as equal to data buswidth. > + */ > + LUT_PAD(op->data.buswidth), > + op->dummy.nbytes * 8 / > + op->dummy.buswidth); > + lutidx++; > + } > + > + /* read/write data bytes */ > + if (op->data.nbytes) { > + lutval[lutidx / 2] |=3D LUT_DEF(lutidx, > + op->data.dir =3D=3D > SPI_MEM_DATA_IN ? > + LUT_NXP_READ : LUT_NXP_WRITE, > + LUT_PAD(op->data.buswidth), > + 0); > + lutidx++; > + } > + > + /* stop condition. */ > + lutval[lutidx / 2] |=3D LUT_DEF(lutidx, LUT_STOP, 0, 0); > + > + /* unlock LUT */ > + fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); > + fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR); > + > + /* fill LUT */ > + for (i =3D 0; i < ARRAY_SIZE(lutval); i++) > + fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i)); > + > + dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n", > + op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]); > + > + /* lock LUT */ > + fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); > + fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR); } > + > +static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f) { > + int ret; > + > + ret =3D clk_prepare_enable(f->clk_en); > + if (ret) > + return ret; > + > + ret =3D clk_prepare_enable(f->clk); > + if (ret) { > + clk_disable_unprepare(f->clk_en); > + return ret; > + } > + > + return 0; > +} > + > +static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f) { > + clk_disable_unprepare(f->clk); > + clk_disable_unprepare(f->clk_en); > +} > + > +/* > + * In FlexSPI controller, flash access is based on value of > +FSPI_FLSHXXCR0 > + * register and start base address of the slave device. > + * > + * (Higher address) > + * -------- <-- FLSHB2CR0 > + * | B2 | > + * | | > + * B2 start address --> -------- <-- FLSHB1CR0 > + * | B1 | > + * | | > + * B1 start address --> -------- <-- FLSHA2CR0 > + * | A2 | > + * | | > + * A2 start address --> -------- <-- FLSHA1CR0 > + * | A1 | > + * | | > + * A1 start address --> -------- (Lower address) > + * > + * > + * Start base address defines the starting address range for given CS > +and > + * FSPI_FLSHXXCR0 defines the size of the slave device connected at give= n CS. > + * > + * But, different targets are having different combinations of number > +of CS, > + * some targets only have single CS or two CS covering controller's > +full > + * memory mapped space area. > + * Thus, implementation is being done as independent of the size and > +number > + * of the connected slave device. > + * Assign controller memory mapped space size as the size to the > +connected > + * slave device. > + * Mark FLSHxxCR0 as zero initially and then assign value only to the > +selected > + * chip-select Flash configuration register. > + * > + * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to > +the > + * memory mapped size of the controller. > + * Value for rest of the CS FLSHxxCR0 register would be zero. > + * > + */ > +static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device > +*spi) { > + unsigned long rate =3D spi->max_speed_hz; > + int ret; > + uint64_t size_kb; > + > + /* > + * Return, if previously selected slave device is same as current > + * requested slave device. > + */ > + if (f->selected =3D=3D spi->chip_select) > + return; > + > + /* Reset FLSHxxCR0 registers */ > + fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0); > + fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0); > + fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0); > + fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0); > + > + /* Assign controller memory mapped space as size, KBytes, of flash. */ > + size_kb =3D FSPI_FLSHXCR0_SZ(f->memmap_phy_size); > + > + fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 + > + 4 * spi->chip_select); > + > + dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select); > + > + nxp_fspi_clk_disable_unprep(f); > + > + ret =3D clk_set_rate(f->clk, rate); > + if (ret) > + return; > + > + ret =3D nxp_fspi_clk_prep_enable(f); > + if (ret) > + return; > + > + f->selected =3D spi->chip_select; > +} > + > +static void nxp_fspi_read_ahb(struct nxp_fspi *f, const struct > +spi_mem_op *op) { > + u32 len =3D op->data.nbytes; > + > + /* Read out the data directly from the AHB buffer. */ > + memcpy_fromio(op->data.buf.in, (f->ahb_addr + op->addr.val), len); } > + > +static void nxp_fspi_fill_txfifo(struct nxp_fspi *f, > + const struct spi_mem_op *op) > +{ > + void __iomem *base =3D f->iobase; > + int i, ret; > + u8 *buf =3D (u8 *) op->data.buf.out; > + > + /* clear the TX FIFO. */ > + fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR); > + > + /* > + * Default value of water mark level is 8 bytes, hence in single > + * write request controller can write max 8 bytes of data. > + */ > + > + for (i =3D 0; i < ALIGN_DOWN(op->data.nbytes, 8); i +=3D 8) { > + /* Wait for TXFIFO empty */ > + ret =3D fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, > + FSPI_INTR_IPTXWE, 0, > + POLL_TOUT, true); > + WARN_ON(ret); > + > + fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR); > + fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4); > + fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); > + } > + > + if (i < op->data.nbytes) { > + u32 data =3D 0; > + int j; > + /* Wait for TXFIFO empty */ > + ret =3D fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, > + FSPI_INTR_IPTXWE, 0, > + POLL_TOUT, true); > + WARN_ON(ret); > + > + for (j =3D 0; j < ALIGN(op->data.nbytes - i, 4); j +=3D 4) { > + memcpy(&data, buf + i + j, 4); > + fspi_writel(f, data, base + FSPI_TFDR + j); > + } > + fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); > + } > +} > + > +static void nxp_fspi_read_rxfifo(struct nxp_fspi *f, > + const struct spi_mem_op *op) > +{ > + void __iomem *base =3D f->iobase; > + int i, ret; > + int len =3D op->data.nbytes; > + u8 *buf =3D (u8 *) op->data.buf.in; > + > + /* > + * Default value of water mark level is 8 bytes, hence in single > + * read request controller can read max 8 bytes of data. > + */ > + for (i =3D 0; i < ALIGN_DOWN(len, 8); i +=3D 8) { > + /* Wait for RXFIFO available */ > + ret =3D fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, > + FSPI_INTR_IPRXWA, 0, > + POLL_TOUT, true); > + WARN_ON(ret); > + > + *(u32 *)(buf + i) =3D fspi_readl(f, base + FSPI_RFDR); > + *(u32 *)(buf + i + 4) =3D fspi_readl(f, base + FSPI_RFDR + 4); > + /* move the FIFO pointer */ > + fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); > + } > + > + if (i < len) { > + u32 tmp; > + int size, j; > + > + buf =3D op->data.buf.in + i; > + /* Wait for RXFIFO available */ > + ret =3D fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, > + FSPI_INTR_IPRXWA, 0, > + POLL_TOUT, true); > + WARN_ON(ret); > + > + len =3D op->data.nbytes - i; > + for (j =3D 0; j < op->data.nbytes - i; j +=3D 4) { > + tmp =3D fspi_readl(f, base + FSPI_RFDR + j); > + size =3D min(len, 4); > + memcpy(buf + j, &tmp, size); > + len -=3D size; > + } > + } > + > + /* invalid the RXFIFO */ > + fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR); > + /* move the FIFO pointer */ > + fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); } > + > +static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op > +*op) { > + void __iomem *base =3D f->iobase; > + int seqnum =3D 0; > + int err =3D 0; > + u32 reg; > + > + reg =3D fspi_readl(f, base + FSPI_IPRXFCR); > + /* invalid RXFIFO first */ > + reg &=3D ~FSPI_IPRXFCR_DMA_EN; > + reg =3D reg | FSPI_IPRXFCR_CLR; > + fspi_writel(f, reg, base + FSPI_IPRXFCR); > + > + init_completion(&f->c); > + > + fspi_writel(f, op->addr.val, base + FSPI_IPCR0); > + /* > + * Always start the sequence at the same index since we update > + * the LUT at each exec_op() call. And also specify the DATA > + * length, since it's has not been specified in the LUT. > + */ > + fspi_writel(f, op->data.nbytes | > + (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) | > + (seqnum << FSPI_IPCR1_SEQNUM_SHIFT), > + base + FSPI_IPCR1); > + > + /* Trigger the LUT now. */ > + fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD); > + > + /* Wait for the interrupt. */ > + if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000))) > + err =3D -ETIMEDOUT; > + > + /* Invoke IP data read, if request is of data read. */ > + if (!err && op->data.nbytes && op->data.dir =3D=3D SPI_MEM_DATA_IN) > + nxp_fspi_read_rxfifo(f, op); > + > + return err; > +} > + > +static int nxp_fspi_exec_op(struct spi_mem *mem, const struct > +spi_mem_op *op) { > + struct nxp_fspi *f =3D spi_controller_get_devdata(mem->spi->master); > + int err =3D 0; > + > + mutex_lock(&f->lock); > + > + /* Wait for controller being ready. */ > + err =3D fspi_readl_poll_tout(f, f->iobase + FSPI_STS0, > + FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true); > + WARN_ON(err); > + > + nxp_fspi_select_mem(f, mem->spi); > + > + nxp_fspi_prepare_lut(f, op); > + /* > + * If we have large chunks of data, we read them through the AHB bus > + * by accessing the mapped memory. In all other cases we use > + * IP commands to access the flash. > + */ > + if (op->data.nbytes > (f->devtype_data->rxfifo - 4) && > + op->data.dir =3D=3D SPI_MEM_DATA_IN) { > + nxp_fspi_read_ahb(f, op); > + } else { > + if (op->data.nbytes && op->data.dir =3D=3D SPI_MEM_DATA_OUT) > + nxp_fspi_fill_txfifo(f, op); > + > + err =3D nxp_fspi_do_op(f, op); > + } > + > + /* Invalidate the data in the AHB buffer. */ > + nxp_fspi_invalid(f); > + > + mutex_unlock(&f->lock); > + > + return err; > +} > + > +static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct > +spi_mem_op *op) { > + struct nxp_fspi *f =3D spi_controller_get_devdata(mem->spi->master); > + > + if (op->data.dir =3D=3D SPI_MEM_DATA_OUT) { > + if (op->data.nbytes > f->devtype_data->txfifo) > + op->data.nbytes =3D f->devtype_data->txfifo; > + } else { > + if (op->data.nbytes > f->devtype_data->ahb_buf_size) > + op->data.nbytes =3D f->devtype_data->ahb_buf_size; > + else if (op->data.nbytes > (f->devtype_data->rxfifo - 4)) > + op->data.nbytes =3D ALIGN_DOWN(op->data.nbytes, 8); > + } > + > + return 0; > +} > + > +static int nxp_fspi_default_setup(struct nxp_fspi *f) { > + void __iomem *base =3D f->iobase; > + int ret, i; > + u32 reg; > + > + /* disable and unprepare clock to avoid glitch pass to controller */ > + nxp_fspi_clk_disable_unprep(f); > + > + /* the default frequency, we will change it later if necessary. */ > + ret =3D clk_set_rate(f->clk, 20000000); > + if (ret) > + return ret; > + > + ret =3D nxp_fspi_clk_prep_enable(f); > + if (ret) > + return ret; > + > + /* Reset the module */ > + /* w1c register, wait unit clear */ > + ret =3D fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, > + FSPI_MCR0_SWRST, 0, POLL_TOUT, false); > + WARN_ON(ret); > + > + /* Disable the module */ > + fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0); > + > + /* Reset the DLL register to default value */ > + fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR); > + fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR); > + > + /* enable module */ > + fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | > FSPI_MCR0_IP_TIMEOUT(0xFF), > + base + FSPI_MCR0); > + > + /* > + * Disable same device enable bit and configure all slave devices > + * independently. > + */ > + reg =3D fspi_readl(f, f->iobase + FSPI_MCR2); > + reg =3D reg & ~(FSPI_MCR2_SAMEDEVICEEN); > + fspi_writel(f, reg, base + FSPI_MCR2); > + > + /* AHB configuration for access buffer 0~7. */ > + for (i =3D 0; i < 7; i++) > + fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i); > + > + /* > + * Set ADATSZ with the maximum AHB buffer size to improve the read > + * performance. > + */ > + fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 | > + FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0); > + > + /* prefetch and no start address alignment limitation */ > + fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT, > + base + FSPI_AHBCR); > + > + /* AHB Read - Set lut sequence ID for all CS. */ > + fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2); > + fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2); > + fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2); > + fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2); > + > + f->selected =3D -1; > + > + /* enable the interrupt */ > + fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN); > + > + return 0; > +} > + > +static const char *nxp_fspi_get_name(struct spi_mem *mem) { > + struct nxp_fspi *f =3D spi_controller_get_devdata(mem->spi->master); > + struct device *dev =3D &mem->spi->dev; > + const char *name; > + > + // Set custom name derived from the platform_device of the controller. > + if (of_get_available_child_count(f->dev->of_node) =3D=3D 1) > + return dev_name(f->dev); > + > + name =3D devm_kasprintf(dev, GFP_KERNEL, > + "%s-%d", dev_name(f->dev), > + mem->spi->chip_select); > + > + if (!name) { > + dev_err(dev, "failed to get memory for custom flash name\n"); > + return ERR_PTR(-ENOMEM); > + } > + > + return name; > +} > + > +static const struct spi_controller_mem_ops nxp_fspi_mem_ops =3D { > + .adjust_op_size =3D nxp_fspi_adjust_op_size, > + .supports_op =3D nxp_fspi_supports_op, > + .exec_op =3D nxp_fspi_exec_op, > + .get_name =3D nxp_fspi_get_name, > +}; > + > +static int nxp_fspi_probe(struct platform_device *pdev) { > + struct spi_controller *ctlr; > + struct device *dev =3D &pdev->dev; > + struct device_node *np =3D dev->of_node; > + struct resource *res; > + struct nxp_fspi *f; > + int ret; > + > + ctlr =3D spi_alloc_master(&pdev->dev, sizeof(*f)); > + if (!ctlr) > + return -ENOMEM; > + > + ctlr->mode_bits =3D SPI_RX_DUAL | SPI_RX_QUAD | > + SPI_TX_DUAL | SPI_TX_QUAD; > + > + f =3D spi_controller_get_devdata(ctlr); > + f->dev =3D dev; > + f->devtype_data =3D of_device_get_match_data(dev); > + if (!f->devtype_data) { > + ret =3D -ENODEV; > + goto err_put_ctrl; > + } > + > + platform_set_drvdata(pdev, f); > + > + /* find the resources - configuration register address space */ > + res =3D platform_get_resource_byname(pdev, IORESOURCE_MEM, > "fspi_base"); > + f->iobase =3D devm_ioremap_resource(dev, res); > + if (IS_ERR(f->iobase)) { > + ret =3D PTR_ERR(f->iobase); > + goto err_put_ctrl; > + } > + > + /* find the resources - controller memory mapped space */ > + res =3D platform_get_resource_byname(pdev, IORESOURCE_MEM, > "fspi_mmap"); > + f->ahb_addr =3D devm_ioremap_resource(dev, res); > + if (IS_ERR(f->ahb_addr)) { > + ret =3D PTR_ERR(f->ahb_addr); > + goto err_put_ctrl; > + } > + > + /* assign memory mapped starting address and mapped size. */ > + f->memmap_phy =3D res->start; > + f->memmap_phy_size =3D resource_size(res); > + > + /* find the clocks */ > + f->clk_en =3D devm_clk_get(dev, "fspi_en"); > + if (IS_ERR(f->clk_en)) { > + ret =3D PTR_ERR(f->clk_en); > + goto err_put_ctrl; > + } > + > + f->clk =3D devm_clk_get(dev, "fspi"); > + if (IS_ERR(f->clk)) { > + ret =3D PTR_ERR(f->clk); > + goto err_put_ctrl; > + } > + > + ret =3D nxp_fspi_clk_prep_enable(f); > + if (ret) { > + dev_err(dev, "can not enable the clock\n"); > + goto err_put_ctrl; > + } > + > + /* find the irq */ > + ret =3D platform_get_irq(pdev, 0); > + if (ret < 0) { > + dev_err(dev, "failed to get the irq: %d\n", ret); > + goto err_disable_clk; > + } > + > + ret =3D devm_request_irq(dev, ret, > + nxp_fspi_irq_handler, 0, pdev->name, f); > + if (ret) { > + dev_err(dev, "failed to request irq: %d\n", ret); > + goto err_disable_clk; > + } > + > + mutex_init(&f->lock); > + > + ctlr->bus_num =3D -1; > + ctlr->num_chipselect =3D NXP_FSPI_MAX_CHIPSELECT; > + ctlr->mem_ops =3D &nxp_fspi_mem_ops; > + > + nxp_fspi_default_setup(f); > + > + ctlr->dev.of_node =3D np; > + > + ret =3D spi_register_controller(ctlr); > + if (ret) > + goto err_destroy_mutex; > + > + return 0; > + > +err_destroy_mutex: > + mutex_destroy(&f->lock); > + > +err_disable_clk: > + nxp_fspi_clk_disable_unprep(f); > + > +err_put_ctrl: > + spi_controller_put(ctlr); > + > + dev_err(dev, "NXP FSPI probe failed\n"); > + return ret; > +} > + > +static int nxp_fspi_remove(struct platform_device *pdev) { > + struct nxp_fspi *f =3D platform_get_drvdata(pdev); > + > + /* disable the hardware */ > + fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0); > + > + nxp_fspi_clk_disable_unprep(f); > + > + mutex_destroy(&f->lock); > + > + return 0; > +} > + > +static int nxp_fspi_suspend(struct device *dev) { > + return 0; > +} > + > +static int nxp_fspi_resume(struct device *dev) { > + struct nxp_fspi *f =3D dev_get_drvdata(dev); > + > + nxp_fspi_default_setup(f); > + > + return 0; > +} > + > +static const struct of_device_id nxp_fspi_dt_ids[] =3D { > + { .compatible =3D "nxp,lx2160a-fspi", .data =3D (void *)&lx2160a_data, = }, > + { /* sentinel */ } > +}; > +MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids); > + > +static const struct dev_pm_ops nxp_fspi_pm_ops =3D { > + .suspend =3D nxp_fspi_suspend, > + .resume =3D nxp_fspi_resume, > +}; > + > +static struct platform_driver nxp_fspi_driver =3D { > + .driver =3D { > + .name =3D "nxp-fspi", > + .of_match_table =3D nxp_fspi_dt_ids, > + .pm =3D &nxp_fspi_pm_ops, > + }, > + .probe =3D nxp_fspi_probe, > + .remove =3D nxp_fspi_remove, > +}; > +module_platform_driver(nxp_fspi_driver); > + > +MODULE_DESCRIPTION("NXP FSPI Controller Driver"); > MODULE_AUTHOR("NXP > +Semiconductor"); MODULE_AUTHOR("Yogesh Narayan Gaur > +"); MODULE_AUTHOR("Boris Brezillion > +"); MODULE_AUTHOR("Frieder Schrempf > +"); MODULE_LICENSE("GPL v2"); > -- > 2.17.1 >=20 >=20 > ______________________________________________________ > Linux MTD discussion mailing list > https://emea01.safelinks.protection.outlook.com/?url=3Dhttp%3A%2F%2Flists= .infr > adead.org%2Fmailman%2Flistinfo%2Flinux- > mtd%2F&data=3D02%7C01%7Cashish.kumar%40nxp.com%7Cf61d5430fbb8 > 46cc953e08d67ae1238f%7C686ea1d3bc2b4c6fa92cd99c5c301635%7C0%7C0 > %7C636831504726799549&sdata=3D%2FUKvN5oeGCfp8kbre6XEhxl3dk78p > pP5m0jzltcfAE4%3D&reserved=3D0