linux-kernel.vger.kernel.org archive mirror
 help / color / mirror / Atom feed
From: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
To: linux-kernel@vger.kernel.org
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>,
	stable@vger.kernel.org, Thomas Gleixner <tglx@linutronix.de>,
	Josh Poimboeuf <jpoimboe@redhat.com>,
	Linus Torvalds <torvalds@linux-foundation.org>
Subject: [PATCH 4.17 73/97] Documentation: Add section about CPU vulnerabilities
Date: Tue, 14 Aug 2018 19:17:25 +0200	[thread overview]
Message-ID: <20180814171435.926080495@linuxfoundation.org> (raw)
In-Reply-To: <20180814171433.160434170@linuxfoundation.org>

4.17-stable review patch.  If anyone has any objections, please let me know.

------------------

From: Thomas Gleixner <tglx@linutronix.de>

commit 3ec8ce5d866ec6a08a9cfab82b62acf4a830b35f upstream

Add documentation for the L1TF vulnerability and the mitigation mechanisms:

  - Explain the problem and risks
  - Document the mitigation mechanisms
  - Document the command line controls
  - Document the sysfs files

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lkml.kernel.org/r/20180713142323.287429944@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
---
 Documentation/admin-guide/index.rst |    9 
 Documentation/admin-guide/l1tf.rst  |  591 ++++++++++++++++++++++++++++++++++++
 2 files changed, 600 insertions(+)
 create mode 100644 Documentation/admin-guide/l1tf.rst

--- a/Documentation/admin-guide/index.rst
+++ b/Documentation/admin-guide/index.rst
@@ -17,6 +17,15 @@ etc.
    kernel-parameters
    devices
 
+This section describes CPU vulnerabilities and provides an overview of the
+possible mitigations along with guidance for selecting mitigations if they
+are configurable at compile, boot or run time.
+
+.. toctree::
+   :maxdepth: 1
+
+   l1tf
+
 Here is a set of documents aimed at users who are trying to track down
 problems and bugs in particular.
 
--- /dev/null
+++ b/Documentation/admin-guide/l1tf.rst
@@ -0,0 +1,591 @@
+L1TF - L1 Terminal Fault
+========================
+
+L1 Terminal Fault is a hardware vulnerability which allows unprivileged
+speculative access to data which is available in the Level 1 Data Cache
+when the page table entry controlling the virtual address, which is used
+for the access, has the Present bit cleared or other reserved bits set.
+
+Affected processors
+-------------------
+
+This vulnerability affects a wide range of Intel processors. The
+vulnerability is not present on:
+
+   - Processors from AMD, Centaur and other non Intel vendors
+
+   - Older processor models, where the CPU family is < 6
+
+   - A range of Intel ATOM processors (Cedarview, Cloverview, Lincroft,
+     Penwell, Pineview, Slivermont, Airmont, Merrifield)
+
+   - The Intel Core Duo Yonah variants (2006 - 2008)
+
+   - The Intel XEON PHI family
+
+   - Intel processors which have the ARCH_CAP_RDCL_NO bit set in the
+     IA32_ARCH_CAPABILITIES MSR. If the bit is set the CPU is not affected
+     by the Meltdown vulnerability either. These CPUs should become
+     available by end of 2018.
+
+Whether a processor is affected or not can be read out from the L1TF
+vulnerability file in sysfs. See :ref:`l1tf_sys_info`.
+
+Related CVEs
+------------
+
+The following CVE entries are related to the L1TF vulnerability:
+
+   =============  =================  ==============================
+   CVE-2018-3615  L1 Terminal Fault  SGX related aspects
+   CVE-2018-3620  L1 Terminal Fault  OS, SMM related aspects
+   CVE-2018-3646  L1 Terminal Fault  Virtualization related aspects
+   =============  =================  ==============================
+
+Problem
+-------
+
+If an instruction accesses a virtual address for which the relevant page
+table entry (PTE) has the Present bit cleared or other reserved bits set,
+then speculative execution ignores the invalid PTE and loads the referenced
+data if it is present in the Level 1 Data Cache, as if the page referenced
+by the address bits in the PTE was still present and accessible.
+
+While this is a purely speculative mechanism and the instruction will raise
+a page fault when it is retired eventually, the pure act of loading the
+data and making it available to other speculative instructions opens up the
+opportunity for side channel attacks to unprivileged malicious code,
+similar to the Meltdown attack.
+
+While Meltdown breaks the user space to kernel space protection, L1TF
+allows to attack any physical memory address in the system and the attack
+works across all protection domains. It allows an attack of SGX and also
+works from inside virtual machines because the speculation bypasses the
+extended page table (EPT) protection mechanism.
+
+
+Attack scenarios
+----------------
+
+1. Malicious user space
+^^^^^^^^^^^^^^^^^^^^^^^
+
+   Operating Systems store arbitrary information in the address bits of a
+   PTE which is marked non present. This allows a malicious user space
+   application to attack the physical memory to which these PTEs resolve.
+   In some cases user-space can maliciously influence the information
+   encoded in the address bits of the PTE, thus making attacks more
+   deterministic and more practical.
+
+   The Linux kernel contains a mitigation for this attack vector, PTE
+   inversion, which is permanently enabled and has no performance
+   impact. The kernel ensures that the address bits of PTEs, which are not
+   marked present, never point to cacheable physical memory space.
+
+   A system with an up to date kernel is protected against attacks from
+   malicious user space applications.
+
+2. Malicious guest in a virtual machine
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+   The fact that L1TF breaks all domain protections allows malicious guest
+   OSes, which can control the PTEs directly, and malicious guest user
+   space applications, which run on an unprotected guest kernel lacking the
+   PTE inversion mitigation for L1TF, to attack physical host memory.
+
+   A special aspect of L1TF in the context of virtualization is symmetric
+   multi threading (SMT). The Intel implementation of SMT is called
+   HyperThreading. The fact that Hyperthreads on the affected processors
+   share the L1 Data Cache (L1D) is important for this. As the flaw allows
+   only to attack data which is present in L1D, a malicious guest running
+   on one Hyperthread can attack the data which is brought into the L1D by
+   the context which runs on the sibling Hyperthread of the same physical
+   core. This context can be host OS, host user space or a different guest.
+
+   If the processor does not support Extended Page Tables, the attack is
+   only possible, when the hypervisor does not sanitize the content of the
+   effective (shadow) page tables.
+
+   While solutions exist to mitigate these attack vectors fully, these
+   mitigations are not enabled by default in the Linux kernel because they
+   can affect performance significantly. The kernel provides several
+   mechanisms which can be utilized to address the problem depending on the
+   deployment scenario. The mitigations, their protection scope and impact
+   are described in the next sections.
+
+   The default mitigations and the rationale for chosing them are explained
+   at the end of this document. See :ref:`default_mitigations`.
+
+.. _l1tf_sys_info:
+
+L1TF system information
+-----------------------
+
+The Linux kernel provides a sysfs interface to enumerate the current L1TF
+status of the system: whether the system is vulnerable, and which
+mitigations are active. The relevant sysfs file is:
+
+/sys/devices/system/cpu/vulnerabilities/l1tf
+
+The possible values in this file are:
+
+  ===========================   ===============================
+  'Not affected'		The processor is not vulnerable
+  'Mitigation: PTE Inversion'	The host protection is active
+  ===========================   ===============================
+
+If KVM/VMX is enabled and the processor is vulnerable then the following
+information is appended to the 'Mitigation: PTE Inversion' part:
+
+  - SMT status:
+
+    =====================  ================
+    'VMX: SMT vulnerable'  SMT is enabled
+    'VMX: SMT disabled'    SMT is disabled
+    =====================  ================
+
+  - L1D Flush mode:
+
+    ================================  ====================================
+    'L1D vulnerable'		      L1D flushing is disabled
+
+    'L1D conditional cache flushes'   L1D flush is conditionally enabled
+
+    'L1D cache flushes'		      L1D flush is unconditionally enabled
+    ================================  ====================================
+
+The resulting grade of protection is discussed in the following sections.
+
+
+Host mitigation mechanism
+-------------------------
+
+The kernel is unconditionally protected against L1TF attacks from malicious
+user space running on the host.
+
+
+Guest mitigation mechanisms
+---------------------------
+
+.. _l1d_flush:
+
+1. L1D flush on VMENTER
+^^^^^^^^^^^^^^^^^^^^^^^
+
+   To make sure that a guest cannot attack data which is present in the L1D
+   the hypervisor flushes the L1D before entering the guest.
+
+   Flushing the L1D evicts not only the data which should not be accessed
+   by a potentially malicious guest, it also flushes the guest
+   data. Flushing the L1D has a performance impact as the processor has to
+   bring the flushed guest data back into the L1D. Depending on the
+   frequency of VMEXIT/VMENTER and the type of computations in the guest
+   performance degradation in the range of 1% to 50% has been observed. For
+   scenarios where guest VMEXIT/VMENTER are rare the performance impact is
+   minimal. Virtio and mechanisms like posted interrupts are designed to
+   confine the VMEXITs to a bare minimum, but specific configurations and
+   application scenarios might still suffer from a high VMEXIT rate.
+
+   The kernel provides two L1D flush modes:
+    - conditional ('cond')
+    - unconditional ('always')
+
+   The conditional mode avoids L1D flushing after VMEXITs which execute
+   only audited code pathes before the corresponding VMENTER. These code
+   pathes have beed verified that they cannot expose secrets or other
+   interesting data to an attacker, but they can leak information about the
+   address space layout of the hypervisor.
+
+   Unconditional mode flushes L1D on all VMENTER invocations and provides
+   maximum protection. It has a higher overhead than the conditional
+   mode. The overhead cannot be quantified correctly as it depends on the
+   work load scenario and the resulting number of VMEXITs.
+
+   The general recommendation is to enable L1D flush on VMENTER. The kernel
+   defaults to conditional mode on affected processors.
+
+   **Note**, that L1D flush does not prevent the SMT problem because the
+   sibling thread will also bring back its data into the L1D which makes it
+   attackable again.
+
+   L1D flush can be controlled by the administrator via the kernel command
+   line and sysfs control files. See :ref:`mitigation_control_command_line`
+   and :ref:`mitigation_control_kvm`.
+
+.. _guest_confinement:
+
+2. Guest VCPU confinement to dedicated physical cores
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+   To address the SMT problem, it is possible to make a guest or a group of
+   guests affine to one or more physical cores. The proper mechanism for
+   that is to utilize exclusive cpusets to ensure that no other guest or
+   host tasks can run on these cores.
+
+   If only a single guest or related guests run on sibling SMT threads on
+   the same physical core then they can only attack their own memory and
+   restricted parts of the host memory.
+
+   Host memory is attackable, when one of the sibling SMT threads runs in
+   host OS (hypervisor) context and the other in guest context. The amount
+   of valuable information from the host OS context depends on the context
+   which the host OS executes, i.e. interrupts, soft interrupts and kernel
+   threads. The amount of valuable data from these contexts cannot be
+   declared as non-interesting for an attacker without deep inspection of
+   the code.
+
+   **Note**, that assigning guests to a fixed set of physical cores affects
+   the ability of the scheduler to do load balancing and might have
+   negative effects on CPU utilization depending on the hosting
+   scenario. Disabling SMT might be a viable alternative for particular
+   scenarios.
+
+   For further information about confining guests to a single or to a group
+   of cores consult the cpusets documentation:
+
+   https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt
+
+.. _interrupt_isolation:
+
+3. Interrupt affinity
+^^^^^^^^^^^^^^^^^^^^^
+
+   Interrupts can be made affine to logical CPUs. This is not universally
+   true because there are types of interrupts which are truly per CPU
+   interrupts, e.g. the local timer interrupt. Aside of that multi queue
+   devices affine their interrupts to single CPUs or groups of CPUs per
+   queue without allowing the administrator to control the affinities.
+
+   Moving the interrupts, which can be affinity controlled, away from CPUs
+   which run untrusted guests, reduces the attack vector space.
+
+   Whether the interrupts with are affine to CPUs, which run untrusted
+   guests, provide interesting data for an attacker depends on the system
+   configuration and the scenarios which run on the system. While for some
+   of the interrupts it can be assumed that they wont expose interesting
+   information beyond exposing hints about the host OS memory layout, there
+   is no way to make general assumptions.
+
+   Interrupt affinity can be controlled by the administrator via the
+   /proc/irq/$NR/smp_affinity[_list] files. Limited documentation is
+   available at:
+
+   https://www.kernel.org/doc/Documentation/IRQ-affinity.txt
+
+.. _smt_control:
+
+4. SMT control
+^^^^^^^^^^^^^^
+
+   To prevent the SMT issues of L1TF it might be necessary to disable SMT
+   completely. Disabling SMT can have a significant performance impact, but
+   the impact depends on the hosting scenario and the type of workloads.
+   The impact of disabling SMT needs also to be weighted against the impact
+   of other mitigation solutions like confining guests to dedicated cores.
+
+   The kernel provides a sysfs interface to retrieve the status of SMT and
+   to control it. It also provides a kernel command line interface to
+   control SMT.
+
+   The kernel command line interface consists of the following options:
+
+     =========== ==========================================================
+     nosmt	 Affects the bring up of the secondary CPUs during boot. The
+		 kernel tries to bring all present CPUs online during the
+		 boot process. "nosmt" makes sure that from each physical
+		 core only one - the so called primary (hyper) thread is
+		 activated. Due to a design flaw of Intel processors related
+		 to Machine Check Exceptions the non primary siblings have
+		 to be brought up at least partially and are then shut down
+		 again.  "nosmt" can be undone via the sysfs interface.
+
+     nosmt=force Has the same effect as "nosmt' but it does not allow to
+		 undo the SMT disable via the sysfs interface.
+     =========== ==========================================================
+
+   The sysfs interface provides two files:
+
+   - /sys/devices/system/cpu/smt/control
+   - /sys/devices/system/cpu/smt/active
+
+   /sys/devices/system/cpu/smt/control:
+
+     This file allows to read out the SMT control state and provides the
+     ability to disable or (re)enable SMT. The possible states are:
+
+	==============  ===================================================
+	on		SMT is supported by the CPU and enabled. All
+			logical CPUs can be onlined and offlined without
+			restrictions.
+
+	off		SMT is supported by the CPU and disabled. Only
+			the so called primary SMT threads can be onlined
+			and offlined without restrictions. An attempt to
+			online a non-primary sibling is rejected
+
+	forceoff	Same as 'off' but the state cannot be controlled.
+			Attempts to write to the control file are rejected.
+
+	notsupported	The processor does not support SMT. It's therefore
+			not affected by the SMT implications of L1TF.
+			Attempts to write to the control file are rejected.
+	==============  ===================================================
+
+     The possible states which can be written into this file to control SMT
+     state are:
+
+     - on
+     - off
+     - forceoff
+
+   /sys/devices/system/cpu/smt/active:
+
+     This file reports whether SMT is enabled and active, i.e. if on any
+     physical core two or more sibling threads are online.
+
+   SMT control is also possible at boot time via the l1tf kernel command
+   line parameter in combination with L1D flush control. See
+   :ref:`mitigation_control_command_line`.
+
+5. Disabling EPT
+^^^^^^^^^^^^^^^^
+
+  Disabling EPT for virtual machines provides full mitigation for L1TF even
+  with SMT enabled, because the effective page tables for guests are
+  managed and sanitized by the hypervisor. Though disabling EPT has a
+  significant performance impact especially when the Meltdown mitigation
+  KPTI is enabled.
+
+  EPT can be disabled in the hypervisor via the 'kvm-intel.ept' parameter.
+
+There is ongoing research and development for new mitigation mechanisms to
+address the performance impact of disabling SMT or EPT.
+
+.. _mitigation_control_command_line:
+
+Mitigation control on the kernel command line
+---------------------------------------------
+
+The kernel command line allows to control the L1TF mitigations at boot
+time with the option "l1tf=". The valid arguments for this option are:
+
+  ============  =============================================================
+  full		Provides all available mitigations for the L1TF
+		vulnerability. Disables SMT and enables all mitigations in
+		the hypervisors, i.e. unconditional L1D flushing
+
+		SMT control and L1D flush control via the sysfs interface
+		is still possible after boot.  Hypervisors will issue a
+		warning when the first VM is started in a potentially
+		insecure configuration, i.e. SMT enabled or L1D flush
+		disabled.
+
+  full,force	Same as 'full', but disables SMT and L1D flush runtime
+		control. Implies the 'nosmt=force' command line option.
+		(i.e. sysfs control of SMT is disabled.)
+
+  flush		Leaves SMT enabled and enables the default hypervisor
+		mitigation, i.e. conditional L1D flushing
+
+		SMT control and L1D flush control via the sysfs interface
+		is still possible after boot.  Hypervisors will issue a
+		warning when the first VM is started in a potentially
+		insecure configuration, i.e. SMT enabled or L1D flush
+		disabled.
+
+  flush,nosmt	Disables SMT and enables the default hypervisor mitigation,
+		i.e. conditional L1D flushing.
+
+		SMT control and L1D flush control via the sysfs interface
+		is still possible after boot.  Hypervisors will issue a
+		warning when the first VM is started in a potentially
+		insecure configuration, i.e. SMT enabled or L1D flush
+		disabled.
+
+  flush,nowarn	Same as 'flush', but hypervisors will not warn when a VM is
+		started in a potentially insecure configuration.
+
+  off		Disables hypervisor mitigations and doesn't emit any
+		warnings.
+  ============  =============================================================
+
+The default is 'flush'. For details about L1D flushing see :ref:`l1d_flush`.
+
+
+.. _mitigation_control_kvm:
+
+Mitigation control for KVM - module parameter
+-------------------------------------------------------------
+
+The KVM hypervisor mitigation mechanism, flushing the L1D cache when
+entering a guest, can be controlled with a module parameter.
+
+The option/parameter is "kvm-intel.vmentry_l1d_flush=". It takes the
+following arguments:
+
+  ============  ==============================================================
+  always	L1D cache flush on every VMENTER.
+
+  cond		Flush L1D on VMENTER only when the code between VMEXIT and
+		VMENTER can leak host memory which is considered
+		interesting for an attacker. This still can leak host memory
+		which allows e.g. to determine the hosts address space layout.
+
+  never		Disables the mitigation
+  ============  ==============================================================
+
+The parameter can be provided on the kernel command line, as a module
+parameter when loading the modules and at runtime modified via the sysfs
+file:
+
+/sys/module/kvm_intel/parameters/vmentry_l1d_flush
+
+The default is 'cond'. If 'l1tf=full,force' is given on the kernel command
+line, then 'always' is enforced and the kvm-intel.vmentry_l1d_flush
+module parameter is ignored and writes to the sysfs file are rejected.
+
+
+Mitigation selection guide
+--------------------------
+
+1. No virtualization in use
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+   The system is protected by the kernel unconditionally and no further
+   action is required.
+
+2. Virtualization with trusted guests
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+   If the guest comes from a trusted source and the guest OS kernel is
+   guaranteed to have the L1TF mitigations in place the system is fully
+   protected against L1TF and no further action is required.
+
+   To avoid the overhead of the default L1D flushing on VMENTER the
+   administrator can disable the flushing via the kernel command line and
+   sysfs control files. See :ref:`mitigation_control_command_line` and
+   :ref:`mitigation_control_kvm`.
+
+
+3. Virtualization with untrusted guests
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+3.1. SMT not supported or disabled
+""""""""""""""""""""""""""""""""""
+
+  If SMT is not supported by the processor or disabled in the BIOS or by
+  the kernel, it's only required to enforce L1D flushing on VMENTER.
+
+  Conditional L1D flushing is the default behaviour and can be tuned. See
+  :ref:`mitigation_control_command_line` and :ref:`mitigation_control_kvm`.
+
+3.2. EPT not supported or disabled
+""""""""""""""""""""""""""""""""""
+
+  If EPT is not supported by the processor or disabled in the hypervisor,
+  the system is fully protected. SMT can stay enabled and L1D flushing on
+  VMENTER is not required.
+
+  EPT can be disabled in the hypervisor via the 'kvm-intel.ept' parameter.
+
+3.3. SMT and EPT supported and active
+"""""""""""""""""""""""""""""""""""""
+
+  If SMT and EPT are supported and active then various degrees of
+  mitigations can be employed:
+
+  - L1D flushing on VMENTER:
+
+    L1D flushing on VMENTER is the minimal protection requirement, but it
+    is only potent in combination with other mitigation methods.
+
+    Conditional L1D flushing is the default behaviour and can be tuned. See
+    :ref:`mitigation_control_command_line` and :ref:`mitigation_control_kvm`.
+
+  - Guest confinement:
+
+    Confinement of guests to a single or a group of physical cores which
+    are not running any other processes, can reduce the attack surface
+    significantly, but interrupts, soft interrupts and kernel threads can
+    still expose valuable data to a potential attacker. See
+    :ref:`guest_confinement`.
+
+  - Interrupt isolation:
+
+    Isolating the guest CPUs from interrupts can reduce the attack surface
+    further, but still allows a malicious guest to explore a limited amount
+    of host physical memory. This can at least be used to gain knowledge
+    about the host address space layout. The interrupts which have a fixed
+    affinity to the CPUs which run the untrusted guests can depending on
+    the scenario still trigger soft interrupts and schedule kernel threads
+    which might expose valuable information. See
+    :ref:`interrupt_isolation`.
+
+The above three mitigation methods combined can provide protection to a
+certain degree, but the risk of the remaining attack surface has to be
+carefully analyzed. For full protection the following methods are
+available:
+
+  - Disabling SMT:
+
+    Disabling SMT and enforcing the L1D flushing provides the maximum
+    amount of protection. This mitigation is not depending on any of the
+    above mitigation methods.
+
+    SMT control and L1D flushing can be tuned by the command line
+    parameters 'nosmt', 'l1tf', 'kvm-intel.vmentry_l1d_flush' and at run
+    time with the matching sysfs control files. See :ref:`smt_control`,
+    :ref:`mitigation_control_command_line` and
+    :ref:`mitigation_control_kvm`.
+
+  - Disabling EPT:
+
+    Disabling EPT provides the maximum amount of protection as well. It is
+    not depending on any of the above mitigation methods. SMT can stay
+    enabled and L1D flushing is not required, but the performance impact is
+    significant.
+
+    EPT can be disabled in the hypervisor via the 'kvm-intel.ept'
+    parameter.
+
+
+.. _default_mitigations:
+
+Default mitigations
+-------------------
+
+  The kernel default mitigations for vulnerable processors are:
+
+  - PTE inversion to protect against malicious user space. This is done
+    unconditionally and cannot be controlled.
+
+  - L1D conditional flushing on VMENTER when EPT is enabled for
+    a guest.
+
+  The kernel does not by default enforce the disabling of SMT, which leaves
+  SMT systems vulnerable when running untrusted guests with EPT enabled.
+
+  The rationale for this choice is:
+
+  - Force disabling SMT can break existing setups, especially with
+    unattended updates.
+
+  - If regular users run untrusted guests on their machine, then L1TF is
+    just an add on to other malware which might be embedded in an untrusted
+    guest, e.g. spam-bots or attacks on the local network.
+
+    There is no technical way to prevent a user from running untrusted code
+    on their machines blindly.
+
+  - It's technically extremely unlikely and from today's knowledge even
+    impossible that L1TF can be exploited via the most popular attack
+    mechanisms like JavaScript because these mechanisms have no way to
+    control PTEs. If this would be possible and not other mitigation would
+    be possible, then the default might be different.
+
+  - The administrators of cloud and hosting setups have to carefully
+    analyze the risk for their scenarios and make the appropriate
+    mitigation choices, which might even vary across their deployed
+    machines and also result in other changes of their overall setup.
+    There is no way for the kernel to provide a sensible default for this
+    kind of scenarios.



  parent reply	other threads:[~2018-08-14 17:53 UTC|newest]

Thread overview: 100+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2018-08-14 17:16 [PATCH 4.17 00/97] 4.17.15-stable review Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 01/97] parisc: Enable CONFIG_MLONGCALLS by default Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 03/97] Mark HI and TASKLET softirq synchronous Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 04/97] stop_machine: Disable preemption after queueing stopper threads Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 05/97] sched/deadline: Update rq_clock of later_rq when pushing a task Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 06/97] zram: remove BD_CAP_SYNCHRONOUS_IO with writeback feature Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 07/97] xen/netfront: dont cache skb_shinfo() Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 08/97] bpf, sockmap: fix leak in bpf_tcp_sendmsg wait for mem path Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 09/97] bpf, sockmap: fix bpf_tcp_sendmsg sock error handling Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 10/97] scsi: sr: Avoid that opening a CD-ROM hangs with runtime power management enabled Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 11/97] scsi: qla2xxx: Fix memory leak for allocating abort IOCB Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 12/97] init: rename and re-order boot_cpu_state_init() Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 13/97] root dentries need RCU-delayed freeing Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 14/97] make sure that __dentry_kill() always invalidates d_seq, unhashed or not Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 15/97] fix mntput/mntput race Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 16/97] fix __legitimize_mnt()/mntput() race Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 17/97] ARM: dts: imx6sx: fix irq for pcie bridge Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 18/97] x86/paravirt: Fix spectre-v2 mitigations for paravirt guests Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 19/97] x86/speculation: Protect against userspace-userspace spectreRSB Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 20/97] kprobes/x86: Fix %p uses in error messages Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 21/97] x86/irqflags: Provide a declaration for native_save_fl Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 22/97] x86/speculation/l1tf: Increase 32bit PAE __PHYSICAL_PAGE_SHIFT Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 23/97] x86/speculation/l1tf: Change order of offset/type in swap entry Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 24/97] x86/speculation/l1tf: Protect swap entries against L1TF Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 25/97] x86/speculation/l1tf: Protect PROT_NONE PTEs against speculation Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 26/97] x86/speculation/l1tf: Make sure the first page is always reserved Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 27/97] x86/speculation/l1tf: Add sysfs reporting for l1tf Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 28/97] x86/speculation/l1tf: Disallow non privileged high MMIO PROT_NONE mappings Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 29/97] x86/speculation/l1tf: Limit swap file size to MAX_PA/2 Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 30/97] x86/bugs: Move the l1tf function and define pr_fmt properly Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 31/97] sched/smt: Update sched_smt_present at runtime Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 32/97] x86/smp: Provide topology_is_primary_thread() Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 33/97] x86/topology: Provide topology_smt_supported() Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 34/97] cpu/hotplug: Make bringup/teardown of smp threads symmetric Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 35/97] cpu/hotplug: Split do_cpu_down() Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 36/97] cpu/hotplug: Provide knobs to control SMT Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 37/97] x86/cpu: Remove the pointless CPU printout Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 38/97] x86/cpu/AMD: Remove the pointless detect_ht() call Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 39/97] x86/cpu/common: Provide detect_ht_early() Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 40/97] x86/cpu/topology: Provide detect_extended_topology_early() Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 41/97] x86/cpu/intel: Evaluate smp_num_siblings early Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 42/97] x86/CPU/AMD: Do not check CPUID max ext level before parsing SMP info Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 43/97] x86/cpu/AMD: Evaluate smp_num_siblings early Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 45/97] x86/speculation/l1tf: Extend 64bit swap file size limit Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 46/97] x86/cpufeatures: Add detection of L1D cache flush support Greg Kroah-Hartman
2018-08-14 17:16 ` [PATCH 4.17 47/97] x86/CPU/AMD: Move TOPOEXT reenablement before reading smp_num_siblings Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 48/97] x86/speculation/l1tf: Protect PAE swap entries against L1TF Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 49/97] x86/speculation/l1tf: Fix up pte->pfn conversion for PAE Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 50/97] Revert "x86/apic: Ignore secondary threads if nosmt=force" Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 51/97] cpu/hotplug: Boot HT siblings at least once Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 52/97] x86/KVM: Warn user if KVM is loaded SMT and L1TF CPU bug being present Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 53/97] x86/KVM/VMX: Add module argument for L1TF mitigation Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 54/97] x86/KVM/VMX: Add L1D flush algorithm Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 55/97] x86/KVM/VMX: Add L1D MSR based flush Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 56/97] x86/KVM/VMX: Add L1D flush logic Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 57/97] x86/KVM/VMX: Split the VMX MSR LOAD structures to have an host/guest numbers Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 58/97] x86/KVM/VMX: Add find_msr() helper function Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 59/97] x86/KVM/VMX: Separate the VMX AUTOLOAD guest/host number accounting Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 60/97] x86/KVM/VMX: Extend add_atomic_switch_msr() to allow VMENTER only MSRs Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 61/97] x86/KVM/VMX: Use MSR save list for IA32_FLUSH_CMD if required Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 62/97] cpu/hotplug: Online siblings when SMT control is turned on Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 63/97] x86/litf: Introduce vmx status variable Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 64/97] x86/kvm: Drop L1TF MSR list approach Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 65/97] x86/l1tf: Handle EPT disabled state proper Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 66/97] x86/kvm: Move l1tf setup function Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 67/97] x86/kvm: Add static key for flush always Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 68/97] x86/kvm: Serialize L1D flush parameter setter Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 69/97] x86/kvm: Allow runtime control of L1D flush Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 70/97] cpu/hotplug: Expose SMT control init function Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 71/97] cpu/hotplug: Set CPU_SMT_NOT_SUPPORTED early Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 72/97] x86/bugs, kvm: Introduce boot-time control of L1TF mitigations Greg Kroah-Hartman
2018-08-14 17:17 ` Greg Kroah-Hartman [this message]
2018-08-14 17:17 ` [PATCH 4.17 74/97] x86/speculation/l1tf: Unbreak !__HAVE_ARCH_PFN_MODIFY_ALLOWED architectures Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 75/97] x86/KVM/VMX: Initialize the vmx_l1d_flush_pages content Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 76/97] Documentation/l1tf: Fix typos Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 77/97] cpu/hotplug: detect SMT disabled by BIOS Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 78/97] x86/KVM/VMX: Dont set l1tf_flush_l1d to true from vmx_l1d_flush() Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 79/97] x86/KVM/VMX: Replace vmx_l1d_flush_always with vmx_l1d_flush_cond Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 80/97] x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush() Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 81/97] x86/irq: Demote irq_cpustat_t::__softirq_pending to u16 Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 82/97] x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 83/97] x86: Dont include linux/irq.h from asm/hardirq.h Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 84/97] x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 85/97] x86/KVM/VMX: Dont set l1tf_flush_l1d from vmx_handle_external_intr() Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 86/97] Documentation/l1tf: Remove Yonah processors from not vulnerable list Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 87/97] x86/speculation: Simplify sysfs report of VMX L1TF vulnerability Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 88/97] x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 89/97] KVM: VMX: Tell the nested hypervisor " Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 90/97] cpu/hotplug: Fix SMT supported evaluation Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 91/97] x86/speculation/l1tf: Invert all not present mappings Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 92/97] x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 93/97] x86/mm/pat: Make set_memory_np() L1TF safe Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 94/97] x86/mm/kmmio: Make the tracer robust against L1TF Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 95/97] tools headers: Synchronize prctl.h ABI header Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 96/97] tools headers: Synchronise x86 cpufeatures.h for L1TF additions Greg Kroah-Hartman
2018-08-14 17:17 ` [PATCH 4.17 97/97] x86/microcode: Allow late microcode loading with SMT disabled Greg Kroah-Hartman
2018-08-15  6:14 ` [PATCH 4.17 00/97] 4.17.15-stable review Greg Kroah-Hartman
2018-08-15 13:15 ` Guenter Roeck
2018-08-15 20:31 ` Dan Rue
2018-08-16 10:08   ` Greg Kroah-Hartman

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=20180814171435.926080495@linuxfoundation.org \
    --to=gregkh@linuxfoundation.org \
    --cc=jpoimboe@redhat.com \
    --cc=linux-kernel@vger.kernel.org \
    --cc=stable@vger.kernel.org \
    --cc=tglx@linutronix.de \
    --cc=torvalds@linux-foundation.org \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).