linux-kernel.vger.kernel.org archive mirror
 help / color / mirror / Atom feed
* [PATCH 0/2] mtd: nand: Add generic helpers check, match, maximize ECC settings
@ 2017-04-19  7:06 Masahiro Yamada
  2017-04-19  7:06 ` [PATCH 1/2] mtd: nand: add generic helpers to " Masahiro Yamada
  2017-04-19  7:06 ` [PATCH 2/2] mtd: nand: denali: show how to use generic helpers (do not apply) Masahiro Yamada
  0 siblings, 2 replies; 9+ messages in thread
From: Masahiro Yamada @ 2017-04-19  7:06 UTC (permalink / raw)
  To: linux-mtd
  Cc: Enrico Jorns, Artem Bityutskiy, Dinh Nguyen, Boris Brezillon,
	Marek Vasut, Graham Moore, David Woodhouse, Masami Hiramatsu,
	Chuanxiao Dong, Jassi Brar, Masahiro Yamada, devicetree,
	linux-kernel, Brian Norris, Richard Weinberger, Cyrille Pitchen,
	Rob Herring, Mark Rutland


This series is based on the discusson:
https://patchwork.kernel.org/patch/9653063/

Before sending the whole v4 series for the Denali driver,
here is my proposal.

1/2: add generic helpers to the NAND framework

2/2: is an example. Please see how those 3 helper functions
are used.  Please do not apply this.



Masahiro Yamada (2):
  mtd: nand: add generic helpers to check, match, maximize ECC settings
  mtd: nand: denali: show how to use generic helpers (do not apply)

 .../devicetree/bindings/mtd/denali-nand.txt        |   17 +
 drivers/mtd/nand/denali.c                          | 1693 +++++++++-----------
 drivers/mtd/nand/denali.h                          |  297 ++--
 drivers/mtd/nand/denali_dt.c                       |   29 +-
 drivers/mtd/nand/denali_pci.c                      |   11 +-
 drivers/mtd/nand/nand_base.c                       |  178 ++
 include/linux/mtd/nand.h                           |   31 +
 7 files changed, 1178 insertions(+), 1078 deletions(-)

-- 
2.7.4

^ permalink raw reply	[flat|nested] 9+ messages in thread

* [PATCH 1/2] mtd: nand: add generic helpers to check, match, maximize ECC settings
  2017-04-19  7:06 [PATCH 0/2] mtd: nand: Add generic helpers check, match, maximize ECC settings Masahiro Yamada
@ 2017-04-19  7:06 ` Masahiro Yamada
  2017-04-28 16:32   ` Boris Brezillon
  2017-04-19  7:06 ` [PATCH 2/2] mtd: nand: denali: show how to use generic helpers (do not apply) Masahiro Yamada
  1 sibling, 1 reply; 9+ messages in thread
From: Masahiro Yamada @ 2017-04-19  7:06 UTC (permalink / raw)
  To: linux-mtd
  Cc: Enrico Jorns, Artem Bityutskiy, Dinh Nguyen, Boris Brezillon,
	Marek Vasut, Graham Moore, David Woodhouse, Masami Hiramatsu,
	Chuanxiao Dong, Jassi Brar, Masahiro Yamada, linux-kernel,
	Brian Norris, Richard Weinberger, Cyrille Pitchen

Each driver has been responsible for:
  - Check if ECC setting specified (mostly by DT) is valid
  - Meet the chip's required ECC strength
  - Maximize the strength when NAND_ECC_MAXIMIZE flag is set

The logic can be generalized by factoring out driver-specific
parameters.  A driver provides:
  - Array of (step_size, strength) supported on the controller
  - A hook that calculates ECC bytes from the combination of
    (step_size, strength).

Then, this commit provides 3 helper functions:
nand_check_ecc_caps - Check if preset (step_size, strength) is valid
nand_try_to_match_ecc_req - Match the chip's requirement
nand_try_to_maximize_ecc - Maximize the ECC strength

These helpers will save duplicated code among drivers.

Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
---

 drivers/mtd/nand/nand_base.c | 178 +++++++++++++++++++++++++++++++++++++++++++
 include/linux/mtd/nand.h     |  31 ++++++++
 2 files changed, 209 insertions(+)

diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c
index 0670e13..ee43e5e 100644
--- a/drivers/mtd/nand/nand_base.c
+++ b/drivers/mtd/nand/nand_base.c
@@ -4539,6 +4539,184 @@ static int nand_set_ecc_soft_ops(struct mtd_info *mtd)
 	}
 }
 
+/**
+ * nand_check_ecc_caps - check if ECC step size and strength is supported
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @caps: ECC engine caps info structure
+ *
+ * When ECC step size and strength are set, check if the combination is really
+ * supported by the controller and fit within the chip's OOB.  On success,
+ * ECC bytes per step is set.
+ */
+int nand_check_ecc_caps(struct mtd_info *mtd, struct nand_chip *chip,
+			const struct nand_ecc_engine_caps *caps)
+{
+	const struct nand_ecc_setting *setting;
+	int preset_step = chip->ecc.size;
+	int preset_strength = chip->ecc.strength;
+	int ecc_bytes;
+
+	if (!preset_step || !preset_strength)
+		return -ENODATA;
+
+	for (setting = caps->ecc_settings; setting->step; setting++) {
+		if (setting->step != preset_step ||
+		    setting->strength != preset_strength)
+			continue;
+
+		ecc_bytes = caps->calc_ecc_bytes(setting);
+		if (WARN_ON_ONCE(ecc_bytes < 0))
+			continue;
+
+		if (ecc_bytes * mtd->writesize / setting->step >
+		    caps->avail_oobsize) {
+			pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
+			       setting->step, setting->strength);
+			return -ENOSPC;
+		}
+
+		chip->ecc.bytes = ecc_bytes;
+		return 0;
+	}
+
+	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
+	       preset_step, preset_strength);
+
+	return -ENOTSUPP;
+}
+
+/**
+ * nand_try_to_match_ecc_req - meet the chip's requirement with least ECC bytes
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @caps: ECC engine caps info structure
+ *
+ * If chip's ECC requirement is available, try to meet it with the least number
+ * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
+ * On success, the chosen ECC settings are set.
+ */
+int nand_try_to_match_ecc_req(struct mtd_info *mtd, struct nand_chip *chip,
+			      const struct nand_ecc_engine_caps *caps)
+{
+	const struct nand_ecc_setting *setting, *best_setting = NULL;
+	int req_step = chip->ecc_step_ds;
+	int req_strength = chip->ecc_strength_ds;
+	int req_corr, steps, ecc_bytes, ecc_bytes_total;
+	int best_ecc_bytes, best_ecc_bytes_total = INT_MAX;
+
+	/* No information provided by the NAND chip */
+	if (!req_step || !req_strength)
+		return -ENOTSUPP;
+
+	/* number of correctable bits the chip requires in a page */
+	req_corr = mtd->writesize / req_step * req_strength;
+
+	for (setting = caps->ecc_settings; setting->step; setting++) {
+		/* If chip->ecc.size is already set, respect it. */
+		if (chip->ecc.size && setting->step != chip->ecc.size)
+			continue;
+
+		/* If chip->ecc.strength is already set, respect it. */
+		if (chip->ecc.strength &&
+		    setting->strength != chip->ecc.strength)
+			continue;
+
+		/*
+		 * If the controller's step size is smaller than the chip's
+		 * requirement, comparison of the strength is not simple.
+		 */
+		if (setting->step < req_step)
+			continue;
+
+		steps = mtd->writesize / setting->step;
+
+		ecc_bytes = caps->calc_ecc_bytes(setting);
+		if (WARN_ON_ONCE(ecc_bytes < 0))
+			continue;
+		ecc_bytes_total = ecc_bytes * steps;
+
+		if (ecc_bytes_total > caps->avail_oobsize ||
+		    setting->strength * steps < req_corr)
+			continue;
+
+		/*
+		 * We assume the best is to meet the chip's requrement
+		 * with the least number of ECC bytes.
+		 */
+		if (ecc_bytes_total < best_ecc_bytes_total) {
+			best_ecc_bytes_total = ecc_bytes_total;
+			best_setting = setting;
+			best_ecc_bytes = ecc_bytes;
+		}
+	}
+
+	if (!best_setting)
+		return -ENOTSUPP;
+
+	chip->ecc.size = best_setting->step;
+	chip->ecc.strength = best_setting->strength;
+	chip->ecc.bytes = best_ecc_bytes;
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nand_try_to_match_ecc_req);
+
+/**
+ * nand_try_to_maximize_ecc - choose the max ECC strength available
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @caps: ECC engine caps info structure
+ *
+ * Choose the max ECC strength that is supported on the controller, and can fit
+ * within the chip's OOB.   * On success, the chosen ECC settings are set.
+ */
+int nand_try_to_maximize_ecc(struct mtd_info *mtd, struct nand_chip *chip,
+			     const struct nand_ecc_engine_caps *caps)
+{
+	const struct nand_ecc_setting *setting, *best_setting = NULL;
+	int steps, ecc_bytes, corr;
+	int best_corr = 0;
+	int best_ecc_bytes;
+
+	for (setting = caps->ecc_settings; setting->step; setting++) {
+		/* If chip->ecc.size is already set, respect it. */
+		if (chip->ecc.size && setting->step != chip->ecc.size)
+			continue;
+
+		steps = mtd->writesize / setting->step;
+		ecc_bytes = caps->calc_ecc_bytes(setting);
+		if (WARN_ON_ONCE(ecc_bytes < 0))
+			continue;
+
+		if (ecc_bytes * steps > caps->avail_oobsize)
+			continue;
+
+		corr = setting->strength * steps;
+
+		/*
+		 * If the number of correctable bits is the same,
+		 * bigger ecc_step has more reliability.
+		 */
+		if (corr > best_corr ||
+		    (corr == best_corr && setting->step > best_setting->step)) {
+			best_corr = corr;
+			best_setting = setting;
+			best_ecc_bytes = ecc_bytes;
+		}
+	}
+
+	if (!best_setting)
+		return -ENOTSUPP;
+
+	chip->ecc.size = best_setting->step;
+	chip->ecc.strength = best_setting->strength;
+	chip->ecc.bytes = best_ecc_bytes;
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nand_try_to_maximize_ecc);
+
 /*
  * Check if the chip configuration meet the datasheet requirements.
 
diff --git a/include/linux/mtd/nand.h b/include/linux/mtd/nand.h
index 2ae781e..394128f 100644
--- a/include/linux/mtd/nand.h
+++ b/include/linux/mtd/nand.h
@@ -486,6 +486,28 @@ static inline void nand_hw_control_init(struct nand_hw_control *nfc)
 }
 
 /**
+ * struct nand_ecc_setting - information of ECC step supported by ECC engine
+ * @step: data bytes per ECC step
+ * @bytes: ECC bytes per step
+ */
+struct nand_ecc_setting {
+	int step;
+	int strength;
+};
+
+/**
+ * struct nand_ecc_engine_caps - capability of ECC engine
+ * @ecc_settings: array of (step, strength) supported by this ECC engine
+ * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
+ * @avail_oobsize: OOB size that the ECC engine can use for ECC correction
+ */
+struct nand_ecc_engine_caps {
+	const struct nand_ecc_setting *ecc_settings;
+	int (*calc_ecc_bytes)(const struct nand_ecc_setting *ecc_setting);
+	int avail_oobsize;
+};
+
+/**
  * struct nand_ecc_ctrl - Control structure for ECC
  * @mode:	ECC mode
  * @algo:	ECC algorithm
@@ -1208,6 +1230,15 @@ int nand_check_erased_ecc_chunk(void *data, int datalen,
 				void *extraoob, int extraooblen,
 				int threshold);
 
+int nand_check_ecc_caps(struct mtd_info *mtd, struct nand_chip *chip,
+			const struct nand_ecc_engine_caps *caps);
+
+int nand_try_to_match_ecc_req(struct mtd_info *mtd, struct nand_chip *chip,
+			      const struct nand_ecc_engine_caps *caps);
+
+int nand_try_to_maximize_ecc(struct mtd_info *mtd, struct nand_chip *chip,
+			     const struct nand_ecc_engine_caps *caps);
+
 /* Default write_oob implementation */
 int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page);
 
-- 
2.7.4

^ permalink raw reply related	[flat|nested] 9+ messages in thread

* [PATCH 2/2] mtd: nand: denali: show how to use generic helpers (do not apply)
  2017-04-19  7:06 [PATCH 0/2] mtd: nand: Add generic helpers check, match, maximize ECC settings Masahiro Yamada
  2017-04-19  7:06 ` [PATCH 1/2] mtd: nand: add generic helpers to " Masahiro Yamada
@ 2017-04-19  7:06 ` Masahiro Yamada
  1 sibling, 0 replies; 9+ messages in thread
From: Masahiro Yamada @ 2017-04-19  7:06 UTC (permalink / raw)
  To: linux-mtd
  Cc: Enrico Jorns, Artem Bityutskiy, Dinh Nguyen, Boris Brezillon,
	Marek Vasut, Graham Moore, David Woodhouse, Masami Hiramatsu,
	Chuanxiao Dong, Jassi Brar, Masahiro Yamada, devicetree,
	linux-kernel, Brian Norris, Richard Weinberger, Cyrille Pitchen,
	Rob Herring, Mark Rutland

This patch shows how the previous commit is used in a driver.
Please do not apply this.

(This is applicable on linux next-20170418)

Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
---

 .../devicetree/bindings/mtd/denali-nand.txt        |   17 +
 drivers/mtd/nand/denali.c                          | 1693 +++++++++-----------
 drivers/mtd/nand/denali.h                          |  297 ++--
 drivers/mtd/nand/denali_dt.c                       |   29 +-
 drivers/mtd/nand/denali_pci.c                      |   11 +-
 5 files changed, 969 insertions(+), 1078 deletions(-)

diff --git a/Documentation/devicetree/bindings/mtd/denali-nand.txt b/Documentation/devicetree/bindings/mtd/denali-nand.txt
index e593bbe..0b08ea5 100644
--- a/Documentation/devicetree/bindings/mtd/denali-nand.txt
+++ b/Documentation/devicetree/bindings/mtd/denali-nand.txt
@@ -3,10 +3,27 @@
 Required properties:
   - compatible : should be one of the following:
       "altr,socfpga-denali-nand"            - for Altera SOCFPGA
+      "socionext,uniphier-denali-nand-v5a"  - for Socionext UniPhier (v5a)
+      "socionext,uniphier-denali-nand-v5b"  - for Socionext UniPhier (v5b)
   - reg : should contain registers location and length for data and reg.
   - reg-names: Should contain the reg names "nand_data" and "denali_reg"
   - interrupts : The interrupt number.
 
+Optional properties:
+  - nand-ecc-step-size: must be 512 or 1024.  If not specified, default to:
+      512   for "altr,socfpga-denali-nand"
+      1024  for "socionext,uniphier-denali-nand-v5a"
+      1024  for "socionext,uniphier-denali-nand-v5b"
+    see nand.txt for details.
+  - nand-ecc-strength: see nand.txt for details.  Available values are:
+      8, 15      for "altr,socfpga-denali-nand"
+      8, 16, 24  for "socionext,uniphier-denali-nand-v5a"
+      8, 16      for "socionext,uniphier-denali-nand-v5b"
+  - nand-ecc-maximize: see nand.txt for details
+
+Note:
+Either nand-ecc-strength or nand-ecc-maximize should be specified.
+
 The device tree may optionally contain sub-nodes describing partitions of the
 address space. See partition.txt for more detail.
 
diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c
index 16634df..15fefd9 100644
--- a/drivers/mtd/nand/denali.c
+++ b/drivers/mtd/nand/denali.c
@@ -23,52 +23,21 @@
 #include <linux/mutex.h>
 #include <linux/mtd/mtd.h>
 #include <linux/module.h>
+#include <linux/slab.h>
 
 #include "denali.h"
 
 MODULE_LICENSE("GPL");
 
-/*
- * We define a module parameter that allows the user to override
- * the hardware and decide what timing mode should be used.
- */
-#define NAND_DEFAULT_TIMINGS	-1
-
-static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
-module_param(onfi_timing_mode, int, S_IRUGO);
-MODULE_PARM_DESC(onfi_timing_mode,
-	   "Overrides default ONFI setting. -1 indicates use default timings");
-
 #define DENALI_NAND_NAME    "denali-nand"
 
 /*
- * We define a macro here that combines all interrupts this driver uses into
- * a single constant value, for convenience.
- */
-#define DENALI_IRQ_ALL	(INTR__DMA_CMD_COMP | \
-			INTR__ECC_TRANSACTION_DONE | \
-			INTR__ECC_ERR | \
-			INTR__PROGRAM_FAIL | \
-			INTR__LOAD_COMP | \
-			INTR__PROGRAM_COMP | \
-			INTR__TIME_OUT | \
-			INTR__ERASE_FAIL | \
-			INTR__RST_COMP | \
-			INTR__ERASE_COMP)
-
-/*
  * indicates whether or not the internal value for the flash bank is
  * valid or not
  */
 #define CHIP_SELECT_INVALID	-1
 
 /*
- * This macro divides two integers and rounds fractional values up
- * to the nearest integer value.
- */
-#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
-
-/*
  * this macro allows us to convert from an MTD structure to our own
  * device context (denali) structure.
  */
@@ -85,8 +54,7 @@ static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
 #define MAIN_ACCESS		0x42
 #define MAIN_SPARE_ACCESS	0x43
 
-#define DENALI_READ	0
-#define DENALI_WRITE	0x100
+#define DENALI_NR_BANKS		4
 
 /*
  * this is a helper macro that allows us to
@@ -94,13 +62,13 @@ static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
  */
 #define BANK(x) ((x) << 24)
 
-/* forward declarations */
-static void clear_interrupts(struct denali_nand_info *denali);
-static uint32_t wait_for_irq(struct denali_nand_info *denali,
-							uint32_t irq_mask);
-static void denali_irq_enable(struct denali_nand_info *denali,
-							uint32_t int_mask);
-static uint32_t read_interrupt_status(struct denali_nand_info *denali);
+/*
+ * The bus interface clock, clk_x, is phase aligned with the core clock.  The
+ * clk_x is an integral multiple N of the core clk.  The value N is configured
+ * at IP delivery time, and its available value is 4, 5, or 6.  We need to align
+ * to the largest value to make it work with any possible configuration.
+ */
+#define DENALI_CLK_X_MULT	6
 
 /*
  * Certain operations for the denali NAND controller use an indexed mode to
@@ -115,595 +83,244 @@ static void index_addr(struct denali_nand_info *denali,
 	iowrite32(data, denali->flash_mem + 0x10);
 }
 
-/* Perform an indexed read of the device */
-static void index_addr_read_data(struct denali_nand_info *denali,
-				 uint32_t address, uint32_t *pdata)
-{
-	iowrite32(address, denali->flash_mem);
-	*pdata = ioread32(denali->flash_mem + 0x10);
-}
-
 /*
- * We need to buffer some data for some of the NAND core routines.
- * The operations manage buffering that data.
+ * Use the configuration feature register to determine the maximum number of
+ * banks that the hardware supports.
  */
-static void reset_buf(struct denali_nand_info *denali)
-{
-	denali->buf.head = denali->buf.tail = 0;
-}
-
-static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
-{
-	denali->buf.buf[denali->buf.tail++] = byte;
-}
-
-/* reads the status of the device */
-static void read_status(struct denali_nand_info *denali)
+static void detect_max_banks(struct denali_nand_info *denali)
 {
-	uint32_t cmd;
+	uint32_t features = ioread32(denali->flash_reg + FEATURES);
 
-	/* initialize the data buffer to store status */
-	reset_buf(denali);
+	denali->max_banks = 1 << (features & FEATURES__N_BANKS);
 
-	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
-	if (cmd)
-		write_byte_to_buf(denali, NAND_STATUS_WP);
-	else
-		write_byte_to_buf(denali, 0);
+	/* the encoding changed from rev 5.0 to 5.1 */
+	if (denali->revision < 0x0501)
+		denali->max_banks <<= 1;
 }
 
-/* resets a specific device connected to the core */
-static void reset_bank(struct denali_nand_info *denali)
+static void denali_enable_irq(struct denali_nand_info *denali)
 {
-	uint32_t irq_status;
-	uint32_t irq_mask = INTR__RST_COMP | INTR__TIME_OUT;
-
-	clear_interrupts(denali);
-
-	iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
-
-	irq_status = wait_for_irq(denali, irq_mask);
+	int i;
 
-	if (irq_status & INTR__TIME_OUT)
-		dev_err(denali->dev, "reset bank failed.\n");
+	for (i = 0; i < DENALI_NR_BANKS; i++)
+		iowrite32(U32_MAX, denali->flash_reg + INTR_EN(i));
+	iowrite32(GLOBAL_INT_EN_FLAG, denali->flash_reg + GLOBAL_INT_ENABLE);
 }
 
-/* Reset the flash controller */
-static uint16_t denali_nand_reset(struct denali_nand_info *denali)
+static void denali_disable_irq(struct denali_nand_info *denali)
 {
 	int i;
 
-	for (i = 0; i < denali->max_banks; i++)
-		iowrite32(INTR__RST_COMP | INTR__TIME_OUT,
-		denali->flash_reg + INTR_STATUS(i));
-
-	for (i = 0; i < denali->max_banks; i++) {
-		iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
-		while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) &
-			(INTR__RST_COMP | INTR__TIME_OUT)))
-			cpu_relax();
-		if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
-			INTR__TIME_OUT)
-			dev_dbg(denali->dev,
-			"NAND Reset operation timed out on bank %d\n", i);
-	}
-
-	for (i = 0; i < denali->max_banks; i++)
-		iowrite32(INTR__RST_COMP | INTR__TIME_OUT,
-			  denali->flash_reg + INTR_STATUS(i));
-
-	return PASS;
+	for (i = 0; i < DENALI_NR_BANKS; i++)
+		iowrite32(0, denali->flash_reg + INTR_EN(i));
+	iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
 }
 
-/*
- * this routine calculates the ONFI timing values for a given mode and
- * programs the clocking register accordingly. The mode is determined by
- * the get_onfi_nand_para routine.
- */
-static void nand_onfi_timing_set(struct denali_nand_info *denali,
-								uint16_t mode)
+static void denali_clear_irq(struct denali_nand_info *denali,
+			     int bank, uint32_t irq_status)
 {
-	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
-	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
-	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
-	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
-	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
-	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
-	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
-	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
-	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
-	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
-	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
-	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
-
-	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
-	uint16_t dv_window = 0;
-	uint16_t en_lo, en_hi;
-	uint16_t acc_clks;
-	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
-
-	en_lo = CEIL_DIV(Trp[mode], CLK_X);
-	en_hi = CEIL_DIV(Treh[mode], CLK_X);
-#if ONFI_BLOOM_TIME
-	if ((en_hi * CLK_X) < (Treh[mode] + 2))
-		en_hi++;
-#endif
-
-	if ((en_lo + en_hi) * CLK_X < Trc[mode])
-		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
-
-	if ((en_lo + en_hi) < CLK_MULTI)
-		en_lo += CLK_MULTI - en_lo - en_hi;
-
-	while (dv_window < 8) {
-		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
-
-		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
-
-		data_invalid = data_invalid_rhoh < data_invalid_rloh ?
-					data_invalid_rhoh : data_invalid_rloh;
-
-		dv_window = data_invalid - Trea[mode];
-
-		if (dv_window < 8)
-			en_lo++;
-	}
-
-	acc_clks = CEIL_DIV(Trea[mode], CLK_X);
-
-	while (acc_clks * CLK_X - Trea[mode] < 3)
-		acc_clks++;
-
-	if (data_invalid - acc_clks * CLK_X < 2)
-		dev_warn(denali->dev, "%s, Line %d: Warning!\n",
-			 __FILE__, __LINE__);
-
-	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
-	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
-	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
-	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
-	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
-	if (cs_cnt == 0)
-		cs_cnt = 1;
-
-	if (Tcea[mode]) {
-		while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode])
-			cs_cnt++;
-	}
-
-#if MODE5_WORKAROUND
-	if (mode == 5)
-		acc_clks = 5;
-#endif
-
-	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
-	if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 &&
-		ioread32(denali->flash_reg + DEVICE_ID) == 0x88)
-		acc_clks = 6;
-
-	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
-	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
-	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
-	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
-	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
-	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
-	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
-	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
+	/* write one to clear bits */
+	iowrite32(irq_status, denali->flash_reg + INTR_STATUS(bank));
 }
 
-/* queries the NAND device to see what ONFI modes it supports. */
-static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
+static void denali_clear_irq_all(struct denali_nand_info *denali)
 {
 	int i;
 
-	/*
-	 * we needn't to do a reset here because driver has already
-	 * reset all the banks before
-	 */
-	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
-		ONFI_TIMING_MODE__VALUE))
-		return FAIL;
-
-	for (i = 5; i > 0; i--) {
-		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
-			(0x01 << i))
-			break;
-	}
-
-	nand_onfi_timing_set(denali, i);
-
-	/*
-	 * By now, all the ONFI devices we know support the page cache
-	 * rw feature. So here we enable the pipeline_rw_ahead feature
-	 */
-	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
-	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */
-
-	return PASS;
+	for (i = 0; i < DENALI_NR_BANKS; i++)
+		denali_clear_irq(denali, i, U32_MAX);
 }
 
-static void get_samsung_nand_para(struct denali_nand_info *denali,
-							uint8_t device_id)
+static irqreturn_t denali_isr(int irq, void *dev_id)
 {
-	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
-		/* Set timing register values according to datasheet */
-		iowrite32(5, denali->flash_reg + ACC_CLKS);
-		iowrite32(20, denali->flash_reg + RE_2_WE);
-		iowrite32(12, denali->flash_reg + WE_2_RE);
-		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
-		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
-		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
-		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
-	}
-}
+	struct denali_nand_info *denali = dev_id;
+	irqreturn_t ret = IRQ_NONE;
+	uint32_t irq_status;
+	int i;
 
-static void get_toshiba_nand_para(struct denali_nand_info *denali)
-{
-	/*
-	 * Workaround to fix a controller bug which reports a wrong
-	 * spare area size for some kind of Toshiba NAND device
-	 */
-	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
-		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64))
-		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
-}
+	spin_lock(&denali->irq_lock);
 
-static void get_hynix_nand_para(struct denali_nand_info *denali,
-							uint8_t device_id)
-{
-	switch (device_id) {
-	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
-	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
-		iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
-		iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
-		iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
-		iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
-		break;
-	default:
-		dev_warn(denali->dev,
-			 "Unknown Hynix NAND (Device ID: 0x%x).\n"
-			 "Will use default parameter values instead.\n",
-			 device_id);
-	}
-}
+	for (i = 0; i < DENALI_NR_BANKS; i++) {
+		irq_status = ioread32(denali->flash_reg + INTR_STATUS(i));
+		if (irq_status)
+			ret = IRQ_HANDLED;
 
-/*
- * determines how many NAND chips are connected to the controller. Note for
- * Intel CE4100 devices we don't support more than one device.
- */
-static void find_valid_banks(struct denali_nand_info *denali)
-{
-	uint32_t id[denali->max_banks];
-	int i;
+		denali_clear_irq(denali, i, irq_status);
 
-	denali->total_used_banks = 1;
-	for (i = 0; i < denali->max_banks; i++) {
-		index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
-		index_addr(denali, MODE_11 | (i << 24) | 1, 0);
-		index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
+		if (i != denali->flash_bank)
+			continue;
 
-		dev_dbg(denali->dev,
-			"Return 1st ID for bank[%d]: %x\n", i, id[i]);
+		denali->irq_status |= irq_status;
 
-		if (i == 0) {
-			if (!(id[i] & 0x0ff))
-				break; /* WTF? */
-		} else {
-			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
-				denali->total_used_banks++;
-			else
-				break;
-		}
-	}
-
-	if (denali->platform == INTEL_CE4100) {
-		/*
-		 * Platform limitations of the CE4100 device limit
-		 * users to a single chip solution for NAND.
-		 * Multichip support is not enabled.
-		 */
-		if (denali->total_used_banks != 1) {
-			dev_err(denali->dev,
-				"Sorry, Intel CE4100 only supports a single NAND device.\n");
-			BUG();
-		}
+		if (denali->irq_status & denali->irq_mask)
+			complete(&denali->complete);
 	}
-	dev_dbg(denali->dev,
-		"denali->total_used_banks: %d\n", denali->total_used_banks);
-}
-
-/*
- * Use the configuration feature register to determine the maximum number of
- * banks that the hardware supports.
- */
-static void detect_max_banks(struct denali_nand_info *denali)
-{
-	uint32_t features = ioread32(denali->flash_reg + FEATURES);
 
-	denali->max_banks = 1 << (features & FEATURES__N_BANKS);
+	spin_unlock(&denali->irq_lock);
 
-	/* the encoding changed from rev 5.0 to 5.1 */
-	if (denali->revision < 0x0501)
-		denali->max_banks <<= 1;
+	return ret;
 }
 
-static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
+static void denali_reset_irq(struct denali_nand_info *denali)
 {
-	uint16_t status = PASS;
-	uint32_t id_bytes[8], addr;
-	uint8_t maf_id, device_id;
-	int i;
-
-	/*
-	 * Use read id method to get device ID and other params.
-	 * For some NAND chips, controller can't report the correct
-	 * device ID by reading from DEVICE_ID register
-	 */
-	addr = MODE_11 | BANK(denali->flash_bank);
-	index_addr(denali, addr | 0, 0x90);
-	index_addr(denali, addr | 1, 0);
-	for (i = 0; i < 8; i++)
-		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
-	maf_id = id_bytes[0];
-	device_id = id_bytes[1];
-
-	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
-		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
-		if (FAIL == get_onfi_nand_para(denali))
-			return FAIL;
-	} else if (maf_id == 0xEC) { /* Samsung NAND */
-		get_samsung_nand_para(denali, device_id);
-	} else if (maf_id == 0x98) { /* Toshiba NAND */
-		get_toshiba_nand_para(denali);
-	} else if (maf_id == 0xAD) { /* Hynix NAND */
-		get_hynix_nand_para(denali, device_id);
-	}
-
-	dev_info(denali->dev,
-			"Dump timing register values:\n"
-			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
-			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
-			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
-			ioread32(denali->flash_reg + ACC_CLKS),
-			ioread32(denali->flash_reg + RE_2_WE),
-			ioread32(denali->flash_reg + RE_2_RE),
-			ioread32(denali->flash_reg + WE_2_RE),
-			ioread32(denali->flash_reg + ADDR_2_DATA),
-			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
-			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
-			ioread32(denali->flash_reg + CS_SETUP_CNT));
-
-	find_valid_banks(denali);
-
-	/*
-	 * If the user specified to override the default timings
-	 * with a specific ONFI mode, we apply those changes here.
-	 */
-	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
-		nand_onfi_timing_set(denali, onfi_timing_mode);
+	unsigned long flags;
 
-	return status;
+	spin_lock_irqsave(&denali->irq_lock, flags);
+	denali->irq_status = 0;
+	denali->irq_mask = 0;
+	spin_unlock_irqrestore(&denali->irq_lock, flags);
 }
 
-static void denali_set_intr_modes(struct denali_nand_info *denali,
-					uint16_t INT_ENABLE)
+static uint32_t denali_wait_for_irq(struct denali_nand_info *denali,
+				    uint32_t irq_mask)
 {
-	if (INT_ENABLE)
-		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
-	else
-		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
-}
+	unsigned long time_left, flags;
+	uint32_t irq_status;
 
-/*
- * validation function to verify that the controlling software is making
- * a valid request
- */
-static inline bool is_flash_bank_valid(int flash_bank)
-{
-	return flash_bank >= 0 && flash_bank < 4;
-}
+	spin_lock_irqsave(&denali->irq_lock, flags);
 
-static void denali_irq_init(struct denali_nand_info *denali)
-{
-	uint32_t int_mask;
-	int i;
+	irq_status = denali->irq_status;
 
-	/* Disable global interrupts */
-	denali_set_intr_modes(denali, false);
+	if (irq_mask & irq_status) {
+		spin_unlock_irqrestore(&denali->irq_lock, flags);
+		return irq_status;
+	}
 
-	int_mask = DENALI_IRQ_ALL;
+	denali->irq_mask = irq_mask;
+	reinit_completion(&denali->complete);
+	spin_unlock_irqrestore(&denali->irq_lock, flags);
 
-	/* Clear all status bits */
-	for (i = 0; i < denali->max_banks; ++i)
-		iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
+	time_left = wait_for_completion_timeout(&denali->complete,
+						msecs_to_jiffies(1000));
+	if (!time_left) {
+		dev_err(denali->dev, "timeout while waiting for irq 0x%x\n",
+			denali->irq_mask);
+		return 0;
+	}
 
-	denali_irq_enable(denali, int_mask);
+	return denali->irq_status;
 }
 
-static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
+static uint32_t denali_check_irq(struct denali_nand_info *denali)
 {
-	denali_set_intr_modes(denali, false);
-}
+	unsigned long flags;
+	uint32_t irq_status;
 
-static void denali_irq_enable(struct denali_nand_info *denali,
-							uint32_t int_mask)
-{
-	int i;
+	spin_lock_irqsave(&denali->irq_lock, flags);
+	irq_status = denali->irq_status;
+	spin_unlock_irqrestore(&denali->irq_lock, flags);
 
-	for (i = 0; i < denali->max_banks; ++i)
-		iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
+	return irq_status;
 }
 
 /*
- * This function only returns when an interrupt that this driver cares about
- * occurs. This is to reduce the overhead of servicing interrupts
+ * This helper function setups the registers for ECC and whether or not
+ * the spare area will be transferred.
  */
-static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
+static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
+				bool transfer_spare)
 {
-	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
+	int ecc_en_flag, transfer_spare_flag;
+
+	/* set ECC, transfer spare bits if needed */
+	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
+	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
+
+	/* Enable spare area/ECC per user's request. */
+	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
+	iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
 }
 
-/* Interrupts are cleared by writing a 1 to the appropriate status bit */
-static inline void clear_interrupt(struct denali_nand_info *denali,
-							uint32_t irq_mask)
+static uint8_t denali_read_byte(struct mtd_info *mtd)
 {
-	uint32_t intr_status_reg;
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
 
-	intr_status_reg = INTR_STATUS(denali->flash_bank);
+	iowrite32(MODE_11 | BANK(denali->flash_bank) | 2, denali->flash_mem);
 
-	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
+	return ioread32(denali->flash_mem + 0x10);
 }
 
-static void clear_interrupts(struct denali_nand_info *denali)
+static void denali_write_byte(struct mtd_info *mtd, uint8_t byte)
 {
-	uint32_t status;
-
-	spin_lock_irq(&denali->irq_lock);
-
-	status = read_interrupt_status(denali);
-	clear_interrupt(denali, status);
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
 
-	denali->irq_status = 0x0;
-	spin_unlock_irq(&denali->irq_lock);
+	index_addr(denali, MODE_11 | BANK(denali->flash_bank) | 2, byte);
 }
 
-static uint32_t read_interrupt_status(struct denali_nand_info *denali)
+static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 {
-	uint32_t intr_status_reg;
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	int i;
 
-	intr_status_reg = INTR_STATUS(denali->flash_bank);
+	iowrite32(MODE_11 | BANK(denali->flash_bank) | 2, denali->flash_mem);
 
-	return ioread32(denali->flash_reg + intr_status_reg);
+	for (i = 0; i < len; i++)
+		buf[i] = ioread32(denali->flash_mem + 0x10);
 }
 
-/*
- * This is the interrupt service routine. It handles all interrupts
- * sent to this device. Note that on CE4100, this is a shared interrupt.
- */
-static irqreturn_t denali_isr(int irq, void *dev_id)
+static void denali_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 {
-	struct denali_nand_info *denali = dev_id;
-	uint32_t irq_status;
-	irqreturn_t result = IRQ_NONE;
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	int i;
 
-	spin_lock(&denali->irq_lock);
+	iowrite32(MODE_11 | BANK(denali->flash_bank) | 2, denali->flash_mem);
 
-	/* check to see if a valid NAND chip has been selected. */
-	if (is_flash_bank_valid(denali->flash_bank)) {
-		/*
-		 * check to see if controller generated the interrupt,
-		 * since this is a shared interrupt
-		 */
-		irq_status = denali_irq_detected(denali);
-		if (irq_status != 0) {
-			/* handle interrupt */
-			/* first acknowledge it */
-			clear_interrupt(denali, irq_status);
-			/*
-			 * store the status in the device context for someone
-			 * to read
-			 */
-			denali->irq_status |= irq_status;
-			/* notify anyone who cares that it happened */
-			complete(&denali->complete);
-			/* tell the OS that we've handled this */
-			result = IRQ_HANDLED;
-		}
-	}
-	spin_unlock(&denali->irq_lock);
-	return result;
+	for (i = 0; i < len; i++)
+		iowrite32(buf[i], denali->flash_mem + 0x10);
 }
 
-static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
+static void denali_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
 {
-	unsigned long comp_res;
-	uint32_t intr_status;
-	unsigned long timeout = msecs_to_jiffies(1000);
-
-	do {
-		comp_res =
-			wait_for_completion_timeout(&denali->complete, timeout);
-		spin_lock_irq(&denali->irq_lock);
-		intr_status = denali->irq_status;
-
-		if (intr_status & irq_mask) {
-			denali->irq_status &= ~irq_mask;
-			spin_unlock_irq(&denali->irq_lock);
-			/* our interrupt was detected */
-			break;
-		}
-
-		/*
-		 * these are not the interrupts you are looking for -
-		 * need to wait again
-		 */
-		spin_unlock_irq(&denali->irq_lock);
-	} while (comp_res != 0);
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	uint16_t *buf16 = (uint16_t *)buf;
+	int i;
 
-	if (comp_res == 0) {
-		/* timeout */
-		pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
-				intr_status, irq_mask);
+	iowrite32(MODE_11 | BANK(denali->flash_bank) | 2, denali->flash_mem);
 
-		intr_status = 0;
-	}
-	return intr_status;
+	for (i = 0; i < len / 2; i++)
+		buf16[i] = ioread32(denali->flash_mem + 0x10);
 }
 
-/*
- * This helper function setups the registers for ECC and whether or not
- * the spare area will be transferred.
- */
-static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
-				bool transfer_spare)
+static void denali_write_buf16(struct mtd_info *mtd, const uint8_t *buf,
+			       int len)
 {
-	int ecc_en_flag, transfer_spare_flag;
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	const uint16_t *buf16 = (const uint16_t *)buf;
+	int i;
 
-	/* set ECC, transfer spare bits if needed */
-	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
-	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
+	iowrite32(MODE_11 | BANK(denali->flash_bank) | 2, denali->flash_mem);
 
-	/* Enable spare area/ECC per user's request. */
-	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
-	iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
+	for (i = 0; i < len / 2; i++)
+		iowrite32(buf16[i], denali->flash_mem + 0x10);
 }
 
-/*
- * sends a pipeline command operation to the controller. See the Denali NAND
- * controller's user guide for more information (section 4.2.3.6).
- */
-static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
-				    bool ecc_en, bool transfer_spare,
-				    int access_type, int op)
+static void denali_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
 {
-	int status = PASS;
-	uint32_t addr, cmd;
-
-	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	uint32_t type;
 
-	clear_interrupts(denali);
+	if (ctrl & NAND_CLE)
+		type = 0;
+	else if (ctrl & NAND_ALE)
+		type = 1;
+	else
+		return;
 
-	addr = BANK(denali->flash_bank) | denali->page;
+	/*
+	 * Some commands are followed by chip->dev_ready or chip->waitfunc.
+	 * irq_status must be cleared here to catch the R/B# interrupt later.
+	 */
+	if (ctrl & NAND_CTRL_CHANGE)
+		denali_reset_irq(denali);
 
-	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
-		cmd = MODE_01 | addr;
-		iowrite32(cmd, denali->flash_mem);
-	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
-		/* read spare area */
-		cmd = MODE_10 | addr;
-		index_addr(denali, cmd, access_type);
+	index_addr(denali, MODE_11 | BANK(denali->flash_bank) | type, dat);
+}
 
-		cmd = MODE_01 | addr;
-		iowrite32(cmd, denali->flash_mem);
-	} else if (op == DENALI_READ) {
-		/* setup page read request for access type */
-		cmd = MODE_10 | addr;
-		index_addr(denali, cmd, access_type);
+static int denali_dev_ready(struct mtd_info *mtd)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
 
-		cmd = MODE_01 | addr;
-		iowrite32(cmd, denali->flash_mem);
-	}
-	return status;
+	return !!(denali_check_irq(denali) & INTR__INT_ACT);
 }
 
 /* helper function that simply writes a buffer to the flash */
@@ -748,71 +365,6 @@ static int read_data_from_flash_mem(struct denali_nand_info *denali,
 	return i * 4; /* intent is to return the number of bytes read */
 }
 
-/* writes OOB data to the device */
-static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
-{
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	uint32_t irq_status;
-	uint32_t irq_mask = INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL;
-	int status = 0;
-
-	denali->page = page;
-
-	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
-							DENALI_WRITE) == PASS) {
-		write_data_to_flash_mem(denali, buf, mtd->oobsize);
-
-		/* wait for operation to complete */
-		irq_status = wait_for_irq(denali, irq_mask);
-
-		if (irq_status == 0) {
-			dev_err(denali->dev, "OOB write failed\n");
-			status = -EIO;
-		}
-	} else {
-		dev_err(denali->dev, "unable to send pipeline command\n");
-		status = -EIO;
-	}
-	return status;
-}
-
-/* reads OOB data from the device */
-static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
-{
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	uint32_t irq_mask = INTR__LOAD_COMP;
-	uint32_t irq_status, addr, cmd;
-
-	denali->page = page;
-
-	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
-							DENALI_READ) == PASS) {
-		read_data_from_flash_mem(denali, buf, mtd->oobsize);
-
-		/*
-		 * wait for command to be accepted
-		 * can always use status0 bit as the
-		 * mask is identical for each bank.
-		 */
-		irq_status = wait_for_irq(denali, irq_mask);
-
-		if (irq_status == 0)
-			dev_err(denali->dev, "page on OOB timeout %d\n",
-					denali->page);
-
-		/*
-		 * We set the device back to MAIN_ACCESS here as I observed
-		 * instability with the controller if you do a block erase
-		 * and the last transaction was a SPARE_ACCESS. Block erase
-		 * is reliable (according to the MTD test infrastructure)
-		 * if you are in MAIN_ACCESS.
-		 */
-		addr = BANK(denali->flash_bank) | denali->page;
-		cmd = MODE_10 | addr;
-		index_addr(denali, cmd, MAIN_ACCESS);
-	}
-}
-
 static int denali_check_erased_page(struct mtd_info *mtd,
 				    struct nand_chip *chip, uint8_t *buf,
 				    unsigned long uncor_ecc_flags,
@@ -886,8 +438,6 @@ static int denali_hw_ecc_fixup(struct mtd_info *mtd,
 	return max_bitflips;
 }
 
-#define ECC_SECTOR_SIZE 512
-
 #define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
 #define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
 #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
@@ -899,15 +449,16 @@ static int denali_sw_ecc_fixup(struct mtd_info *mtd,
 			       struct denali_nand_info *denali,
 			       unsigned long *uncor_ecc_flags, uint8_t *buf)
 {
+	unsigned int ecc_size = denali->nand.ecc.size;
 	unsigned int bitflips = 0;
 	unsigned int max_bitflips = 0;
 	uint32_t err_addr, err_cor_info;
 	unsigned int err_byte, err_sector, err_device;
 	uint8_t err_cor_value;
 	unsigned int prev_sector = 0;
+	uint32_t irq_status;
 
-	/* read the ECC errors. we'll ignore them for now */
-	denali_set_intr_modes(denali, false);
+	denali_reset_irq(denali);
 
 	do {
 		err_addr = ioread32(denali->flash_reg + ECC_ERROR_ADDRESS);
@@ -928,9 +479,9 @@ static int denali_sw_ecc_fixup(struct mtd_info *mtd,
 			 * an erased sector.
 			 */
 			*uncor_ecc_flags |= BIT(err_sector);
-		} else if (err_byte < ECC_SECTOR_SIZE) {
+		} else if (err_byte < ecc_size) {
 			/*
-			 * If err_byte is larger than ECC_SECTOR_SIZE, means error
+			 * If err_byte is larger than ecc_size, means error
 			 * happened in OOB, so we ignore it. It's no need for
 			 * us to correct it err_device is represented the NAND
 			 * error bits are happened in if there are more than
@@ -939,7 +490,7 @@ static int denali_sw_ecc_fixup(struct mtd_info *mtd,
 			int offset;
 			unsigned int flips_in_byte;
 
-			offset = (err_sector * ECC_SECTOR_SIZE + err_byte) *
+			offset = (err_sector * ecc_size + err_byte) *
 						denali->devnum + err_device;
 
 			/* correct the ECC error */
@@ -959,10 +510,9 @@ static int denali_sw_ecc_fixup(struct mtd_info *mtd,
 	 * ECC_TRANSACTION_DONE interrupt, so here just wait for
 	 * a while for this interrupt
 	 */
-	while (!(read_interrupt_status(denali) & INTR__ECC_TRANSACTION_DONE))
-		cpu_relax();
-	clear_interrupts(denali);
-	denali_set_intr_modes(denali, true);
+	irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE);
+	if (!(irq_status & INTR__ECC_TRANSACTION_DONE))
+		return -EIO;
 
 	return max_bitflips;
 }
@@ -974,13 +524,13 @@ static void denali_enable_dma(struct denali_nand_info *denali, bool en)
 	ioread32(denali->flash_reg + DMA_ENABLE);
 }
 
-static void denali_setup_dma64(struct denali_nand_info *denali, int op)
+static void denali_setup_dma64(struct denali_nand_info *denali,
+			       dma_addr_t dma_addr, int page, int write)
 {
 	uint32_t mode;
 	const int page_count = 1;
-	uint64_t addr = denali->buf.dma_buf;
 
-	mode = MODE_10 | BANK(denali->flash_bank) | denali->page;
+	mode = MODE_10 | BANK(denali->flash_bank) | page;
 
 	/* DMA is a three step process */
 
@@ -988,191 +538,352 @@ static void denali_setup_dma64(struct denali_nand_info *denali, int op)
 	 * 1. setup transfer type, interrupt when complete,
 	 *    burst len = 64 bytes, the number of pages
 	 */
-	index_addr(denali, mode, 0x01002000 | (64 << 16) | op | page_count);
+	index_addr(denali, mode,
+		   0x01002000 | (64 << 16) | (write << 8) | page_count);
 
 	/* 2. set memory low address */
-	index_addr(denali, mode, addr);
+	index_addr(denali, mode, dma_addr);
 
 	/* 3. set memory high address */
-	index_addr(denali, mode, addr >> 32);
+	index_addr(denali, mode, (uint64_t)dma_addr >> 32);
 }
 
-static void denali_setup_dma32(struct denali_nand_info *denali, int op)
+static void denali_setup_dma32(struct denali_nand_info *denali,
+			       dma_addr_t dma_addr, int page, int write)
 {
 	uint32_t mode;
 	const int page_count = 1;
-	uint32_t addr = denali->buf.dma_buf;
 
 	mode = MODE_10 | BANK(denali->flash_bank);
 
 	/* DMA is a four step process */
 
 	/* 1. setup transfer type and # of pages */
-	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
+	index_addr(denali, mode | page, 0x2000 | (write << 8) | page_count);
 
 	/* 2. set memory high address bits 23:8 */
-	index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);
+	index_addr(denali, mode | ((dma_addr >> 16) << 8), 0x2200);
 
 	/* 3. set memory low address bits 23:8 */
-	index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);
+	index_addr(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300);
 
 	/* 4. interrupt when complete, burst len = 64 bytes */
 	index_addr(denali, mode | 0x14000, 0x2400);
 }
 
-static void denali_setup_dma(struct denali_nand_info *denali, int op)
+static void denali_setup_dma(struct denali_nand_info *denali,
+			     dma_addr_t dma_addr, int page, int write)
 {
 	if (denali->caps & DENALI_CAP_DMA_64BIT)
-		denali_setup_dma64(denali, op);
+		denali_setup_dma64(denali, dma_addr, page, write);
 	else
-		denali_setup_dma32(denali, op);
+		denali_setup_dma32(denali, dma_addr, page, write);
 }
 
-/*
- * writes a page. user specifies type, and this function handles the
- * configuration details.
- */
-static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
-			const uint8_t *buf, bool raw_xfer)
+static int denali_pio_read(struct denali_nand_info *denali, void *buf,
+			   size_t size, int page, int raw)
 {
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	dma_addr_t addr = denali->buf.dma_buf;
-	size_t size = mtd->writesize + mtd->oobsize;
+	uint32_t addr = BANK(denali->flash_bank) | page;
+	uint32_t irq_status, ecc_err_mask;
+
+	/* setup page read request for access type */
+	index_addr(denali, MODE_10 | addr,
+		   raw ? MAIN_SPARE_ACCESS : MAIN_ACCESS);
+
+	iowrite32(MODE_01 | addr, denali->flash_mem);
+
+	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
+		ecc_err_mask = INTR__ECC_UNCOR_ERR;
+	else
+		ecc_err_mask = INTR__ECC_ERR;
+
+	denali_reset_irq(denali);
+
+	read_data_from_flash_mem(denali, buf, size);
+
+	irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC);
+	if (!(irq_status & INTR__PAGE_XFER_INC))
+		return -EIO;
+
+	if (irq_status & INTR__ERASED_PAGE)
+		memset(buf, 0xff, size);
+
+	return irq_status & ecc_err_mask ? -EBADMSG : 0;
+}
+
+static int denali_pio_write(struct denali_nand_info *denali,
+			    const void *buf, size_t size, int page, int raw)
+{
+	uint32_t addr = BANK(denali->flash_bank) | page;
 	uint32_t irq_status;
-	uint32_t irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
 
-	/*
-	 * if it is a raw xfer, we want to disable ecc and send the spare area.
-	 * !raw_xfer - enable ecc
-	 * raw_xfer - transfer spare
-	 */
-	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
+	/* setup page read request for access type */
+	index_addr(denali, MODE_10 | addr,
+		   raw ? MAIN_SPARE_ACCESS : MAIN_ACCESS);
+
+	iowrite32(MODE_01 | addr, denali->flash_mem);
+
+	denali_reset_irq(denali);
+
+	write_data_to_flash_mem(denali, buf, size);
+
+	irq_status = denali_wait_for_irq(denali,
+				INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL);
+	if (!(irq_status & INTR__PROGRAM_COMP))
+		return -EIO;
+
+	return 0;
+}
 
-	/* copy buffer into DMA buffer */
-	memcpy(denali->buf.buf, buf, mtd->writesize);
+static int denali_pio_xfer(struct denali_nand_info *denali, void *buf,
+			   size_t size, int page, int raw, int write)
+{
+	if (write)
+		return denali_pio_write(denali, buf, size, page, raw);
+	else
+		return denali_pio_read(denali, buf, size, page, raw);
+}
 
-	if (raw_xfer) {
-		/* transfer the data to the spare area */
-		memcpy(denali->buf.buf + mtd->writesize,
-			chip->oob_poi,
-			mtd->oobsize);
+static int denali_dma_xfer(struct denali_nand_info *denali, void *buf,
+			   size_t size, int page, int raw, int write)
+{
+	dma_addr_t dma_addr;
+	uint32_t irq_mask, irq_status, ecc_err_mask;
+	enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
+	int ret = 0;
+
+	dma_addr = dma_map_single(denali->dev, buf, size, dir);
+	if (dma_mapping_error(denali->dev, dma_addr)) {
+		dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n");
+		return denali_pio_xfer(denali, buf, size, page, raw, write);
 	}
 
-	dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
+	if (write) {
+		irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
+		ecc_err_mask = 0;
+	} else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) {
+		irq_mask = INTR__DMA_CMD_COMP;
+		ecc_err_mask = INTR__ECC_UNCOR_ERR;
+	} else {
+		irq_mask = INTR__DMA_CMD_COMP;
+		ecc_err_mask = INTR__ECC_ERR;
+	}
 
-	clear_interrupts(denali);
 	denali_enable_dma(denali, true);
 
-	denali_setup_dma(denali, DENALI_WRITE);
+	denali_reset_irq(denali);
+	denali_setup_dma(denali, dma_addr, page, write);
 
 	/* wait for operation to complete */
-	irq_status = wait_for_irq(denali, irq_mask);
-
-	if (irq_status == 0) {
-		dev_err(denali->dev, "timeout on write_page (type = %d)\n",
-			raw_xfer);
-		denali->status = NAND_STATUS_FAIL;
-	}
+	irq_status = denali_wait_for_irq(denali, irq_mask);
+	if (!(irq_status & INTR__DMA_CMD_COMP))
+		ret = -EIO;
+	else if (irq_status & ecc_err_mask)
+		ret = -EBADMSG;
 
 	denali_enable_dma(denali, false);
-	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
+	dma_unmap_single(denali->dev, dma_addr, size, dir);
 
-	return 0;
-}
+	if (irq_status & INTR__ERASED_PAGE)
+		memset(buf, 0xff, size);
 
-/* NAND core entry points */
+	return ret;
+}
 
-/*
- * this is the callback that the NAND core calls to write a page. Since
- * writing a page with ECC or without is similar, all the work is done
- * by write_page above.
- */
-static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
-				const uint8_t *buf, int oob_required, int page)
+static int denali_data_xfer(struct denali_nand_info *denali, void *buf,
+			    size_t size, int page, int raw, int write)
 {
-	/*
-	 * for regular page writes, we let HW handle all the ECC
-	 * data written to the device.
-	 */
-	return write_page(mtd, chip, buf, false);
+	setup_ecc_for_xfer(denali, !raw, raw);
+
+	if (denali->dma_avail)
+		return denali_dma_xfer(denali, buf, size, page, raw, write);
+	else
+		return denali_pio_xfer(denali, buf, size, page, raw, write);
 }
 
-/*
- * This is the callback that the NAND core calls to write a page without ECC.
- * raw access is similar to ECC page writes, so all the work is done in the
- * write_page() function above.
- */
-static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
-				 const uint8_t *buf, int oob_required,
-				 int page)
+static void denali_oob_xfer(struct mtd_info *mtd, struct nand_chip *chip,
+			    int page, int write)
 {
-	/*
-	 * for raw page writes, we want to disable ECC and simply write
-	 * whatever data is in the buffer.
-	 */
-	return write_page(mtd, chip, buf, true);
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	unsigned int start_cmd = write ? NAND_CMD_SEQIN : NAND_CMD_READ0;
+	unsigned int rnd_cmd = write ? NAND_CMD_RNDIN : NAND_CMD_RNDOUT;
+	int writesize = mtd->writesize;
+	int oobsize = mtd->oobsize;
+	uint8_t *bufpoi = chip->oob_poi;
+	int ecc_steps = chip->ecc.steps;
+	int ecc_size = chip->ecc.size;
+	int ecc_bytes = chip->ecc.bytes;
+	int bbm_skip = denali->bbtskipbytes;
+	size_t size = writesize + oobsize;
+	int i, pos, len;
+
+	/* BBM at the beginning of the OOB area */
+	chip->cmdfunc(mtd, start_cmd, writesize, page);
+	if (write)
+		chip->write_buf(mtd, bufpoi, bbm_skip);
+	else
+		chip->read_buf(mtd, bufpoi, bbm_skip);
+	bufpoi += bbm_skip;
+
+	/* OOB ECC */
+	for (i = 0; i < ecc_steps; i++) {
+		pos = ecc_size + i * (ecc_size + ecc_bytes);
+		len = ecc_bytes;
+
+		if (pos >= writesize)
+			pos += bbm_skip;
+		else if (pos + len > writesize)
+			len = writesize - pos;
+
+		chip->cmdfunc(mtd, rnd_cmd, pos, -1);
+		if (write)
+			chip->write_buf(mtd, bufpoi, len);
+		else
+			chip->read_buf(mtd, bufpoi, len);
+		bufpoi += len;
+		if (len < ecc_bytes) {
+			len = ecc_bytes - len;
+			chip->cmdfunc(mtd, rnd_cmd, writesize + bbm_skip, -1);
+			if (write)
+				chip->write_buf(mtd, bufpoi, len);
+			else
+				chip->read_buf(mtd, bufpoi, len);
+			bufpoi += len;
+		}
+	}
+
+	/* OOB free */
+	len = oobsize - (bufpoi - chip->oob_poi);
+	chip->cmdfunc(mtd, rnd_cmd, size - len, -1);
+	if (write)
+		chip->write_buf(mtd, bufpoi, len);
+	else
+		chip->read_buf(mtd, bufpoi, len);
 }
 
-static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
-			    int page)
+static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				uint8_t *buf, int oob_required, int page)
 {
-	return write_oob_data(mtd, chip->oob_poi, page);
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	int writesize = mtd->writesize;
+	int oobsize = mtd->oobsize;
+	int ecc_steps = chip->ecc.steps;
+	int ecc_size = chip->ecc.size;
+	int ecc_bytes = chip->ecc.bytes;
+	void *dma_buf = denali->buf;
+	int bbm_skip = denali->bbtskipbytes;
+	size_t size = writesize + oobsize;
+	int ret, i, pos, len;
+
+	ret = denali_data_xfer(denali, dma_buf, size, page, 1, 0);
+	if (ret)
+		return ret;
+
+	/* Arrange the buffer for syndrome payload/ecc layout */
+	if (buf) {
+		for (i = 0; i < ecc_steps; i++) {
+			pos = i * (ecc_size + ecc_bytes);
+			len = ecc_size;
+
+			if (pos >= writesize)
+				pos += bbm_skip;
+			else if (pos + len > writesize)
+				len = writesize - pos;
+
+			memcpy(buf, dma_buf + pos, len);
+			buf += len;
+			if (len < ecc_size) {
+				len = ecc_size - len;
+				memcpy(buf, dma_buf + writesize + bbm_skip,
+				       len);
+				buf += len;
+			}
+		}
+	}
+
+	if (oob_required) {
+		uint8_t *oob = chip->oob_poi;
+
+		/* BBM at the beginning of the OOB area */
+		memcpy(oob, dma_buf + writesize, bbm_skip);
+		oob += bbm_skip;
+
+		/* OOB ECC */
+		for (i = 0; i < ecc_steps; i++) {
+			pos = ecc_size + i * (ecc_size + ecc_bytes);
+			len = ecc_bytes;
+
+			if (pos >= writesize)
+				pos += bbm_skip;
+			else if (pos + len > writesize)
+				len = writesize - pos;
+
+			memcpy(oob, dma_buf + pos, len);
+			oob += len;
+			if (len < ecc_bytes) {
+				len = ecc_bytes - len;
+				memcpy(oob, dma_buf + writesize + bbm_skip,
+				       len);
+				oob += len;
+			}
+		}
+
+		/* OOB free */
+		len = oobsize - (oob - chip->oob_poi);
+		memcpy(oob, dma_buf + size - len, len);
+	}
+
+	return 0;
 }
 
 static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
 			   int page)
 {
-	read_oob_data(mtd, chip->oob_poi, page);
+	denali_oob_xfer(mtd, chip, page, 0);
 
 	return 0;
 }
 
-static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
-			    uint8_t *buf, int oob_required, int page)
+static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			    int page)
 {
 	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	dma_addr_t addr = denali->buf.dma_buf;
-	size_t size = mtd->writesize + mtd->oobsize;
-	uint32_t irq_status;
-	uint32_t irq_mask = denali->caps & DENALI_CAP_HW_ECC_FIXUP ?
-				INTR__DMA_CMD_COMP | INTR__ECC_UNCOR_ERR :
-				INTR__ECC_TRANSACTION_DONE | INTR__ECC_ERR;
-	unsigned long uncor_ecc_flags = 0;
-	int stat = 0;
-
-	if (page != denali->page) {
-		dev_err(denali->dev,
-			"IN %s: page %d is not equal to denali->page %d",
-			__func__, page, denali->page);
-		BUG();
-	}
+	int status;
 
-	setup_ecc_for_xfer(denali, true, false);
+	denali_reset_irq(denali);
 
-	denali_enable_dma(denali, true);
-	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
+	denali_oob_xfer(mtd, chip, page, 1);
 
-	clear_interrupts(denali);
-	denali_setup_dma(denali, DENALI_READ);
+	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+	status = chip->waitfunc(mtd, chip);
 
-	/* wait for operation to complete */
-	irq_status = wait_for_irq(denali, irq_mask);
+	return status & NAND_STATUS_FAIL ? -EIO : 0;
+}
 
-	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
+static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+			    uint8_t *buf, int oob_required, int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	unsigned long uncor_ecc_flags = 0;
+	int stat = 0;
+	int ret;
 
-	memcpy(buf, denali->buf.buf, mtd->writesize);
+	ret = denali_data_xfer(denali, buf, mtd->writesize, page, 0, 0);
+	if (ret && ret != -EBADMSG)
+		return ret;
 
 	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
 		stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags);
-	else if (irq_status & INTR__ECC_ERR)
+	else if (ret == -EBADMSG)
 		stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf);
-	denali_enable_dma(denali, false);
 
 	if (stat < 0)
 		return stat;
 
 	if (uncor_ecc_flags) {
-		read_oob_data(mtd, chip->oob_poi, denali->page);
+		ret = denali_read_oob(mtd, chip, page);
+		if (ret)
+			return ret;
 
 		stat = denali_check_erased_page(mtd, chip, buf,
 						uncor_ecc_flags, stat);
@@ -1181,137 +892,268 @@ static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
 	return stat;
 }
 
-static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
-				uint8_t *buf, int oob_required, int page)
+static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				 const uint8_t *buf, int oob_required, int page)
 {
 	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	dma_addr_t addr = denali->buf.dma_buf;
-	size_t size = mtd->writesize + mtd->oobsize;
-	uint32_t irq_mask = INTR__DMA_CMD_COMP;
-
-	if (page != denali->page) {
-		dev_err(denali->dev,
-			"IN %s: page %d is not equal to denali->page %d",
-			__func__, page, denali->page);
-		BUG();
-	}
-
-	setup_ecc_for_xfer(denali, false, true);
-	denali_enable_dma(denali, true);
-
-	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
-
-	clear_interrupts(denali);
-	denali_setup_dma(denali, DENALI_READ);
-
-	/* wait for operation to complete */
-	wait_for_irq(denali, irq_mask);
+	int writesize = mtd->writesize;
+	int oobsize = mtd->oobsize;
+	int ecc_steps = chip->ecc.steps;
+	int ecc_size = chip->ecc.size;
+	int ecc_bytes = chip->ecc.bytes;
+	void *dma_buf = denali->buf;
+	int bbm_skip = denali->bbtskipbytes;
+	size_t size = writesize + oobsize;
+	int i, pos, len;
 
-	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
+	/*
+	 * Fill the buffer with 0xff first except the full page transfer.
+	 * This simplifies the logic.
+	 */
+	if (!buf || !oob_required)
+		memset(dma_buf, 0xff, size);
+
+	/* Arrange the buffer for syndrome payload/ecc layout */
+	if (buf) {
+		for (i = 0; i < ecc_steps; i++) {
+			pos = i * (ecc_size + ecc_bytes);
+			len = ecc_size;
+
+			if (pos >= writesize)
+				pos += bbm_skip;
+			else if (pos + len > writesize)
+				len = writesize - pos;
+
+			memcpy(dma_buf + pos, buf, len);
+			buf += len;
+			if (len < ecc_size) {
+				len = ecc_size - len;
+				memcpy(dma_buf + writesize + bbm_skip, buf,
+				       len);
+				buf += len;
+			}
+		}
+	}
 
-	denali_enable_dma(denali, false);
+	if (oob_required) {
+		const uint8_t *oob = chip->oob_poi;
+
+		/* BBM at the beginning of the OOB area */
+		memcpy(dma_buf + writesize, oob, bbm_skip);
+		oob += bbm_skip;
+
+		/* OOB ECC */
+		for (i = 0; i < ecc_steps; i++) {
+			pos = ecc_size + i * (ecc_size + ecc_bytes);
+			len = ecc_bytes;
+
+			if (pos >= writesize)
+				pos += bbm_skip;
+			else if (pos + len > writesize)
+				len = writesize - pos;
+
+			memcpy(dma_buf + pos, oob, len);
+			oob += len;
+			if (len < ecc_bytes) {
+				len = ecc_bytes - len;
+				memcpy(dma_buf + writesize + bbm_skip, oob,
+				       len);
+				oob += len;
+			}
+		}
 
-	memcpy(buf, denali->buf.buf, mtd->writesize);
-	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
+		/* OOB free */
+		len = oobsize - (oob - chip->oob_poi);
+		memcpy(dma_buf + size - len, oob, len);
+	}
 
-	return 0;
+	return denali_data_xfer(denali, dma_buf, size, page, 1, 1);
 }
 
-static uint8_t denali_read_byte(struct mtd_info *mtd)
+static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+			     const uint8_t *buf, int oob_required, int page)
 {
 	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	uint8_t result = 0xff;
 
-	if (denali->buf.head < denali->buf.tail)
-		result = denali->buf.buf[denali->buf.head++];
-
-	return result;
+	return denali_data_xfer(denali, (void *)buf, mtd->writesize,
+				page, 0, 1);
 }
 
 static void denali_select_chip(struct mtd_info *mtd, int chip)
 {
 	struct denali_nand_info *denali = mtd_to_denali(mtd);
 
-	spin_lock_irq(&denali->irq_lock);
 	denali->flash_bank = chip;
-	spin_unlock_irq(&denali->irq_lock);
 }
 
 static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
 {
 	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	int status = denali->status;
+	uint32_t irq_status;
 
-	denali->status = 0;
+	/* R/B# pin transitioned from low to high? */
+	irq_status = denali_wait_for_irq(denali, INTR__INT_ACT);
 
-	return status;
+	return irq_status & INTR__INT_ACT ? 0 : NAND_STATUS_FAIL;
 }
 
 static int denali_erase(struct mtd_info *mtd, int page)
 {
 	struct denali_nand_info *denali = mtd_to_denali(mtd);
-
 	uint32_t cmd, irq_status;
 
-	clear_interrupts(denali);
+	denali_reset_irq(denali);
 
 	/* setup page read request for access type */
 	cmd = MODE_10 | BANK(denali->flash_bank) | page;
 	index_addr(denali, cmd, 0x1);
 
 	/* wait for erase to complete or failure to occur */
-	irq_status = wait_for_irq(denali, INTR__ERASE_COMP | INTR__ERASE_FAIL);
+	irq_status = denali_wait_for_irq(denali,
+					 INTR__ERASE_COMP | INTR__ERASE_FAIL);
 
-	return irq_status & INTR__ERASE_FAIL ? NAND_STATUS_FAIL : PASS;
+	return irq_status & INTR__ERASE_COMP ? 0 : NAND_STATUS_FAIL;
 }
 
-static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
-			   int page)
+#define DIV_ROUND_DOWN_ULL(ll, d) \
+	({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
+
+static int denali_setup_data_interface(struct mtd_info *mtd,
+				       const struct nand_data_interface *conf,
+				       bool check_only)
 {
 	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	uint32_t addr, id;
+	const struct nand_sdr_timings *timings;
+	unsigned long t_clk;
+	int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data;
+	int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup;
+	int addr_2_data_mask;
+	uint32_t tmp;
+
+	timings = nand_get_sdr_timings(conf);
+	if (IS_ERR(timings))
+		return PTR_ERR(timings);
+
+	/* clk_x period in picoseconds */
+	t_clk = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate);
+	if (!t_clk)
+		return -EINVAL;
+
+	if (check_only)
+		return 0;
+
+	/* tREA -> ACC_CLKS */
+	acc_clks = DIV_ROUND_UP(timings->tREA_max, t_clk);
+	acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE);
+
+	tmp = ioread32(denali->flash_reg + ACC_CLKS);
+	tmp &= ~ACC_CLKS__VALUE;
+	tmp |= acc_clks;
+	iowrite32(tmp, denali->flash_reg + ACC_CLKS);
+
+	/* tRWH -> RE_2_WE */
+	re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_clk);
+	re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE);
+
+	tmp = ioread32(denali->flash_reg + RE_2_WE);
+	tmp &= ~RE_2_WE__VALUE;
+	tmp |= re_2_we;
+	iowrite32(tmp, denali->flash_reg + RE_2_WE);
+
+	/* tRHZ -> RE_2_RE */
+	re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_clk);
+	re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE);
+
+	tmp = ioread32(denali->flash_reg + RE_2_RE);
+	tmp &= ~RE_2_RE__VALUE;
+	tmp |= re_2_re;
+	iowrite32(tmp, denali->flash_reg + RE_2_RE);
+
+	/* tWHR -> WE_2_RE */
+	we_2_re = DIV_ROUND_UP(timings->tWHR_min, t_clk);
+	we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE);
+
+	tmp = ioread32(denali->flash_reg + TWHR2_AND_WE_2_RE);
+	tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
+	tmp |= we_2_re;
+	iowrite32(tmp, denali->flash_reg + TWHR2_AND_WE_2_RE);
+
+	/* tADL -> ADDR_2_DATA */
+
+	/* for older versions, ADDR_2_DATA is only 6 bit wide */
+	addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
+	if (denali->revision < 0x0501)
+		addr_2_data_mask >>= 1;
+
+	addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_clk);
+	addr_2_data = min_t(int, addr_2_data, addr_2_data_mask);
+
+	tmp = ioread32(denali->flash_reg + TCWAW_AND_ADDR_2_DATA);
+	tmp &= ~addr_2_data_mask;
+	tmp |= addr_2_data;
+	iowrite32(tmp, denali->flash_reg + TCWAW_AND_ADDR_2_DATA);
+
+	/* tREH, tWH -> RDWR_EN_HI_CNT */
+	rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min),
+				  t_clk);
+	rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE);
+
+	tmp = ioread32(denali->flash_reg + RDWR_EN_HI_CNT);
+	tmp &= ~RDWR_EN_HI_CNT__VALUE;
+	tmp |= rdwr_en_hi;
+	iowrite32(tmp, denali->flash_reg + RDWR_EN_HI_CNT);
+
+	/* tRP, tWP -> RDWR_EN_LO_CNT */
+	rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min),
+				  t_clk);
+	rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min),
+				     t_clk);
+	rdwr_en_lo_hi = max(rdwr_en_lo_hi, DENALI_CLK_X_MULT);
+	rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi);
+	rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE);
+
+	tmp = ioread32(denali->flash_reg + RDWR_EN_LO_CNT);
+	tmp &= ~RDWR_EN_LO_CNT__VALUE;
+	tmp |= rdwr_en_lo;
+	iowrite32(tmp, denali->flash_reg + RDWR_EN_LO_CNT);
+
+	/* tCS, tCEA -> CS_SETUP_CNT */
+	cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_clk) - rdwr_en_lo,
+			(int)DIV_ROUND_UP(timings->tCEA_max, t_clk) - acc_clks,
+			0);
+	cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE);
+
+	tmp = ioread32(denali->flash_reg + CS_SETUP_CNT);
+	tmp &= ~CS_SETUP_CNT__VALUE;
+	tmp |= cs_setup;
+	iowrite32(tmp, denali->flash_reg + CS_SETUP_CNT);
+
+	return 0;
+}
+
+static void denali_reset_banks(struct denali_nand_info *denali)
+{
+	u32 irq_status;
 	int i;
 
-	switch (cmd) {
-	case NAND_CMD_PAGEPROG:
-		break;
-	case NAND_CMD_STATUS:
-		read_status(denali);
-		break;
-	case NAND_CMD_READID:
-	case NAND_CMD_PARAM:
-		reset_buf(denali);
-		/*
-		 * sometimes ManufactureId read from register is not right
-		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
-		 * So here we send READID cmd to NAND insteand
-		 */
-		addr = MODE_11 | BANK(denali->flash_bank);
-		index_addr(denali, addr | 0, 0x90);
-		index_addr(denali, addr | 1, col);
-		for (i = 0; i < 8; i++) {
-			index_addr_read_data(denali, addr | 2, &id);
-			write_byte_to_buf(denali, id);
-		}
-		break;
-	case NAND_CMD_READ0:
-	case NAND_CMD_SEQIN:
-		denali->page = page;
-		break;
-	case NAND_CMD_RESET:
-		reset_bank(denali);
-		break;
-	case NAND_CMD_READOOB:
-		/* TODO: Read OOB data */
-		break;
-	default:
-		pr_err(": unsupported command received 0x%x\n", cmd);
-		break;
+	for (i = 0; i < denali->max_banks; i++) {
+		denali->flash_bank = i;
+
+		denali_reset_irq(denali);
+
+		iowrite32(DEVICE_RESET__BANK(i),
+			  denali->flash_reg + DEVICE_RESET);
+
+		irq_status = denali_wait_for_irq(denali,
+			INTR__RST_COMP | INTR__INT_ACT | INTR__TIME_OUT);
+		if (!(irq_status & INTR__INT_ACT))
+			break;
 	}
+
+	dev_dbg(denali->dev, "%d chips connected\n", i);
+	denali->max_banks = i;
 }
-/* end NAND core entry points */
 
-/* Initialization code to bring the device up to a known good state */
 static void denali_hw_init(struct denali_nand_info *denali)
 {
 	/*
@@ -1331,7 +1173,6 @@ static void denali_hw_init(struct denali_nand_info *denali)
 	denali->bbtskipbytes = ioread32(denali->flash_reg +
 						SPARE_AREA_SKIP_BYTES);
 	detect_max_banks(denali);
-	denali_nand_reset(denali);
 	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
 	iowrite32(CHIP_EN_DONT_CARE__FLAG,
 			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
@@ -1341,17 +1182,25 @@ static void denali_hw_init(struct denali_nand_info *denali)
 	/* Should set value for these registers when init */
 	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
 	iowrite32(1, denali->flash_reg + ECC_ENABLE);
-	denali_nand_timing_set(denali);
-	denali_irq_init(denali);
 }
 
-/*
- * Althogh controller spec said SLC ECC is forceb to be 4bit,
- * but denali controller in MRST only support 15bit and 8bit ECC
- * correction
- */
-#define ECC_8BITS	14
-#define ECC_15BITS	26
+static int denali_calc_ecc_bytes(const struct nand_ecc_setting *setting)
+{
+	int coef;
+
+	switch (setting->step) {
+	case 512:
+		coef = 13;
+		break;
+	case 1024:
+		coef = 14;
+		break;
+	default:
+		return -ENOTSUPP;
+	}
+
+	return DIV_ROUND_UP(setting->strength * coef, 16) * 2;
+}
 
 static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
 				struct mtd_oob_region *oobregion)
@@ -1388,29 +1237,6 @@ static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
 	.free = denali_ooblayout_free,
 };
 
-static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
-static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
-
-static struct nand_bbt_descr bbt_main_descr = {
-	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
-		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
-	.offs =	8,
-	.len = 4,
-	.veroffs = 12,
-	.maxblocks = 4,
-	.pattern = bbt_pattern,
-};
-
-static struct nand_bbt_descr bbt_mirror_descr = {
-	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
-		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
-	.offs =	8,
-	.len = 4,
-	.veroffs = 12,
-	.maxblocks = 4,
-	.pattern = mirror_pattern,
-};
-
 /* initialize driver data structures */
 static void denali_drv_init(struct denali_nand_info *denali)
 {
@@ -1425,12 +1251,6 @@ static void denali_drv_init(struct denali_nand_info *denali)
 	 * element that might be access shared data (interrupt status)
 	 */
 	spin_lock_init(&denali->irq_lock);
-
-	/* indicate that MTD has not selected a valid bank yet */
-	denali->flash_bank = CHIP_SELECT_INVALID;
-
-	/* initialize our irq_status variable to indicate no interrupts */
-	denali->irq_status = 0;
 }
 
 static int denali_multidev_fixup(struct denali_nand_info *denali)
@@ -1488,29 +1308,15 @@ int denali_init(struct denali_nand_info *denali)
 {
 	struct nand_chip *chip = &denali->nand;
 	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct nand_ecc_engine_caps ecc_engine_caps;
 	int ret;
 
-	if (denali->platform == INTEL_CE4100) {
-		/*
-		 * Due to a silicon limitation, we can only support
-		 * ONFI timing mode 1 and below.
-		 */
-		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
-			pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
-			return -EINVAL;
-		}
-	}
-
-	/* allocate a temporary buffer for nand_scan_ident() */
-	denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
-					GFP_DMA | GFP_KERNEL);
-	if (!denali->buf.buf)
-		return -ENOMEM;
-
 	mtd->dev.parent = denali->dev;
 	denali_hw_init(denali);
 	denali_drv_init(denali);
 
+	denali_clear_irq_all(denali);
+
 	/* Request IRQ after all the hardware initialization is finished */
 	ret = devm_request_irq(denali->dev, denali->irq, denali_isr,
 			       IRQF_SHARED, DENALI_NAND_NAME, denali);
@@ -1519,8 +1325,11 @@ int denali_init(struct denali_nand_info *denali)
 		return ret;
 	}
 
-	/* now that our ISR is registered, we can enable interrupts */
-	denali_set_intr_modes(denali, true);
+	denali_enable_irq(denali);
+	denali_reset_banks(denali);
+
+	denali->flash_bank = CHIP_SELECT_INVALID;
+
 	nand_set_flash_node(chip, denali->dev->of_node);
 	/* Fallback to the default name if DT did not give "label" property */
 	if (!mtd->name)
@@ -1528,9 +1337,14 @@ int denali_init(struct denali_nand_info *denali)
 
 	/* register the driver with the NAND core subsystem */
 	chip->select_chip = denali_select_chip;
-	chip->cmdfunc = denali_cmdfunc;
 	chip->read_byte = denali_read_byte;
+	chip->write_byte = denali_write_byte;
+	chip->cmd_ctrl = denali_cmd_ctrl;
+	chip->dev_ready = denali_dev_ready;
 	chip->waitfunc = denali_waitfunc;
+	/* clk rate info is needed for setup_data_interface */
+	if (denali->clk_x_rate)
+		chip->setup_data_interface = denali_setup_data_interface;
 
 	/*
 	 * scan for NAND devices attached to the controller
@@ -1539,33 +1353,24 @@ int denali_init(struct denali_nand_info *denali)
 	 */
 	ret = nand_scan_ident(mtd, denali->max_banks, NULL);
 	if (ret)
-		goto failed_req_irq;
-
-	/* allocate the right size buffer now */
-	devm_kfree(denali->dev, denali->buf.buf);
-	denali->buf.buf = devm_kzalloc(denali->dev,
-			     mtd->writesize + mtd->oobsize,
-			     GFP_KERNEL);
-	if (!denali->buf.buf) {
-		ret = -ENOMEM;
-		goto failed_req_irq;
-	}
+		goto disable_irq;
 
-	ret = dma_set_mask(denali->dev,
-			   DMA_BIT_MASK(denali->caps & DENALI_CAP_DMA_64BIT ?
-					64 : 32));
-	if (ret) {
-		dev_err(denali->dev, "No usable DMA configuration\n");
-		goto failed_req_irq;
+	if (ioread32(denali->flash_reg + FEATURES) & FEATURES__DMA)
+		denali->dma_avail = 1;
+
+	if (denali->dma_avail) {
+		int dma_bit = denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32;
+
+		ret = dma_set_mask(denali->dev, DMA_BIT_MASK(dma_bit));
+		if (ret) {
+			dev_info(denali->dev, "Failed to set DMA mask. Disabling DMA.\n");
+			denali->dma_avail = 0;
+		}
 	}
 
-	denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
-			     mtd->writesize + mtd->oobsize,
-			     DMA_BIDIRECTIONAL);
-	if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
-		dev_err(denali->dev, "Failed to map DMA buffer\n");
-		ret = -EIO;
-		goto failed_req_irq;
+	if (denali->dma_avail) {
+		chip->options |= NAND_USE_BOUNCE_BUFFER;
+		chip->buf_align = 16;
 	}
 
 	/*
@@ -1574,46 +1379,74 @@ int denali_init(struct denali_nand_info *denali)
 	 * bad block management.
 	 */
 
-	/* Bad block management */
-	chip->bbt_td = &bbt_main_descr;
-	chip->bbt_md = &bbt_mirror_descr;
-
-	/* skip the scan for now until we have OOB read and write support */
 	chip->bbt_options |= NAND_BBT_USE_FLASH;
-	chip->options |= NAND_SKIP_BBTSCAN;
+	chip->bbt_options |= NAND_BBT_NO_OOB;
+
 	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
 
 	/* no subpage writes on denali */
 	chip->options |= NAND_NO_SUBPAGE_WRITE;
 
+	ecc_engine_caps.ecc_settings = denali->avail_ecc_settings;
+	ecc_engine_caps.calc_ecc_bytes = denali_calc_ecc_bytes;
+	ecc_engine_caps.avail_oobsize = mtd->oobsize - denali->bbtskipbytes;
+
+	ret = -ENOTSUPP;
+
+	/* If both .size and .strength are set (by DT), we check if supported */
+	ret = nand_check_ecc_caps(mtd, chip, &ecc_engine_caps);
+	if (ret && ret != -ENODATA)
+		dev_info(denali->dev, "try to find other ECC settings\n");
+
 	/*
-	 * Denali Controller only support 15bit and 8bit ECC in MRST,
-	 * so just let controller do 15bit ECC for MLC and 8bit ECC for
-	 * SLC if possible.
-	 * */
-	if (!nand_is_slc(chip) &&
-			(mtd->oobsize > (denali->bbtskipbytes +
-			ECC_15BITS * (mtd->writesize /
-			ECC_SECTOR_SIZE)))) {
-		/* if MLC OOB size is large enough, use 15bit ECC*/
-		chip->ecc.strength = 15;
-		chip->ecc.bytes = ECC_15BITS;
-		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
-	} else if (mtd->oobsize < (denali->bbtskipbytes +
-			ECC_8BITS * (mtd->writesize /
-			ECC_SECTOR_SIZE))) {
-		pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes");
-		goto failed_req_irq;
-	} else {
-		chip->ecc.strength = 8;
-		chip->ecc.bytes = ECC_8BITS;
-		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
+	 * We want .size and .strength closest to the chip's requirement
+	 * unless NAND_ECC_MAXIMIZE is requested.
+	 */
+	if (ret && !(chip->ecc.options & NAND_ECC_MAXIMIZE)) {
+		ret = nand_try_to_match_ecc_req(mtd, chip, &ecc_engine_caps);
+		if (ret)
+			dev_info(denali->dev, "try to maximize ECC setting\n");
 	}
 
+	/* The last thing we can do is to try the max ECC strength */
+	if (ret)
+		ret = nand_try_to_maximize_ecc(mtd, chip, &ecc_engine_caps);
+
+	if (ret) {
+		dev_err(denali->dev, "failed to choose ECC size/strength\n");
+		goto disable_irq;
+	}
+
+	dev_dbg(denali->dev,
+		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
+		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
+
+	iowrite32(MAKE_ECC_CORRECTION(chip->ecc.strength,
+				      chip->ecc.strength + 1),
+		  denali->flash_reg + ECC_CORRECTION);
+	iowrite32(mtd->erasesize / mtd->writesize,
+		  denali->flash_reg + PAGES_PER_BLOCK);
+	iowrite32(denali->nand.options & NAND_BUSWIDTH_16 ? 1 : 0,
+		  denali->flash_reg + DEVICE_WIDTH);
+	iowrite32(mtd->writesize, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
+	iowrite32(mtd->oobsize, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+
+	iowrite32(chip->ecc.size, denali->flash_reg + CFG_DATA_BLOCK_SIZE);
+	iowrite32(chip->ecc.size, denali->flash_reg + CFG_LAST_DATA_BLOCK_SIZE);
+	/* chip->ecc.steps is set by nand_scan_tail(); not available here */
+	iowrite32(mtd->writesize / chip->ecc.size,
+		  denali->flash_reg + CFG_NUM_DATA_BLOCKS);
+
 	mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
 
-	/* override the default read operations */
-	chip->ecc.size = ECC_SECTOR_SIZE;
+	if (denali->nand.options & NAND_BUSWIDTH_16) {
+		chip->read_buf = denali_read_buf16;
+		chip->write_buf = denali_write_buf16;
+	} else {
+		chip->read_buf = denali_read_buf;
+		chip->write_buf = denali_write_buf;
+	}
+	chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
 	chip->ecc.read_page = denali_read_page;
 	chip->ecc.read_page_raw = denali_read_page_raw;
 	chip->ecc.write_page = denali_write_page;
@@ -1624,21 +1457,34 @@ int denali_init(struct denali_nand_info *denali)
 
 	ret = denali_multidev_fixup(denali);
 	if (ret)
-		goto failed_req_irq;
+		goto disable_irq;
+
+	/*
+	 * This buffer is DMA-mapped by denali_{read,write}_page_raw.  Do not
+	 * use devm_kmalloc() because the memory allocated by devm_ does not
+	 * guarantee DMA-safe alignment.
+	 */
+	denali->buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
+	if (!denali->buf) {
+		ret = -ENOMEM;
+		goto disable_irq;
+	}
 
 	ret = nand_scan_tail(mtd);
 	if (ret)
-		goto failed_req_irq;
+		goto free_buf;
 
 	ret = mtd_device_register(mtd, NULL, 0);
 	if (ret) {
 		dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
-		goto failed_req_irq;
+		goto free_buf;
 	}
 	return 0;
 
-failed_req_irq:
-	denali_irq_cleanup(denali->irq, denali);
+free_buf:
+	kfree(denali->buf);
+disable_irq:
+	denali_disable_irq(denali);
 
 	return ret;
 }
@@ -1656,8 +1502,9 @@ void denali_remove(struct denali_nand_info *denali)
 	int bufsize = mtd->writesize + mtd->oobsize;
 
 	nand_release(mtd);
-	denali_irq_cleanup(denali->irq, denali);
-	dma_unmap_single(denali->dev, denali->buf.dma_buf, bufsize,
+	kfree(denali->buf);
+	denali_disable_irq(denali);
+	dma_unmap_single(denali->dev, denali->dma_addr, bufsize,
 			 DMA_BIDIRECTIONAL);
 }
 EXPORT_SYMBOL(denali_remove);
diff --git a/drivers/mtd/nand/denali.h b/drivers/mtd/nand/denali.h
index ec00485..46406c6 100644
--- a/drivers/mtd/nand/denali.h
+++ b/drivers/mtd/nand/denali.h
@@ -24,325 +24,318 @@
 #include <linux/mtd/nand.h>
 
 #define DEVICE_RESET				0x0
-#define     DEVICE_RESET__BANK0				0x0001
-#define     DEVICE_RESET__BANK1				0x0002
-#define     DEVICE_RESET__BANK2				0x0004
-#define     DEVICE_RESET__BANK3				0x0008
+#define     DEVICE_RESET__BANK(bank)			BIT(bank)
 
 #define TRANSFER_SPARE_REG			0x10
-#define     TRANSFER_SPARE_REG__FLAG			0x0001
+#define     TRANSFER_SPARE_REG__FLAG			BIT(0)
 
 #define LOAD_WAIT_CNT				0x20
-#define     LOAD_WAIT_CNT__VALUE			0xffff
+#define     LOAD_WAIT_CNT__VALUE			GENMASK(15, 0)
 
 #define PROGRAM_WAIT_CNT			0x30
-#define     PROGRAM_WAIT_CNT__VALUE			0xffff
+#define     PROGRAM_WAIT_CNT__VALUE			GENMASK(15, 0)
 
 #define ERASE_WAIT_CNT				0x40
-#define     ERASE_WAIT_CNT__VALUE			0xffff
+#define     ERASE_WAIT_CNT__VALUE			GENMASK(15, 0)
 
 #define INT_MON_CYCCNT				0x50
-#define     INT_MON_CYCCNT__VALUE			0xffff
+#define     INT_MON_CYCCNT__VALUE			GENMASK(15, 0)
 
 #define RB_PIN_ENABLED				0x60
-#define     RB_PIN_ENABLED__BANK0			0x0001
-#define     RB_PIN_ENABLED__BANK1			0x0002
-#define     RB_PIN_ENABLED__BANK2			0x0004
-#define     RB_PIN_ENABLED__BANK3			0x0008
+#define     RB_PIN_ENABLED__BANK(bank)			BIT(bank)
 
 #define MULTIPLANE_OPERATION			0x70
-#define     MULTIPLANE_OPERATION__FLAG			0x0001
+#define     MULTIPLANE_OPERATION__FLAG			BIT(0)
 
 #define MULTIPLANE_READ_ENABLE			0x80
-#define     MULTIPLANE_READ_ENABLE__FLAG		0x0001
+#define     MULTIPLANE_READ_ENABLE__FLAG		BIT(0)
 
 #define COPYBACK_DISABLE			0x90
-#define     COPYBACK_DISABLE__FLAG			0x0001
+#define     COPYBACK_DISABLE__FLAG			BIT(0)
 
 #define CACHE_WRITE_ENABLE			0xa0
-#define     CACHE_WRITE_ENABLE__FLAG			0x0001
+#define     CACHE_WRITE_ENABLE__FLAG			BIT(0)
 
 #define CACHE_READ_ENABLE			0xb0
-#define     CACHE_READ_ENABLE__FLAG			0x0001
+#define     CACHE_READ_ENABLE__FLAG			BIT(0)
 
 #define PREFETCH_MODE				0xc0
-#define     PREFETCH_MODE__PREFETCH_EN			0x0001
-#define     PREFETCH_MODE__PREFETCH_BURST_LENGTH	0xfff0
+#define     PREFETCH_MODE__PREFETCH_EN			BIT(0)
+#define     PREFETCH_MODE__PREFETCH_BURST_LENGTH	GENMASK(15, 4)
 
 #define CHIP_ENABLE_DONT_CARE			0xd0
-#define     CHIP_EN_DONT_CARE__FLAG			0x01
+#define     CHIP_EN_DONT_CARE__FLAG			BIT(0)
 
 #define ECC_ENABLE				0xe0
-#define     ECC_ENABLE__FLAG				0x0001
+#define     ECC_ENABLE__FLAG				BIT(0)
 
 #define GLOBAL_INT_ENABLE			0xf0
-#define     GLOBAL_INT_EN_FLAG				0x01
+#define     GLOBAL_INT_EN_FLAG				BIT(0)
 
-#define WE_2_RE					0x100
-#define     WE_2_RE__VALUE				0x003f
+#define TWHR2_AND_WE_2_RE			0x100
+#define     TWHR2_AND_WE_2_RE__WE_2_RE			GENMASK(5, 0)
+#define     TWHR2_AND_WE_2_RE__TWHR2			GENMASK(13, 8)
 
-#define ADDR_2_DATA				0x110
-#define     ADDR_2_DATA__VALUE				0x003f
+#define TCWAW_AND_ADDR_2_DATA			0x110
+/* The width of ADDR_2_DATA is 6 bit for old IP, 7 bit for new IP */
+#define     TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA		GENMASK(6, 0)
+#define     TCWAW_AND_ADDR_2_DATA__TCWAW		GENMASK(13, 8)
 
 #define RE_2_WE					0x120
-#define     RE_2_WE__VALUE				0x003f
+#define     RE_2_WE__VALUE				GENMASK(5, 0)
 
 #define ACC_CLKS				0x130
-#define     ACC_CLKS__VALUE				0x000f
+#define     ACC_CLKS__VALUE				GENMASK(3, 0)
 
 #define NUMBER_OF_PLANES			0x140
-#define     NUMBER_OF_PLANES__VALUE			0x0007
+#define     NUMBER_OF_PLANES__VALUE			GENMASK(2, 0)
 
 #define PAGES_PER_BLOCK				0x150
-#define     PAGES_PER_BLOCK__VALUE			0xffff
+#define     PAGES_PER_BLOCK__VALUE			GENMASK(15, 0)
 
 #define DEVICE_WIDTH				0x160
-#define     DEVICE_WIDTH__VALUE				0x0003
+#define     DEVICE_WIDTH__VALUE				GENMASK(1, 0)
 
 #define DEVICE_MAIN_AREA_SIZE			0x170
-#define     DEVICE_MAIN_AREA_SIZE__VALUE		0xffff
+#define     DEVICE_MAIN_AREA_SIZE__VALUE		GENMASK(15, 0)
 
 #define DEVICE_SPARE_AREA_SIZE			0x180
-#define     DEVICE_SPARE_AREA_SIZE__VALUE		0xffff
+#define     DEVICE_SPARE_AREA_SIZE__VALUE		GENMASK(15, 0)
 
 #define TWO_ROW_ADDR_CYCLES			0x190
-#define     TWO_ROW_ADDR_CYCLES__FLAG			0x0001
+#define     TWO_ROW_ADDR_CYCLES__FLAG			BIT(0)
 
 #define MULTIPLANE_ADDR_RESTRICT		0x1a0
-#define     MULTIPLANE_ADDR_RESTRICT__FLAG		0x0001
+#define     MULTIPLANE_ADDR_RESTRICT__FLAG		BIT(0)
 
 #define ECC_CORRECTION				0x1b0
-#define     ECC_CORRECTION__VALUE			0x001f
+#define     ECC_CORRECTION__VALUE			GENMASK(4, 0)
+#define     ECC_CORRECTION__ERASE_THRESHOLD		GENMASK(31, 16)
+#define     MAKE_ECC_CORRECTION(val, thresh)		\
+			(((val) & (ECC_CORRECTION__VALUE)) | \
+			(((thresh) << 16) & (ECC_CORRECTION__ERASE_THRESHOLD)))
 
 #define READ_MODE				0x1c0
-#define     READ_MODE__VALUE				0x000f
+#define     READ_MODE__VALUE				GENMASK(3, 0)
 
 #define WRITE_MODE				0x1d0
-#define     WRITE_MODE__VALUE				0x000f
+#define     WRITE_MODE__VALUE				GENMASK(3, 0)
 
 #define COPYBACK_MODE				0x1e0
-#define     COPYBACK_MODE__VALUE			0x000f
+#define     COPYBACK_MODE__VALUE			GENMASK(3, 0)
 
 #define RDWR_EN_LO_CNT				0x1f0
-#define     RDWR_EN_LO_CNT__VALUE			0x001f
+#define     RDWR_EN_LO_CNT__VALUE			GENMASK(4, 0)
 
 #define RDWR_EN_HI_CNT				0x200
-#define     RDWR_EN_HI_CNT__VALUE			0x001f
+#define     RDWR_EN_HI_CNT__VALUE			GENMASK(4, 0)
 
 #define MAX_RD_DELAY				0x210
-#define     MAX_RD_DELAY__VALUE				0x000f
+#define     MAX_RD_DELAY__VALUE				GENMASK(3, 0)
 
 #define CS_SETUP_CNT				0x220
-#define     CS_SETUP_CNT__VALUE				0x001f
+#define     CS_SETUP_CNT__VALUE				GENMASK(4, 0)
+#define     CS_SETUP_CNT__TWB				GENMASK(17, 12)
 
 #define SPARE_AREA_SKIP_BYTES			0x230
-#define     SPARE_AREA_SKIP_BYTES__VALUE		0x003f
+#define     SPARE_AREA_SKIP_BYTES__VALUE		GENMASK(5, 0)
 
 #define SPARE_AREA_MARKER			0x240
-#define     SPARE_AREA_MARKER__VALUE			0xffff
+#define     SPARE_AREA_MARKER__VALUE			GENMASK(15, 0)
 
 #define DEVICES_CONNECTED			0x250
-#define     DEVICES_CONNECTED__VALUE			0x0007
+#define     DEVICES_CONNECTED__VALUE			GENMASK(2, 0)
 
 #define DIE_MASK				0x260
-#define     DIE_MASK__VALUE				0x00ff
+#define     DIE_MASK__VALUE				GENMASK(7, 0)
 
 #define FIRST_BLOCK_OF_NEXT_PLANE		0x270
-#define     FIRST_BLOCK_OF_NEXT_PLANE__VALUE		0xffff
+#define     FIRST_BLOCK_OF_NEXT_PLANE__VALUE		GENMASK(15, 0)
 
 #define WRITE_PROTECT				0x280
-#define     WRITE_PROTECT__FLAG				0x0001
+#define     WRITE_PROTECT__FLAG				BIT(0)
 
 #define RE_2_RE					0x290
-#define     RE_2_RE__VALUE				0x003f
+#define     RE_2_RE__VALUE				GENMASK(5, 0)
 
 #define MANUFACTURER_ID				0x300
-#define     MANUFACTURER_ID__VALUE			0x00ff
+#define     MANUFACTURER_ID__VALUE			GENMASK(7, 0)
 
 #define DEVICE_ID				0x310
-#define     DEVICE_ID__VALUE				0x00ff
+#define     DEVICE_ID__VALUE				GENMASK(7, 0)
 
 #define DEVICE_PARAM_0				0x320
-#define     DEVICE_PARAM_0__VALUE			0x00ff
+#define     DEVICE_PARAM_0__VALUE			GENMASK(7, 0)
 
 #define DEVICE_PARAM_1				0x330
-#define     DEVICE_PARAM_1__VALUE			0x00ff
+#define     DEVICE_PARAM_1__VALUE			GENMASK(7, 0)
 
 #define DEVICE_PARAM_2				0x340
-#define     DEVICE_PARAM_2__VALUE			0x00ff
+#define     DEVICE_PARAM_2__VALUE			GENMASK(7, 0)
 
 #define LOGICAL_PAGE_DATA_SIZE			0x350
-#define     LOGICAL_PAGE_DATA_SIZE__VALUE		0xffff
+#define     LOGICAL_PAGE_DATA_SIZE__VALUE		GENMASK(15, 0)
 
 #define LOGICAL_PAGE_SPARE_SIZE			0x360
-#define     LOGICAL_PAGE_SPARE_SIZE__VALUE		0xffff
+#define     LOGICAL_PAGE_SPARE_SIZE__VALUE		GENMASK(15, 0)
 
 #define REVISION				0x370
-#define     REVISION__VALUE				0xffff
+#define     REVISION__VALUE				GENMASK(15, 0)
 
 #define ONFI_DEVICE_FEATURES			0x380
-#define     ONFI_DEVICE_FEATURES__VALUE			0x003f
+#define     ONFI_DEVICE_FEATURES__VALUE			GENMASK(5, 0)
 
 #define ONFI_OPTIONAL_COMMANDS			0x390
-#define     ONFI_OPTIONAL_COMMANDS__VALUE		0x003f
+#define     ONFI_OPTIONAL_COMMANDS__VALUE		GENMASK(5, 0)
 
 #define ONFI_TIMING_MODE			0x3a0
-#define     ONFI_TIMING_MODE__VALUE			0x003f
+#define     ONFI_TIMING_MODE__VALUE			GENMASK(5, 0)
 
 #define ONFI_PGM_CACHE_TIMING_MODE		0x3b0
-#define     ONFI_PGM_CACHE_TIMING_MODE__VALUE		0x003f
+#define     ONFI_PGM_CACHE_TIMING_MODE__VALUE		GENMASK(5, 0)
 
 #define ONFI_DEVICE_NO_OF_LUNS			0x3c0
-#define     ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS		0x00ff
-#define     ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE		0x0100
+#define     ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS		GENMASK(7, 0)
+#define     ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE		BIT(8)
 
 #define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L	0x3d0
-#define     ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE	0xffff
+#define     ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE	GENMASK(15, 0)
 
 #define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U	0x3e0
-#define     ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE	0xffff
-
-#define FEATURES					0x3f0
-#define     FEATURES__N_BANKS				0x0003
-#define     FEATURES__ECC_MAX_ERR			0x003c
-#define     FEATURES__DMA				0x0040
-#define     FEATURES__CMD_DMA				0x0080
-#define     FEATURES__PARTITION				0x0100
-#define     FEATURES__XDMA_SIDEBAND			0x0200
-#define     FEATURES__GPREG				0x0400
-#define     FEATURES__INDEX_ADDR			0x0800
+#define     ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE	GENMASK(15, 0)
+
+#define FEATURES				0x3f0
+#define     FEATURES__N_BANKS				GENMASK(1, 0)
+#define     FEATURES__ECC_MAX_ERR			GENMASK(5, 2)
+#define     FEATURES__DMA				BIT(6)
+#define     FEATURES__CMD_DMA				BIT(7)
+#define     FEATURES__PARTITION				BIT(8)
+#define     FEATURES__XDMA_SIDEBAND			BIT(9)
+#define     FEATURES__GPREG				BIT(10)
+#define     FEATURES__INDEX_ADDR			BIT(11)
 
 #define TRANSFER_MODE				0x400
-#define     TRANSFER_MODE__VALUE			0x0003
+#define     TRANSFER_MODE__VALUE			GENMASK(1, 0)
 
-#define INTR_STATUS(__bank)	(0x410 + ((__bank) * 0x50))
-#define INTR_EN(__bank)		(0x420 + ((__bank) * 0x50))
+#define INTR_STATUS(bank)			(0x410 + (bank) * 0x50)
+#define INTR_EN(bank)				(0x420 + (bank) * 0x50)
 /* bit[1:0] is used differently depending on IP version */
-#define     INTR__ECC_UNCOR_ERR				0x0001	/* new IP */
-#define     INTR__ECC_TRANSACTION_DONE			0x0001	/* old IP */
-#define     INTR__ECC_ERR				0x0002	/* old IP */
-#define     INTR__DMA_CMD_COMP				0x0004
-#define     INTR__TIME_OUT				0x0008
-#define     INTR__PROGRAM_FAIL				0x0010
-#define     INTR__ERASE_FAIL				0x0020
-#define     INTR__LOAD_COMP				0x0040
-#define     INTR__PROGRAM_COMP				0x0080
-#define     INTR__ERASE_COMP				0x0100
-#define     INTR__PIPE_CPYBCK_CMD_COMP			0x0200
-#define     INTR__LOCKED_BLK				0x0400
-#define     INTR__UNSUP_CMD				0x0800
-#define     INTR__INT_ACT				0x1000
-#define     INTR__RST_COMP				0x2000
-#define     INTR__PIPE_CMD_ERR				0x4000
-#define     INTR__PAGE_XFER_INC				0x8000
-
-#define PAGE_CNT(__bank)	(0x430 + ((__bank) * 0x50))
-#define ERR_PAGE_ADDR(__bank)	(0x440 + ((__bank) * 0x50))
-#define ERR_BLOCK_ADDR(__bank)	(0x450 + ((__bank) * 0x50))
+#define     INTR__ECC_UNCOR_ERR				BIT(0)	/* new IP */
+#define     INTR__ECC_TRANSACTION_DONE			BIT(0)	/* old IP */
+#define     INTR__ECC_ERR				BIT(1)	/* old IP */
+#define     INTR__DMA_CMD_COMP				BIT(2)
+#define     INTR__TIME_OUT				BIT(3)
+#define     INTR__PROGRAM_FAIL				BIT(4)
+#define     INTR__ERASE_FAIL				BIT(5)
+#define     INTR__LOAD_COMP				BIT(6)
+#define     INTR__PROGRAM_COMP				BIT(7)
+#define     INTR__ERASE_COMP				BIT(8)
+#define     INTR__PIPE_CPYBCK_CMD_COMP			BIT(9)
+#define     INTR__LOCKED_BLK				BIT(10)
+#define     INTR__UNSUP_CMD				BIT(11)
+#define     INTR__INT_ACT				BIT(12)
+#define     INTR__RST_COMP				BIT(13)
+#define     INTR__PIPE_CMD_ERR				BIT(14)
+#define     INTR__PAGE_XFER_INC				BIT(15)
+#define     INTR__ERASED_PAGE				BIT(16)
+
+#define PAGE_CNT(bank)				(0x430 + (bank) * 0x50)
+#define ERR_PAGE_ADDR(bank)			(0x440 + (bank) * 0x50)
+#define ERR_BLOCK_ADDR(bank)			(0x450 + (bank) * 0x50)
 
 #define ECC_THRESHOLD				0x600
-#define     ECC_THRESHOLD__VALUE			0x03ff
+#define     ECC_THRESHOLD__VALUE			GENMASK(9, 0)
 
 #define ECC_ERROR_BLOCK_ADDRESS			0x610
-#define     ECC_ERROR_BLOCK_ADDRESS__VALUE		0xffff
+#define     ECC_ERROR_BLOCK_ADDRESS__VALUE		GENMASK(15, 0)
 
 #define ECC_ERROR_PAGE_ADDRESS			0x620
-#define     ECC_ERROR_PAGE_ADDRESS__VALUE		0x0fff
-#define     ECC_ERROR_PAGE_ADDRESS__BANK		0xf000
+#define     ECC_ERROR_PAGE_ADDRESS__VALUE		GENMASK(11, 0)
+#define     ECC_ERROR_PAGE_ADDRESS__BANK		GENMASK(15, 12)
 
 #define ECC_ERROR_ADDRESS			0x630
-#define     ECC_ERROR_ADDRESS__OFFSET			0x0fff
-#define     ECC_ERROR_ADDRESS__SECTOR_NR		0xf000
+#define     ECC_ERROR_ADDRESS__OFFSET			GENMASK(11, 0)
+#define     ECC_ERROR_ADDRESS__SECTOR_NR		GENMASK(15, 12)
 
 #define ERR_CORRECTION_INFO			0x640
-#define     ERR_CORRECTION_INFO__BYTEMASK		0x00ff
-#define     ERR_CORRECTION_INFO__DEVICE_NR		0x0f00
-#define     ERR_CORRECTION_INFO__ERROR_TYPE		0x4000
-#define     ERR_CORRECTION_INFO__LAST_ERR_INFO		0x8000
+#define     ERR_CORRECTION_INFO__BYTEMASK		GENMASK(7, 0)
+#define     ERR_CORRECTION_INFO__DEVICE_NR		GENMASK(11, 8)
+#define     ERR_CORRECTION_INFO__ERROR_TYPE		BIT(14)
+#define     ERR_CORRECTION_INFO__LAST_ERR_INFO		BIT(15)
 
 #define ECC_COR_INFO(bank)			(0x650 + (bank) / 2 * 0x10)
 #define     ECC_COR_INFO__SHIFT(bank)			((bank) % 2 * 8)
-#define     ECC_COR_INFO__MAX_ERRORS			0x007f
-#define     ECC_COR_INFO__UNCOR_ERR			0x0080
+#define     ECC_COR_INFO__MAX_ERRORS			GENMASK(6, 0)
+#define     ECC_COR_INFO__UNCOR_ERR			BIT(7)
+
+#define CFG_DATA_BLOCK_SIZE			0x6b0
+
+#define CFG_LAST_DATA_BLOCK_SIZE		0x6c0
+
+#define CFG_NUM_DATA_BLOCKS			0x6d0
+
+#define CFG_META_DATA_SIZE			0x6e0
 
 #define DMA_ENABLE				0x700
-#define     DMA_ENABLE__FLAG				0x0001
+#define     DMA_ENABLE__FLAG				BIT(0)
 
 #define IGNORE_ECC_DONE				0x710
-#define     IGNORE_ECC_DONE__FLAG			0x0001
+#define     IGNORE_ECC_DONE__FLAG			BIT(0)
 
 #define DMA_INTR				0x720
 #define DMA_INTR_EN				0x730
-#define     DMA_INTR__TARGET_ERROR			0x0001
-#define     DMA_INTR__DESC_COMP_CHANNEL0		0x0002
-#define     DMA_INTR__DESC_COMP_CHANNEL1		0x0004
-#define     DMA_INTR__DESC_COMP_CHANNEL2		0x0008
-#define     DMA_INTR__DESC_COMP_CHANNEL3		0x0010
-#define     DMA_INTR__MEMCOPY_DESC_COMP			0x0020
+#define     DMA_INTR__TARGET_ERROR			BIT(0)
+#define     DMA_INTR__DESC_COMP_CHANNEL0		BIT(1)
+#define     DMA_INTR__DESC_COMP_CHANNEL1		BIT(2)
+#define     DMA_INTR__DESC_COMP_CHANNEL2		BIT(3)
+#define     DMA_INTR__DESC_COMP_CHANNEL3		BIT(4)
+#define     DMA_INTR__MEMCOPY_DESC_COMP			BIT(5)
 
 #define TARGET_ERR_ADDR_LO			0x740
-#define     TARGET_ERR_ADDR_LO__VALUE			0xffff
+#define     TARGET_ERR_ADDR_LO__VALUE			GENMASK(15, 0)
 
 #define TARGET_ERR_ADDR_HI			0x750
-#define     TARGET_ERR_ADDR_HI__VALUE			0xffff
+#define     TARGET_ERR_ADDR_HI__VALUE			GENMASK(15, 0)
 
 #define CHNL_ACTIVE				0x760
-#define     CHNL_ACTIVE__CHANNEL0			0x0001
-#define     CHNL_ACTIVE__CHANNEL1			0x0002
-#define     CHNL_ACTIVE__CHANNEL2			0x0004
-#define     CHNL_ACTIVE__CHANNEL3			0x0008
+#define     CHNL_ACTIVE__CHANNEL0			BIT(0)
+#define     CHNL_ACTIVE__CHANNEL1			BIT(1)
+#define     CHNL_ACTIVE__CHANNEL2			BIT(2)
+#define     CHNL_ACTIVE__CHANNEL3			BIT(3)
 
 #define FAIL 1                  /*failed flag*/
 #define PASS 0                  /*success flag*/
 
-#define CLK_X  5
-#define CLK_MULTI 4
-
-#define ONFI_BLOOM_TIME         1
-#define MODE5_WORKAROUND        0
-
-
 #define MODE_00    0x00000000
 #define MODE_01    0x04000000
 #define MODE_10    0x08000000
 #define MODE_11    0x0C000000
 
-#define ECC_SECTOR_SIZE     512
-
-struct nand_buf {
-	int head;
-	int tail;
-	uint8_t *buf;
-	dma_addr_t dma_buf;
-};
-
-#define INTEL_CE4100	1
-#define INTEL_MRST	2
-#define DT		3
-
 struct denali_nand_info {
 	struct nand_chip nand;
+	unsigned long clk_x_rate;	/* bus interface clock rate */
 	int flash_bank; /* currently selected chip */
-	int status;
-	int platform;
-	struct nand_buf buf;
 	struct device *dev;
-	int total_used_banks;
-	int page;
 	void __iomem *flash_reg;	/* Register Interface */
 	void __iomem *flash_mem;	/* Host Data/Command Interface */
 
 	/* elements used by ISR */
 	struct completion complete;
 	spinlock_t irq_lock;
+	uint32_t irq_mask;
 	uint32_t irq_status;
 	int irq;
 
+	void *buf;
+	dma_addr_t dma_addr;
+	int dma_avail;
 	int devnum;	/* represent how many nands connected */
 	int bbtskipbytes;
 	int max_banks;
 	unsigned int revision;
+	unsigned long ecc_strength_avail;
 	unsigned int caps;
+	const struct nand_ecc_setting *avail_ecc_settings;
 };
 
 #define DENALI_CAP_HW_ECC_FIXUP			BIT(0)
diff --git a/drivers/mtd/nand/denali_dt.c b/drivers/mtd/nand/denali_dt.c
index df9ef36..a6d2e58 100644
--- a/drivers/mtd/nand/denali_dt.c
+++ b/drivers/mtd/nand/denali_dt.c
@@ -29,13 +29,30 @@ struct denali_dt {
 	struct clk		*clk;
 };
 
+#define DENALI_MAX_ECC_SETTINGS		4
+
 struct denali_dt_data {
 	unsigned int revision;
 	unsigned int caps;
+	struct nand_ecc_setting avail_ecc_settings[DENALI_MAX_ECC_SETTINGS];
 };
 
 static const struct denali_dt_data denali_socfpga_data = {
 	.caps = DENALI_CAP_HW_ECC_FIXUP,
+	.avail_ecc_settings = {{512, 8}, {512, 15}},
+};
+
+static const struct denali_dt_data denali_uniphier_v5a_data = {
+	.caps = DENALI_CAP_HW_ECC_FIXUP |
+		DENALI_CAP_DMA_64BIT,
+	.avail_ecc_settings = {{1024, 8}, {1024, 16}, {1024, 24}},
+};
+
+static const struct denali_dt_data denali_uniphier_v5b_data = {
+	.revision = 0x0501,
+	.caps = DENALI_CAP_HW_ECC_FIXUP |
+		DENALI_CAP_DMA_64BIT,
+	.avail_ecc_settings = {{1024, 8}, {1024, 16}},
 };
 
 static const struct of_device_id denali_nand_dt_ids[] = {
@@ -43,6 +60,14 @@ static const struct of_device_id denali_nand_dt_ids[] = {
 		.compatible = "altr,socfpga-denali-nand",
 		.data = &denali_socfpga_data,
 	},
+	{
+		.compatible = "socionext,uniphier-denali-nand-v5a",
+		.data = &denali_uniphier_v5a_data,
+	},
+	{
+		.compatible = "socionext,uniphier-denali-nand-v5b",
+		.data = &denali_uniphier_v5b_data,
+	},
 	{ /* sentinel */ }
 };
 MODULE_DEVICE_TABLE(of, denali_nand_dt_ids);
@@ -64,9 +89,9 @@ static int denali_dt_probe(struct platform_device *pdev)
 	if (data) {
 		denali->revision = data->revision;
 		denali->caps = data->caps;
+		denali->avail_ecc_settings = data->avail_ecc_settings;
 	}
 
-	denali->platform = DT;
 	denali->dev = &pdev->dev;
 	denali->irq = platform_get_irq(pdev, 0);
 	if (denali->irq < 0) {
@@ -93,6 +118,8 @@ static int denali_dt_probe(struct platform_device *pdev)
 	}
 	clk_prepare_enable(dt->clk);
 
+	denali->clk_x_rate = clk_get_rate(dt->clk);
+
 	ret = denali_init(denali);
 	if (ret)
 		goto out_disable_clk;
diff --git a/drivers/mtd/nand/denali_pci.c b/drivers/mtd/nand/denali_pci.c
index ac84323..e9c77d6 100644
--- a/drivers/mtd/nand/denali_pci.c
+++ b/drivers/mtd/nand/denali_pci.c
@@ -19,6 +19,9 @@
 
 #define DENALI_NAND_NAME    "denali-nand-pci"
 
+#define INTEL_CE4100	1
+#define INTEL_MRST	2
+
 /* List of platforms this NAND controller has be integrated into */
 static const struct pci_device_id denali_pci_ids[] = {
 	{ PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
@@ -27,6 +30,10 @@ static const struct pci_device_id denali_pci_ids[] = {
 };
 MODULE_DEVICE_TABLE(pci, denali_pci_ids);
 
+static const struct nand_ecc_setting denali_pci_avail_ecc_settings[] = {
+	{512, 8}, {512, 15}, {/* sentinel */}
+};
+
 static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
 {
 	int ret;
@@ -45,13 +52,11 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
 	}
 
 	if (id->driver_data == INTEL_CE4100) {
-		denali->platform = INTEL_CE4100;
 		mem_base = pci_resource_start(dev, 0);
 		mem_len = pci_resource_len(dev, 1);
 		csr_base = pci_resource_start(dev, 1);
 		csr_len = pci_resource_len(dev, 1);
 	} else {
-		denali->platform = INTEL_MRST;
 		csr_base = pci_resource_start(dev, 0);
 		csr_len = pci_resource_len(dev, 0);
 		mem_base = pci_resource_start(dev, 1);
@@ -65,6 +70,8 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
 	pci_set_master(dev);
 	denali->dev = &dev->dev;
 	denali->irq = dev->irq;
+	denali->clk_x_rate = 200000000;		/* 200 MHz */
+	denali->avail_ecc_settings = denali_pci_avail_ecc_settings;
 
 	ret = pci_request_regions(dev, DENALI_NAND_NAME);
 	if (ret) {
-- 
2.7.4

^ permalink raw reply related	[flat|nested] 9+ messages in thread

* Re: [PATCH 1/2] mtd: nand: add generic helpers to check, match, maximize ECC settings
  2017-04-19  7:06 ` [PATCH 1/2] mtd: nand: add generic helpers to " Masahiro Yamada
@ 2017-04-28 16:32   ` Boris Brezillon
  2017-05-08  3:40     ` Masahiro Yamada
  0 siblings, 1 reply; 9+ messages in thread
From: Boris Brezillon @ 2017-04-28 16:32 UTC (permalink / raw)
  To: Masahiro Yamada
  Cc: linux-mtd, Enrico Jorns, Artem Bityutskiy, Dinh Nguyen,
	Marek Vasut, Graham Moore, David Woodhouse, Masami Hiramatsu,
	Chuanxiao Dong, Jassi Brar, linux-kernel, Brian Norris,
	Richard Weinberger, Cyrille Pitchen

Hi Masahiro,

Sorry for the delay, I was busy with non-NAND/MTD stuff lately.

On Wed, 19 Apr 2017 16:06:57 +0900
Masahiro Yamada <yamada.masahiro@socionext.com> wrote:

> Each driver has been responsible for:
>   - Check if ECC setting specified (mostly by DT) is valid
>   - Meet the chip's required ECC strength
>   - Maximize the strength when NAND_ECC_MAXIMIZE flag is set
> 
> The logic can be generalized by factoring out driver-specific
> parameters.  A driver provides:
>   - Array of (step_size, strength) supported on the controller
>   - A hook that calculates ECC bytes from the combination of
>     (step_size, strength).
> 
> Then, this commit provides 3 helper functions:
> nand_check_ecc_caps - Check if preset (step_size, strength) is valid
> nand_try_to_match_ecc_req - Match the chip's requirement
> nand_try_to_maximize_ecc - Maximize the ECC strength
> 
> These helpers will save duplicated code among drivers.

Thanks for working on this. My comments below.

> 
> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
> ---
> 
>  drivers/mtd/nand/nand_base.c | 178 +++++++++++++++++++++++++++++++++++++++++++
>  include/linux/mtd/nand.h     |  31 ++++++++
>  2 files changed, 209 insertions(+)
> 
> diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c
> index 0670e13..ee43e5e 100644
> --- a/drivers/mtd/nand/nand_base.c
> +++ b/drivers/mtd/nand/nand_base.c
> @@ -4539,6 +4539,184 @@ static int nand_set_ecc_soft_ops(struct mtd_info *mtd)
>  	}
>  }
>  
> +/**
> + * nand_check_ecc_caps - check if ECC step size and strength is supported
> + * @mtd: mtd info structure
> + * @chip: nand chip info structure
> + * @caps: ECC engine caps info structure
> + *
> + * When ECC step size and strength are set, check if the combination is really
> + * supported by the controller and fit within the chip's OOB.  On success,
> + * ECC bytes per step is set.
> + */
> +int nand_check_ecc_caps(struct mtd_info *mtd, struct nand_chip *chip,
> +			const struct nand_ecc_engine_caps *caps)
> +{
> +	const struct nand_ecc_setting *setting;
> +	int preset_step = chip->ecc.size;
> +	int preset_strength = chip->ecc.strength;
> +	int ecc_bytes;
> +
> +	if (!preset_step || !preset_strength)
> +		return -ENODATA;
> +
> +	for (setting = caps->ecc_settings; setting->step; setting++) {
> +		if (setting->step != preset_step ||
> +		    setting->strength != preset_strength)
> +			continue;
> +
> +		ecc_bytes = caps->calc_ecc_bytes(setting);
> +		if (WARN_ON_ONCE(ecc_bytes < 0))
> +			continue;
> +
> +		if (ecc_bytes * mtd->writesize / setting->step >
> +		    caps->avail_oobsize) {
> +			pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
> +			       setting->step, setting->strength);
> +			return -ENOSPC;
> +		}
> +
> +		chip->ecc.bytes = ecc_bytes;
> +		return 0;
> +	}
> +
> +	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
> +	       preset_step, preset_strength);
> +
> +	return -ENOTSUPP;
> +}
> +
> +/**
> + * nand_try_to_match_ecc_req - meet the chip's requirement with least ECC bytes
> + * @mtd: mtd info structure
> + * @chip: nand chip info structure
> + * @caps: ECC engine caps info structure
> + *
> + * If chip's ECC requirement is available, try to meet it with the least number
> + * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
> + * On success, the chosen ECC settings are set.
> + */
> +int nand_try_to_match_ecc_req(struct mtd_info *mtd, struct nand_chip *chip,
> +			      const struct nand_ecc_engine_caps *caps)
> +{
> +	const struct nand_ecc_setting *setting, *best_setting = NULL;
> +	int req_step = chip->ecc_step_ds;
> +	int req_strength = chip->ecc_strength_ds;
> +	int req_corr, steps, ecc_bytes, ecc_bytes_total;
> +	int best_ecc_bytes, best_ecc_bytes_total = INT_MAX;
> +
> +	/* No information provided by the NAND chip */
> +	if (!req_step || !req_strength)
> +		return -ENOTSUPP;
> +
> +	/* number of correctable bits the chip requires in a page */
> +	req_corr = mtd->writesize / req_step * req_strength;
> +
> +	for (setting = caps->ecc_settings; setting->step; setting++) {
> +		/* If chip->ecc.size is already set, respect it. */
> +		if (chip->ecc.size && setting->step != chip->ecc.size)
> +			continue;
> +
> +		/* If chip->ecc.strength is already set, respect it. */
> +		if (chip->ecc.strength &&
> +		    setting->strength != chip->ecc.strength)
> +			continue;

Hm, I don't get it. If chip->ecc.strength and chip->ecc.size are
explicitly set, you should just call nand_check_ecc_caps() and skip
nand_try_to_match_ecc_req(). Why would you call
nand_try_to_match_ecc_req() in this case?

> +
> +		/*
> +		 * If the controller's step size is smaller than the chip's
> +		 * requirement, comparison of the strength is not simple.
> +		 */

There's one thing we can easily do in this case: try to apply the
same strength but on the smaller step size. If it fits the OOB area, we
have a valid match, if it doesn't, then we can fallback to ECC
maximization in case no valid settings were found after iterating over
ECC settings.

How about:

		if (setting->step < req_step &&
		    setting->strength < req_strength)
			continue;

> +		if (setting->step < req_step)
> +			continue;

You should probably check that setting->step < mtd->writesize.

> +
> +		steps = mtd->writesize / setting->step;

Not sure it will ever happen to have a step which is not a multiple of
->writesize, but it's probably safer to do DIV_ROUND_UP(), or simply
skip the ECC setting entry if mtd->writesize % setting->step != 0.

> +
> +		ecc_bytes = caps->calc_ecc_bytes(setting);
> +		if (WARN_ON_ONCE(ecc_bytes < 0))
> +			continue;
> +		ecc_bytes_total = ecc_bytes * steps;
> +
> +		if (ecc_bytes_total > caps->avail_oobsize ||
> +		    setting->strength * steps < req_corr)
> +			continue;
> +
> +		/*
> +		 * We assume the best is to meet the chip's requrement
> +		 * with the least number of ECC bytes.
> +		 */

If ecc_settings entries were in ascending order (lowest step-size and
strength first), you could bail out as soon as you find a suitable
config, because following settings would necessarily take more bits.

> +		if (ecc_bytes_total < best_ecc_bytes_total) {
> +			best_ecc_bytes_total = ecc_bytes_total;
> +			best_setting = setting;
> +			best_ecc_bytes = ecc_bytes;
> +		}
> +	}
> +
> +	if (!best_setting)
> +		return -ENOTSUPP;
> +
> +	chip->ecc.size = best_setting->step;
> +	chip->ecc.strength = best_setting->strength;
> +	chip->ecc.bytes = best_ecc_bytes;
> +
> +	return 0;
> +}
> +EXPORT_SYMBOL_GPL(nand_try_to_match_ecc_req);
> +
> +/**
> + * nand_try_to_maximize_ecc - choose the max ECC strength available
> + * @mtd: mtd info structure
> + * @chip: nand chip info structure
> + * @caps: ECC engine caps info structure
> + *
> + * Choose the max ECC strength that is supported on the controller, and can fit
> + * within the chip's OOB.   * On success, the chosen ECC settings are set.
> + */
> +int nand_try_to_maximize_ecc(struct mtd_info *mtd, struct nand_chip *chip,
> +			     const struct nand_ecc_engine_caps *caps)
> +{
> +	const struct nand_ecc_setting *setting, *best_setting = NULL;
> +	int steps, ecc_bytes, corr;
> +	int best_corr = 0;
> +	int best_ecc_bytes;
> +
> +	for (setting = caps->ecc_settings; setting->step; setting++) {
> +		/* If chip->ecc.size is already set, respect it. */
> +		if (chip->ecc.size && setting->step != chip->ecc.size)
> +			continue;
> +
> +		steps = mtd->writesize / setting->step;
> +		ecc_bytes = caps->calc_ecc_bytes(setting);
> +		if (WARN_ON_ONCE(ecc_bytes < 0))
> +			continue;
> +
> +		if (ecc_bytes * steps > caps->avail_oobsize)
> +			continue;
> +
> +		corr = setting->strength * steps;
> +
> +		/*
> +		 * If the number of correctable bits is the same,
> +		 * bigger ecc_step has more reliability.
> +		 */
> +		if (corr > best_corr ||
> +		    (corr == best_corr && setting->step > best_setting->step)) {
> +			best_corr = corr;
> +			best_setting = setting;
> +			best_ecc_bytes = ecc_bytes;
> +		}

Same comment as earlier: you could probably skip a few entries by
enforcing ordering in the ecc_settings array.

> +	}
> +
> +	if (!best_setting)
> +		return -ENOTSUPP;
> +
> +	chip->ecc.size = best_setting->step;
> +	chip->ecc.strength = best_setting->strength;
> +	chip->ecc.bytes = best_ecc_bytes;
> +
> +	return 0;
> +}
> +EXPORT_SYMBOL_GPL(nand_try_to_maximize_ecc);
> +
>  /*
>   * Check if the chip configuration meet the datasheet requirements.
>  
> diff --git a/include/linux/mtd/nand.h b/include/linux/mtd/nand.h
> index 2ae781e..394128f 100644
> --- a/include/linux/mtd/nand.h
> +++ b/include/linux/mtd/nand.h
> @@ -486,6 +486,28 @@ static inline void nand_hw_control_init(struct nand_hw_control *nfc)
>  }
>  
>  /**
> + * struct nand_ecc_setting - information of ECC step supported by ECC engine
> + * @step: data bytes per ECC step
> + * @bytes: ECC bytes per step
> + */
> +struct nand_ecc_setting {
> +	int step;
> +	int strength;
> +};

I think I already mentioned that I'd prefer to have the step and
strength info separated in 2 different objects so that we can easily
re-use the strength definitions for all step-size supported by the
engine (ECC engines usually provide the same set of strengths for all
supported step-size).

struct nand_ecc_step_size_caps {
	int step_size;
	int *strengths;
};

struct nand_ecc_engine_caps {
	const struct nand_ecc_step_size_caps *step_sizes;
	/* ... */
};

static int my_strengths[] = { 8, 16, 24, 0 };
static const struct nand_ecc_step_size_caps my_step_sizes[] = {
	{ 512, my_strengths },
	{ 1024, my_strengths },
	/* sentinel */
};

static const struct nand_ecc_engine_caps my_ecc_caps = {
	.step_sizes = my_step_sizes,
	/* ... */
};


> +
> +/**
> + * struct nand_ecc_engine_caps - capability of ECC engine
> + * @ecc_settings: array of (step, strength) supported by this ECC engine
> + * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
> + * @avail_oobsize: OOB size that the ECC engine can use for ECC correction
> + */
> +struct nand_ecc_engine_caps {
> +	const struct nand_ecc_setting *ecc_settings;
> +	int (*calc_ecc_bytes)(const struct nand_ecc_setting *ecc_setting);
> +	int avail_oobsize;

avail_oobsize should be passed as an argument to the different helpers
you define above, because it's completely dependent on the NAND chip,
which means you would have change it dynamically, which in turn
prevents you from defining this object as 'static const' in your driver.

> +};

^ permalink raw reply	[flat|nested] 9+ messages in thread

* Re: [PATCH 1/2] mtd: nand: add generic helpers to check, match, maximize ECC settings
  2017-04-28 16:32   ` Boris Brezillon
@ 2017-05-08  3:40     ` Masahiro Yamada
  2017-05-15 11:54       ` Boris Brezillon
  0 siblings, 1 reply; 9+ messages in thread
From: Masahiro Yamada @ 2017-05-08  3:40 UTC (permalink / raw)
  To: Boris Brezillon
  Cc: linux-mtd, Enrico Jorns, Artem Bityutskiy, Dinh Nguyen,
	Marek Vasut, Graham Moore, David Woodhouse, Masami Hiramatsu,
	Chuanxiao Dong, Jassi Brar, Linux Kernel Mailing List,
	Brian Norris, Richard Weinberger, Cyrille Pitchen

Hi Boris,


2017-04-29 1:32 GMT+09:00 Boris Brezillon <boris.brezillon@free-electrons.com>:

>> +     for (setting = caps->ecc_settings; setting->step; setting++) {
>> +             /* If chip->ecc.size is already set, respect it. */
>> +             if (chip->ecc.size && setting->step != chip->ecc.size)
>> +                     continue;
>> +
>> +             /* If chip->ecc.strength is already set, respect it. */
>> +             if (chip->ecc.strength &&
>> +                 setting->strength != chip->ecc.strength)
>> +                     continue;
>
> Hm, I don't get it. If chip->ecc.strength and chip->ecc.size are
> explicitly set, you should just call nand_check_ecc_caps() and skip
> nand_try_to_match_ecc_req(). Why would you call
> nand_try_to_match_ecc_req() in this case?


I want to call this function if
ecc.size is specified but ecc.strength is not
(or vice versa).


If both ecc.size and ecc.strength are already specified,
you are right, no need to call this function.
This function can check the sanity of the specified
combination of (step, strength), but this is the same
as what nand_check_ecc_caps() does.




>> +
>> +             /*
>> +              * If the controller's step size is smaller than the chip's
>> +              * requirement, comparison of the strength is not simple.
>> +              */
>
> There's one thing we can easily do in this case: try to apply the
> same strength but on the smaller step size. If it fits the OOB area, we
> have a valid match, if it doesn't, then we can fallback to ECC
> maximization in case no valid settings were found after iterating over
> ECC settings.
>
> How about:
>
>                 if (setting->step < req_step &&
>                     setting->strength < req_strength)
>                         continue;

Make sense.  I will do this.



>> +             if (setting->step < req_step)
>> +                     continue;
>
> You should probably check that setting->step < mtd->writesize.
>
>> +
>> +             steps = mtd->writesize / setting->step;
>
> Not sure it will ever happen to have a step which is not a multiple of
> ->writesize, but it's probably safer to do DIV_ROUND_UP(), or simply
> skip the ECC setting entry if mtd->writesize % setting->step != 0.

OK.

mtd->writesize % setting->step != 0
will guarantee
setting->step <= mtd->writesize





>> +
>> +             ecc_bytes = caps->calc_ecc_bytes(setting);
>> +             if (WARN_ON_ONCE(ecc_bytes < 0))
>> +                     continue;
>> +             ecc_bytes_total = ecc_bytes * steps;
>> +
>> +             if (ecc_bytes_total > caps->avail_oobsize ||
>> +                 setting->strength * steps < req_corr)
>> +                     continue;
>> +
>> +             /*
>> +              * We assume the best is to meet the chip's requrement
>> +              * with the least number of ECC bytes.
>> +              */
>
> If ecc_settings entries were in ascending order (lowest step-size and
> strength first), you could bail out as soon as you find a suitable
> config, because following settings would necessarily take more bits.

If we want to achieve this,
step-size must be descending order,
while strength must be ascending order.

This is a bit confusing (and I have no idea
how to statically check if every driver follows this order).



>> +             /*
>> +              * If the number of correctable bits is the same,
>> +              * bigger ecc_step has more reliability.
>> +              */
>> +             if (corr > best_corr ||
>> +                 (corr == best_corr && setting->step > best_setting->step)) {
>> +                     best_corr = corr;
>> +                     best_setting = setting;
>> +                     best_ecc_bytes = ecc_bytes;
>> +             }
>
> Same comment as earlier: you could probably skip a few entries by
> enforcing ordering in the ecc_settings array.


Assuming that step-size is descending order and strength is ascending order,
it may be possible by iterating backward.

But, I think the array should be terminated by zero or NULL.
How to find the last entry we want to start iterating from?

Assuming the array size is small, is this worthwhile?



>> +     }
>> +
>> +     if (!best_setting)
>> +             return -ENOTSUPP;
>> +
>> +     chip->ecc.size = best_setting->step;
>> +     chip->ecc.strength = best_setting->strength;
>> +     chip->ecc.bytes = best_ecc_bytes;
>> +
>> +     return 0;
>> +}
>> +EXPORT_SYMBOL_GPL(nand_try_to_maximize_ecc);
>> +
>>  /*
>>   * Check if the chip configuration meet the datasheet requirements.
>>
>> diff --git a/include/linux/mtd/nand.h b/include/linux/mtd/nand.h
>> index 2ae781e..394128f 100644
>> --- a/include/linux/mtd/nand.h
>> +++ b/include/linux/mtd/nand.h
>> @@ -486,6 +486,28 @@ static inline void nand_hw_control_init(struct nand_hw_control *nfc)
>>  }
>>
>>  /**
>> + * struct nand_ecc_setting - information of ECC step supported by ECC engine
>> + * @step: data bytes per ECC step
>> + * @bytes: ECC bytes per step
>> + */
>> +struct nand_ecc_setting {
>> +     int step;
>> +     int strength;
>> +};
>
> I think I already mentioned that I'd prefer to have the step and
> strength info separated in 2 different objects so that we can easily
> re-use the strength definitions for all step-size supported by the
> engine (ECC engines usually provide the same set of strengths for all
> supported step-size).
>
> struct nand_ecc_step_size_caps {
>         int step_size;
>         int *strengths;
> };
>
> struct nand_ecc_engine_caps {
>         const struct nand_ecc_step_size_caps *step_sizes;
>         /* ... */
> };
>
> static int my_strengths[] = { 8, 16, 24, 0 };
> static const struct nand_ecc_step_size_caps my_step_sizes[] = {
>         { 512, my_strengths },
>         { 1024, my_strengths },
>         /* sentinel */
> };
>
> static const struct nand_ecc_engine_caps my_ecc_caps = {
>         .step_sizes = my_step_sizes,
>         /* ... */
> };


At first, I implemented as you suggested, but I did not like the taste
of the code.

I want each compatible string has only one associated data array
as you see in 2/2.


If we follow the separate structure approach, each compatible
has a chain of caps arrays.


One more thing, the loop nest will become deeper,
for the outer loop with ecc-step,
and inter loop with strength.


Just in case, I copy-pasted the compatible array I wrote first.


static const int denali_socfpga_ecc_strengths[] = {8, 15, 0};
static const struct nand_ecc_step_caps denali_socfpga_ecc_step_caps[] = {
        { .step_size = 512, .strengths = denali_socfpga_ecc_strengths, },
        {},
};

static const struct denali_dt_data denali_socfpga_data = {
        .caps = DENALI_CAP_HW_ECC_FIXUP,
        .ecc_step_caps = denali_socfpga_ecc_step_caps,
};

static const int denali_uniphier_v5a_strengths[] = {8, 16, 24, 0};
static const struct nand_ecc_step_caps denali_uniphier_v5a_ecc_step_caps[] = {
        { .step_size = 1024, .strengths = denali_uniphier_v5a_strengths, },
        {},
};

static const struct denali_dt_data denali_uniphier_v5a_data = {
        .caps = DENALI_CAP_HW_ECC_FIXUP |
                DENALI_CAP_DMA_64BIT,
        .ecc_step_caps = denali_uniphier_v5a_ecc_step_caps,
};

static const int denali_uniphier_v5b_strengths[] = {8, 16, 0};
static const struct nand_ecc_step_caps denali_uniphier_v5b_ecc_step_caps[] = {
        { .step_size = 1024, .strengths = denali_uniphier_v5b_strengths, },
        {},
};

static const struct denali_dt_data denali_uniphier_v5b_data = {
        .revision = 0x0501,
        .caps = DENALI_CAP_HW_ECC_FIXUP |
                DENALI_CAP_DMA_64BIT,
        .ecc_step_caps = denali_uniphier_v5b_ecc_step_caps,
};

static const struct of_device_id denali_nand_dt_ids[] = {
        {
                .compatible = "altr,socfpga-denali-nand",
                .data = &denali_socfpga_data,
        },
        {
                .compatible = "socionext,uniphier-denali-nand-v5a",
                .data = &denali_uniphier_v5a_data,
        },
        {
                .compatible = "socionext,uniphier-denali-nand-v5b",
                .data = &denali_uniphier_v5b_data,
        },
        { /* sentinel */ }
};



>
>> +
>> +/**
>> + * struct nand_ecc_engine_caps - capability of ECC engine
>> + * @ecc_settings: array of (step, strength) supported by this ECC engine
>> + * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
>> + * @avail_oobsize: OOB size that the ECC engine can use for ECC correction
>> + */
>> +struct nand_ecc_engine_caps {
>> +     const struct nand_ecc_setting *ecc_settings;
>> +     int (*calc_ecc_bytes)(const struct nand_ecc_setting *ecc_setting);
>> +     int avail_oobsize;
>
> avail_oobsize should be passed as an argument to the different helpers
> you define above, because it's completely dependent on the NAND chip,
> which means you would have change it dynamically, which in turn
> prevents you from defining this object as 'static const' in your driver.


Make sense.




-- 
Best Regards
Masahiro Yamada

^ permalink raw reply	[flat|nested] 9+ messages in thread

* Re: [PATCH 1/2] mtd: nand: add generic helpers to check, match, maximize ECC settings
  2017-05-08  3:40     ` Masahiro Yamada
@ 2017-05-15 11:54       ` Boris Brezillon
  2017-05-18  6:27         ` Masahiro Yamada
  0 siblings, 1 reply; 9+ messages in thread
From: Boris Brezillon @ 2017-05-15 11:54 UTC (permalink / raw)
  To: Masahiro Yamada
  Cc: linux-mtd, Enrico Jorns, Artem Bityutskiy, Dinh Nguyen,
	Marek Vasut, Graham Moore, David Woodhouse, Masami Hiramatsu,
	Chuanxiao Dong, Jassi Brar, Linux Kernel Mailing List,
	Brian Norris, Richard Weinberger, Cyrille Pitchen

Hi Masahiro,

Sorry for the late reply.

On Mon, 8 May 2017 12:40:47 +0900
Masahiro Yamada <yamada.masahiro@socionext.com> wrote:

> Hi Boris,
> 
> 
> 2017-04-29 1:32 GMT+09:00 Boris Brezillon <boris.brezillon@free-electrons.com>:
> 
> >> +     for (setting = caps->ecc_settings; setting->step; setting++) {
> >> +             /* If chip->ecc.size is already set, respect it. */
> >> +             if (chip->ecc.size && setting->step != chip->ecc.size)
> >> +                     continue;
> >> +
> >> +             /* If chip->ecc.strength is already set, respect it. */
> >> +             if (chip->ecc.strength &&
> >> +                 setting->strength != chip->ecc.strength)
> >> +                     continue;  
> >
> > Hm, I don't get it. If chip->ecc.strength and chip->ecc.size are
> > explicitly set, you should just call nand_check_ecc_caps() and skip
> > nand_try_to_match_ecc_req(). Why would you call
> > nand_try_to_match_ecc_req() in this case?  
> 
> 
> I want to call this function if
> ecc.size is specified but ecc.strength is not
> (or vice versa).

That's not a valid combination. I accepted the case where
nand-ecc-step-size is not defined in the DT just because sometime you
only have one possible setting which is imposed by the controller. In
this case ecc.size should be explicitly set by the driver not left to 0.

> 
> 
> If both ecc.size and ecc.strength are already specified,
> you are right, no need to call this function.
> This function can check the sanity of the specified
> combination of (step, strength), but this is the same
> as what nand_check_ecc_caps() does.

Really, this function is just about trying to match ecc_strength_ds and
ecc_step_size_ds, and not a partial combination of DT def + _ds def.

> 
> 
> 
> 
> >> +
> >> +             /*
> >> +              * If the controller's step size is smaller than the chip's
> >> +              * requirement, comparison of the strength is not simple.
> >> +              */  
> >
> > There's one thing we can easily do in this case: try to apply the
> > same strength but on the smaller step size. If it fits the OOB area, we
> > have a valid match, if it doesn't, then we can fallback to ECC
> > maximization in case no valid settings were found after iterating over
> > ECC settings.
> >
> > How about:
> >
> >                 if (setting->step < req_step &&
> >                     setting->strength < req_strength)
> >                         continue;  
> 
> Make sense.  I will do this.
> 
> 
> 
> >> +             if (setting->step < req_step)
> >> +                     continue;  
> >
> > You should probably check that setting->step < mtd->writesize.
> >  
> >> +
> >> +             steps = mtd->writesize / setting->step;  
> >
> > Not sure it will ever happen to have a step which is not a multiple of  
> > ->writesize, but it's probably safer to do DIV_ROUND_UP(), or simply  
> > skip the ECC setting entry if mtd->writesize % setting->step != 0.  
> 
> OK.
> 
> mtd->writesize % setting->step != 0
> will guarantee
> setting->step <= mtd->writesize
> 

Indeed.

> 
> 
> 
> 
> >> +
> >> +             ecc_bytes = caps->calc_ecc_bytes(setting);
> >> +             if (WARN_ON_ONCE(ecc_bytes < 0))
> >> +                     continue;
> >> +             ecc_bytes_total = ecc_bytes * steps;
> >> +
> >> +             if (ecc_bytes_total > caps->avail_oobsize ||
> >> +                 setting->strength * steps < req_corr)
> >> +                     continue;
> >> +
> >> +             /*
> >> +              * We assume the best is to meet the chip's requrement
> >> +              * with the least number of ECC bytes.
> >> +              */  
> >
> > If ecc_settings entries were in ascending order (lowest step-size and
> > strength first), you could bail out as soon as you find a suitable
> > config, because following settings would necessarily take more bits.  
> 
> If we want to achieve this,
> step-size must be descending order,
> while strength must be ascending order.
> 
> This is a bit confusing (and I have no idea
> how to statically check if every driver follows this order).

Well, I was not suggesting to check the ordering statically. It's more a
convention and reviews should allow us to detect offenders. This being
said, maybe it's not such a big deal to iterate over all configs before
taking a decision.

> 
> 
> 
> >> +             /*
> >> +              * If the number of correctable bits is the same,
> >> +              * bigger ecc_step has more reliability.
> >> +              */
> >> +             if (corr > best_corr ||
> >> +                 (corr == best_corr && setting->step > best_setting->step)) {
> >> +                     best_corr = corr;
> >> +                     best_setting = setting;
> >> +                     best_ecc_bytes = ecc_bytes;
> >> +             }  
> >
> > Same comment as earlier: you could probably skip a few entries by
> > enforcing ordering in the ecc_settings array.  
> 
> 
> Assuming that step-size is descending order and strength is ascending order,
> it may be possible by iterating backward.
> 
> But, I think the array should be terminated by zero or NULL.

Well, you decided to do that. Actually I'd prefer to have an object
containing both a pointer to the array and the array size. I'm really
not a big fan of the sentinel entry approach, because it's error prone
compared to an ARRAY_SIZE(def).

> How to find the last entry we want to start iterating from?

If you store the array size, it's just a matter of doing:

	for (i = ARRAY_SIZE(def); i >= 0; i--)
		...

> 
> Assuming the array size is small, is this worthwhile?

Maybe not.

> 
> 
> 
> >> +     }
> >> +
> >> +     if (!best_setting)
> >> +             return -ENOTSUPP;
> >> +
> >> +     chip->ecc.size = best_setting->step;
> >> +     chip->ecc.strength = best_setting->strength;
> >> +     chip->ecc.bytes = best_ecc_bytes;
> >> +
> >> +     return 0;
> >> +}
> >> +EXPORT_SYMBOL_GPL(nand_try_to_maximize_ecc);
> >> +
> >>  /*
> >>   * Check if the chip configuration meet the datasheet requirements.
> >>
> >> diff --git a/include/linux/mtd/nand.h b/include/linux/mtd/nand.h
> >> index 2ae781e..394128f 100644
> >> --- a/include/linux/mtd/nand.h
> >> +++ b/include/linux/mtd/nand.h
> >> @@ -486,6 +486,28 @@ static inline void nand_hw_control_init(struct nand_hw_control *nfc)
> >>  }
> >>
> >>  /**
> >> + * struct nand_ecc_setting - information of ECC step supported by ECC engine
> >> + * @step: data bytes per ECC step
> >> + * @bytes: ECC bytes per step
> >> + */
> >> +struct nand_ecc_setting {
> >> +     int step;
> >> +     int strength;
> >> +};  
> >
> > I think I already mentioned that I'd prefer to have the step and
> > strength info separated in 2 different objects so that we can easily
> > re-use the strength definitions for all step-size supported by the
> > engine (ECC engines usually provide the same set of strengths for all
> > supported step-size).
> >
> > struct nand_ecc_step_size_caps {
> >         int step_size;
> >         int *strengths;
> > };
> >
> > struct nand_ecc_engine_caps {
> >         const struct nand_ecc_step_size_caps *step_sizes;
> >         /* ... */
> > };
> >
> > static int my_strengths[] = { 8, 16, 24, 0 };
> > static const struct nand_ecc_step_size_caps my_step_sizes[] = {
> >         { 512, my_strengths },
> >         { 1024, my_strengths },
> >         /* sentinel */
> > };
> >
> > static const struct nand_ecc_engine_caps my_ecc_caps = {
> >         .step_sizes = my_step_sizes,
> >         /* ... */
> > };  
> 
> 
> At first, I implemented as you suggested, but I did not like the taste
> of the code.

Well, I prefer it this way, and since, as you say, it's a matter of
taste, I think I'll abuse of my maintainer's position and push for this
approach :-).

> 
> I want each compatible string has only one associated data array
> as you see in 2/2.
> 
> 
> If we follow the separate structure approach, each compatible
> has a chain of caps arrays.
> 
> 
> One more thing, the loop nest will become deeper,
> for the outer loop with ecc-step,
> and inter loop with strength.
> 
> 
> Just in case, I copy-pasted the compatible array I wrote first.

Note that your use case is a bit biased because the strength arrays is
not reusable in the denali driver. But I have a real use case
(sunxi_nand) where the strength array is exactly the same for 512 and
1024 step size.

> 
> 
> static const int denali_socfpga_ecc_strengths[] = {8, 15, 0};
> static const struct nand_ecc_step_caps denali_socfpga_ecc_step_caps[] = {
>         { .step_size = 512, .strengths = denali_socfpga_ecc_strengths, },
>         {},
> };
> 
> static const struct denali_dt_data denali_socfpga_data = {
>         .caps = DENALI_CAP_HW_ECC_FIXUP,
>         .ecc_step_caps = denali_socfpga_ecc_step_caps,
> };
> 
> static const int denali_uniphier_v5a_strengths[] = {8, 16, 24, 0};
> static const struct nand_ecc_step_caps denali_uniphier_v5a_ecc_step_caps[] = {
>         { .step_size = 1024, .strengths = denali_uniphier_v5a_strengths, },
>         {},
> };
> 
> static const struct denali_dt_data denali_uniphier_v5a_data = {
>         .caps = DENALI_CAP_HW_ECC_FIXUP |
>                 DENALI_CAP_DMA_64BIT,
>         .ecc_step_caps = denali_uniphier_v5a_ecc_step_caps,
> };
> 
> static const int denali_uniphier_v5b_strengths[] = {8, 16, 0};
> static const struct nand_ecc_step_caps denali_uniphier_v5b_ecc_step_caps[] = {
>         { .step_size = 1024, .strengths = denali_uniphier_v5b_strengths, },
>         {},
> };

If you store the size of the array in the struct as I suggested above,
you can even re-use the strength array here:

static const int denali_uniphier_v5_strengths[] = {8, 16, 24};
static const struct nand_ecc_step_caps denali_uniphier_v5a_ecc_step_caps[] = {
	{
		.step_size = 1024,
		.nstrengths = ARRAY_SIZE(denali_uniphier_v5_strengths),
		.strengths = denali_uniphier_v5a_strengths,
	}
};

static const struct nand_ecc_step_caps denali_uniphier_v5b_ecc_step_caps[] = {
	{
		.step_size = 1024,
		.nstrengths = ARRAY_SIZE(denali_uniphier_v5_strengths) - 1,
		.strengths = denali_uniphier_v5_strengths,
	}
};

^ permalink raw reply	[flat|nested] 9+ messages in thread

* Re: [PATCH 1/2] mtd: nand: add generic helpers to check, match, maximize ECC settings
  2017-05-15 11:54       ` Boris Brezillon
@ 2017-05-18  6:27         ` Masahiro Yamada
  2017-05-18  7:09           ` Boris Brezillon
  0 siblings, 1 reply; 9+ messages in thread
From: Masahiro Yamada @ 2017-05-18  6:27 UTC (permalink / raw)
  To: Boris Brezillon
  Cc: linux-mtd, Enrico Jorns, Artem Bityutskiy, Dinh Nguyen,
	Marek Vasut, Graham Moore, David Woodhouse, Masami Hiramatsu,
	Chuanxiao Dong, Jassi Brar, Linux Kernel Mailing List,
	Brian Norris, Richard Weinberger, Cyrille Pitchen

Hi Boris,



2017-05-15 20:54 GMT+09:00 Boris Brezillon <boris.brezillon@free-electrons.com>:
> Hi Masahiro,
>
> Sorry for the late reply.
>
> On Mon, 8 May 2017 12:40:47 +0900
> Masahiro Yamada <yamada.masahiro@socionext.com> wrote:
>
>> Hi Boris,
>>
>>
>> 2017-04-29 1:32 GMT+09:00 Boris Brezillon <boris.brezillon@free-electrons.com>:
>>
>> >> +     for (setting = caps->ecc_settings; setting->step; setting++) {
>> >> +             /* If chip->ecc.size is already set, respect it. */
>> >> +             if (chip->ecc.size && setting->step != chip->ecc.size)
>> >> +                     continue;
>> >> +
>> >> +             /* If chip->ecc.strength is already set, respect it. */
>> >> +             if (chip->ecc.strength &&
>> >> +                 setting->strength != chip->ecc.strength)
>> >> +                     continue;
>> >
>> > Hm, I don't get it. If chip->ecc.strength and chip->ecc.size are
>> > explicitly set, you should just call nand_check_ecc_caps() and skip
>> > nand_try_to_match_ecc_req(). Why would you call
>> > nand_try_to_match_ecc_req() in this case?
>>
>>
>> I want to call this function if
>> ecc.size is specified but ecc.strength is not
>> (or vice versa).
>
> That's not a valid combination. I accepted the case where
> nand-ecc-step-size is not defined in the DT just because sometime you
> only have one possible setting which is imposed by the controller. In
> this case ecc.size should be explicitly set by the driver not left to 0.
>
>>
>>
>> If both ecc.size and ecc.strength are already specified,
>> you are right, no need to call this function.
>> This function can check the sanity of the specified
>> combination of (step, strength), but this is the same
>> as what nand_check_ecc_caps() does.


I am working on the next version because I really need to
merge all of my Denali controller patches for my SoCs.


One question about this part.


       /* If chip->ecc.size is already set, respect it. */
       if (chip->ecc.size && step_size != chip->ecc.size)
               continue;

Does this make sense for nand_try_to_maximize_ecc()?

(In other words, can nand-ecc-maximize stand together with nand-ecc-step-size?)


-- 
Best Regards
Masahiro Yamada

^ permalink raw reply	[flat|nested] 9+ messages in thread

* Re: [PATCH 1/2] mtd: nand: add generic helpers to check, match, maximize ECC settings
  2017-05-18  6:27         ` Masahiro Yamada
@ 2017-05-18  7:09           ` Boris Brezillon
  2017-05-24  8:23             ` Masahiro Yamada
  0 siblings, 1 reply; 9+ messages in thread
From: Boris Brezillon @ 2017-05-18  7:09 UTC (permalink / raw)
  To: Masahiro Yamada
  Cc: linux-mtd, Enrico Jorns, Artem Bityutskiy, Dinh Nguyen,
	Marek Vasut, Graham Moore, David Woodhouse, Masami Hiramatsu,
	Chuanxiao Dong, Jassi Brar, Linux Kernel Mailing List,
	Brian Norris, Richard Weinberger, Cyrille Pitchen

On Thu, 18 May 2017 15:27:11 +0900
Masahiro Yamada <yamada.masahiro@socionext.com> wrote:

> Hi Boris,
> 
> 
> 
> 2017-05-15 20:54 GMT+09:00 Boris Brezillon <boris.brezillon@free-electrons.com>:
> > Hi Masahiro,
> >
> > Sorry for the late reply.
> >
> > On Mon, 8 May 2017 12:40:47 +0900
> > Masahiro Yamada <yamada.masahiro@socionext.com> wrote:
> >  
> >> Hi Boris,
> >>
> >>
> >> 2017-04-29 1:32 GMT+09:00 Boris Brezillon <boris.brezillon@free-electrons.com>:
> >>  
> >> >> +     for (setting = caps->ecc_settings; setting->step; setting++) {
> >> >> +             /* If chip->ecc.size is already set, respect it. */
> >> >> +             if (chip->ecc.size && setting->step != chip->ecc.size)
> >> >> +                     continue;
> >> >> +
> >> >> +             /* If chip->ecc.strength is already set, respect it. */
> >> >> +             if (chip->ecc.strength &&
> >> >> +                 setting->strength != chip->ecc.strength)
> >> >> +                     continue;  
> >> >
> >> > Hm, I don't get it. If chip->ecc.strength and chip->ecc.size are
> >> > explicitly set, you should just call nand_check_ecc_caps() and skip
> >> > nand_try_to_match_ecc_req(). Why would you call
> >> > nand_try_to_match_ecc_req() in this case?  
> >>
> >>
> >> I want to call this function if
> >> ecc.size is specified but ecc.strength is not
> >> (or vice versa).  
> >
> > That's not a valid combination. I accepted the case where
> > nand-ecc-step-size is not defined in the DT just because sometime you
> > only have one possible setting which is imposed by the controller. In
> > this case ecc.size should be explicitly set by the driver not left to 0.
> >  
> >>
> >>
> >> If both ecc.size and ecc.strength are already specified,
> >> you are right, no need to call this function.
> >> This function can check the sanity of the specified
> >> combination of (step, strength), but this is the same
> >> as what nand_check_ecc_caps() does.  
> 
> 
> I am working on the next version because I really need to
> merge all of my Denali controller patches for my SoCs.

Okay.

> 
> 
> One question about this part.
> 
> 
>        /* If chip->ecc.size is already set, respect it. */
>        if (chip->ecc.size && step_size != chip->ecc.size)
>                continue;
> 
> Does this make sense for nand_try_to_maximize_ecc()?
> 
> (In other words, can nand-ecc-maximize stand together with nand-ecc-step-size?)

It could make sense if one wants to maximize the strength for a
specific step-size, but most of the time the user will let the driver
choose the best step-size+strength pair.

^ permalink raw reply	[flat|nested] 9+ messages in thread

* Re: [PATCH 1/2] mtd: nand: add generic helpers to check, match, maximize ECC settings
  2017-05-18  7:09           ` Boris Brezillon
@ 2017-05-24  8:23             ` Masahiro Yamada
  0 siblings, 0 replies; 9+ messages in thread
From: Masahiro Yamada @ 2017-05-24  8:23 UTC (permalink / raw)
  To: Boris Brezillon
  Cc: linux-mtd, Enrico Jorns, Artem Bityutskiy, Dinh Nguyen,
	Marek Vasut, Graham Moore, David Woodhouse, Masami Hiramatsu,
	Chuanxiao Dong, Jassi Brar, Linux Kernel Mailing List,
	Brian Norris, Richard Weinberger, Cyrille Pitchen

Hi Boris,

2017-05-18 16:09 GMT+09:00 Boris Brezillon <boris.brezillon@free-electrons.com>:

>>
>> One question about this part.
>>
>>
>>        /* If chip->ecc.size is already set, respect it. */
>>        if (chip->ecc.size && step_size != chip->ecc.size)
>>                continue;
>>
>> Does this make sense for nand_try_to_maximize_ecc()?
>>
>> (In other words, can nand-ecc-maximize stand together with nand-ecc-step-size?)
>
> It could make sense if one wants to maximize the strength for a
> specific step-size, but most of the time the user will let the driver
> choose the best step-size+strength pair.


OK.  I am keeping it here, but I do not have a strong opinion about this.
I will follow your decision.

Thanks.

-- 
Best Regards
Masahiro Yamada

^ permalink raw reply	[flat|nested] 9+ messages in thread

end of thread, other threads:[~2017-05-24  8:24 UTC | newest]

Thread overview: 9+ messages (download: mbox.gz / follow: Atom feed)
-- links below jump to the message on this page --
2017-04-19  7:06 [PATCH 0/2] mtd: nand: Add generic helpers check, match, maximize ECC settings Masahiro Yamada
2017-04-19  7:06 ` [PATCH 1/2] mtd: nand: add generic helpers to " Masahiro Yamada
2017-04-28 16:32   ` Boris Brezillon
2017-05-08  3:40     ` Masahiro Yamada
2017-05-15 11:54       ` Boris Brezillon
2017-05-18  6:27         ` Masahiro Yamada
2017-05-18  7:09           ` Boris Brezillon
2017-05-24  8:23             ` Masahiro Yamada
2017-04-19  7:06 ` [PATCH 2/2] mtd: nand: denali: show how to use generic helpers (do not apply) Masahiro Yamada

This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).