From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org X-Spam-Level: X-Spam-Status: No, score=-8.8 required=3.0 tests=DKIM_INVALID,DKIM_SIGNED, HEADER_FROM_DIFFERENT_DOMAINS,INCLUDES_PATCH,MAILING_LIST_MULTI,SIGNED_OFF_BY, SPF_PASS,URIBL_BLOCKED,USER_AGENT_GIT autolearn=ham autolearn_force=no version=3.4.0 Received: from mail.kernel.org (mail.kernel.org [198.145.29.99]) by smtp.lore.kernel.org (Postfix) with ESMTP id BF5FFC43441 for ; Fri, 9 Nov 2018 01:50:21 +0000 (UTC) Received: from vger.kernel.org (vger.kernel.org [209.132.180.67]) by mail.kernel.org (Postfix) with ESMTP id 5E63E2086C for ; Fri, 9 Nov 2018 01:50:21 +0000 (UTC) Authentication-Results: mail.kernel.org; dkim=fail reason="signature verification failed" (2048-bit key) header.d=wdc.com header.i=@wdc.com header.b="FOETn05i" DMARC-Filter: OpenDMARC Filter v1.3.2 mail.kernel.org 5E63E2086C Authentication-Results: mail.kernel.org; dmarc=fail (p=none dis=none) header.from=wdc.com Authentication-Results: mail.kernel.org; spf=none smtp.mailfrom=linux-kernel-owner@vger.kernel.org Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1727942AbeKIL2k (ORCPT ); Fri, 9 Nov 2018 06:28:40 -0500 Received: from esa3.hgst.iphmx.com ([216.71.153.141]:29613 "EHLO esa3.hgst.iphmx.com" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1727534AbeKIL2d (ORCPT ); Fri, 9 Nov 2018 06:28:33 -0500 DKIM-Signature: v=1; a=rsa-sha256; c=simple/simple; d=wdc.com; i=@wdc.com; q=dns/txt; s=dkim.wdc.com; t=1541728212; x=1573264212; h=from:to:cc:subject:date:message-id:in-reply-to: references; bh=2pBvWFUbAXLHshA9myk0NtM+PDq85rCdQVEwZqlchgQ=; b=FOETn05igOX5nnkhnwz4uh/4fjY38WnPWzg8CyMBwTAxiu9sfjvhu6Pp zPQfXiUe/6ekU5n5kA2d+GkWtSKQUFH17HlBVpaOtTopU9XfwP3CtLtfK I+wAX82/uTTAfGN9chaD6scZn+DGWzG/pMETiYLifzMznlG41N1WGHhOl uZIYpJ7WXtC5MvBlOY8UtGjHmo1i7p1cwGMfYMBUdlnD4IIrSA0eyn8z7 gvo+E9avUDPPYqLqT0Bf0slrV8OdxRCCTJ/Z8zS7oi6w9RVBd6jvsfUur TpnbtjcbPHq3ZtkynbTPnoUmP1Ikz9jTF1gtEuf5Xxx/sKiycigRB0x7A w==; X-IronPort-AV: E=Sophos;i="5.54,481,1534780800"; d="scan'208";a="98624913" Received: from uls-op-cesaip01.wdc.com (HELO uls-op-cesaep01.wdc.com) ([199.255.45.14]) by ob1.hgst.iphmx.com with ESMTP; 09 Nov 2018 09:50:11 +0800 Received: from uls-op-cesaip02.wdc.com ([10.248.3.37]) by uls-op-cesaep01.wdc.com with ESMTP; 08 Nov 2018 17:33:44 -0800 Received: from jedi-01.sdcorp.global.sandisk.com (HELO jedi-01.int.fusionio.com) ([10.11.143.218]) by uls-op-cesaip02.wdc.com with ESMTP; 08 Nov 2018 17:50:10 -0800 From: Atish Patra To: linux-kernel@vger.kernel.org Cc: linux-riscv@lists.infradead.org, anup@brainfault.org, Damien.LeMoal@wdc.com, atish.patra@wdc.com, linux-arm-kernel@lists.infradead.org, mark.rutland@arm.com, robh+dt@kernel.org, sudeep.holla@arm.com, palmer@sifive.com, devicetree@vger.kernel.org, juri.lelli@arm.com, mick@ics.forth.gr, jeremy.linton@arm.com Subject: [RFC 1/3] dt-binding: cpu-topology: Move cpu-map to a common binding. Date: Thu, 8 Nov 2018 17:50:07 -0800 Message-Id: <1541728209-3224-2-git-send-email-atish.patra@wdc.com> X-Mailer: git-send-email 2.7.4 In-Reply-To: <1541728209-3224-1-git-send-email-atish.patra@wdc.com> References: <1541728209-3224-1-git-send-email-atish.patra@wdc.com> Sender: linux-kernel-owner@vger.kernel.org Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org cpu-map binding can be used to described cpu topology for both RISC-V & ARM. It makes more sense to move the binding to document to a common place. The relevant discussion can be found here. https://lkml.org/lkml/2018/11/6/19 Signed-off-by: Atish Patra --- Documentation/devicetree/bindings/arm/topology.txt | 475 ------------------- .../devicetree/bindings/cpu/cpu-topology.txt | 526 +++++++++++++++++++++ 2 files changed, 526 insertions(+), 475 deletions(-) delete mode 100644 Documentation/devicetree/bindings/arm/topology.txt create mode 100644 Documentation/devicetree/bindings/cpu/cpu-topology.txt diff --git a/Documentation/devicetree/bindings/arm/topology.txt b/Documentation/devicetree/bindings/arm/topology.txt deleted file mode 100644 index de9eb048..00000000 --- a/Documentation/devicetree/bindings/arm/topology.txt +++ /dev/null @@ -1,475 +0,0 @@ -=========================================== -ARM topology binding description -=========================================== - -=========================================== -1 - Introduction -=========================================== - -In an ARM system, the hierarchy of CPUs is defined through three entities that -are used to describe the layout of physical CPUs in the system: - -- cluster -- core -- thread - -The cpu nodes (bindings defined in [1]) represent the devices that -correspond to physical CPUs and are to be mapped to the hierarchy levels. - -The bottom hierarchy level sits at core or thread level depending on whether -symmetric multi-threading (SMT) is supported or not. - -For instance in a system where CPUs support SMT, "cpu" nodes represent all -threads existing in the system and map to the hierarchy level "thread" above. -In systems where SMT is not supported "cpu" nodes represent all cores present -in the system and map to the hierarchy level "core" above. - -ARM topology bindings allow one to associate cpu nodes with hierarchical groups -corresponding to the system hierarchy; syntactically they are defined as device -tree nodes. - -The remainder of this document provides the topology bindings for ARM, based -on the Devicetree Specification, available from: - -https://www.devicetree.org/specifications/ - -If not stated otherwise, whenever a reference to a cpu node phandle is made its -value must point to a cpu node compliant with the cpu node bindings as -documented in [1]. -A topology description containing phandles to cpu nodes that are not compliant -with bindings standardized in [1] is therefore considered invalid. - -=========================================== -2 - cpu-map node -=========================================== - -The ARM CPU topology is defined within the cpu-map node, which is a direct -child of the cpus node and provides a container where the actual topology -nodes are listed. - -- cpu-map node - - Usage: Optional - On ARM SMP systems provide CPUs topology to the OS. - ARM uniprocessor systems do not require a topology - description and therefore should not define a - cpu-map node. - - Description: The cpu-map node is just a container node where its - subnodes describe the CPU topology. - - Node name must be "cpu-map". - - The cpu-map node's parent node must be the cpus node. - - The cpu-map node's child nodes can be: - - - one or more cluster nodes - - Any other configuration is considered invalid. - -The cpu-map node can only contain three types of child nodes: - -- cluster node -- core node -- thread node - -whose bindings are described in paragraph 3. - -The nodes describing the CPU topology (cluster/core/thread) can only -be defined within the cpu-map node and every core/thread in the system -must be defined within the topology. Any other configuration is -invalid and therefore must be ignored. - -=========================================== -2.1 - cpu-map child nodes naming convention -=========================================== - -cpu-map child nodes must follow a naming convention where the node name -must be "clusterN", "coreN", "threadN" depending on the node type (ie -cluster/core/thread) (where N = {0, 1, ...} is the node number; nodes which -are siblings within a single common parent node must be given a unique and -sequential N value, starting from 0). -cpu-map child nodes which do not share a common parent node can have the same -name (ie same number N as other cpu-map child nodes at different device tree -levels) since name uniqueness will be guaranteed by the device tree hierarchy. - -=========================================== -3 - cluster/core/thread node bindings -=========================================== - -Bindings for cluster/cpu/thread nodes are defined as follows: - -- cluster node - - Description: must be declared within a cpu-map node, one node - per cluster. A system can contain several layers of - clustering and cluster nodes can be contained in parent - cluster nodes. - - The cluster node name must be "clusterN" as described in 2.1 above. - A cluster node can not be a leaf node. - - A cluster node's child nodes must be: - - - one or more cluster nodes; or - - one or more core nodes - - Any other configuration is considered invalid. - -- core node - - Description: must be declared in a cluster node, one node per core in - the cluster. If the system does not support SMT, core - nodes are leaf nodes, otherwise they become containers of - thread nodes. - - The core node name must be "coreN" as described in 2.1 above. - - A core node must be a leaf node if SMT is not supported. - - Properties for core nodes that are leaf nodes: - - - cpu - Usage: required - Value type: - Definition: a phandle to the cpu node that corresponds to the - core node. - - If a core node is not a leaf node (CPUs supporting SMT) a core node's - child nodes can be: - - - one or more thread nodes - - Any other configuration is considered invalid. - -- thread node - - Description: must be declared in a core node, one node per thread - in the core if the system supports SMT. Thread nodes are - always leaf nodes in the device tree. - - The thread node name must be "threadN" as described in 2.1 above. - - A thread node must be a leaf node. - - A thread node must contain the following property: - - - cpu - Usage: required - Value type: - Definition: a phandle to the cpu node that corresponds to - the thread node. - -=========================================== -4 - Example dts -=========================================== - -Example 1 (ARM 64-bit, 16-cpu system, two clusters of clusters): - -cpus { - #size-cells = <0>; - #address-cells = <2>; - - cpu-map { - cluster0 { - cluster0 { - core0 { - thread0 { - cpu = <&CPU0>; - }; - thread1 { - cpu = <&CPU1>; - }; - }; - - core1 { - thread0 { - cpu = <&CPU2>; - }; - thread1 { - cpu = <&CPU3>; - }; - }; - }; - - cluster1 { - core0 { - thread0 { - cpu = <&CPU4>; - }; - thread1 { - cpu = <&CPU5>; - }; - }; - - core1 { - thread0 { - cpu = <&CPU6>; - }; - thread1 { - cpu = <&CPU7>; - }; - }; - }; - }; - - cluster1 { - cluster0 { - core0 { - thread0 { - cpu = <&CPU8>; - }; - thread1 { - cpu = <&CPU9>; - }; - }; - core1 { - thread0 { - cpu = <&CPU10>; - }; - thread1 { - cpu = <&CPU11>; - }; - }; - }; - - cluster1 { - core0 { - thread0 { - cpu = <&CPU12>; - }; - thread1 { - cpu = <&CPU13>; - }; - }; - core1 { - thread0 { - cpu = <&CPU14>; - }; - thread1 { - cpu = <&CPU15>; - }; - }; - }; - }; - }; - - CPU0: cpu@0 { - device_type = "cpu"; - compatible = "arm,cortex-a57"; - reg = <0x0 0x0>; - enable-method = "spin-table"; - cpu-release-addr = <0 0x20000000>; - }; - - CPU1: cpu@1 { - device_type = "cpu"; - compatible = "arm,cortex-a57"; - reg = <0x0 0x1>; - enable-method = "spin-table"; - cpu-release-addr = <0 0x20000000>; - }; - - CPU2: cpu@100 { - device_type = "cpu"; - compatible = "arm,cortex-a57"; - reg = <0x0 0x100>; - enable-method = "spin-table"; - cpu-release-addr = <0 0x20000000>; - }; - - CPU3: cpu@101 { - device_type = "cpu"; - compatible = "arm,cortex-a57"; - reg = <0x0 0x101>; - enable-method = "spin-table"; - cpu-release-addr = <0 0x20000000>; - }; - - CPU4: cpu@10000 { - device_type = "cpu"; - compatible = "arm,cortex-a57"; - reg = <0x0 0x10000>; - enable-method = "spin-table"; - cpu-release-addr = <0 0x20000000>; - }; - - CPU5: cpu@10001 { - device_type = "cpu"; - compatible = "arm,cortex-a57"; - reg = <0x0 0x10001>; - enable-method = "spin-table"; - cpu-release-addr = <0 0x20000000>; - }; - - CPU6: cpu@10100 { - device_type = "cpu"; - compatible = "arm,cortex-a57"; - reg = <0x0 0x10100>; - enable-method = "spin-table"; - cpu-release-addr = <0 0x20000000>; - }; - - CPU7: cpu@10101 { - device_type = "cpu"; - compatible = "arm,cortex-a57"; - reg = <0x0 0x10101>; - enable-method = "spin-table"; - cpu-release-addr = <0 0x20000000>; - }; - - CPU8: cpu@100000000 { - device_type = "cpu"; - compatible = "arm,cortex-a57"; - reg = <0x1 0x0>; - enable-method = "spin-table"; - cpu-release-addr = <0 0x20000000>; - }; - - CPU9: cpu@100000001 { - device_type = "cpu"; - compatible = "arm,cortex-a57"; - reg = <0x1 0x1>; - enable-method = "spin-table"; - cpu-release-addr = <0 0x20000000>; - }; - - CPU10: cpu@100000100 { - device_type = "cpu"; - compatible = "arm,cortex-a57"; - reg = <0x1 0x100>; - enable-method = "spin-table"; - cpu-release-addr = <0 0x20000000>; - }; - - CPU11: cpu@100000101 { - device_type = "cpu"; - compatible = "arm,cortex-a57"; - reg = <0x1 0x101>; - enable-method = "spin-table"; - cpu-release-addr = <0 0x20000000>; - }; - - CPU12: cpu@100010000 { - device_type = "cpu"; - compatible = "arm,cortex-a57"; - reg = <0x1 0x10000>; - enable-method = "spin-table"; - cpu-release-addr = <0 0x20000000>; - }; - - CPU13: cpu@100010001 { - device_type = "cpu"; - compatible = "arm,cortex-a57"; - reg = <0x1 0x10001>; - enable-method = "spin-table"; - cpu-release-addr = <0 0x20000000>; - }; - - CPU14: cpu@100010100 { - device_type = "cpu"; - compatible = "arm,cortex-a57"; - reg = <0x1 0x10100>; - enable-method = "spin-table"; - cpu-release-addr = <0 0x20000000>; - }; - - CPU15: cpu@100010101 { - device_type = "cpu"; - compatible = "arm,cortex-a57"; - reg = <0x1 0x10101>; - enable-method = "spin-table"; - cpu-release-addr = <0 0x20000000>; - }; -}; - -Example 2 (ARM 32-bit, dual-cluster, 8-cpu system, no SMT): - -cpus { - #size-cells = <0>; - #address-cells = <1>; - - cpu-map { - cluster0 { - core0 { - cpu = <&CPU0>; - }; - core1 { - cpu = <&CPU1>; - }; - core2 { - cpu = <&CPU2>; - }; - core3 { - cpu = <&CPU3>; - }; - }; - - cluster1 { - core0 { - cpu = <&CPU4>; - }; - core1 { - cpu = <&CPU5>; - }; - core2 { - cpu = <&CPU6>; - }; - core3 { - cpu = <&CPU7>; - }; - }; - }; - - CPU0: cpu@0 { - device_type = "cpu"; - compatible = "arm,cortex-a15"; - reg = <0x0>; - }; - - CPU1: cpu@1 { - device_type = "cpu"; - compatible = "arm,cortex-a15"; - reg = <0x1>; - }; - - CPU2: cpu@2 { - device_type = "cpu"; - compatible = "arm,cortex-a15"; - reg = <0x2>; - }; - - CPU3: cpu@3 { - device_type = "cpu"; - compatible = "arm,cortex-a15"; - reg = <0x3>; - }; - - CPU4: cpu@100 { - device_type = "cpu"; - compatible = "arm,cortex-a7"; - reg = <0x100>; - }; - - CPU5: cpu@101 { - device_type = "cpu"; - compatible = "arm,cortex-a7"; - reg = <0x101>; - }; - - CPU6: cpu@102 { - device_type = "cpu"; - compatible = "arm,cortex-a7"; - reg = <0x102>; - }; - - CPU7: cpu@103 { - device_type = "cpu"; - compatible = "arm,cortex-a7"; - reg = <0x103>; - }; -}; - -=============================================================================== -[1] ARM Linux kernel documentation - Documentation/devicetree/bindings/arm/cpus.txt diff --git a/Documentation/devicetree/bindings/cpu/cpu-topology.txt b/Documentation/devicetree/bindings/cpu/cpu-topology.txt new file mode 100644 index 00000000..d8d1daef --- /dev/null +++ b/Documentation/devicetree/bindings/cpu/cpu-topology.txt @@ -0,0 +1,526 @@ +=========================================== +CPU topology binding description +=========================================== + +=========================================== +1 - Introduction +=========================================== + +In an ARM/RISC-V system, the hierarchy of CPUs is defined through three entities that +are used to describe the layout of physical CPUs in the system: + +- cluster +- core +- thread + +The cpu nodes (bindings defined in [1] for ARM or [2] for RISC-V) represent the devices that +correspond to physical CPUs and are to be mapped to the hierarchy levels. + +The bottom hierarchy level sits at core or thread level depending on whether +symmetric multi-threading (SMT) is supported or not. + +For instance in a system where CPUs support SMT, "cpu" nodes represent all +threads existing in the system and map to the hierarchy level "thread" above. +In systems where SMT is not supported "cpu" nodes represent all cores present +in the system and map to the hierarchy level "core" above. + +CPU topology bindings allow one to associate cpu nodes with hierarchical groups +corresponding to the system hierarchy; syntactically they are defined as device +tree nodes. + +The remainder of this document provides the topology bindings for ARM/RISC-V, based +on the Devicetree Specification, available from: + +https://www.devicetree.org/specifications/ + +If not stated otherwise, whenever a reference to a cpu node phandle is made its +value must point to a cpu node compliant with the cpu node bindings as +documented in [1]. +A topology description containing phandles to cpu nodes that are not compliant +with bindings standardized in [1] is therefore considered invalid. + +=========================================== +2 - cpu-map node +=========================================== + +The ARM/RISC-V CPU topology is defined within the cpu-map node, which is a direct +child of the cpus node and provides a container where the actual topology +nodes are listed. + +- cpu-map node + + Usage: Optional - On SMP systems provide CPUs topology to the OS. + Uniprocessor systems do not require a topology + description and therefore should not define a + cpu-map node. + + Description: The cpu-map node is just a container node where its + subnodes describe the CPU topology. + + Node name must be "cpu-map". + + The cpu-map node's parent node must be the cpus node. + + The cpu-map node's child nodes can be: + + - one or more cluster nodes + + Any other configuration is considered invalid. + +The cpu-map node can only contain three types of child nodes: + +- cluster node +- core node +- thread node + +whose bindings are described in paragraph 3. + +The nodes describing the CPU topology (cluster/core/thread) can only +be defined within the cpu-map node and every core/thread in the system +must be defined within the topology. Any other configuration is +invalid and therefore must be ignored. + +=========================================== +2.1 - cpu-map child nodes naming convention +=========================================== + +cpu-map child nodes must follow a naming convention where the node name +must be "clusterN", "coreN", "threadN" depending on the node type (ie +cluster/core/thread) (where N = {0, 1, ...} is the node number; nodes which +are siblings within a single common parent node must be given a unique and +sequential N value, starting from 0). +cpu-map child nodes which do not share a common parent node can have the same +name (ie same number N as other cpu-map child nodes at different device tree +levels) since name uniqueness will be guaranteed by the device tree hierarchy. + +=========================================== +3 - cluster/core/thread node bindings +=========================================== + +Bindings for cluster/cpu/thread nodes are defined as follows: + +- cluster node + + Description: must be declared within a cpu-map node, one node + per cluster. A system can contain several layers of + clustering and cluster nodes can be contained in parent + cluster nodes. + + The cluster node name must be "clusterN" as described in 2.1 above. + A cluster node can not be a leaf node. + + A cluster node's child nodes must be: + + - one or more cluster nodes; or + - one or more core nodes + + Any other configuration is considered invalid. + +- core node + + Description: must be declared in a cluster node, one node per core in + the cluster. If the system does not support SMT, core + nodes are leaf nodes, otherwise they become containers of + thread nodes. + + The core node name must be "coreN" as described in 2.1 above. + + A core node must be a leaf node if SMT is not supported. + + Properties for core nodes that are leaf nodes: + + - cpu + Usage: required + Value type: + Definition: a phandle to the cpu node that corresponds to the + core node. + + If a core node is not a leaf node (CPUs supporting SMT) a core node's + child nodes can be: + + - one or more thread nodes + + Any other configuration is considered invalid. + +- thread node + + Description: must be declared in a core node, one node per thread + in the core if the system supports SMT. Thread nodes are + always leaf nodes in the device tree. + + The thread node name must be "threadN" as described in 2.1 above. + + A thread node must be a leaf node. + + A thread node must contain the following property: + + - cpu + Usage: required + Value type: + Definition: a phandle to the cpu node that corresponds to + the thread node. + +=========================================== +4 - Example dts +=========================================== + +Example 1 (ARM 64-bit, 16-cpu system, two clusters of clusters): + +cpus { + #size-cells = <0>; + #address-cells = <2>; + + cpu-map { + cluster0 { + cluster0 { + core0 { + thread0 { + cpu = <&CPU0>; + }; + thread1 { + cpu = <&CPU1>; + }; + }; + + core1 { + thread0 { + cpu = <&CPU2>; + }; + thread1 { + cpu = <&CPU3>; + }; + }; + }; + + cluster1 { + core0 { + thread0 { + cpu = <&CPU4>; + }; + thread1 { + cpu = <&CPU5>; + }; + }; + + core1 { + thread0 { + cpu = <&CPU6>; + }; + thread1 { + cpu = <&CPU7>; + }; + }; + }; + }; + + cluster1 { + cluster0 { + core0 { + thread0 { + cpu = <&CPU8>; + }; + thread1 { + cpu = <&CPU9>; + }; + }; + core1 { + thread0 { + cpu = <&CPU10>; + }; + thread1 { + cpu = <&CPU11>; + }; + }; + }; + + cluster1 { + core0 { + thread0 { + cpu = <&CPU12>; + }; + thread1 { + cpu = <&CPU13>; + }; + }; + core1 { + thread0 { + cpu = <&CPU14>; + }; + thread1 { + cpu = <&CPU15>; + }; + }; + }; + }; + }; + + CPU0: cpu@0 { + device_type = "cpu"; + compatible = "arm,cortex-a57"; + reg = <0x0 0x0>; + enable-method = "spin-table"; + cpu-release-addr = <0 0x20000000>; + }; + + CPU1: cpu@1 { + device_type = "cpu"; + compatible = "arm,cortex-a57"; + reg = <0x0 0x1>; + enable-method = "spin-table"; + cpu-release-addr = <0 0x20000000>; + }; + + CPU2: cpu@100 { + device_type = "cpu"; + compatible = "arm,cortex-a57"; + reg = <0x0 0x100>; + enable-method = "spin-table"; + cpu-release-addr = <0 0x20000000>; + }; + + CPU3: cpu@101 { + device_type = "cpu"; + compatible = "arm,cortex-a57"; + reg = <0x0 0x101>; + enable-method = "spin-table"; + cpu-release-addr = <0 0x20000000>; + }; + + CPU4: cpu@10000 { + device_type = "cpu"; + compatible = "arm,cortex-a57"; + reg = <0x0 0x10000>; + enable-method = "spin-table"; + cpu-release-addr = <0 0x20000000>; + }; + + CPU5: cpu@10001 { + device_type = "cpu"; + compatible = "arm,cortex-a57"; + reg = <0x0 0x10001>; + enable-method = "spin-table"; + cpu-release-addr = <0 0x20000000>; + }; + + CPU6: cpu@10100 { + device_type = "cpu"; + compatible = "arm,cortex-a57"; + reg = <0x0 0x10100>; + enable-method = "spin-table"; + cpu-release-addr = <0 0x20000000>; + }; + + CPU7: cpu@10101 { + device_type = "cpu"; + compatible = "arm,cortex-a57"; + reg = <0x0 0x10101>; + enable-method = "spin-table"; + cpu-release-addr = <0 0x20000000>; + }; + + CPU8: cpu@100000000 { + device_type = "cpu"; + compatible = "arm,cortex-a57"; + reg = <0x1 0x0>; + enable-method = "spin-table"; + cpu-release-addr = <0 0x20000000>; + }; + + CPU9: cpu@100000001 { + device_type = "cpu"; + compatible = "arm,cortex-a57"; + reg = <0x1 0x1>; + enable-method = "spin-table"; + cpu-release-addr = <0 0x20000000>; + }; + + CPU10: cpu@100000100 { + device_type = "cpu"; + compatible = "arm,cortex-a57"; + reg = <0x1 0x100>; + enable-method = "spin-table"; + cpu-release-addr = <0 0x20000000>; + }; + + CPU11: cpu@100000101 { + device_type = "cpu"; + compatible = "arm,cortex-a57"; + reg = <0x1 0x101>; + enable-method = "spin-table"; + cpu-release-addr = <0 0x20000000>; + }; + + CPU12: cpu@100010000 { + device_type = "cpu"; + compatible = "arm,cortex-a57"; + reg = <0x1 0x10000>; + enable-method = "spin-table"; + cpu-release-addr = <0 0x20000000>; + }; + + CPU13: cpu@100010001 { + device_type = "cpu"; + compatible = "arm,cortex-a57"; + reg = <0x1 0x10001>; + enable-method = "spin-table"; + cpu-release-addr = <0 0x20000000>; + }; + + CPU14: cpu@100010100 { + device_type = "cpu"; + compatible = "arm,cortex-a57"; + reg = <0x1 0x10100>; + enable-method = "spin-table"; + cpu-release-addr = <0 0x20000000>; + }; + + CPU15: cpu@100010101 { + device_type = "cpu"; + compatible = "arm,cortex-a57"; + reg = <0x1 0x10101>; + enable-method = "spin-table"; + cpu-release-addr = <0 0x20000000>; + }; +}; + +Example 2 (ARM 32-bit, dual-cluster, 8-cpu system, no SMT): + +cpus { + #size-cells = <0>; + #address-cells = <1>; + + cpu-map { + cluster0 { + core0 { + cpu = <&CPU0>; + }; + core1 { + cpu = <&CPU1>; + }; + core2 { + cpu = <&CPU2>; + }; + core3 { + cpu = <&CPU3>; + }; + }; + + cluster1 { + core0 { + cpu = <&CPU4>; + }; + core1 { + cpu = <&CPU5>; + }; + core2 { + cpu = <&CPU6>; + }; + core3 { + cpu = <&CPU7>; + }; + }; + }; + + CPU0: cpu@0 { + device_type = "cpu"; + compatible = "arm,cortex-a15"; + reg = <0x0>; + }; + + CPU1: cpu@1 { + device_type = "cpu"; + compatible = "arm,cortex-a15"; + reg = <0x1>; + }; + + CPU2: cpu@2 { + device_type = "cpu"; + compatible = "arm,cortex-a15"; + reg = <0x2>; + }; + + CPU3: cpu@3 { + device_type = "cpu"; + compatible = "arm,cortex-a15"; + reg = <0x3>; + }; + + CPU4: cpu@100 { + device_type = "cpu"; + compatible = "arm,cortex-a7"; + reg = <0x100>; + }; + + CPU5: cpu@101 { + device_type = "cpu"; + compatible = "arm,cortex-a7"; + reg = <0x101>; + }; + + CPU6: cpu@102 { + device_type = "cpu"; + compatible = "arm,cortex-a7"; + reg = <0x102>; + }; + + CPU7: cpu@103 { + device_type = "cpu"; + compatible = "arm,cortex-a7"; + reg = <0x103>; + }; +}; + +Example 3: HiFive Unleashed (RISC-V 64 bit, 4 core system) + +cpus { + #address-cells = <2>; + #size-cells = <2>; + compatible = "sifive,fu540g", "sifive,fu500"; + model = "sifive,hifive-unleashed-a00"; + + ... + + cpu-map { + cluster0 { + core0 { + cpu = <&L12>; + }; + core1 { + cpu = <&L15>; + }; + core2 { + cpu0 = <&L18>; + }; + core3 { + cpu0 = <&L21>; + }; + }; + }; + + L12: cpu@1 { + device_type = "cpu"; + compatible = "sifive,rocket0", "riscv"; + reg = <0x1>; + } + + L15: cpu@2 { + device_type = "cpu"; + compatible = "sifive,rocket0", "riscv"; + reg = <0x2>; + } + L18: cpu@3 { + device_type = "cpu"; + compatible = "sifive,rocket0", "riscv"; + reg = <0x3>; + } + L21: cpu@4 { + device_type = "cpu"; + compatible = "sifive,rocket0", "riscv"; + reg = <0x4>; + } +}; +=============================================================================== +[1] ARM Linux kernel documentation + Documentation/devicetree/bindings/arm/cpus.txt +[1] RISC-V Linux kernel documentation + Documentation/devicetree/bindings/riscv/cpus.txt -- 2.7.4