LKML Archive on lore.kernel.org
 help / color / Atom feed
From: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
To: Alan Stern <stern@rowland.harvard.edu>
Cc: LKMM Maintainers -- Akira Yokosawa <akiyks@gmail.com>,
	Andrea Parri <andrea.parri@amarulasolutions.com>,
	Boqun Feng <boqun.feng@gmail.com>,
	Daniel Lustig <dlustig@nvidia.com>,
	David Howells <dhowells@redhat.com>,
	Jade Alglave <j.alglave@ucl.ac.uk>,
	Luc Maranget <luc.maranget@inria.fr>,
	Nicholas Piggin <npiggin@gmail.com>,
	Peter Zijlstra <peterz@infradead.org>,
	Will Deacon <will.deacon@arm.com>,
	Kernel development list <linux-kernel@vger.kernel.org>
Subject: Re: [PATCH v3] tools/memory-model: Add extra ordering for locks and remove it for ordinary release/acquire
Date: Tue, 10 Jul 2018 12:58:53 -0700
Message-ID: <20180710195853.GC3593@linux.vnet.ibm.com> (raw)
In-Reply-To: <Pine.LNX.4.44L0.1807101416390.1449-100000@iolanthe.rowland.org>

On Tue, Jul 10, 2018 at 02:18:13PM -0400, Alan Stern wrote:
> More than one kernel developer has expressed the opinion that the LKMM
> should enforce ordering of writes by locking.  In other words, given
> the following code:
> 
> 	WRITE_ONCE(x, 1);
> 	spin_unlock(&s):
> 	spin_lock(&s);
> 	WRITE_ONCE(y, 1);
> 
> the stores to x and y should be propagated in order to all other CPUs,
> even though those other CPUs might not access the lock s.  In terms of
> the memory model, this means expanding the cumul-fence relation.
> 
> Locks should also provide read-read (and read-write) ordering in a
> similar way.  Given:
> 
> 	READ_ONCE(x);
> 	spin_unlock(&s);
> 	spin_lock(&s);
> 	READ_ONCE(y);		// or WRITE_ONCE(y, 1);
> 
> the load of x should be executed before the load of (or store to) y.
> The LKMM already provides this ordering, but it provides it even in
> the case where the two accesses are separated by a release/acquire
> pair of fences rather than unlock/lock.  This would prevent
> architectures from using weakly ordered implementations of release and
> acquire, which seems like an unnecessary restriction.  The patch
> therefore removes the ordering requirement from the LKMM for that
> case.
> 
> All the architectures supported by the Linux kernel (including RISC-V)
> do provide this ordering for locks, albeit for varying reasons.
> Therefore this patch changes the model in accordance with the
> developers' wishes.
> 
> Signed-off-by: Alan Stern <stern@rowland.harvard.edu>

It now applies, thank you very much!

Is this something that you are comfortable pushing into the upcoming
merge window, or should I hold off until the next one?

							Thanx, Paul

> ---
> 
> 
> v.3: Rebased against the dev branch of Paul's linux-rcu tree.
> Changed unlock-rf-lock-po to po-unlock-rf-lock-po, making it more
> symmetrical and more in accordance with the use of fence.tso for
> the release on RISC-V.
> 
> v.2: Restrict the ordering to lock operations, not general release
> and acquire fences.
> 
> [as1871c]
> 
> 
>  tools/memory-model/Documentation/explanation.txt                           |  186 +++++++---
>  tools/memory-model/linux-kernel.cat                                        |    8 
>  tools/memory-model/litmus-tests/ISA2+pooncelock+pooncelock+pombonce.litmus |    7 
>  3 files changed, 150 insertions(+), 51 deletions(-)
> 
> Index: usb-4.x/tools/memory-model/linux-kernel.cat
> ===================================================================
> --- usb-4.x.orig/tools/memory-model/linux-kernel.cat
> +++ usb-4.x/tools/memory-model/linux-kernel.cat
> @@ -38,7 +38,7 @@ let strong-fence = mb | gp
>  (* Release Acquire *)
>  let acq-po = [Acquire] ; po ; [M]
>  let po-rel = [M] ; po ; [Release]
> -let rfi-rel-acq = [Release] ; rfi ; [Acquire]
> +let po-unlock-rf-lock-po = po ; [UL] ; rf ; [LKR] ; po
> 
>  (**********************************)
>  (* Fundamental coherence ordering *)
> @@ -60,13 +60,13 @@ let dep = addr | data
>  let rwdep = (dep | ctrl) ; [W]
>  let overwrite = co | fr
>  let to-w = rwdep | (overwrite & int)
> -let to-r = addr | (dep ; rfi) | rfi-rel-acq
> +let to-r = addr | (dep ; rfi)
>  let fence = strong-fence | wmb | po-rel | rmb | acq-po
> -let ppo = to-r | to-w | fence
> +let ppo = to-r | to-w | fence | (po-unlock-rf-lock-po & int)
> 
>  (* Propagation: Ordering from release operations and strong fences. *)
>  let A-cumul(r) = rfe? ; r
> -let cumul-fence = A-cumul(strong-fence | po-rel) | wmb
> +let cumul-fence = A-cumul(strong-fence | po-rel) | wmb | po-unlock-rf-lock-po
>  let prop = (overwrite & ext)? ; cumul-fence* ; rfe?
> 
>  (*
> Index: usb-4.x/tools/memory-model/litmus-tests/ISA2+pooncelock+pooncelock+pombonce.litmus
> ===================================================================
> --- usb-4.x.orig/tools/memory-model/litmus-tests/ISA2+pooncelock+pooncelock+pombonce.litmus
> +++ usb-4.x/tools/memory-model/litmus-tests/ISA2+pooncelock+pooncelock+pombonce.litmus
> @@ -1,11 +1,10 @@
>  C ISA2+pooncelock+pooncelock+pombonce
> 
>  (*
> - * Result: Sometimes
> + * Result: Never
>   *
> - * This test shows that the ordering provided by a lock-protected S
> - * litmus test (P0() and P1()) are not visible to external process P2().
> - * This is likely to change soon.
> + * This test shows that write-write ordering provided by locks
> + * (in P0() and P1()) is visible to external process P2().
>   *)
> 
>  {}
> Index: usb-4.x/tools/memory-model/Documentation/explanation.txt
> ===================================================================
> --- usb-4.x.orig/tools/memory-model/Documentation/explanation.txt
> +++ usb-4.x/tools/memory-model/Documentation/explanation.txt
> @@ -28,7 +28,8 @@ Explanation of the Linux-Kernel Memory C
>    20. THE HAPPENS-BEFORE RELATION: hb
>    21. THE PROPAGATES-BEFORE RELATION: pb
>    22. RCU RELATIONS: rcu-link, gp, rscs, rcu-fence, and rb
> -  23. ODDS AND ENDS
> +  23. LOCKING
> +  24. ODDS AND ENDS
> 
> 
> 
> @@ -1067,28 +1068,6 @@ allowing out-of-order writes like this t
>  violating the write-write coherence rule by requiring the CPU not to
>  send the W write to the memory subsystem at all!)
> 
> -There is one last example of preserved program order in the LKMM: when
> -a load-acquire reads from an earlier store-release.  For example:
> -
> -	smp_store_release(&x, 123);
> -	r1 = smp_load_acquire(&x);
> -
> -If the smp_load_acquire() ends up obtaining the 123 value that was
> -stored by the smp_store_release(), the LKMM says that the load must be
> -executed after the store; the store cannot be forwarded to the load.
> -This requirement does not arise from the operational model, but it
> -yields correct predictions on all architectures supported by the Linux
> -kernel, although for differing reasons.
> -
> -On some architectures, including x86 and ARMv8, it is true that the
> -store cannot be forwarded to the load.  On others, including PowerPC
> -and ARMv7, smp_store_release() generates object code that starts with
> -a fence and smp_load_acquire() generates object code that ends with a
> -fence.  The upshot is that even though the store may be forwarded to
> -the load, it is still true that any instruction preceding the store
> -will be executed before the load or any following instructions, and
> -the store will be executed before any instruction following the load.
> -
> 
>  AND THEN THERE WAS ALPHA
>  ------------------------
> @@ -1766,6 +1745,147 @@ before it does, and the critical section
>  grace period does and ends after it does.
> 
> 
> +LOCKING
> +-------
> +
> +The LKMM includes locking.  In fact, there is special code for locking
> +in the formal model, added in order to make tools run faster.
> +However, this special code is intended to be more or less equivalent
> +to concepts we have already covered.  A spinlock_t variable is treated
> +the same as an int, and spin_lock(&s) is treated almost the same as:
> +
> +	while (cmpxchg_acquire(&s, 0, 1) != 0)
> +		cpu_relax();
> +
> +This waits until s is equal to 0 and then atomically sets it to 1,
> +and the read part of the cmpxchg operation acts as an acquire fence.
> +An alternate way to express the same thing would be:
> +
> +	r = xchg_acquire(&s, 1);
> +
> +along with a requirement that at the end, r = 0.  Similarly,
> +spin_trylock(&s) is treated almost the same as:
> +
> +	return !cmpxchg_acquire(&s, 0, 1);
> +
> +which atomically sets s to 1 if it is currently equal to 0 and returns
> +true if it succeeds (the read part of the cmpxchg operation acts as an
> +acquire fence only if the operation is successful).  spin_unlock(&s)
> +is treated almost the same as:
> +
> +	smp_store_release(&s, 0);
> +
> +The "almost" qualifiers above need some explanation.  In the LKMM, the
> +store-release in a spin_unlock() and the load-acquire which forms the
> +first half of the atomic rmw update in a spin_lock() or a successful
> +spin_trylock() -- we can call these things lock-releases and
> +lock-acquires -- have two properties beyond those of ordinary releases
> +and acquires.
> +
> +First, when a lock-acquire reads from a lock-release, the LKMM
> +requires that every instruction po-before the lock-release must
> +execute before any instruction po-after the lock-acquire.  This would
> +naturally hold if the release and acquire operations were on different
> +CPUs, but the LKMM says it holds even when they are on the same CPU.
> +For example:
> +
> +	int x, y;
> +	spinlock_t s;
> +
> +	P0()
> +	{
> +		int r1, r2;
> +
> +		spin_lock(&s);
> +		r1 = READ_ONCE(x);
> +		spin_unlock(&s);
> +		spin_lock(&s);
> +		r2 = READ_ONCE(y);
> +		spin_unlock(&s);
> +	}
> +
> +	P1()
> +	{
> +		WRITE_ONCE(y, 1);
> +		smp_wmb();
> +		WRITE_ONCE(x, 1);
> +	}
> +
> +Here the second spin_lock() reads from the first spin_unlock(), and
> +therefore the load of x must execute before the load of y.  Thus we
> +cannot have r1 = 1 and r2 = 0 at the end (this is an instance of the
> +MP pattern).
> +
> +This requirement does not apply to ordinary release and acquire
> +fences, only to lock-related operations.  For instance, suppose P0()
> +in the example had been written as:
> +
> +	P0()
> +	{
> +		int r1, r2, r3;
> +
> +		r1 = READ_ONCE(x);
> +		smp_store_release(&s, 1);
> +		r3 = smp_load_acquire(&s);
> +		r2 = READ_ONCE(y);
> +	}
> +
> +Then the CPU would be allowed to forward the s = 1 value from the
> +smp_store_release() to the smp_load_acquire(), executing the
> +instructions in the following order:
> +
> +		r3 = smp_load_acquire(&s);	// Obtains r3 = 1
> +		r2 = READ_ONCE(y);
> +		r1 = READ_ONCE(x);
> +		smp_store_release(&s, 1);	// Value is forwarded
> +
> +and thus it could load y before x, obtaining r2 = 0 and r1 = 1.
> +
> +Second, when a lock-acquire reads from a lock-release, and some other
> +stores W and W' occur po-before the lock-release and po-after the
> +lock-acquire respectively, the LKMM requires that W must propagate to
> +each CPU before W' does.  For example, consider:
> +
> +	int x, y;
> +	spinlock_t x;
> +
> +	P0()
> +	{
> +		spin_lock(&s);
> +		WRITE_ONCE(x, 1);
> +		spin_unlock(&s);
> +	}
> +
> +	P1()
> +	{
> +		int r1;
> +
> +		spin_lock(&s);
> +		r1 = READ_ONCE(x);
> +		WRITE_ONCE(y, 1);
> +		spin_unlock(&s);
> +	}
> +
> +	P2()
> +	{
> +		int r2, r3;
> +
> +		r2 = READ_ONCE(y);
> +		smp_rmb();
> +		r3 = READ_ONCE(x);
> +	}
> +
> +If r1 = 1 at the end then the spin_lock() in P1 must have read from
> +the spin_unlock() in P0.  Hence the store to x must propagate to P2
> +before the store to y does, so we cannot have r2 = 1 and r3 = 0.
> +
> +These two special requirements for lock-release and lock-acquire do
> +not arise from the operational model.  Nevertheless, kernel developers
> +have come to expect and rely on them because they do hold on all
> +architectures supported by the Linux kernel, albeit for various
> +differing reasons.
> +
> +
>  ODDS AND ENDS
>  -------------
> 
> @@ -1831,26 +1951,6 @@ they behave as follows:
>  	events and the events preceding them against all po-later
>  	events.
> 
> -The LKMM includes locking.  In fact, there is special code for locking
> -in the formal model, added in order to make tools run faster.
> -However, this special code is intended to be exactly equivalent to
> -concepts we have already covered.  A spinlock_t variable is treated
> -the same as an int, and spin_lock(&s) is treated the same as:
> -
> -	while (cmpxchg_acquire(&s, 0, 1) != 0)
> -		cpu_relax();
> -
> -which waits until s is equal to 0 and then atomically sets it to 1,
> -and where the read part of the atomic update is also an acquire fence.
> -An alternate way to express the same thing would be:
> -
> -	r = xchg_acquire(&s, 1);
> -
> -along with a requirement that at the end, r = 0.  spin_unlock(&s) is
> -treated the same as:
> -
> -	smp_store_release(&s, 0);
> -
>  Interestingly, RCU and locking each introduce the possibility of
>  deadlock.  When faced with code sequences such as:
> 
> 


  parent reply index

Thread overview: 85+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2018-07-09 20:01 [PATCH v2] " Alan Stern
2018-07-09 21:45 ` Paul E. McKenney
2018-07-10 13:57   ` Alan Stern
2018-07-10 16:25     ` Paul E. McKenney
     [not found]       ` <Pine.LNX.4.44L0.1807101416390.1449-100000@iolanthe.rowland.org>
2018-07-10 19:58         ` Paul E. McKenney [this message]
2018-07-10 20:24           ` [PATCH v3] " Alan Stern
2018-07-10 20:31             ` Paul E. McKenney
2018-07-11  9:43         ` Will Deacon
2018-07-11 15:42           ` Paul E. McKenney
2018-07-11 16:17             ` Andrea Parri
2018-07-11 18:03               ` Paul E. McKenney
2018-07-11 16:34           ` Peter Zijlstra
2018-07-11 18:10             ` Paul E. McKenney
2018-07-10  9:38 ` [PATCH v2] " Andrea Parri
2018-07-10 14:48   ` Alan Stern
2018-07-10 15:24     ` Andrea Parri
2018-07-10 15:34       ` Alan Stern
2018-07-10 23:14         ` Andrea Parri
2018-07-11  9:43   ` Will Deacon
2018-07-11 12:34     ` Andrea Parri
2018-07-11 12:54       ` Andrea Parri
2018-07-11 15:57       ` Will Deacon
2018-07-11 16:28         ` Andrea Parri
2018-07-11 17:00         ` Peter Zijlstra
2018-07-11 17:50           ` Daniel Lustig
2018-07-12  8:34             ` Andrea Parri
2018-07-12  9:29             ` Peter Zijlstra
2018-07-12  7:40       ` Peter Zijlstra
2018-07-12  9:34         ` Peter Zijlstra
2018-07-12  9:45           ` Will Deacon
2018-07-13  2:17             ` Daniel Lustig
2018-07-12 11:52         ` Andrea Parri
2018-07-12 12:01           ` Andrea Parri
2018-07-12 12:11             ` Peter Zijlstra
2018-07-12 13:48           ` Peter Zijlstra
2018-07-12 16:19             ` Paul E. McKenney
2018-07-12 17:04             ` Alan Stern
2018-07-12 17:14               ` Will Deacon
2018-07-12 17:28               ` Paul E. McKenney
2018-07-12 18:05                 ` Peter Zijlstra
2018-07-12 18:10                   ` Linus Torvalds
2018-07-12 19:52                     ` Andrea Parri
2018-07-12 20:24                       ` Andrea Parri
2018-07-13  2:05                     ` Daniel Lustig
2018-07-13  4:03                       ` Paul E. McKenney
2018-07-13  9:07                       ` Andrea Parri
2018-07-13  9:35                         ` Will Deacon
2018-07-13 17:16                           ` Linus Torvalds
2018-07-13 19:06                             ` Andrea Parri
2018-07-14  1:51                               ` Alan Stern
2018-07-14  2:58                                 ` Linus Torvalds
2018-07-16  2:31                                   ` Paul E. McKenney
2018-07-13 11:08                     ` Peter Zijlstra
2018-07-13 13:15                       ` Michael Ellerman
2018-07-13 16:42                         ` Peter Zijlstra
2018-07-13 19:56                           ` Andrea Parri
2018-07-16 14:40                           ` Michael Ellerman
2018-07-16 19:01                             ` Peter Zijlstra
2018-07-16 19:30                             ` Linus Torvalds
2018-07-17 14:45                               ` Michael Ellerman
2018-07-17 16:19                                 ` Linus Torvalds
2018-07-17 18:33                                   ` Paul E. McKenney
2018-07-17 18:42                                     ` Peter Zijlstra
2018-07-17 19:40                                       ` Paul E. McKenney
2018-07-17 19:47                                       ` Alan Stern
2018-07-17 18:44                                     ` Linus Torvalds
2018-07-17 18:49                                       ` Linus Torvalds
2018-07-17 19:42                                         ` Paul E. McKenney
2018-07-17 19:37                                       ` Alan Stern
2018-07-17 20:13                                         ` Linus Torvalds
2018-07-17 19:38                                       ` Paul E. McKenney
2018-07-17 19:40                                     ` Andrea Parri
2018-07-17 19:52                                       ` Paul E. McKenney
2018-07-18 12:31                                   ` Michael Ellerman
2018-07-18 13:16                             ` Michael Ellerman
2018-07-12 17:52               ` Andrea Parri
2018-07-12 20:43                 ` Alan Stern
2018-07-12 21:13                   ` Andrea Parri
2018-07-12 21:23                     ` Andrea Parri
2018-07-12 18:33               ` Peter Zijlstra
2018-07-12 17:45             ` Andrea Parri
2018-07-10 16:56 ` Daniel Lustig
     [not found]   ` <Pine.LNX.4.44L0.1807101315140.1449-100000@iolanthe.rowland.org>
2018-07-10 23:31     ` Andrea Parri
2018-07-11 14:19       ` Alan Stern
     [not found] <3344e7aeb09644758860ac343bd757a1@AcuMS.aculab.com>
2018-07-11 17:36 ` [PATCH v3] " Alan Stern

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=20180710195853.GC3593@linux.vnet.ibm.com \
    --to=paulmck@linux.vnet.ibm.com \
    --cc=akiyks@gmail.com \
    --cc=andrea.parri@amarulasolutions.com \
    --cc=boqun.feng@gmail.com \
    --cc=dhowells@redhat.com \
    --cc=dlustig@nvidia.com \
    --cc=j.alglave@ucl.ac.uk \
    --cc=linux-kernel@vger.kernel.org \
    --cc=luc.maranget@inria.fr \
    --cc=npiggin@gmail.com \
    --cc=peterz@infradead.org \
    --cc=stern@rowland.harvard.edu \
    --cc=will.deacon@arm.com \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link

LKML Archive on lore.kernel.org

Archives are clonable:
	git clone --mirror https://lore.kernel.org/lkml/0 lkml/git/0.git
	git clone --mirror https://lore.kernel.org/lkml/1 lkml/git/1.git
	git clone --mirror https://lore.kernel.org/lkml/2 lkml/git/2.git
	git clone --mirror https://lore.kernel.org/lkml/3 lkml/git/3.git
	git clone --mirror https://lore.kernel.org/lkml/4 lkml/git/4.git
	git clone --mirror https://lore.kernel.org/lkml/5 lkml/git/5.git
	git clone --mirror https://lore.kernel.org/lkml/6 lkml/git/6.git
	git clone --mirror https://lore.kernel.org/lkml/7 lkml/git/7.git
	git clone --mirror https://lore.kernel.org/lkml/8 lkml/git/8.git
	git clone --mirror https://lore.kernel.org/lkml/9 lkml/git/9.git

	# If you have public-inbox 1.1+ installed, you may
	# initialize and index your mirror using the following commands:
	public-inbox-init -V2 lkml lkml/ https://lore.kernel.org/lkml \
		linux-kernel@vger.kernel.org
	public-inbox-index lkml

Example config snippet for mirrors

Newsgroup available over NNTP:
	nntp://nntp.lore.kernel.org/org.kernel.vger.linux-kernel


AGPL code for this site: git clone https://public-inbox.org/public-inbox.git