From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org X-Spam-Level: X-Spam-Status: No, score=-14.3 required=3.0 tests=BAYES_00,DKIM_SIGNED, DKIM_VALID,DKIM_VALID_AU,FREEMAIL_FORGED_FROMDOMAIN,FREEMAIL_FROM, HEADER_FROM_DIFFERENT_DOMAINS,INCLUDES_CR_TRAILER,INCLUDES_PATCH, MAILING_LIST_MULTI,NICE_REPLY_A,SPF_HELO_NONE,SPF_PASS,URIBL_BLOCKED, USER_AGENT_SANE_1 autolearn=unavailable autolearn_force=no version=3.4.0 Received: from mail.kernel.org (mail.kernel.org [198.145.29.99]) by smtp.lore.kernel.org (Postfix) with ESMTP id 97588C64E7B for ; Mon, 30 Nov 2020 12:50:22 +0000 (UTC) Received: from vger.kernel.org (vger.kernel.org [23.128.96.18]) by mail.kernel.org (Postfix) with ESMTP id EE5F520691 for ; Mon, 30 Nov 2020 12:50:21 +0000 (UTC) Authentication-Results: mail.kernel.org; dkim=pass (2048-bit key) header.d=gmail.com header.i=@gmail.com header.b="LUCytrd/" Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1726126AbgK3MuG (ORCPT ); Mon, 30 Nov 2020 07:50:06 -0500 Received: from lindbergh.monkeyblade.net ([23.128.96.19]:60078 "EHLO lindbergh.monkeyblade.net" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1725912AbgK3MuE (ORCPT ); Mon, 30 Nov 2020 07:50:04 -0500 Received: from mail-ej1-x642.google.com (mail-ej1-x642.google.com [IPv6:2a00:1450:4864:20::642]) by lindbergh.monkeyblade.net (Postfix) with ESMTPS id B4678C0613CF; Mon, 30 Nov 2020 04:49:23 -0800 (PST) Received: by mail-ej1-x642.google.com with SMTP id d17so19649979ejy.9; Mon, 30 Nov 2020 04:49:23 -0800 (PST) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20161025; h=subject:to:cc:references:from:message-id:date:user-agent :mime-version:in-reply-to:content-language:content-transfer-encoding; bh=hJqJANUls/OuewrBR2JPE98SAcCkTlaHtQHN1uZp+Zc=; b=LUCytrd/X1RXVXH7tKjPRQrFyzksecO+a7Bp7RaNKVI0Lf1Xanwukk159ykTRK88WE GADA86VtMciBA6IXCMIqab8uZFA/WEBTKYVwsuNaRNt2Pn0vHcAC5Ot/bzWToMxBNzs9 ZDm/vJkTfIXw9AlkQRRPvJPf+ILO/Xbl2X/1lWtfCgvPISKpTbSf5h6MtO6M+wudkcZE RGTZHgZ/wmdoKrum++lKDcECf/2qCN0VnLq0jNJvPzkomfr387dNjmybvBJVKX+UDXwi a2au3PDqpdPzTo4ObBfQ4wMnMZMtUMHqvez93ixlUaFHihfZLhKNzcH2YE2XMzYuiD+j CEMA== X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-gm-message-state:subject:to:cc:references:from:message-id:date :user-agent:mime-version:in-reply-to:content-language :content-transfer-encoding; bh=hJqJANUls/OuewrBR2JPE98SAcCkTlaHtQHN1uZp+Zc=; b=dDwKM3MaLOTxb7qgEHTcZFx8RrV4QHXL8oDSiK1ArXXPjTNXJwYH2iZiftUisViL4q ZtHmnXwiqQlzDq56GssUWJLf/xH7B51N6ydTNHgp9TCCAHGt1r1BjeLPeD5w4UGTixaZ E8b/OzP82vtUFYtv15Ct7d/yKT5v78dB7gC4uILG5/Eqx0Xou/Pn77kTkpzJXyAxyja/ xyWL7LKJ7mYKrAUySlU3uaq1pn9cTN3BzErTx6Kpv4DXlOw033Y6TLk4OHhTWAWIo9rq ure9QifqpHDlyzPovFmwa9UsX3oPwXIj8pRoyS57dNE1FSzbh955ovMLi107/6oQiE2t BApg== X-Gm-Message-State: AOAM532Aoqox318V2kaYwfiFxWwrij4tD97+tPS3TL2qaQZUhQMNoPxr NS5kaBMNWCkzqGan3s5AqKo= X-Google-Smtp-Source: ABdhPJyWwpmc5zFI6frNpevfwtxdlCbGOGIUAA8N3ttLqV4OaKAqLYQMCauDnhPH5XHJI1k2dLcddA== X-Received: by 2002:a17:906:31d2:: with SMTP id f18mr3595018ejf.407.1606740562074; Mon, 30 Nov 2020 04:49:22 -0800 (PST) Received: from [192.168.2.1] (81-204-249-205.fixed.kpn.net. [81.204.249.205]) by smtp.gmail.com with ESMTPSA id e14sm2456436ejh.62.2020.11.30.04.49.20 (version=TLS1_3 cipher=TLS_AES_128_GCM_SHA256 bits=128/128); Mon, 30 Nov 2020 04:49:21 -0800 (PST) Subject: Re: [PATCH v15 2/8] mtd: rawnand: rockchip: NFC drivers for RK3308, RK2928 and others To: Yifeng Zhao , miquel.raynal@bootlin.com, richard@nod.at, vigneshr@ti.com, robh+dt@kernel.org Cc: devicetree@vger.kernel.org, heiko@sntech.de, linux-kernel@vger.kernel.org, linux-rockchip@lists.infradead.org, linux-mtd@lists.infradead.org, linux-arm-kernel@lists.infradead.org References: <20201130100031.22083-1-yifeng.zhao@rock-chips.com> <20201130100031.22083-3-yifeng.zhao@rock-chips.com> From: Johan Jonker Message-ID: <0abf1dbd-13bb-cd92-907c-849f05ea887c@gmail.com> Date: Mon, 30 Nov 2020 13:49:19 +0100 User-Agent: Mozilla/5.0 (X11; Linux i686; rv:68.0) Gecko/20100101 Thunderbird/68.11.0 MIME-Version: 1.0 In-Reply-To: <20201130100031.22083-3-yifeng.zhao@rock-chips.com> Content-Type: text/plain; charset=utf-8 Content-Language: en-US Content-Transfer-Encoding: 7bit Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org Hi, Looks good to me. Do the maintainers or someone else have any major issues? Could Miquel indicate if a version 16 must be send for that 'ret' variable alone or is it OK now? On 11/30/20 11:00 AM, Yifeng Zhao wrote: > This driver supports Rockchip NFC (NAND Flash Controller) found on RK3308, > RK2928, RKPX30, RV1108 and other SOCs. The driver has been tested using > 8-bit NAND interface on the ARM based RK3308 platform. > > Support Rockchip SoCs and NFC versions: > - PX30 and RK3326(NFCv900). > ECC: 16/40/60/70 bits/1KB. > CLOCK: ahb and nfc. > - RK3308 and RV1108(NFCv800). > ECC: 16 bits/1KB. > CLOCK: ahb and nfc. > - RK3036 and RK3128(NFCv622). > ECC: 16/24/40/60 bits/1KB. > CLOCK: ahb and nfc. > - RK3066, RK3188 and RK2928(NFCv600). > ECC: 16/24/40/60 bits/1KB. > CLOCK: ahb. > > Supported features: > - Read full page data by DMA. > - Support HW ECC(one step is 1KB). > - Support 2 - 32K page size. > - Support 8 CS(depend on SoCs) > > Limitations: > - No support for the ecc step size is 512. > - Untested on some SoCs. > - No support for subpages. > - No support for the builtin randomizer. > - The original bad block mask is not supported. It is recommended to use > the BBT(bad block table). > > Suggested-by: Johan Jonker > Signed-off-by: Yifeng Zhao > --- > > Changes in v15: > - Use a buffer pointer nfc->page_buf instead of the original two pointers. > - Fix coding style. > - Fix some comments. > > Changes in v14: > - Add oob_read and oob_write hook api. > - Support timing config and ecc config for each chips. > - Fix some comments. > > Changes in v13: > - The nfc->buffer will realloc while the page size of the second mtd > is large than the first one. > - Fix coding style. > - Fix some comments. > > Changes in v12: None > Changes in v11: > - Fix compile error. > > Changes in v10: > - Fix compile error on master v5.9-rc7. > > Changes in v9: > - The nfc->buffer will realloc while the page size of the second mtd > is large than the first one > - Fix coding style. > - Remove struct rk_nfc_clk. > - Prepend some function with rk_nfc_. > - Replace function readl_poll_timeout_atomic with readl_relaxed_poll_timeout. > - Remove function rk_nfc_read_byte and rk_nfc_write_byte. > - Don't select the die if 'check_only == true' in function rk_nfc_exec_op. > - Modify function rk_nfc_write_page and rk_nfc_write_page_raw. > > Changes in v8: None > Changes in v7: > - Rebase to linux-next. > - Fix coding style. > - Reserved 4 bytes at the beginning of the oob area. > - Page raw read and write included ecc data. > > Changes in v6: > - The mtd->name set by NAND label property. > - Add some comments. > - Fix compile error. > > Changes in v5: > - Add boot blocks support with different ECC for bootROM. > - Rename rockchip-nand.c to rockchip-nand-controller.c. > - Unification of other variable names. > - Remove some compatible define. > > Changes in v4: > - Define platform data structure for the register offsets. > - The compatible define with rkxx_nfc. > - Use SET_SYSTEM_SLEEP_PM_OPS to define PM_OPS. > - Use exec_op instead of legacy hooks. > > Changes in v3: None > Changes in v2: > - Fix compile error. > - Include header files sorted by file name. > > drivers/mtd/nand/raw/Kconfig | 12 + > drivers/mtd/nand/raw/Makefile | 1 + > .../mtd/nand/raw/rockchip-nand-controller.c | 1500 +++++++++++++++++ > 3 files changed, 1513 insertions(+) > create mode 100644 drivers/mtd/nand/raw/rockchip-nand-controller.c > > diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig > index 6c46f25b57e2..2cc533e4e239 100644 > --- a/drivers/mtd/nand/raw/Kconfig > +++ b/drivers/mtd/nand/raw/Kconfig > @@ -462,6 +462,18 @@ config MTD_NAND_ARASAN > Enables the driver for the Arasan NAND flash controller on > Zynq Ultrascale+ MPSoC. > > +config MTD_NAND_ROCKCHIP > + tristate "Rockchip NAND controller" > + depends on ARCH_ROCKCHIP && HAS_IOMEM > + help > + Enables support for NAND controller on Rockchip SoCs. > + There are four different versions of NAND FLASH Controllers, > + including: > + NFC v600: RK2928, RK3066, RK3188 > + NFC v622: RK3036, RK3128 > + NFC v800: RK3308, RV1108 > + NFC v900: PX30, RK3326 > + > comment "Misc" > > config MTD_SM_COMMON > diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile > index 2930f5b9015d..960c9be25204 100644 > --- a/drivers/mtd/nand/raw/Makefile > +++ b/drivers/mtd/nand/raw/Makefile > @@ -58,6 +58,7 @@ obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o > obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o > obj-$(CONFIG_MTD_NAND_CADENCE) += cadence-nand-controller.o > obj-$(CONFIG_MTD_NAND_ARASAN) += arasan-nand-controller.o > +obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o > > nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o > nand-objs += nand_onfi.o > diff --git a/drivers/mtd/nand/raw/rockchip-nand-controller.c b/drivers/mtd/nand/raw/rockchip-nand-controller.c > new file mode 100644 > index 000000000000..bb4778c52514 > --- /dev/null > +++ b/drivers/mtd/nand/raw/rockchip-nand-controller.c > @@ -0,0 +1,1500 @@ > +// SPDX-License-Identifier: GPL-2.0 OR MIT > +/* > + * Rockchip NAND Flash controller driver. > + * Copyright (C) 2020 Rockchip Inc. > + * Author: Yifeng Zhao > + */ > + > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > +#include > + > +/* > + * NFC Page Data Layout: > + * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data + > + * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data + > + * ...... > + * NAND Page Data Layout: > + * 1024 * n data + m Bytes oob > + * Original Bad Block Mask Location: > + * First byte of oob(spare). > + * nand_chip->oob_poi data layout: > + * 4Bytes sys data + .... + 4Bytes sys data + ECC data. > + */ > + > +/* NAND controller register definition */ > +#define NFC_READ (0) > +#define NFC_WRITE (1) > + > +#define NFC_FMCTL (0x00) > +#define FMCTL_CE_SEL_M 0xFF > +#define FMCTL_CE_SEL(x) (1 << (x)) > +#define FMCTL_WP BIT(8) > +#define FMCTL_RDY BIT(9) > + > +#define NFC_FMWAIT (0x04) > +#define FLCTL_RST BIT(0) > +#define FLCTL_WR (1) /* 0: read, 1: write */ > +#define FLCTL_XFER_ST BIT(2) > +#define FLCTL_XFER_EN BIT(3) > +#define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */ > +#define FLCTL_XFER_READY BIT(20) > +#define FLCTL_XFER_SECTOR (22) > +#define FLCTL_TOG_FIX BIT(29) > + > +#define BCHCTL_BANK_M (7 << 5) > +#define BCHCTL_BANK (5) > + > +#define DMA_ST BIT(0) > +#define DMA_WR (1) /* 0: write, 1: read */ > +#define DMA_EN BIT(2) > +#define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */ > +#define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */ > +#define DMA_INC_NUM (9) /* 1 - 16 */ > + > +#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\ > + (((x) >> (e).high) & (e).high_mask) << (e).low_bn) > +#define INT_DMA BIT(0) > +#define NFC_BANK (0x800) > +#define NFC_BANK_STEP (0x100) > +#define BANK_DATA (0x00) > +#define BANK_ADDR (0x04) > +#define BANK_CMD (0x08) > +#define NFC_SRAM0 (0x1000) > +#define NFC_SRAM1 (0x1400) > +#define NFC_SRAM_SIZE (0x400) > +#define NFC_TIMEOUT (500000) > +#define NFC_MAX_OOB_PER_STEP 128 > +#define NFC_MIN_OOB_PER_STEP 64 > +#define MAX_DATA_SIZE 0xFFFC > +#define MAX_ADDRESS_CYC 6 > +#define NFC_ECC_MAX_MODES 4 > +#define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */ > +#define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 data.*/ > +#define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */ > +#define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs)) > + > +enum nfc_type { > + NFC_V6, > + NFC_V8, > + NFC_V9, > +}; > + > +/** > + * struct rk_ecc_cnt_status: represent a ecc status data. > + * @err_flag_bit: error flag bit index at register. > + * @low: ECC count low bit index at register. > + * @low_mask: mask bit. > + * @low_bn: ECC count low bit number. > + * @high: ECC count high bit index at register. > + * @high_mask: mask bit > + */ > +struct ecc_cnt_status { > + u8 err_flag_bit; > + u8 low; > + u8 low_mask; > + u8 low_bn; > + u8 high; > + u8 high_mask; > +}; > + > +/** > + * @type: NFC version > + * @ecc_strengths: ECC strengths > + * @ecc_cfgs: ECC config values > + * @flctl_off: FLCTL register offset > + * @bchctl_off: BCHCTL register offset > + * @dma_data_buf_off: DMA_DATA_BUF register offset > + * @dma_oob_buf_off: DMA_OOB_BUF register offset > + * @dma_cfg_off: DMA_CFG register offset > + * @dma_st_off: DMA_ST register offset > + * @bch_st_off: BCG_ST register offset > + * @randmz_off: RANDMZ register offset > + * @int_en_off: interrupt enable register offset > + * @int_clr_off: interrupt clean register offset > + * @int_st_off: interrupt status register offset > + * @oob0_off: oob0 register offset > + * @oob1_off: oob1 register offset > + * @ecc0: represent ECC0 status data > + * @ecc1: represent ECC1 status data > + */ > +struct nfc_cfg { > + enum nfc_type type; > + u8 ecc_strengths[NFC_ECC_MAX_MODES]; > + u32 ecc_cfgs[NFC_ECC_MAX_MODES]; > + u32 flctl_off; > + u32 bchctl_off; > + u32 dma_cfg_off; > + u32 dma_data_buf_off; > + u32 dma_oob_buf_off; > + u32 dma_st_off; > + u32 bch_st_off; > + u32 randmz_off; > + u32 int_en_off; > + u32 int_clr_off; > + u32 int_st_off; > + u32 oob0_off; > + u32 oob1_off; > + struct ecc_cnt_status ecc0; > + struct ecc_cnt_status ecc1; > +}; > + > +struct rk_nfc_nand_chip { > + struct list_head node; > + struct nand_chip chip; > + > + u16 boot_blks; > + u16 metadata_size; > + u32 boot_ecc; > + u32 timing; > + > + u8 nsels; > + u8 sels[0]; > + /* Nothing after this field. */ > +}; > + > +struct rk_nfc { > + struct nand_controller controller; > + const struct nfc_cfg *cfg; > + struct device *dev; > + > + struct clk *nfc_clk; > + struct clk *ahb_clk; > + void __iomem *regs; > + > + u32 selected_bank; > + u32 band_offset; > + u32 cur_ecc; > + u32 cur_timing; > + > + struct completion done; > + struct list_head chips; > + > + u8 *page_buf; > + u32 *oob_buf; > + u32 page_buf_size; > + u32 oob_buf_size; > + > + unsigned long assigned_cs; > +}; > + > +static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip) > +{ > + return container_of(chip, struct rk_nfc_nand_chip, chip); > +} > + > +static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i) > +{ > + return (u8 *)p + i * chip->ecc.size; > +} > + > +static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i) > +{ > + u8 *poi; > + > + poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE; > + > + return poi; > +} > + > +static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i) > +{ > + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); > + u8 *poi; > + > + poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i; > + > + return poi; > +} > + > +static inline int rk_nfc_data_len(struct nand_chip *chip) > +{ > + return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE; > +} > + > +static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i) > +{ > + struct rk_nfc *nfc = nand_get_controller_data(chip); > + > + return nfc->page_buf + i * rk_nfc_data_len(chip); > +} > + > +static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i) > +{ > + struct rk_nfc *nfc = nand_get_controller_data(chip); > + > + return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size; > +} > + > +static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength) > +{ > + struct rk_nfc *nfc = nand_get_controller_data(chip); > + u32 reg, i; > + > + for (i = 0; i < NFC_ECC_MAX_MODES; i++) { > + if (strength == nfc->cfg->ecc_strengths[i]) { > + reg = nfc->cfg->ecc_cfgs[i]; > + break; > + } > + } > + > + if (i >= NFC_ECC_MAX_MODES) > + return -EINVAL; > + > + writel(reg, nfc->regs + nfc->cfg->bchctl_off); > + > + /* Save chip ECC setting */ > + nfc->cur_ecc = strength; > + > + return 0; > +} > + > +static void rk_nfc_select_chip(struct nand_chip *chip, int cs) > +{ > + struct rk_nfc *nfc = nand_get_controller_data(chip); > + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); > + struct nand_ecc_ctrl *ecc = &chip->ecc; > + u32 val; > + > + if (cs < 0) { > + nfc->selected_bank = -1; > + /* Deselect the currently selected target. */ > + val = readl_relaxed(nfc->regs + NFC_FMCTL); > + val &= ~FMCTL_CE_SEL_M; > + writel(val, nfc->regs + NFC_FMCTL); > + return; > + } > + > + nfc->selected_bank = rknand->sels[cs]; > + nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP; > + > + val = readl_relaxed(nfc->regs + NFC_FMCTL); > + val &= ~FMCTL_CE_SEL_M; > + val |= FMCTL_CE_SEL(nfc->selected_bank); > + > + writel(val, nfc->regs + NFC_FMCTL); > + > + /* > + * Compare current chip timing with selected chip timing and > + * change if needed. > + */ > + if (nfc->cur_timing != rknand->timing) { > + writel(rknand->timing, nfc->regs + NFC_FMWAIT); > + nfc->cur_timing = rknand->timing; > + } > + > + /* > + * Compare current chip ECC setting with selected chip ECC setting and > + * change if needed. > + */ > + if (nfc->cur_ecc != ecc->strength) > + rk_nfc_hw_ecc_setup(chip, ecc->strength); > +} > + > +static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc) > +{ > + int rc; > + u32 val; > + > + rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val, > + val & FMCTL_RDY, 10, NFC_TIMEOUT); > + > + return rc; > +} > + > +static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len) > +{ > + int i; > + > + for (i = 0; i < len; i++) > + buf[i] = readb_relaxed(nfc->regs + nfc->band_offset + > + BANK_DATA); > +} > + > +static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len) > +{ > + int i; > + > + for (i = 0; i < len; i++) > + writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA); > +} > + > +static int rk_nfc_cmd(struct nand_chip *chip, > + const struct nand_subop *subop) > +{ > + struct rk_nfc *nfc = nand_get_controller_data(chip); > + unsigned int i, j, remaining, start; > + int reg_offset = nfc->band_offset; > + u8 *inbuf = NULL; > + const u8 *outbuf; > + u32 cnt = 0; > + int ret = 0; > + > + for (i = 0; i < subop->ninstrs; i++) { > + const struct nand_op_instr *instr = &subop->instrs[i]; > + > + switch (instr->type) { > + case NAND_OP_CMD_INSTR: > + writeb(instr->ctx.cmd.opcode, > + nfc->regs + reg_offset + BANK_CMD); > + break; > + > + case NAND_OP_ADDR_INSTR: > + remaining = nand_subop_get_num_addr_cyc(subop, i); > + start = nand_subop_get_addr_start_off(subop, i); > + > + for (j = 0; j < 8 && j + start < remaining; j++) > + writeb(instr->ctx.addr.addrs[j + start], > + nfc->regs + reg_offset + BANK_ADDR); > + break; > + > + case NAND_OP_DATA_IN_INSTR: > + case NAND_OP_DATA_OUT_INSTR: > + start = nand_subop_get_data_start_off(subop, i); > + cnt = nand_subop_get_data_len(subop, i); > + > + if (instr->type == NAND_OP_DATA_OUT_INSTR) { > + outbuf = instr->ctx.data.buf.out + start; > + rk_nfc_write_buf(nfc, outbuf, cnt); > + } else { > + inbuf = instr->ctx.data.buf.in + start; > + rk_nfc_read_buf(nfc, inbuf, cnt); > + } > + break; > + > + case NAND_OP_WAITRDY_INSTR: > + if (rk_nfc_wait_ioready(nfc) < 0) { > + ret = -ETIMEDOUT; > + dev_err(nfc->dev, "IO not ready\n"); > + } > + break; > + } > + } > + > + return ret; > +} > + > +static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER( > + NAND_OP_PARSER_PATTERN( > + rk_nfc_cmd, > + NAND_OP_PARSER_PAT_CMD_ELEM(true), > + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC), > + NAND_OP_PARSER_PAT_CMD_ELEM(true), > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), > + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)), > + NAND_OP_PARSER_PATTERN( > + rk_nfc_cmd, > + NAND_OP_PARSER_PAT_CMD_ELEM(true), > + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC), > + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE), > + NAND_OP_PARSER_PAT_CMD_ELEM(true), > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), > +); > + > +static int rk_nfc_exec_op(struct nand_chip *chip, > + const struct nand_operation *op, > + bool check_only) > +{ > + if (!check_only) > + rk_nfc_select_chip(chip, op->cs); > + > + return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op, > + check_only); > +} > + > +static int rk_nfc_setup_interface(struct nand_chip *chip, int target, > + const struct nand_interface_config *conf) > +{ > + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); > + struct rk_nfc *nfc = nand_get_controller_data(chip); > + const struct nand_sdr_timings *timings; > + u32 rate, tc2rw, trwpw, trw2c; > + u32 temp; > + > + if (target < 0) > + return 0; > + > + timings = nand_get_sdr_timings(conf); > + if (IS_ERR(timings)) > + return -EOPNOTSUPP; > + > + if (IS_ERR(nfc->nfc_clk)) > + rate = clk_get_rate(nfc->ahb_clk); > + else > + rate = clk_get_rate(nfc->nfc_clk); > + > + /* Turn clock rate into kHz. */ > + rate /= 1000; > + > + tc2rw = 1; > + trw2c = 1; > + > + trwpw = max(timings->tWC_min, timings->tRC_min) / 1000; > + trwpw = DIV_ROUND_UP(trwpw * rate, 1000000); > + > + temp = timings->tREA_max / 1000; > + temp = DIV_ROUND_UP(temp * rate, 1000000); > + > + if (trwpw < temp) > + trwpw = temp; > + > + /* > + * ACCON: access timing control register > + * ------------------------------------- > + * 31:18: reserved > + * 17:12: csrw, clock cycles from the falling edge of CSn to the > + * falling edge of RDn or WRn > + * 11:11: reserved > + * 10:05: rwpw, the width of RDn or WRn in processor clock cycles > + * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the > + * rising edge of CSn > + */ > + > + /* Save chip timing */ > + rknand->timing = ACCTIMING(tc2rw, trwpw, trw2c); > + > + return 0; > +} > + > +static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB, > + dma_addr_t dma_data, dma_addr_t dma_oob) > +{ > + u32 dma_reg, fl_reg, bch_reg; > + > + dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) | > + (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM); > + > + fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT | > + (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX; > + > + if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) { > + bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off); > + bch_reg = (bch_reg & (~BCHCTL_BANK_M)) | > + (nfc->selected_bank << BCHCTL_BANK); > + writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off); > + } > + > + writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off); > + writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off); > + writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off); > + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); > + fl_reg |= FLCTL_XFER_ST; > + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); > +} > + > +static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc) > +{ > + void __iomem *ptr; > + int ret = 0; remove ret > + u32 reg; > + > + ptr = nfc->regs + nfc->cfg->flctl_off; > + > + ret = readl_relaxed_poll_timeout(ptr, reg, > + reg & FLCTL_XFER_READY, > + 10, NFC_TIMEOUT); > + > + return ret; return readl_relaxed_poll_timeout(..); > +} > + > +static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf, > + int oob_on, int page) > +{ > + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); > + struct rk_nfc *nfc = nand_get_controller_data(chip); > + struct mtd_info *mtd = nand_to_mtd(chip); > + struct nand_ecc_ctrl *ecc = &chip->ecc; > + int i, pages_per_blk, ret = 0; remove ret > + > + pages_per_blk = mtd->erasesize / mtd->writesize; > + if ((chip->options & NAND_IS_BOOT_MEDIUM) && > + (page < (pages_per_blk * rknand->boot_blks)) && > + rknand->boot_ecc != ecc->strength) { > + /* > + * There's currently no method to notify the MTD framework that > + * a different ECC strength is in use for the boot blocks. > + */ > + return -EIO; > + } > + > + if (!buf) > + memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize); > + > + for (i = 0; i < ecc->steps; i++) { > + /* Copy data to the NFC buffer. */ > + if (buf) > + memcpy(rk_nfc_data_ptr(chip, i), > + rk_nfc_buf_to_data_ptr(chip, buf, i), > + ecc->size); > + /* > + * The first four bytes of OOB are reserved for the > + * boot ROM. In some debugging cases, such as with a > + * read, erase and write back test these 4 bytes stored > + * in OOB also need to be written back. > + * > + * The function nand_block_bad detects bad blocks like: > + * > + * bad = chip->oob_poi[chip->badblockpos]; > + * > + * chip->badblockpos == 0 for a large page NAND Flash, > + * so chip->oob_poi[0] is the bad block mask (BBM). > + * > + * The OOB data layout on the NFC is: > + * > + * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ... > + * > + * or > + * > + * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... > + * > + * The code here just swaps the first 4 bytes with the last > + * 4 bytes without losing any data. > + * > + * The chip->oob_poi data layout: > + * > + * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3 > + * > + * The rk_nfc_ooblayout_free() function already has reserved > + * these 4 bytes with: > + * > + * oob_region->offset = NFC_SYS_DATA_SIZE + 2; > + */ > + if (!i) > + memcpy(rk_nfc_oob_ptr(chip, i), > + rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1), > + NFC_SYS_DATA_SIZE); > + else > + memcpy(rk_nfc_oob_ptr(chip, i), > + rk_nfc_buf_to_oob_ptr(chip, i - 1), > + NFC_SYS_DATA_SIZE); > + /* Copy ECC data to the NFC buffer. */ > + memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, > + rk_nfc_buf_to_oob_ecc_ptr(chip, i), > + ecc->bytes); > + } > + > + nand_prog_page_begin_op(chip, page, 0, NULL, 0); > + rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize); > + ret = nand_prog_page_end_op(chip); > + > + return ret; return nand_prog_page_end_op(chip); remove ret > +} > + > +static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf, > + int oob_on, int page) > +{ > + struct mtd_info *mtd = nand_to_mtd(chip); > + struct rk_nfc *nfc = nand_get_controller_data(chip); > + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); > + struct nand_ecc_ctrl *ecc = &chip->ecc; > + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : > + NFC_MIN_OOB_PER_STEP; > + int pages_per_blk = mtd->erasesize / mtd->writesize; > + int ret = 0, i, boot_rom_mode = 0; > + dma_addr_t dma_data, dma_oob; > + u32 reg; > + u8 *oob; > + > + nand_prog_page_begin_op(chip, page, 0, NULL, 0); > + > + if (buf) > + memcpy(nfc->page_buf, buf, mtd->writesize); > + else > + memset(nfc->page_buf, 0xFF, mtd->writesize); > + > + /* > + * The first blocks (4, 8 or 16 depending on the device) are used > + * by the boot ROM and the first 32 bits of OOB need to link to > + * the next page address in the same block. We can't directly copy > + * OOB data from the MTD framework, because this page address > + * conflicts for example with the bad block marker (BBM), > + * so we shift all OOB data including the BBM with 4 byte positions. > + * As a consequence the OOB size available to the MTD framework is > + * also reduced with 4 bytes. > + * > + * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ... > + * > + * If a NAND is not a boot medium or the page is not a boot block, > + * the first 4 bytes are left untouched by writing 0xFF to them. > + * > + * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... > + * > + * Configure the ECC algorithm supported by the boot ROM. > + */ > + if ((page < (pages_per_blk * rknand->boot_blks)) && > + (chip->options & NAND_IS_BOOT_MEDIUM)) { > + boot_rom_mode = 1; > + if (rknand->boot_ecc != ecc->strength) > + rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc); > + } > + > + for (i = 0; i < ecc->steps; i++) { > + if (!i) { > + reg = 0xFFFFFFFF; > + } else { > + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; > + reg = oob[0] | oob[1] << 8 | oob[2] << 16 | > + oob[3] << 24; > + } > + > + if (!i && boot_rom_mode) > + reg = (page & (pages_per_blk - 1)) * 4; > + > + if (nfc->cfg->type == NFC_V9) > + nfc->oob_buf[i] = reg; > + else > + nfc->oob_buf[i * (oob_step / 4)] = reg; > + } > + > + dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf, > + mtd->writesize, DMA_TO_DEVICE); > + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, > + ecc->steps * oob_step, > + DMA_TO_DEVICE); > + > + reinit_completion(&nfc->done); > + writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off); > + > + rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data, > + dma_oob); > + ret = wait_for_completion_timeout(&nfc->done, > + msecs_to_jiffies(100)); > + if (!ret) > + dev_warn(nfc->dev, "write: wait dma done timeout.\n"); > + /* > + * Whether the DMA transfer is completed or not. The driver > + * needs to check the NFC`s status register to see if the data > + * transfer was completed. > + */ > + ret = rk_nfc_wait_for_xfer_done(nfc); > + > + dma_unmap_single(nfc->dev, dma_data, mtd->writesize, > + DMA_TO_DEVICE); > + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, > + DMA_TO_DEVICE); > + > + if (boot_rom_mode && rknand->boot_ecc != ecc->strength) > + rk_nfc_hw_ecc_setup(chip, ecc->strength); > + > + if (ret) { > + dev_err(nfc->dev, "write: wait transfer done timeout.\n"); > + return -ETIMEDOUT; > + } > + > + return nand_prog_page_end_op(chip); > +} > + > +static int rk_nfc_write_oob(struct nand_chip *chip, int page) > +{ > + return rk_nfc_write_page_hwecc(chip, NULL, 1, page); > +} > + > +static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on, > + int page) > +{ > + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); > + struct rk_nfc *nfc = nand_get_controller_data(chip); > + struct mtd_info *mtd = nand_to_mtd(chip); > + struct nand_ecc_ctrl *ecc = &chip->ecc; > + int i, pages_per_blk; > + > + pages_per_blk = mtd->erasesize / mtd->writesize; > + if ((chip->options & NAND_IS_BOOT_MEDIUM) && > + (page < (pages_per_blk * rknand->boot_blks)) && > + rknand->boot_ecc != ecc->strength) { > + /* > + * There's currently no method to notify the MTD framework that > + * a different ECC strength is in use for the boot blocks. > + */ > + return -EIO; > + } > + > + nand_read_page_op(chip, page, 0, NULL, 0); > + rk_nfc_read_buf(nfc, nfc->page_buf, mtd->writesize + mtd->oobsize); > + for (i = 0; i < ecc->steps; i++) { > + /* > + * The first four bytes of OOB are reserved for the > + * boot ROM. In some debugging cases, such as with a read, > + * erase and write back test, these 4 bytes also must be > + * saved somewhere, otherwise this information will be > + * lost during a write back. > + */ > + if (!i) > + memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1), > + rk_nfc_oob_ptr(chip, i), > + NFC_SYS_DATA_SIZE); > + else > + memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1), > + rk_nfc_oob_ptr(chip, i), > + NFC_SYS_DATA_SIZE); > + > + /* Copy ECC data from the NFC buffer. */ > + memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i), > + rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, > + ecc->bytes); > + > + /* Copy data from the NFC buffer. */ > + if (buf) > + memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i), > + rk_nfc_data_ptr(chip, i), > + ecc->size); > + } > + > + return 0; > +} > + > +static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on, > + int page) > +{ > + struct mtd_info *mtd = nand_to_mtd(chip); > + struct rk_nfc *nfc = nand_get_controller_data(chip); > + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); > + struct nand_ecc_ctrl *ecc = &chip->ecc; > + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : > + NFC_MIN_OOB_PER_STEP; > + int pages_per_blk = mtd->erasesize / mtd->writesize; > + dma_addr_t dma_data, dma_oob; > + int ret = 0, i, cnt, boot_rom_mode = 0; > + int max_bitflips = 0, bch_st, ecc_fail = 0; > + u8 *oob; > + u32 tmp; > + > + nand_read_page_op(chip, page, 0, NULL, 0); > + > + dma_data = dma_map_single(nfc->dev, nfc->page_buf, > + mtd->writesize, > + DMA_FROM_DEVICE); > + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, > + ecc->steps * oob_step, > + DMA_FROM_DEVICE); > + > + /* > + * The first blocks (4, 8 or 16 depending on the device) > + * are used by the boot ROM. > + * Configure the ECC algorithm supported by the boot ROM. > + */ > + if ((page < (pages_per_blk * rknand->boot_blks)) && > + (chip->options & NAND_IS_BOOT_MEDIUM)) { > + boot_rom_mode = 1; > + if (rknand->boot_ecc != ecc->strength) > + rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc); > + } > + > + reinit_completion(&nfc->done); > + writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off); > + rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data, > + dma_oob); > + ret = wait_for_completion_timeout(&nfc->done, > + msecs_to_jiffies(100)); > + if (!ret) > + dev_warn(nfc->dev, "read: wait dma done timeout.\n"); > + /* > + * Whether the DMA transfer is completed or not. The driver > + * needs to check the NFC`s status register to see if the data > + * transfer was completed. > + */ > + ret = rk_nfc_wait_for_xfer_done(nfc); > + > + dma_unmap_single(nfc->dev, dma_data, mtd->writesize, > + DMA_FROM_DEVICE); > + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, > + DMA_FROM_DEVICE); > + > + if (ret) { > + ret = -ETIMEDOUT; > + dev_err(nfc->dev, "read: wait transfer done timeout.\n"); > + goto timeout_err; > + } > + > + for (i = 1; i < ecc->steps; i++) { > + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; > + if (nfc->cfg->type == NFC_V9) > + tmp = nfc->oob_buf[i]; > + else > + tmp = nfc->oob_buf[i * (oob_step / 4)]; > + *oob++ = (u8)tmp; > + *oob++ = (u8)(tmp >> 8); > + *oob++ = (u8)(tmp >> 16); > + *oob++ = (u8)(tmp >> 24); > + } > + > + for (i = 0; i < (ecc->steps / 2); i++) { > + bch_st = readl_relaxed(nfc->regs + > + nfc->cfg->bch_st_off + i * 4); > + if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) || > + bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) { > + mtd->ecc_stats.failed++; > + ecc_fail = 1; > + } else { > + cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0); > + mtd->ecc_stats.corrected += cnt; > + max_bitflips = max_t(u32, max_bitflips, cnt); > + > + cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1); > + mtd->ecc_stats.corrected += cnt; > + max_bitflips = max_t(u32, max_bitflips, cnt); > + } > + } > + > + if (buf) > + memcpy(buf, nfc->page_buf, mtd->writesize); > + > +timeout_err: > + if (boot_rom_mode && rknand->boot_ecc != ecc->strength) > + rk_nfc_hw_ecc_setup(chip, ecc->strength); > + > + if (ret) > + return ret; > + > + if (ecc_fail) { > + dev_err(nfc->dev, "read page: %x ecc error!\n", page); > + return 0; > + } > + > + return max_bitflips; > +} > + > +static int rk_nfc_read_oob(struct nand_chip *chip, int page) > +{ > + return rk_nfc_read_page_hwecc(chip, NULL, 1, page); > +} > + > +static inline void rk_nfc_hw_init(struct rk_nfc *nfc) > +{ > + /* Disable flash wp. */ > + writel(FMCTL_WP, nfc->regs + NFC_FMCTL); > + /* Config default timing 40ns at 150 Mhz NFC clock. */ > + writel(0x1081, nfc->regs + NFC_FMWAIT); > + nfc->cur_timing = 0x1081; > + /* Disable randomizer and DMA. */ > + writel(0, nfc->regs + nfc->cfg->randmz_off); > + writel(0, nfc->regs + nfc->cfg->dma_cfg_off); > + writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off); > +} > + > +static irqreturn_t rk_nfc_irq(int irq, void *id) > +{ > + struct rk_nfc *nfc = id; > + u32 sta, ien; > + > + sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off); > + ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off); > + > + if (!(sta & ien)) > + return IRQ_NONE; > + > + writel(sta, nfc->regs + nfc->cfg->int_clr_off); > + writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off); > + > + complete(&nfc->done); > + > + return IRQ_HANDLED; > +} > + > +static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc) > +{ > + int ret; > + > + if (!IS_ERR(nfc->nfc_clk)) { > + ret = clk_prepare_enable(nfc->nfc_clk); > + if (ret) { > + dev_err(dev, "failed to enable NFC clk\n"); > + return ret; > + } > + } > + > + ret = clk_prepare_enable(nfc->ahb_clk); > + if (ret) { > + dev_err(dev, "failed to enable ahb clk\n"); > + if (!IS_ERR(nfc->nfc_clk)) > + clk_disable_unprepare(nfc->nfc_clk); > + return ret; > + } > + > + return 0; > +} > + > +static void rk_nfc_disable_clks(struct rk_nfc *nfc) > +{ > + if (!IS_ERR(nfc->nfc_clk)) > + clk_disable_unprepare(nfc->nfc_clk); > + clk_disable_unprepare(nfc->ahb_clk); > +} > + > +static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section, > + struct mtd_oob_region *oob_region) > +{ > + struct nand_chip *chip = mtd_to_nand(mtd); > + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); > + > + if (section) > + return -ERANGE; > + > + /* > + * The beginning of the OOB area stores the reserved data for the NFC, > + * the size of the reserved data is NFC_SYS_DATA_SIZE bytes. > + */ > + oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2; > + oob_region->offset = NFC_SYS_DATA_SIZE + 2; > + > + return 0; > +} > + > +static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, > + struct mtd_oob_region *oob_region) > +{ > + struct nand_chip *chip = mtd_to_nand(mtd); > + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); > + > + if (section) > + return -ERANGE; > + > + oob_region->length = mtd->oobsize - rknand->metadata_size; > + oob_region->offset = rknand->metadata_size; > + > + return 0; > +} > + > +static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = { > + .free = rk_nfc_ooblayout_free, > + .ecc = rk_nfc_ooblayout_ecc, > +}; > + > +static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd) > +{ > + struct nand_chip *chip = mtd_to_nand(mtd); > + struct rk_nfc *nfc = nand_get_controller_data(chip); > + struct nand_ecc_ctrl *ecc = &chip->ecc; > + const u8 *strengths = nfc->cfg->ecc_strengths; > + u8 max_strength, nfc_max_strength; > + int i; > + > + nfc_max_strength = nfc->cfg->ecc_strengths[0]; > + /* If optional dt settings not present. */ > + if (!ecc->size || !ecc->strength || > + ecc->strength > nfc_max_strength) { > + chip->ecc.size = 1024; > + ecc->steps = mtd->writesize / ecc->size; > + > + /* > + * HW ECC always requests the number of ECC bytes per 1024 byte > + * blocks. The first 4 OOB bytes are reserved for sys data. > + */ > + max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 / > + fls(8 * 1024); > + if (max_strength > nfc_max_strength) > + max_strength = nfc_max_strength; > + > + for (i = 0; i < 4; i++) { > + if (max_strength >= strengths[i]) > + break; > + } > + > + if (i >= 4) { > + dev_err(nfc->dev, "unsupported ECC strength\n"); > + return -EOPNOTSUPP; > + } > + > + ecc->strength = strengths[i]; > + } > + ecc->steps = mtd->writesize / ecc->size; > + ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8); > + > + return 0; > +} > + > +static int rk_nfc_attach_chip(struct nand_chip *chip) > +{ > + struct mtd_info *mtd = nand_to_mtd(chip); > + struct device *dev = mtd->dev.parent; > + struct rk_nfc *nfc = nand_get_controller_data(chip); > + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); > + struct nand_ecc_ctrl *ecc = &chip->ecc; > + int new_page_len, new_oob_len; > + void *buf; > + int ret; > + > + if (chip->options & NAND_BUSWIDTH_16) { > + dev_err(dev, "16 bits bus width not supported"); > + return -EINVAL; > + } > + > + if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) > + return 0; > + > + ret = rk_nfc_ecc_init(dev, mtd); > + if (ret) > + return ret; > + > + rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps; > + > + if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) { > + dev_err(dev, > + "driver needs at least %d bytes of meta data\n", > + NFC_SYS_DATA_SIZE + 2); > + return -EIO; > + } > + > + /* Check buffer first, avoid duplicate alloc buffer. */ > + new_page_len = mtd->writesize + mtd->oobsize; > + if (nfc->page_buf && new_page_len > nfc->page_buf_size) { > + buf = krealloc(nfc->page_buf, new_page_len, > + GFP_KERNEL | GFP_DMA); > + if (!buf) > + return -ENOMEM; > + nfc->page_buf = buf; > + nfc->page_buf_size = new_page_len; > + } > + > + new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP; > + if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) { > + buf = krealloc(nfc->oob_buf, new_oob_len, > + GFP_KERNEL | GFP_DMA); > + if (!buf) { > + kfree(nfc->page_buf); > + nfc->page_buf = NULL; > + return -ENOMEM; > + } > + nfc->oob_buf = buf; > + nfc->oob_buf_size = new_oob_len; > + } > + > + if (!nfc->page_buf) { > + nfc->page_buf = kzalloc(new_page_len, GFP_KERNEL | GFP_DMA); > + if (!nfc->page_buf) > + return -ENOMEM; > + nfc->page_buf_size = new_page_len; > + } > + > + if (!nfc->oob_buf) { > + nfc->oob_buf = kzalloc(new_oob_len, GFP_KERNEL | GFP_DMA); > + if (!nfc->oob_buf) { > + kfree(nfc->page_buf); > + nfc->page_buf = NULL; > + return -ENOMEM; > + } > + nfc->oob_buf_size = new_oob_len; > + } > + > + chip->ecc.write_page_raw = rk_nfc_write_page_raw; > + chip->ecc.write_page = rk_nfc_write_page_hwecc; > + chip->ecc.write_oob = rk_nfc_write_oob; > + > + chip->ecc.read_page_raw = rk_nfc_read_page_raw; > + chip->ecc.read_page = rk_nfc_read_page_hwecc; > + chip->ecc.read_oob = rk_nfc_read_oob; > + > + return 0; > +} > + > +static const struct nand_controller_ops rk_nfc_controller_ops = { > + .attach_chip = rk_nfc_attach_chip, > + .exec_op = rk_nfc_exec_op, > + .setup_interface = rk_nfc_setup_interface, > +}; > + > +static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc, > + struct device_node *np) > +{ > + struct rk_nfc_nand_chip *rknand; > + struct nand_chip *chip; > + struct mtd_info *mtd; > + int nsels; > + u32 tmp; > + int ret; > + int i; > + > + if (!of_get_property(np, "reg", &nsels)) > + return -ENODEV; > + nsels /= sizeof(u32); > + if (!nsels || nsels > NFC_MAX_NSELS) { > + dev_err(dev, "invalid reg property size %d\n", nsels); > + return -EINVAL; > + } > + > + rknand = devm_kzalloc(dev, sizeof(*rknand) + nsels * sizeof(u8), > + GFP_KERNEL); > + if (!rknand) > + return -ENOMEM; > + > + rknand->nsels = nsels; > + for (i = 0; i < nsels; i++) { > + ret = of_property_read_u32_index(np, "reg", i, &tmp); > + if (ret) { > + dev_err(dev, "reg property failure : %d\n", ret); > + return ret; > + } > + > + if (tmp >= NFC_MAX_NSELS) { > + dev_err(dev, "invalid CS: %u\n", tmp); > + return -EINVAL; > + } > + > + if (test_and_set_bit(tmp, &nfc->assigned_cs)) { > + dev_err(dev, "CS %u already assigned\n", tmp); > + return -EINVAL; > + } > + > + rknand->sels[i] = tmp; > + } > + > + chip = &rknand->chip; > + chip->controller = &nfc->controller; > + > + nand_set_flash_node(chip, np); > + > + nand_set_controller_data(chip, nfc); > + > + chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE; > + chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; > + > + /* Set default mode in case dt entry is missing. */ > + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; > + > + mtd = nand_to_mtd(chip); > + mtd->owner = THIS_MODULE; > + mtd->dev.parent = dev; > + > + if (!mtd->name) { > + dev_err(nfc->dev, "NAND label property is mandatory\n"); > + return -EINVAL; > + } > + > + mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops); > + rk_nfc_hw_init(nfc); > + ret = nand_scan(chip, nsels); > + if (ret) > + return ret; > + > + if (chip->options & NAND_IS_BOOT_MEDIUM) { > + ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp); > + rknand->boot_blks = ret ? 0 : tmp; > + > + ret = of_property_read_u32(np, "rockchip,boot-ecc-strength", > + &tmp); > + rknand->boot_ecc = ret ? chip->ecc.strength : tmp; > + } > + > + ret = mtd_device_register(mtd, NULL, 0); > + if (ret) { > + dev_err(dev, "MTD parse partition error\n"); > + nand_cleanup(chip); > + return ret; > + } > + > + list_add_tail(&rknand->node, &nfc->chips); > + > + return 0; > +} > + > +static void rk_nfc_chips_cleanup(struct rk_nfc *nfc) > +{ > + struct rk_nfc_nand_chip *rknand, *tmp; > + struct nand_chip *chip; > + int ret; > + > + list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) { > + chip = &rknand->chip; > + ret = mtd_device_unregister(nand_to_mtd(chip)); > + WARN_ON(ret); > + nand_cleanup(chip); > + list_del(&rknand->node); > + } > +} > + > +static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc) > +{ > + struct device_node *np = dev->of_node, *nand_np; > + int nchips = of_get_child_count(np); > + int ret; > + > + if (!nchips || nchips > NFC_MAX_NSELS) { > + dev_err(nfc->dev, "incorrect number of NAND chips (%d)\n", > + nchips); > + return -EINVAL; > + } > + > + for_each_child_of_node(np, nand_np) { > + ret = rk_nfc_nand_chip_init(dev, nfc, nand_np); > + if (ret) { > + of_node_put(nand_np); > + rk_nfc_chips_cleanup(nfc); > + return ret; > + } > + } > + > + return 0; > +} > + > +static struct nfc_cfg nfc_v6_cfg = { > + .type = NFC_V6, > + .ecc_strengths = {60, 40, 24, 16}, > + .ecc_cfgs = { > + 0x00040011, 0x00040001, 0x00000011, 0x00000001, > + }, > + .flctl_off = 0x08, > + .bchctl_off = 0x0C, > + .dma_cfg_off = 0x10, > + .dma_data_buf_off = 0x14, > + .dma_oob_buf_off = 0x18, > + .dma_st_off = 0x1C, > + .bch_st_off = 0x20, > + .randmz_off = 0x150, > + .int_en_off = 0x16C, > + .int_clr_off = 0x170, > + .int_st_off = 0x174, > + .oob0_off = 0x200, > + .oob1_off = 0x230, > + .ecc0 = { > + .err_flag_bit = 2, > + .low = 3, > + .low_mask = 0x1F, > + .low_bn = 5, > + .high = 27, > + .high_mask = 0x1, > + }, > + .ecc1 = { > + .err_flag_bit = 15, > + .low = 16, > + .low_mask = 0x1F, > + .low_bn = 5, > + .high = 29, > + .high_mask = 0x1, > + }, > +}; > + > +static struct nfc_cfg nfc_v8_cfg = { > + .type = NFC_V8, > + .ecc_strengths = {16, 16, 16, 16}, > + .ecc_cfgs = { > + 0x00000001, 0x00000001, 0x00000001, 0x00000001, > + }, > + .flctl_off = 0x08, > + .bchctl_off = 0x0C, > + .dma_cfg_off = 0x10, > + .dma_data_buf_off = 0x14, > + .dma_oob_buf_off = 0x18, > + .dma_st_off = 0x1C, > + .bch_st_off = 0x20, > + .randmz_off = 0x150, > + .int_en_off = 0x16C, > + .int_clr_off = 0x170, > + .int_st_off = 0x174, > + .oob0_off = 0x200, > + .oob1_off = 0x230, > + .ecc0 = { > + .err_flag_bit = 2, > + .low = 3, > + .low_mask = 0x1F, > + .low_bn = 5, > + .high = 27, > + .high_mask = 0x1, > + }, > + .ecc1 = { > + .err_flag_bit = 15, > + .low = 16, > + .low_mask = 0x1F, > + .low_bn = 5, > + .high = 29, > + .high_mask = 0x1, > + }, > +}; > + > +static struct nfc_cfg nfc_v9_cfg = { > + .type = NFC_V9, > + .ecc_strengths = {70, 60, 40, 16}, > + .ecc_cfgs = { > + 0x00000001, 0x06000001, 0x04000001, 0x02000001, > + }, > + .flctl_off = 0x10, > + .bchctl_off = 0x20, > + .dma_cfg_off = 0x30, > + .dma_data_buf_off = 0x34, > + .dma_oob_buf_off = 0x38, > + .dma_st_off = 0x3C, > + .bch_st_off = 0x150, > + .randmz_off = 0x208, > + .int_en_off = 0x120, > + .int_clr_off = 0x124, > + .int_st_off = 0x128, > + .oob0_off = 0x200, > + .oob1_off = 0x204, > + .ecc0 = { > + .err_flag_bit = 2, > + .low = 3, > + .low_mask = 0x7F, > + .low_bn = 7, > + .high = 0, > + .high_mask = 0x0, > + }, > + .ecc1 = { > + .err_flag_bit = 18, > + .low = 19, > + .low_mask = 0x7F, > + .low_bn = 7, > + .high = 0, > + .high_mask = 0x0, > + }, > +}; > + > +static const struct of_device_id rk_nfc_id_table[] = { > + { > + .compatible = "rockchip,px30-nfc", > + .data = &nfc_v9_cfg > + }, > + { > + .compatible = "rockchip,rk2928-nfc", > + .data = &nfc_v6_cfg > + }, > + { > + .compatible = "rockchip,rv1108-nfc", > + .data = &nfc_v8_cfg > + }, > + { /* sentinel */ } > +}; > +MODULE_DEVICE_TABLE(of, rk_nfc_id_table); > + > +static int rk_nfc_probe(struct platform_device *pdev) > +{ > + struct device *dev = &pdev->dev; > + struct rk_nfc *nfc; > + int ret, irq; > + > + nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); > + if (!nfc) > + return -ENOMEM; > + > + nand_controller_init(&nfc->controller); > + INIT_LIST_HEAD(&nfc->chips); > + nfc->controller.ops = &rk_nfc_controller_ops; > + > + nfc->cfg = of_device_get_match_data(dev); > + nfc->dev = dev; > + > + init_completion(&nfc->done); > + > + nfc->regs = devm_platform_ioremap_resource(pdev, 0); > + if (IS_ERR(nfc->regs)) { > + ret = PTR_ERR(nfc->regs); > + goto release_nfc; > + } > + > + nfc->nfc_clk = devm_clk_get(dev, "nfc"); > + if (IS_ERR(nfc->nfc_clk)) { > + dev_dbg(dev, "no NFC clk\n"); > + /* Some earlier models, such as rk3066, have no NFC clk. */ > + } > + > + nfc->ahb_clk = devm_clk_get(dev, "ahb"); > + if (IS_ERR(nfc->ahb_clk)) { > + dev_err(dev, "no ahb clk\n"); > + ret = PTR_ERR(nfc->ahb_clk); > + goto release_nfc; > + } > + > + ret = rk_nfc_enable_clks(dev, nfc); > + if (ret) > + goto release_nfc; > + > + irq = platform_get_irq(pdev, 0); > + if (irq < 0) { > + dev_err(dev, "no NFC irq resource\n"); > + ret = -EINVAL; > + goto clk_disable; > + } > + > + writel(0, nfc->regs + nfc->cfg->int_en_off); > + ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc); > + if (ret) { > + dev_err(dev, "failed to request NFC irq\n"); > + goto clk_disable; > + } > + > + platform_set_drvdata(pdev, nfc); > + > + ret = rk_nfc_nand_chips_init(dev, nfc); > + if (ret) { > + dev_err(dev, "failed to init NAND chips\n"); > + goto clk_disable; > + } > + return 0; > + > +clk_disable: > + rk_nfc_disable_clks(nfc); > +release_nfc: > + return ret; > +} > + > +static int rk_nfc_remove(struct platform_device *pdev) > +{ > + struct rk_nfc *nfc = platform_get_drvdata(pdev); > + > + kfree(nfc->page_buf); > + kfree(nfc->oob_buf); > + rk_nfc_chips_cleanup(nfc); > + rk_nfc_disable_clks(nfc); > + > + return 0; > +} > + > +static int __maybe_unused rk_nfc_suspend(struct device *dev) > +{ > + struct rk_nfc *nfc = dev_get_drvdata(dev); > + > + rk_nfc_disable_clks(nfc); > + > + return 0; > +} > + > +static int __maybe_unused rk_nfc_resume(struct device *dev) > +{ > + struct rk_nfc *nfc = dev_get_drvdata(dev); > + struct rk_nfc_nand_chip *rknand; > + struct nand_chip *chip; > + int ret; > + u32 i; > + > + ret = rk_nfc_enable_clks(dev, nfc); > + if (ret) > + return ret; > + > + /* Reset NAND chip if VCC was powered off. */ > + list_for_each_entry(rknand, &nfc->chips, node) { > + chip = &rknand->chip; > + for (i = 0; i < rknand->nsels; i++) > + nand_reset(chip, i); > + } > + > + return 0; > +} > + > +static const struct dev_pm_ops rk_nfc_pm_ops = { > + SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume) > +}; > + > +static struct platform_driver rk_nfc_driver = { > + .probe = rk_nfc_probe, > + .remove = rk_nfc_remove, > + .driver = { > + .name = "rockchip-nfc", > + .of_match_table = rk_nfc_id_table, > + .pm = &rk_nfc_pm_ops, > + }, > +}; > + > +module_platform_driver(rk_nfc_driver); > + > +MODULE_LICENSE("Dual MIT/GPL"); > +MODULE_AUTHOR("Yifeng Zhao "); > +MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver"); > +MODULE_ALIAS("platform:rockchip-nand-controller"); >