From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org X-Spam-Level: X-Spam-Status: No, score=-9.2 required=3.0 tests=DKIM_SIGNED,DKIM_VALID, HEADER_FROM_DIFFERENT_DOMAINS,INCLUDES_PATCH,MAILING_LIST_MULTI, MENTIONS_GIT_HOSTING,SIGNED_OFF_BY,SPF_PASS,UNWANTED_LANGUAGE_BODY autolearn=ham autolearn_force=no version=3.4.0 Received: from mail.kernel.org (mail.kernel.org [198.145.29.99]) by smtp.lore.kernel.org (Postfix) with ESMTP id 3D0ABC04EB8 for ; Sun, 2 Dec 2018 17:41:11 +0000 (UTC) Received: from vger.kernel.org (vger.kernel.org [209.132.180.67]) by mail.kernel.org (Postfix) with ESMTP id 2E08D2081C for ; Sun, 2 Dec 2018 17:41:10 +0000 (UTC) Authentication-Results: mail.kernel.org; dkim=pass (4096-bit key) header.d=kolabnow.com header.i=@kolabnow.com header.b="pSRTv23m" DMARC-Filter: OpenDMARC Filter v1.3.2 mail.kernel.org 2E08D2081C Authentication-Results: mail.kernel.org; dmarc=none (p=none dis=none) header.from=vaga.pv.it Authentication-Results: mail.kernel.org; spf=none smtp.mailfrom=linux-kernel-owner@vger.kernel.org Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1725803AbeLBRlJ (ORCPT ); Sun, 2 Dec 2018 12:41:09 -0500 Received: from mx.kolabnow.com ([95.128.36.42]:51942 "EHLO mx.kolabnow.com" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1725440AbeLBRlJ (ORCPT ); Sun, 2 Dec 2018 12:41:09 -0500 Received: from localhost (unknown [127.0.0.1]) by ext-mx-out003.mykolab.com (Postfix) with ESMTP id C082D44107; Sun, 2 Dec 2018 18:40:53 +0100 (CET) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=kolabnow.com; h= content-transfer-encoding:content-type:content-type:mime-version :references:in-reply-to:message-id:date:date:subject:subject :from:from:received:received:received; s=dkim20160331; t= 1543772445; x=1545586846; bh=s1obpX+Y9ZDoMn5dP1Eb2oewCW+nqlB7BDh vtxpS1EU=; b=pSRTv23mP2aR8r0PLpPALhMD3C+LL/JHwWsVwRyd3ptYSgwmWSt caGjbRz2wdxD7JiutwPfDooxfrpxT/ygdQ9q8fZYEFOOF2srBdoMNfbjdflF729i 74H6TMUHhp60SukkUrWq5ywcROnnGNtTvvpNtDJ0tUXOQ2wXa7stWNfCN6ePa/9/ 3X3jLE3eeCToleqVef4JZdE4Qal1kYtrV2hKxJ/c90UiA1V5UjlD1nNTPattBbHy p6GL2RvTg02MgNMZxRz+7ax+cp3nQOe2GTxvANGzLbSJijJd/2LGBYqZLIymZ5i7 c4+MEqiQ8bH42eggDz7GD/90XLTrFF0wSYsUhqWFApfjbGaMJ4W+MD+ShtQl8H3y gIrB71Xxx/Rvvnf3+dAX2F+3O8IlcMrLrBPhSOTMyA8Or1qrprCfbeMM/joPwCez nshDXbOcHPftsxqpsryOZznKNFOgwWW1y07I07kjP9oHdjiNkr3oylY5FzzGQzNM YlfbMK1P1ItuJGFhrOvG1yEygf/KmJpPRaJDOnfBO8SKGaMtTCIBzt5CEUIKv+Ot Cm8zKaM9YxTgEx7AD9E4k39/28dTtPmXY3s6RmeFPvzA5K7CvAkQ33tdcAPYkuPM XuqnySsNppSLLsDsWuJN6JpxigAPmt7zeKKnuBsgLCesPMe32Ek818W0= X-Virus-Scanned: amavisd-new at mykolab.com Received: from mx.kolabnow.com ([127.0.0.1]) by localhost (ext-mx-out003.mykolab.com [127.0.0.1]) (amavisd-new, port 10024) with ESMTP id YzXdNMA1D_pI; Sun, 2 Dec 2018 18:40:45 +0100 (CET) Received: from int-mx003.mykolab.com (unknown [10.9.13.3]) by ext-mx-out003.mykolab.com (Postfix) with ESMTPS id B3F1940C50; Sun, 2 Dec 2018 18:40:45 +0100 (CET) Received: from ext-subm002.mykolab.com (unknown [10.9.6.2]) by int-mx003.mykolab.com (Postfix) with ESMTPS id 3FFFEABA; Sun, 2 Dec 2018 18:40:45 +0100 (CET) From: Federico Vaga To: Jonathan Corbet Cc: Alessia Mantegazza , linux-doc@vger.kernel.org, linux-kernel@vger.kernel.org, Federico Vaga Subject: [PATCH] doc:it: add some process/* translations Date: Sun, 2 Dec 2018 18:40:10 +0100 Message-Id: <20181202174010.12152-2-federico.vaga@vaga.pv.it> In-Reply-To: <20181202174010.12152-1-federico.vaga@vaga.pv.it> References: <20181202174010.12152-1-federico.vaga@vaga.pv.it> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Sender: linux-kernel-owner@vger.kernel.org Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org Translated documents: - 2.Process - 3.Early-stage - 4.Coding - 5.Posting - 6.Followthrough - 7.AdvancedTopics - 8.Conclusion - adding-syscalls Signed-off-by: Federico Vaga Signed-off-by: Alessia Mantegazza --- .../translations/it_IT/process/2.Process.rst | 523 ++++++++++++++- .../it_IT/process/3.Early-stage.rst | 237 ++++++- .../translations/it_IT/process/4.Coding.rst | 439 +++++++++++- .../translations/it_IT/process/5.Posting.rst | 342 +++++++++- .../it_IT/process/6.Followthrough.rst | 234 ++++++- .../it_IT/process/7.AdvancedTopics.rst | 184 ++++- .../it_IT/process/8.Conclusion.rst | 77 ++- .../it_IT/process/adding-syscalls.rst | 635 +++++++++++++++++- 8 files changed, 2651 insertions(+), 20 deletions(-) diff --git a/Documentation/translations/it_IT/process/2.Process.rst b/Documentation/translations/it_IT/process/2.Process.rst index 5d56149ececc..9af4d01617c4 100644 --- a/Documentation/translations/it_IT/process/2.Process.rst +++ b/Documentation/translations/it_IT/process/2.Process.rst @@ -1,12 +1,531 @@ .. include:: ../disclaimer-ita.rst :Original: :ref:`Documentation/process/2.Process.rst ` +:Translator: Alessia Mantegazza .. _it_development_process: Come funziona il processo di sviluppo ===================================== -.. warning:: +Lo sviluppo del Kernel agli inizi degli anno '90 era abbastanza libero, con +un numero di utenti e sviluppatori relativamente basso. Con una base +di milioni di utenti e con 2000 sviluppatori coinvolti nel giro di un anno, +il kernel da allora ha messo in atto un certo numero di procedure per rendere +lo sviluppo più agevole. È richiesta una solida conoscenza di come tale +processo si svolge per poter esserne parte attiva. - TODO ancora da tradurre +Il quadro d'insieme +------------------- + +Gli sviluppatori kernel utilizzano un calendario di rilascio generico, dove +ogni due o tre mesi viene effettuata un rilascio importante del kernel. +I rilasci più recenti sono stati: + + ====== ================= + 4.11 Aprile 30, 2017 + 4.12 Luglio 2, 2017 + 4.13 Settembre 3, 2017 + 4.14 Novembre 12, 2017 + 4.15 Gennaio 28, 2018 + 4.16 Aprile 1, 2018 + ====== ================= + +Ciascun rilascio 4.x è un importante rilascio del kernel con nuove +funzionalità, modifiche interne dell'API, e molto altro. Un tipico +rilascio 4.x contiene quasi 13,000 gruppi di modifiche con ulteriori +modifiche a parecchie migliaia di linee di codice. La 4.x. è pertanto la +linea di confine nello sviluppo del kernel Linux; il kernel utilizza un sistema +di sviluppo continuo che integra costantemente nuove importanti modifiche. + +Viene seguita una disciplina abbastanza lineare per l'inclusione delle +patch di ogni rilascio. All'inizio di ogni ciclo di sviluppo, la +"finestra di inclusione" viene dichiarata aperta. In quel momento il codice +ritenuto sufficientemente stabile(e che è accettato dalla comunità di sviluppo) +viene incluso nel ramo principale del kernel. La maggior parte delle +patch per un nuovo ciclo di sviluppo (e tutte le più importanti modifiche) +saranno inserite durante questo periodo, ad un ritmo che si attesta sulle +1000 modifiche ("patch" o "gruppo di modifiche") al giorno. + +(per inciso, vale la pena notare che i cambiamenti integrati durante la +"finestra di inclusione" non escono dal nulla; questi infatti, sono stati +raccolti e, verificati in anticipo. Il funzionamento di tale procedimento +verrà descritto dettagliatamente più avanti). + +La finestra di inclusione resta attiva approssimativamente per due settimane. +Al termine di questo periodo, Linus Torvald dichiarerà che la finestra è +chiusa e rilascerà il primo degli "rc" del kernel. +Per il kernel che è destinato ad essere 2.6.40, per esempio, il rilascio +che emerge al termine della finestra d'inclusione si chiamerà 2.6.40-rc1. +Questo rilascio indica che il momento di aggiungere nuovi componenti è +passato, e che è iniziato il periodo di stabilizzazione del prossimo kernel. + +Nelle successive sei/dieci settimane, potranno essere sottoposte solo modifiche +che vanno a risolvere delle problematiche. Occasionalmente potrà essere +consentita una modifica più consistente, ma tali occasioni sono rare. +Gli sviluppatori che tenteranno di aggiungere nuovi elementi al di fuori della +finestra di inclusione, tendenzialmente, riceveranno un accoglienza poco +amichevole. Come regola generale: se vi perdete la finestra di inclusione per +un dato componente, la cosa migliore da fare è aspettare il ciclo di sviluppo +successivo (un'eccezione può essere fatta per i driver per hardware non +supportati in precedenza; se toccano codice non facente parte di quello +attuale, che non causino regressioni e che potrebbero essere aggiunti in +sicurezza in un qualsiasi momento) + +Mentre le correzioni si aprono la loro strada all'interno del ramo principale, +il ritmo delle modifiche rallenta col tempo. Linus rilascia un nuovo +kernel -rc circa una volta alla settimana; e ne usciranno circa 6 o 9 prima +che il kernel venga considerato sufficientemente stabile e che il rilascio +finale 2.6.x venga fatto. A quel punto tutto il processo ricomincerà. + +Esempio: ecco com'è andato il ciclo di sviluppo della versione 4.16 +(tutte le date si collocano nel 2018) + + + ============== ======================================= + Gennaio 28 4.15 rilascio stabile + Febbraio 11 4.16-rc1, finestra di inclusione chiusa + Febbraio 18 4.16-rc2 + Febbraio 25 4.16-rc3 + Marzo 4 4.16-rc4 + Marzo 11 4.16-rc5 + Marzo 18 4.16-rc6 + Marzo 25 4.16-rc7 + Aprile 1 4.17 rilascio stabile + ============== ======================================= + +In che modo gli sviluppatori decidono quando chiudere il ciclo di sviluppo e +creare quindi una rilascio stabile? Un metro valido è il numero di regressioni +rilevate nel precedente rilascio. Nessun baco è il benvenuto, ma quelli che +procurano problemi su sistemi che hanno funzionato in passato sono considerati +particolarmente seri. Per questa ragione, le modifiche che portano ad una +regressione sono viste sfavorevolmente e verranno quasi sicuramente annullate +durante il periodo di stabilizzazione. + +L'obiettivo degli sviluppatori è quello di aggiustare tutte le regressioni +conosciute prima che avvenga il rilascio stabile. Nel mondo reale, questo +tipo di perfezione difficilmente viene raggiunta; esistono troppe variabili +in un progetto di questa portata. Arriva un punto dove ritardare il rilascio +finale peggiora la situazione; la quantità di modifiche in attesa della +prossima finestra di inclusione crescerà enormemente, creando ancor più +regressioni al giro successivo. Quindi molti kernel 4.x escono con una +manciata di regressioni delle quali, si spera, nessuna è grave. + +Una volta che un rilascio stabile è fatto, il suo costante mantenimento è +affidato al "squadra stabilità", attualmente composta da Greg Kroah-Hartman. +Questa squadra rilascia occasionalmente degli aggiornamenti relativi al +rilascio stabile usando la numerazione 4.x.y. Per essere presa in +considerazione per un rilascio d'aggiornamento, una modifica deve: +(1) correggere un baco importante (2) essere già inserita nel ramo principale +per il prossimo sviluppo del kernel. Solitamente, passato il loro rilascio +iniziale, i kernel ricevono aggiornamenti per più di un ciclo di sviluppo. +Quindi, per esempio, la storia del kernel 4.13 appare così: + + ============== =============================== + Settembre 3 4.13 rilascio stabile + Settembre 13 4.13.1 + Settembre 20 4.13.2 + Settembre 27 4.13.3 + Ottobre 5 4.13.4 + Ottobre 12 4.13.5 + ... ... + Novembre 24 4.13.16 + ============== =============================== + +La 4.13.16 fu l'aggiornamento finale per la versione 4.13. + +Alcuni kernel sono destinati ad essere kernel a "lungo termine"; questi +riceveranno assistenza per un lungo periodo di tempo. Al momento in cui +scriviamo, i manutentori dei kernel stabili a lungo termine sono: + + ====== ====================== ========================================== + 3.16 Ben Hutchings (kernel stabile molto più a lungo termine) + 4.1 Sasha Levin + 4.4 Greg Kroah-Hartman (kernel stabile molto più a lungo termine) + 4.9 Greg Kroah-Hartman + 4.14 Greg Kroah-Hartman + ====== ====================== ========================================== + + +Questa selezione di kernel di lungo periodo sono puramente dovuti ai loro +manutentori, alla loro necessità e al tempo per tenere aggiornate proprio +quelle versioni. Non ci sono altri kernel a lungo termine in programma per +alcun rilascio in arrivo. + +Il ciclo di vita di una patch +----------------------------- + +Le patch non passano direttamente dalla tastiera dello sviluppatori +al ramo principale del kernel. Esiste, invece, una procedura disegnata +per assicurare che ogni patch sia di buona qualità e desiderata nel +ramo principale. Questo processo avviene velocemente per le correzioni +meno importanti, o, nel caso di patch ampie e controverse, va avanti per anni. +Per uno sviluppatore la maggior frustrazione viene dalla mancanza di +comprensione di questo processo o dai tentativi di aggirarlo. + +Nella speranza di ridurre questa frustrazione, questo documento spiegherà +come una patch viene inserita nel kernel. Ciò che segue è un'introduzione +che descrive il processo ideale. Approfondimenti verranno invece trattati +più avanti. + +Una patch attraversa, generalmente, le seguenti fasi: + + - Progetto. In questa fase sono stabilite quelli che sono i requisiti + della modifica - e come verranno soddisfatti. Il lavoro di progettazione + viene spesso svolto senza coinvolgere la comunità, ma è meglio renderlo + il più aperto possibile; questo può far risparmiare molto tempo evitando + eventuali riprogettazioni successive. + + - Prima revisione. Le patch vengono pubblicate sulle liste di discussione + interessate, e gli sviluppatori in quella lista risponderanno coi loro + commenti. Se si svolge correttamente, questo procedimento potrebbe far + emergere problemi rilevanti in una patch. + + - Revisione più ampia. Quando la patch è quasi pronta per essere inserita + nel ramo principale, un manutentore importante del sottosistema dovrebbe + accettarla - anche se, questa accettazione non è una garanzia che la + patch arriverà nel ramo principale. La patch sarà visibile nei sorgenti + del sottosistema in questione e nei sorgenti -next (descritti sotto). + Quando il processo va a buon fine, questo passo porta ad una revisione + più estesa della patch e alla scoperta di problemi d'integrazione + con il lavoro altrui. + +- Per favore, tenete da conto che la maggior parte dei manutentori ha + anche un lavoro quotidiano, quindi integrare le vostre patch potrebbe + non essere la loro priorità più alta. Se una vostra patch riceve + dei suggerimenti su dei cambiamenti necessari, dovreste applicare + quei cambiamenti o giustificare perché non sono necessari. Se la vostra + patch non riceve alcuna critica ma non è stata integrata dal + manutentore del driver o sottosistema, allora dovreste continuare con + i necessari aggiornamenti per mantenere la patch aggiornata al kernel + più recente cosicché questa possa integrarsi senza problemi; continuate + ad inviare gli aggiornamenti per essere revisionati e integrati. + + - Inclusione nel ramo principale. Eventualmente, una buona patch verrà + inserita all'interno nel repositorio principale, gestito da + Linus Torvalds. In questa fase potrebbero emergere nuovi problemi e/o + commenti; è importante che lo sviluppatore sia collaborativo e che sistemi + ogni questione che possa emergere. + + - Rilascio stabile. Ora, il numero di utilizzatori che sono potenzialmente + toccati dalla patch è aumentato, quindi, ancora una volta, potrebbero + emergere nuovi problemi. + + - Manutenzione di lungo periodo. Nonostante sia possibile che uno sviluppatore + si dimentichi del codice dopo la sua integrazione, questo comportamento + lascia una brutta impressione nella comunità di sviluppo. Integrare il + codice elimina alcuni degli oneri facenti parte della manutenzione, in + particolare, sistemerà le problematiche causate dalle modifiche all'API. + Ma lo sviluppatore originario dovrebbe continuare ad assumersi la + responsabilità per il codice se quest'ultimo continua ad essere utile + nel lungo periodo. + +Uno dei più grandi errori fatti dagli sviluppatori kernel (o dai loro datori +di lavoro) è quello di cercare di ridurre tutta la procedura ad una singola +"integrazione nel remo principale". Questo approccio inevitabilmente conduce +a una condizione di frustrazione per tutti coloro che sono coinvolti. + +Come le modifiche finiscono nel Kernel +-------------------------------------- + +Esiste una sola persona che può inserire le patch nel repositorio principale +del kernel: Linus Torvalds. Ma, di tutte le 9500 patch che entrarono nella +versione 2.6.38 del kernel, solo 112 (circa l'1,3%) furono scelte direttamente +da Linus in persona. Il progetto del kernel è cresciuto fino a raggiungere +una dimensione tale per cui un singolo sviluppatore non può controllare e +selezionare indipendentemente ogni modifica senza essere supportato. +La via scelta dagli sviluppatori per indirizzare tale crescita è stata quella +di utilizzare un sistema di "sottotenenti" basato sulla fiducia. + +Il codice base del kernel è spezzato in una serie si sottosistemi: rete, +supporto per specifiche architetture, gestione della memoria, video e +strumenti, etc. Molti sottosistemi hanno un manutentore designato: ovvero uno +sviluppatore che ha piena responsabilità di tutto il codice presente in quel +sottosistema. Tali manutentori di sottosistema sono i guardiani +(in un certo senso) della parte di kernel che gestiscono; sono coloro che +(solitamente) accetteranno una patch per l'inclusione nel ramo principale +del kernel. + +I manutentori di sottosistema gestiscono ciascuno la propria parte dei sorgenti +del kernel, utilizzando abitualmente (ma certamente non sempre) git. +Strumenti come git (e affini come quilt o mercurial) permettono ai manutentori +di stilare una lista delle patch, includendo informazioni sull'autore ed +altri metadati. In ogni momento, il manutentore può individuare quale patch +nel sua repositorio non si trova nel ramo principale. + +Quando la "finestra di integrazione" si apre, i manutentori di alto livello +chiederanno a Linus di "prendere" dai loro repositori le modifiche che hanno +selezionato per l'inclusione. Se Linus acconsente, il flusso di patch si +convoglierà nel repositorio di quest ultimo, divenendo così parte del ramo +principale del kernel. La quantità d'attenzione che Linus presta alle +singole patch ricevute durante l'operazione di integrazione varia. +È chiaro che, qualche volta, guardi più attentamente. Ma, come regola +generale, Linus confida nel fatto che i manutentori di sottosistema non +selezionino pessime patch. + +I manutentori di sottosistemi, a turno, possono "prendere" patch +provenienti da altri manutentori. Per esempio, i sorgenti per la rete rete +sono costruiti da modifiche che si sono accumulate inizialmente nei sorgenti +dedicati ai driver per dispositivi di rete, rete senza fili, ecc. Tale +catena di repositori può essere più o meno lunga, benché raramente ecceda +i due o tre collegamenti. Questo processo è conosciuto come +"la catena della fiducia", perché ogni manutentore all'interno della +catena si fida di coloro che gestiscono i livelli più bassi. + +Chiaramente, in un sistema come questo, l'inserimento delle patch all'interno +del kernel si basa sul trovare il manutentore giusto. Di norma, inviare +patch direttamente a Linus non è la via giusta. + + +Sorgenti -next +-------------- + +La catena di sottosistemi guida il flusso di patch all'interno del kernel, +ma solleva anche un interessante quesito: se qualcuno volesse vedere tutte le +patch pronte per la prossima finestra di integrazione? +Gli sviluppatori si interesseranno alle patch in sospeso per verificare +che non ci siano altri conflitti di cui preoccuparsi; una modifica che, per +esempio, cambia il prototipo di una funzione fondamentale del kernel andrà in +conflitto con qualsiasi altra modifica che utilizzi la vecchia versione di +quella funzione. Revisori e tester vogliono invece avere accesso alle +modifiche nella loro totalità prima che approdino nel ramo principale del +kernel. Uno potrebbe prendere le patch provenienti da tutti i sottosistemi +d'interesse, ma questo sarebbe un lavoro enorme e fallace. + +La risposta ci viene sotto forma di sorgenti -next, dove i sottosistemi sono +raccolti per essere testati e controllati. Il più vecchio di questi sorgenti, +gestito da Andrew Morton, è chiamato "-mm" (memory management, che è l'inizio +di tutto). L'-mm integra patch proveniente da una lunga lista di sottosistemi; +e ha, inoltre, alcune patch destinate al supporto del debugging. + +Oltre a questo, -mm contiene una raccolta significativa di patch che sono +state selezionate da Andrew direttamente. Queste patch potrebbero essere +state inviate in una lista di discussione, o possono essere applicate ad una +parte del kernel per la quale non esiste un sottosistema dedicato. +Di conseguenza, -mm opera come una specie di sottosistema "ultima spiaggia"; +se per una patch non esiste una via chiara per entrare nel ramo principale, +allora è probabile che finirà in -mm. Le patch passate per -mm +eventualmente finiranno nel sottosistema più appropriato o saranno inviate +direttamente a Linus. In un tipico ciclo di sviluppo, circa il 5-10% delle +patch andrà nel ramo principale attraverso -mm. + +La patch -mm correnti sono disponibili nella cartella "mmotm" (-mm of +the moment) all'indirizzo: + + http://www.ozlabs.org/~akpm/mmotm/ + +È molto probabile che l'uso dei sorgenti MMOTM diventi un'esperienza +frustrante; ci sono buone probabilità che non compili nemmeno. + +I sorgenti principali per il prossimo ciclo d'integrazione delle patch +è linux-next, gestito da Stephen Rothwell. I sorgenti linux-next sono, per +definizione, un'istantanea di come dovrà apparire il ramo principale dopo che +la prossima finestra di inclusione si chiuderà. I linux-next sono annunciati +sulla lista di discussione linux-kernel e linux-next nel momento in cui +vengono assemblati; e possono essere scaricate da: + + http://www.kernel.org/pub/linux/kernel/next/ + +Linux-next è divenuto parte integrante del processo di sviluppo del kernel; +tutte le patch incorporate durante una finestra di integrazione dovrebbero +aver trovato la propria strada in linux-next, a volte anche prima dell'apertura +della finestra di integrazione. + + +Sorgenti in preparazione +------------------------ + +Nei sorgenti del kernel esiste la cartella drivers/staging/, dove risiedono +molte sotto-cartelle per i driver o i filesystem che stanno per essere aggiunti +al kernel. Questi restano nella cartella drivers/staging fintanto che avranno +bisogno di maggior lavoro; una volta completato, possono essere spostate +all'interno del kernel nel posto più appropriato. Questo è il modo di tener +traccia dei driver che non sono ancora in linea con gli standard di codifica +o qualità, ma che le persone potrebbero voler usare ugualmente e tracciarne +lo sviluppo. + +Greg Kroah-Hartman attualmente gestisce i sorgenti in preparazione. I driver +che non sono completamente pronti vengono inviati a lui, e ciascun driver avrà +la propria sotto-cartella in drivers/staging/. Assieme ai file sorgenti +dei driver, dovrebbe essere presente nella stessa cartella anche un file TODO. +Il file TODO elenca il lavoro ancora da fare su questi driver per poter essere +accettati nel kernel, e indica anche la lista di persone da inserire in copia +conoscenza per ogni modifica fatta. Le regole attuali richiedono che i +driver debbano, come minimo, compilare adeguatamente. + +La *preparazione* può essere una via relativamente facile per inserire nuovi +driver all'interno del ramo principale, dove, con un po' di fortuna, saranno +notati da altri sviluppatori e migliorati velocemente. Entrare nella fase +di preparazione non è però la fine della storia, infatti, il codice che si +trova nella cartella staging che non mostra regolari progressi potrebbe +essere rimosso. Le distribuzioni, inoltre, tendono a dimostrarsi relativamente +riluttanti nell'attivare driver in preparazione. Quindi lo preparazione è, +nel migliore dei casi, una tappa sulla strada verso il divenire un driver +del ramo principale. + + +Strumenti +--------- + +Come è possibile notare dal testo sopra, il processo di sviluppo del kernel +dipende pesantemente dalla capacità di guidare la raccolta di patch in +diverse direzioni. L'intera cosa non funzionerebbe se non venisse svolta +con l'uso di strumenti appropriati e potenti. Spiegare l'uso di tali +strumenti non è lo scopo di questo documento, ma c'è spazio per alcuni +consigli. + +In assoluto, nella comunità del kernel, predomina l'uso di git come sistema +di gestione dei sorgenti. Git è una delle diverse tipologie di sistemi +distribuiti di controllo versione che sono stati sviluppati nella comunità +del software libero. Esso è calibrato per lo sviluppo del kernel, e si +comporta abbastanza bene quando ha a che fare con repositori grandi e con un +vasto numero di patch. Git ha inoltre la reputazione di essere difficile +da imparare e utilizzare, benché stia migliorando. Agli sviluppatori +del kernel viene richiesta un po' di familiarità con git; anche se non lo +utilizzano per il proprio lavoro, hanno bisogno di git per tenersi al passo +con il lavoro degli altri sviluppatori (e con il ramo principale). + +Git è ora compreso in quasi tutte le distribuzioni Linux. Esiste una sito che +potete consultare: + + http://git-scm.com/ + +Qui troverete i riferimenti alla documentazione e alle guide passo-passo. + +Tra gli sviluppatori Kernel che non usano git, la scelta alternativa più +popolare è quasi sicuramente Mercurial: + + http://www.selenic.com/mercurial/ + +Mercurial condivide diverse caratteristiche con git, ma fornisce +un'interfaccia che potrebbe risultare più semplice da utilizzare. + +L'altro strumento che vale la pena conoscere è Quilt: + + http://savannah.nongnu.org/projects/quilt/ + + +Quilt è un sistema di gestione delle patch, piuttosto che un sistema +di gestione dei sorgenti. Non mantiene uno storico degli eventi; ma piuttosto +è orientato verso il tracciamento di uno specifico insieme di modifiche +rispetto ad un codice in evoluzione. Molti dei più grandi manutentori di +sottosistema utilizzano quilt per gestire le patch che dovrebbero essere +integrate. Per la gestione di certe tipologie di sorgenti (-mm, per esempio), +quilt è il miglior strumento per svolgere il lavoro. + + +Liste di discussione +-------------------- + +Una grossa parte del lavoro di sviluppo del Kernel Linux viene svolto tramite +le liste di discussione. È difficile essere un membro della comunità +pienamente coinvolto se non si partecipa almeno ad una lista da qualche +parte. Ma, le liste di discussione di Linux rappresentano un potenziale +problema per gli sviluppatori, che rischiano di venir sepolti da un mare di +email, restare incagliati nelle convenzioni in vigore nelle liste Linux, +o entrambi. + +Molte delle liste di discussione del Kernel girano su vger.kernel.org; +l'elenco principale lo si trova sul sito: + + http://vger.kernel.org/vger-lists.html + +Esistono liste gestite altrove; un certo numero di queste sono in +lists.redhat.com. + +La lista di discussione principale per lo sviluppo del kernel è, ovviamente, +linux-kernel. Questa lista è un luogo ostile dove trovarsi; i volumi possono +raggiungere i 500 messaggi al giorno, la quantità di "rumore" è elevata, +la conversazione può essere strettamente tecnica e i partecipanti non sono +sempre preoccupati di mostrare un alto livello di educazione. Ma non esiste +altro luogo dove la comunità di sviluppo del kernel si unisce per intero; +gli sviluppatori che evitano tale lista si perderanno informazioni importanti. + +Ci sono alcuni consigli che possono essere utili per sopravvivere a +linux-kernel: + +- Tenete la lista in una cartella separata, piuttosto che inserirla nella + casella di posta principale. Così da essere in grado di ignorare il flusso + di mail per un certo periodo di tempo. + +- Non cercate di seguire ogni conversazione - nessuno lo fa. È importante + filtrare solo gli argomenti d'interesse (sebbene va notato che le + conversazioni di lungo periodo possono deviare dall'argomento originario + senza cambiare il titolo della mail) e le persone che stanno partecipando. + +- Non alimentate i troll. Se qualcuno cerca di creare nervosismo, ignoratelo. + +- Quando rispondete ad una mail linux-kernel (o ad altre liste) mantenete + tutti i Cc:. In assenza di importanti motivazioni (come una richiesta + esplicita), non dovreste mai togliere destinatari. Assicuratevi sempre che + la persona alla quale state rispondendo sia presente nella lista Cc. Questa + usanza fa si che divenga inutile chiedere esplicitamente di essere inseriti + in copia nel rispondere al vostro messaggio. + +- Cercate nell'archivio della lista (e nella rete nella sua totalità) prima + di far domande. Molti sviluppatori possono divenire impazienti con le + persone che chiaramente non hanno svolto i propri compiti a casa. + +- Evitate il *top-posting* (cioè la pratica di mettere la vostra risposta sopra + alla frase alla quale state rispondendo). Ciò renderebbe la vostra risposta + difficile da leggere e genera scarsa impressione. + +- Chiedete nella lista di discussione corretta. Linux-kernel può essere un + punto di incontro generale, ma non è il miglior posto dove trovare + sviluppatori da tutti i sottosistemi. + +Infine, la ricerca della corretta lista di discussione è uno degli errori più +comuni per gli sviluppatori principianti. Qualcuno che pone una domanda +relativa alla rete su linux-kernel riceverà quasi certamente il suggerimento +di chiedere sulla lista netdev, che è la lista frequentata dagli sviluppatori +di rete. Ci sono poi altre liste per i sottosistemi SCSI, video4linux, IDE, +filesystem, etc. Il miglior posto dove cercare una lista di discussione è il +file MAINTAINERS che si trova nei sorgenti del kernel. + +Iniziare con lo sviluppo del Kernel +----------------------------------- + +Sono comuni le domande sul come iniziare con lo sviluppo del kernel - sia da +singole persone che da aziende. Altrettanto comuni sono i passi falsi che +rendono l'inizio di tale relazione più difficile di quello che dovrebbe essere. + +Le aziende spesso cercano di assumere sviluppatori noti per creare un gruppo +di sviluppo iniziale. Questo, in effetti, può essere una tecnica efficace. +Ma risulta anche essere dispendiosa e non va ad accrescere il bacino di +sviluppatori kernel con esperienza. È possibile anche "portare a casa" +sviluppatori per accelerare lo sviluppo del kernel, dando comunque +all'investimento un po' di tempo. Prendersi questo tempo può fornire +al datore di lavoro un gruppo di sviluppatori che comprendono sia il kernel +che l'azienda stessa, e che possono supportare la formazione di altre persone. +Nel medio periodo, questa è spesso uno delle soluzioni più proficue. + +I singoli sviluppatori sono spesso, comprensibilmente, una perdita come punto +di partenza. Iniziare con un grande progetto può rivelarsi intimidatorio; +spesso all'inizio si vuole solo verificare il terreno con qualcosa di piccolo. +Questa è una delle motivazioni per le quali molti sviluppatori saltano alla +creazione di patch che vanno a sistemare errori di battitura o +problematiche minori legate allo stile del codice. Sfortunatamente, tali +patch creano un certo livello di rumore che distrae l'intera comunità di +sviluppo, quindi, sempre di più, esse vengono degradate. I nuovi sviluppatori +che desiderano presentarsi alla comunità non riceveranno l'accoglienza +che vorrebbero con questi mezzi. + +Andrew Morton da questo consiglio agli aspiranti sviluppatori kernel + +:: + + Il primo progetto per un neofita del kernel dovrebbe essere + sicuramente quello di "assicurarsi che il kernel funzioni alla + perfezione sempre e su tutte le macchine sulle quali potete stendere + la vostra mano". Solitamente il modo per fare ciò è quello di + collaborare con gli altri nel sistemare le cose (questo richiede + persistenza!) ma va bene - è parte dello sviluppo kernel. + +(http://lwn.net/Articles/283982/). + +In assenza di problemi ovvi da risolvere, si consiglia agli sviluppatori +di consultare, in generale, la lista di regressioni e di bachi aperti. +Non c'è mai carenza di problematiche bisognose di essere sistemate; +accollandosi tali questioni gli sviluppatori accumuleranno esperienza con +la procedura, ed allo stesso tempo, aumenteranno la loro rispettabilità +all'interno della comunità di sviluppo. diff --git a/Documentation/translations/it_IT/process/3.Early-stage.rst b/Documentation/translations/it_IT/process/3.Early-stage.rst index 0b02f16fc712..443ac1e5558f 100644 --- a/Documentation/translations/it_IT/process/3.Early-stage.rst +++ b/Documentation/translations/it_IT/process/3.Early-stage.rst @@ -1,12 +1,241 @@ .. include:: ../disclaimer-ita.rst :Original: :ref:`Documentation/process/3.Early-stage.rst ` +:Translator: Alessia Mantegazza .. _it_development_early_stage: -Primi passi della pianificazione -================================ +I primi passi della pianificazione +================================== -.. warning:: +Osservando un progetto di sviluppo per il kernel Linux, si potrebbe essere +tentati dal saltare tutto e iniziare a codificare. Tuttavia, come ogni +progetto significativo, molta della preparazione per giungere al successo +viene fatta prima che una sola linea di codice venga scritta. Il tempo speso +nella pianificazione e la comunicazione può far risparmiare molto +tempo in futuro. - TODO ancora da tradurre +Specificare il problema +----------------------- + +Come qualsiasi progetto ingegneristico, un miglioramento del kernel di +successo parte con una chiara descrizione del problema da risolvere. +In alcuni casi, questo passaggio è facile: ad esempio quando un driver è +richiesto per un particolare dispositivo. In altri casi invece, si +tende a confondere il problema reale con le soluzioni proposte e questo +può portare all'emergere di problemi. + +Facciamo un esempio: qualche anno fa, gli sviluppatori che lavoravano con +linux audio cercarono un modo per far girare le applicazioni senza dropouts +o altri artefatti dovuti all'eccessivo ritardo nel sistema. La soluzione +alla quale giunsero fu un modulo del kernel destinato ad agganciarsi al +framework Linux Security Module (LSM); questo modulo poteva essere +configurato per dare ad una specifica applicazione accesso allo +schedulatore *realtime*. Tale modulo fu implementato e inviato nella +lista di discussione linux-kernel, dove incontrò subito dei problemi. + +Per gli sviluppatori audio, questo modulo di sicurezza era sufficiente a +risolvere il loro problema nell'immediato. Per l'intera comunità kernel, +invece, era un uso improprio del framework LSM (che non è progettato per +conferire privilegi a processi che altrimenti non avrebbero potuto ottenerli) +e un rischio per la stabilità del sistema. Le loro soluzioni di punta nel +breve periodo, comportavano un accesso alla schedulazione realtime attraverso +il meccanismo rlimit, e nel lungo periodo un costante lavoro nella riduzione +dei ritardi. + +La comunità audio, comunque, non poteva vedere al di là della singola +soluzione che avevano implementato; erano riluttanti ad accettare alternative. +Il conseguente dissenso lasciò in quegli sviluppatori un senso di +disillusione nei confronti dell'intero processo di sviluppo; uno di loro +scrisse questo messaggio: + + Ci sono numerosi sviluppatori del kernel Linux davvero bravi, ma + rischiano di restare sovrastati da una vasta massa di stolti arroganti. + Cercare di comunicare le richieste degli utenti a queste persone è + una perdita di tempo. Loro sono troppo "intelligenti" per stare ad + ascoltare dei poveri mortali. + + (http://lwn.net/Articles/131776/). + +La realtà delle cose fu differente; gli sviluppatori del kernel erano molto +più preoccupati per la stabilità del sistema, per la manutenzione di lungo +periodo e cercavano la giusta soluzione alla problematica esistente con uno +specifico modulo. La morale della storia è quella di concentrarsi sul +problema - non su di una specifica soluzione- e di discuterne con la comunità +di sviluppo prima di investire tempo nella scrittura del codice. + +Quindi, osservando un progetto di sviluppo del kernel, si dovrebbe +rispondere a questa lista di domande: + +- Qual'è, precisamente, il problema che dev'essere risolto? + +- Chi sono gli utenti coinvolti da tal problema? A quale caso dovrebbe + essere indirizzata la soluzione? + +- In che modo il kernel risulta manchevole nell'indirizzare il problema + in questione? + +Solo dopo ha senso iniziare a considerare le possibili soluzioni. + +Prime discussioni +----------------- + +Quando si pianifica un progetto di sviluppo per il kernel, sarebbe quanto meno +opportuno discuterne inizialmente con la comunità prima di lanciarsi +nell'implementazione. Una discussione preliminare può far risparmiare sia +tempo che problemi in svariati modi: + + - Potrebbe essere che il problema sia già stato risolto nel kernel in + una maniera che non avete ancora compreso. Il kernel Linux è grande e ha + una serie di funzionalità e capacità che non sono scontate nell'immediato. + Non tutte le capacità del kernel sono documentate così bene come ci + piacerebbe, ed è facile perdersi qualcosa. Il vostro autore ha assistito + alla pubblicazione di un driver intero che duplica un altro driver + esistente di cui il nuovo autore era ignaro. Il codice che rinnova + ingranaggi già esistenti non è soltanto dispendioso; non verrà nemmeno + accettato nel ramo principale del kernel. + + - Potrebbero esserci proposte che non sono considerate accettabili per + l'integrazione all'interno del ramo principale. È meglio affrontarle + prima di scrivere il codice. + + - È possibile che altri sviluppatori abbiano pensato al problema; potrebbero + avere delle idee per soluzioni migliori, e potrebbero voler contribuire + alla loro creazione. + +Anni di esperienza con la comunità di sviluppo del kernel hanno impartito una +chiara lezione: il codice per il kernel che è pensato e sviluppato a porte +chiuse, inevitabilmente, ha problematiche che si rivelano solo quando il +codice viene rilasciato pubblicamente. Qualche volta tali problemi sono +importanti e richiedono mesi o anni di sforzi prima che il codice possa +raggiungere gli standard richiesti della comunità. +Alcuni esempi possono essere: + + - La rete Devicescape è stata creata e implementata per sistemi + mono-processore. Non avrebbe potuto essere inserita nel ramo principale + fino a che non avesse supportato anche i sistemi multi-processore. + Riadattare i meccanismi di sincronizzazione e simili è un compito difficile; + come risultato, l'inserimento di questo codice (ora chiamato mac80211) + fu rimandato per più di un anno. + + - Il filesystem Reiser4 include una seria di funzionalità che, secondo + l'opinione degli sviluppatori principali del kernel, avrebbero dovuto + essere implementate a livello di filesystem virtuale. Comprende + anche funzionalità che non sono facilmente implementabili senza esporre + il sistema al rischio di uno stallo. La scoperta tardiva di questi + problemi - e il diniego a risolverne alcuni - ha avuto come conseguenza + il fatto che Raiser4 resta fuori dal ramo principale del kernel. + + - Il modulo di sicurezza AppArmor utilizzava strutture dati del + filesystem virtuale interno in modi che sono stati considerati rischiosi e + inattendibili. Questi problemi (tra le altre cose) hanno tenuto AppArmor + fuori dal ramo principale per anni. + +Ciascuno di questi casi è stato un travaglio e ha richiesto del lavoro +straordinario, cose che avrebbero potuto essere evitate con alcune +"chiacchierate" preliminari con gli sviluppatori kernel. + +Con chi parlare? +---------------- + +Quando gli sviluppatori hanno deciso di rendere pubblici i propri progetti, la +domanda successiva sarà: da dove partiamo? La risposta è quella di trovare +la giusta lista di discussione e il giusto manutentore. Per le liste di +discussione, il miglior approccio è quello di cercare la lista più adatta +nel file MAINTAINERS. Se esiste una lista di discussione di sottosistema, +è preferibile pubblicare lì piuttosto che sulla lista di discussione generale +del kernel Linux; avrete maggiori probabilità di trovare sviluppatori con +esperienza sul tema, e l'ambiente che troverete potrebbe essere più +incoraggiante. + +Trovare manutentori può rivelarsi un po' difficoltoso. Ancora, il file +MAINTAINERS è il posto giusto da dove iniziare. Il file potrebbe non essere +sempre aggiornato, inoltre, non tutti i sottosistemi sono rappresentati qui. +Coloro che sono elencati nel file MAINTAINERS potrebbero, in effetti, non +essere le persone che attualmente svolgono quel determinato ruolo. Quindi, +quando c'è un dubbio su chi contattare, un trucco utile è quello di usare +git (git log in particolare) per vedere chi attualmente è attivo all'interno +del sottosistema interessato. Controllate chi sta scrivendo le patch, +e chi, se non ci fosse nessuno, sta aggiungendo la propria firma +(Signed-off-by) a quelle patch. Quelle sono le persone maggiormente +qualificate per aiutarvi con lo sviluppo di nuovo progetto. + +Il compito di trovare il giusto manutentore, a volte, è una tale sfida che +ha spinto gli sviluppatori del kernel a scrivere uno script che li aiutasse +in questa ricerca: + +:: + + .../scripts/get_maintainer.pl + +Se questo script viene eseguito con l'opzione "-f" ritornerà il +manutentore(i) attuale per un dato file o cartella. Se viene passata una +patch sulla linea di comando, lo script elencherà i manutentori che +dovrebbero riceverne una copia. Ci sono svariate opzioni che regolano +quanto a fondo get_maintainer.pl debba cercare i manutentori; +siate quindi prudenti nell'utilizzare le opzioni più aggressive poiché +potreste finire per includere sviluppatori che non hanno un vero interesse +per il codice che state modificando. + +Se tutto ciò dovesse fallire, parlare con Andrew Morton potrebbe essere +un modo efficace per capire chi è il manutentore di un dato pezzo di codice. + +Quando pubblicare +----------------- + +Se potete, pubblicate i vostri intenti durante le fasi preliminari, sarà +molto utile. Descrivete il problema da risolvere e ogni piano che è stato +elaborato per l'implementazione. Ogni informazione fornita può aiutare +la comunità di sviluppo a fornire spunti utili per il progetto. + +Un evento che potrebbe risultare scoraggiate e che potrebbe accadere in +questa fase non è il ricevere una risposta ostile, ma, invece, ottenere +una misera o inesistente reazione. La triste verità è che: (1) gli +sviluppatori del kernel tendono ad essere occupati, (2) ci sono tante persone +con grandi progetti e poco codice (o anche solo la prospettiva di +avere un codice) a cui riferirsi e (3) nessuno è obbligato a revisionare +o a fare osservazioni in merito ad idee pubblicate da altri. Oltre a +questo, progetti di alto livello spesso nascondono problematiche che si +rivelano solo quando qualcuno cerca di implementarle; per questa ragione +gli sviluppatori kernel preferirebbero vedere il codice. + +Quindi, se una richiesta pubblica di commenti riscuote poco successo, non +pensate che ciò significhi che non ci sia interesse nel progetto. +Sfortunatamente, non potete nemmeno assumere che non ci siano problemi con +la vostra idea. La cosa migliore da fare in questa situazione è quella di +andare avanti e tenere la comunità informata mentre procedete. + +Ottenere riscontri ufficiali +---------------------------- + +Se il vostro lavoro è stato svolto in un ambiente aziendale - come molto +del lavoro fatto su Linux - dovete, ovviamente, avere il permesso dei +dirigenti prima che possiate pubblicare i progetti, o il codice aziendale, +su una lista di discussione pubblica. La pubblicazione di codice che non +è stato rilascio espressamente con licenza GPL-compatibile può rivelarsi +problematico; prima la dirigenza, e il personale legale, troverà una decisione +sulla pubblicazione di un progetto, meglio sarà per tutte le persone coinvolte. + +A questo punto, alcuni lettori potrebbero pensare che il loro lavoro sul +kernel è preposto a supportare un prodotto che non è ancora ufficialmente +riconosciuto. Rivelare le intenzioni dei propri datori di lavori in una +lista di discussione pubblica potrebbe non essere una soluzione valida. +In questi casi, vale la pena considerare se la segretezza sia necessaria +o meno; spesso non c'è una reale necessità di mantenere chiusi i progetti di +sviluppo. + +Detto ciò, ci sono anche casi dove l'azienda legittimamente non può rivelare +le proprie intenzioni in anticipo durante il processo di sviluppo. Le aziende +che hanno sviluppatori kernel esperti possono scegliere di procedere a +carte coperte partendo dall'assunto che saranno in grado di evitare, o gestire, +in futuro, eventuali problemi d'integrazione. Per le aziende senza questo tipo +di esperti, la migliore opzione è spesso quella di assumere uno sviluppatore +esterno che revisioni i progetti con un accordo di segretezza. +La Linux Foundation applica un programma di NDA creato appositamente per +aiutare le aziende in questa particolare situazione; potrete trovare più +informazioni sul sito: + + http://www.linuxfoundation.org/en/NDA_program + +Questa tipologia di revisione è spesso sufficiente per evitare gravi problemi +senza che sia richiesta l'esposizione pubblica del progetto. diff --git a/Documentation/translations/it_IT/process/4.Coding.rst b/Documentation/translations/it_IT/process/4.Coding.rst index 98832f9124ed..c61059015e52 100644 --- a/Documentation/translations/it_IT/process/4.Coding.rst +++ b/Documentation/translations/it_IT/process/4.Coding.rst @@ -1,12 +1,447 @@ .. include:: ../disclaimer-ita.rst :Original: :ref:`Documentation/process/4.Coding.rst ` +:Translator: Alessia Mantegazza .. _it_development_coding: Scrivere codice corretto ======================== -.. warning:: +Nonostante ci sia molto da dire sul processo di creazione, sulla sua solidità +e sul suo orientamento alla comunità, la prova di ogni progetto di sviluppo +del kernel si trova nel codice stesso. È il codice che sarà esaminato dagli +altri sviluppatori ed inserito (o no) nel ramo principale. Quindi è la +qualità di questo codice che determinerà il successo finale del progetto. - TODO ancora da tradurre +Questa sezione esaminerà il processo di codifica. Inizieremo con uno sguardo +sulle diverse casistiche nelle quali gli sviluppatori kernel possono +sbagliare. Poi, l'attenzione si sposterà verso "il fare le cose +correttamente" e sugli strumenti che possono essere utili in questa missione. + +Trappole +-------- + +Lo stile del codice +******************* + +Il kernel ha da tempo delle norme sullo stile di codifica che sono descritte in +:ref:`Documentation/translations/it_IT/process/coding-style.rst `. +Per la maggior parte del tempo, la politica descritta in quel file è stata +praticamente informativa. Ne risulta che ci sia una quantità sostanziale di +codice nel kernel che non rispetta le linee guida relative allo stile. +La presenza di quel codice conduce a due distinti pericoli per gli +sviluppatori kernel. + +Il primo di questi è credere che gli standard di codifica del kernel +non sono importanti e possono non essere applicati. La verità è che +aggiungere nuovo codice al kernel è davvero difficile se questo non +rispetta le norme; molti sviluppatori richiederanno che il codice sia +riformulato prima che anche solo lo revisionino. Una base di codice larga +quanto il kernel richiede una certa uniformità, in modo da rendere possibile +per gli sviluppatori una comprensione veloce di ogni sua parte. Non ci sono, +quindi, più spazi per un codice formattato alla carlona. + +Occasionalmente, lo stile di codifica del kernel andrà in conflitto con lo +stile richiesto da un datore di lavoro. In alcuni casi, lo stile del kernel +dovrà prevalere prima che il codice venga inserito. Mettere il codice +all'interno del kernel significa rinunciare a un certo grado di controllo +in differenti modi - incluso il controllo sul come formattare il codice. + +L’altra trappola è quella di pensare che il codice già presente nel kernel +abbia urgentemente bisogno di essere sistemato. Gli sviluppatori potrebbero +iniziare a generare patch che correggono lo stile come modo per prendere +famigliarità con il processo, o come modo per inserire i propri nomi nei +changelog del kernel – o entrambe. La comunità di sviluppo vede un attività +di codifica puramente correttiva come "rumore"; queste attività riceveranno +una fredda accoglienza. Di conseguenza è meglio evitare questo tipo di patch. +Mentre si lavora su un pezzo di codice è normale correggerne anche lo stile, +ma le modifiche di stile non dovrebbero essere fatte fini a se stesse. + +Il documento sullo stile del codice non dovrebbe essere letto come una legge +assoluta che non può mai essere trasgredita. Se c’è un a buona ragione +(per esempio, una linea che diviene poco leggibile se divisa per rientrare +nel limite di 80 colonne), fatelo e basta. + +Notate che potete utilizzare lo strumento “clang-format” per aiutarvi con +le regole, per una riformattazione automatica e veloce del vostro codice +e per revisionare interi file per individuare errori nello stile di codifica, +refusi e possibili miglioramenti. Inoltre è utile anche per classificare gli +``#includes``, per allineare variabili/macro, per testi derivati ed altri +compiti del genere. Consultate il file +:ref:`Documentation/translations/it_IT/process/clang-format.rst ` +per maggiori dettagli + + +Livelli di astrazione +********************* + + +I professori di Informatica insegnano ai propri studenti a fare ampio uso dei +livelli di astrazione nel nome della flessibilità e del nascondere informazioni. +Certo il kernel fa un grande uso dell'astrazione; nessun progetto con milioni +di righe di codice potrebbe fare altrimenti e sopravvivere. Ma l'esperienza +ha dimostrato che un'eccessiva o prematura astrazione può rivelarsi dannosa +al pari di una prematura ottimizzazione. L'astrazione dovrebbe essere usata +fino al livello necessario e non oltre. + +Ad un livello base, considerate una funzione che ha un argomento che viene +sempre impostato a zero da tutti i chiamanti. Uno potrebbe mantenere +quell'argomento nell'eventualità qualcuno volesse sfruttare la flessibilità +offerta. In ogni caso, tuttavia, ci sono buone possibilità che il codice +che va ad implementare questo argomento aggiuntivo, sia stato rotto in maniera +sottile, in un modo che non è mai stato notato - perché non è mai stato usato. +Oppure, quando sorge la necessità di avere più flessibilità, questo argomento +non la fornisce in maniera soddisfacente. Gli sviluppatori di Kernel, +sottopongono costantemente patch che vanno a rimuovere gli argomenti +inutilizzate; anche se, in generale, non avrebbero dovuto essere aggiunti. + +I livelli di astrazione che nascondono l'accesso all'hardware - +spesso per poter usare dei driver su diversi sistemi operativi - vengono +particolarmente disapprovati. Tali livelli oscurano il codice e possono +peggiorare le prestazioni; essi non appartengono al kernel Linux. + +D'altro canto, se vi ritrovate a dover copiare una quantità significativa di +codice proveniente da un altro sottosistema del kernel, è tempo di chiedersi +se, in effetti, non avrebbe più senso togliere parte di quel codice e metterlo +in una libreria separata o di implementare quella funzionalità ad un livello +più elevato. Non c'è utilità nel replicare lo stesso codice per tutto +il kernel. + + +#ifdef e l'uso del preprocessore in generale +******************************************** + +Il preprocessore C sembra essere una fonte di attrazione per qualche +programmatore C, che ci vede una via per ottenere una grande flessibilità +all'interno di un file sorgente. Ma il preprocessore non è scritto in C, +e un suo massiccio impiego conduce a un codice che è molto più difficile +da leggere per gli altri e che rende più difficile il lavoro di verifica del +compilatore. L'uso eccessivo del preprocessore è praticamente sempre il segno +di un codice che necessita di un certo lavoro di pulizia. + +La compilazione condizionata con #ifdef è, in effetti, un potente strumento, +ed esso viene usato all'interno del kernel. Ma esiste un piccolo desiderio: +quello di vedere il codice coperto solo da una leggera spolverata di +blocchi #ifdef. Come regola generale, quando possibile, l'uso di #ifdef +dovrebbe essere confinato nei file d'intestazione. Il codice compilato +condizionatamente può essere confinato a funzioni tali che, nel caso in cui +il codice non deve essere presente, diventano vuote. Il compilatore poi +ottimizzerà la chiamata alla funzione vuota rimuovendola. Il risultato è +un codice molto più pulito, più facile da seguire. + +Le macro del preprocessore C presentano una serie di pericoli, inclusi +valutazioni multiple di espressioni che hanno effetti collaterali e non +garantiscono una sicurezza rispetto ai tipi. Se siete tentati dal definire +una macro, considerate l'idea di creare invece una funzione inline. Il codice +che ne risulterà sarà lo stesso, ma le funzioni inline sono più leggibili, +non considerano i propri argomenti più volte, e permettono al compilatore di +effettuare controlli sul tipo degli argomenti e del valore di ritorno. + + +Funzioni inline +*************** + +Comunque, anche le funzioni inline hanno i loro pericoli. I programmatori +potrebbero innamorarsi dell'efficienza percepita derivata dalla rimozione +di una chiamata a funzione. Queste funzioni, tuttavia, possono ridurre le +prestazioni. Dato che il loro codice viene replicato ovunque vi sia una +chiamata ad esse, si finisce per gonfiare le dimensioni del kernel compilato. +Questi, a turno, creano pressione sulla memoria cache del processore, e questo +può causare rallentamenti importanti. Le funzioni inline, di norma, dovrebbero +essere piccole e usate raramente. Il costo di una chiamata a funzione, dopo +tutto, non è così alto; la creazione di molte funzioni inline è il classico +esempio di un'ottimizzazione prematura. + +In generale, i programmatori del kernel ignorano gli effetti della cache a +loro rischio e pericolo. Il classico compromesso tempo/spazio teorizzato +all'inizio delle lezioni sulle strutture dati spesso non si applica +all'hardware moderno. Lo spazio *è* tempo, in questo senso un programma +più grande sarà più lento rispetto ad uno più compatto. + +I compilatori più recenti hanno preso un ruolo attivo nel decidere se +una data funzione deve essere resa inline oppure no. Quindi l'uso +indiscriminato della parola chiave "inline" potrebbe non essere non solo +eccessivo, ma anche irrilevante. + +Sincronizzazione +**************** + +Nel maggio 2006, il sistema di rete "Devicescape" fu rilasciato in pompa magna +sotto la licenza GPL e reso disponibile per la sua inclusione nella ramo +principale del kernel. Questa donazione fu una notizia bene accolta; +il supporto per le reti senza fili era considerata, nel migliore dei casi, +al di sotto degli standard; il sistema Deviscape offrì la promessa di una +risoluzione a tale situazione. Tuttavia, questo codice non fu inserito nel +ramo principale fino al giugno del 2007 (2.6.22). Cosa accadde? + +Quel codice mostrava numerosi segnali di uno sviluppo in azienda avvenuto +a porte chiuse. Ma in particolare, un grosso problema fu che non fu +progettato per girare in un sistema multiprocessore. Prima che questo +sistema di rete (ora chiamato mac80211) potesse essere inserito, fu necessario +un lavoro sugli schemi di sincronizzazione. + +Una volta, il codice del kernel Linux poteva essere sviluppato senza pensare +ai problemi di concorrenza presenti nei sistemi multiprocessore. Ora, +comunque, questo documento è stato scritto su di un portatile dual-core. +Persino su sistemi a singolo processore, il lavoro svolto per incrementare +la capacità di risposta aumenterà il livello di concorrenza interno al kernel. +I giorni nei quali il codice poteva essere scritto senza pensare alla +sincronizzazione sono da passati tempo. + +Ogni risorsa (strutture dati, registri hardware, etc.) ai quali si potrebbe +avere accesso simultaneo da più di un thread deve essere sincronizzato. Il +nuovo codice dovrebbe essere scritto avendo tale accortezza in testa; +riadattare la sincronizzazione a posteriori è un compito molto più difficile. +Gli sviluppatori del kernel dovrebbero prendersi il tempo di comprendere bene +le primitive di sincronizzazione, in modo da sceglier lo strumento corretto +per eseguire un compito. Il codice che presenta una mancanza di attenzione +alla concorrenza avrà un percorso difficile all'interno del ramo principale. + +Regressioni +*********** + +Vale la pena menzionare un ultimo pericolo: potrebbe rivelarsi accattivante +l'idea di eseguire un cambiamento (che potrebbe portare a grandi +miglioramenti) che porterà ad alcune rotture per gli utenti esistenti. +Questa tipologia di cambiamento è chiamata "regressione", e le regressioni son +diventate mal viste nel ramo principale del kernel. Con alcune eccezioni, +i cambiamenti che causano regressioni saranno fermati se quest'ultime non +potranno essere corrette in tempo utile. È molto meglio quindi evitare +la regressione fin dall'inizio. + +Spesso si è argomentato che una regressione può essere giustificata se essa +porta risolve più problemi di quanti non ne crei. Perché, dunque, non fare +un cambiamento se questo porta a nuove funzionalità a dieci sistemi per +ognuno dei quali esso determina una rottura? La migliore risposta a questa +domanda ci è stata fornita da Linus nel luglio 2007: + +:: + Dunque, noi non sistemiamo bachi introducendo nuovi problemi. Quella + via nasconde insidie, e nessuno può sapere del tutto se state facendo + dei progressi reali. Sono due passi avanti e uno indietro, oppure + un passo avanti e due indietro? + +(http://lwn.net/Articles/243460/). + +Una particolare tipologia di regressione mal vista consiste in una qualsiasi +sorta di modifica all'ABI dello spazio utente. Una volta che un'interfaccia +viene esportata verso lo spazio utente, dev'essere supportata all'infinito. +Questo fatto rende la creazione di interfacce per lo spazio utente +particolarmente complicato: dato che non possono venir cambiate introducendo +incompatibilità, esse devono essere fatte bene al primo colpo. Per questa +ragione sono sempre richieste: ampie riflessioni, documentazione chiara e +ampie revisioni dell'interfaccia verso lo spazio utente. + + +Strumenti di verifica del codice +-------------------------------- +Almeno per ora la scrittura di codice priva di errori resta un ideale +irraggiungibile ai più. Quello che speriamo di poter fare, tuttavia, è +trovare e correggere molti di questi errori prima che il codice entri nel +ramo principale del kernel. A tal scopo gli sviluppatori del kernel devono +mettere insieme una schiera impressionante di strumenti che possano +localizzare automaticamente un'ampia varietà di problemi. Qualsiasi problema +trovato dal computer è un problema che non affliggerà l'utente in seguito, +ne consegue che gli strumenti automatici dovrebbero essere impiegati ovunque +possibile. + +Il primo passo consiste semplicemente nel fare attenzione agli avvertimenti +proveniente dal compilatore. Versioni moderne di gcc possono individuare +(e segnalare) un gran numero di potenziali errori. Molto spesso, questi +avvertimenti indicano problemi reali. Di regola, il codice inviato per la +revisione non dovrebbe produrre nessun avvertimento da parte del compilatore. +Per mettere a tacere gli avvertimenti, cercate di comprenderne le cause reali +e cercate di evitare le "riparazioni" che fan sparire l'avvertimento senza +però averne trovato la causa. + +Tenete a mente che non tutti gli avvertimenti sono disabilitati di default. +Costruite il kernel con "make EXTRA_CFLAGS=-W" per ottenerli tutti. + +Il kernel fornisce differenti opzioni che abilitano funzionalità di debugging; +molti di queste sono trovano all'interno del sotto menu "kernel hacking". +La maggior parte di queste opzioni possono essere attivate per qualsiasi +kernel utilizzato per lo sviluppo o a scopo di test. In particolare dovreste +attivare: + + - ENABLE_WARN_DEPRECATED, ENABLE_MUST_CHECK, e FRAME_WARN per ottenere degli + avvertimenti dedicati a problemi come l'uso di interfacce deprecate o + l'ignorare un importante valore di ritorno di una funzione. Il risultato + generato da questi avvertimenti può risultare verboso, ma non bisogna + preoccuparsi per gli avvertimenti provenienti da altre parti del kernel. + + - DEBUG_OBJECTS aggiungerà un codice per tracciare il ciclo di vita di + diversi oggetti creati dal kernel e avvisa quando qualcosa viene eseguito + fuori controllo. Se state aggiungendo un sottosistema che crea (ed + esporta) oggetti complessi propri, considerate l'aggiunta di un supporto + al debugging dell'oggetto. + + - DEBUG_SLAB può trovare svariati errori di uso e di allocazione di memoria; + esso dovrebbe esser usato dalla maggior parte dei kernel di sviluppo. + + - DEBUG_SPINLOCK, DEBUG_ATOMIC_SLEEP, e DEBUG_MUTEXES troveranno un certo + numero di errori comuni di sincronizzazione. + +Esistono ancora delle altre opzioni di debugging, di alcune di esse +discuteremo qui sotto. Alcune di esse hanno un forte impatto e non dovrebbero +essere usate tutte le volte. Ma qualche volta il tempo speso nell'capire +le opzioni disponibili porterà ad un risparmio di tempo nel breve termine. + +Uno degli strumenti di debugging più tosti è il *locking checker*, o +"lockdep". Questo strumento traccerà qualsiasi acquisizione e rilascio di +ogni *lock* (spinlock o mutex) nel sistema, l'ordine con il quale i *lock* +sono acquisiti in relazione l'uno con l'altro, l'ambiente corrente di +interruzione, eccetera. Inoltre esso può assicurare che i *lock* vengano +acquisiti sempre nello stesso ordine, che le stesse assunzioni sulle +interruzioni si applichino in tutte le occasioni, e così via. In altre parole, +lockdep può scovare diversi scenari nei quali il sistema potrebbe, in rari +casi, trovarsi in stallo. Questa tipologia di problema può essere grave +(sia per gli sviluppatori che per gli utenti) in un sistema in uso; lockdep +permette di trovare tali problemi automaticamente e in anticipo. + +In qualità di programmatore kernel diligente, senza dubbio, dovrete controllare +il valore di ritorno di ogni operazione (come l'allocazione della memoria) +poiché esso potrebbe fallire. Il nocciolo della questione è che i percorsi +di gestione degli errori, con grande probabilità, non sono mai stati +collaudati del tutto. Il codice collaudato tende ad essere codice bacato; +potrete quindi essere più a vostro agio con il vostro codice se tutti questi +percorsi fossero stati verificati un po' di volte. + +Il kernel fornisce un framework per l'inserimento di fallimenti che fa +esattamente al caso, specialmente dove sono coinvolte allocazioni di memoria. +Con l'opzione per l'inserimento dei fallimenti abilitata, una certa percentuale +di allocazione di memoria sarà destinata al fallimento; questi fallimenti +possono essere ridotti ad uno specifico pezzo di codice. Procedere con +l'inserimento dei fallimenti attivo permette al programmatore di verificare +come il codice risponde quando le cose vanno male. Consultate: +Documentation/fault-injection/fault-injection.txt per avere maggiori +informazioni su come utilizzare questo strumento. + +Altre tipologie di errori possono essere riscontrati con lo strumento di +analisi statica "sparse". Con Sparse, il programmatore può essere avvisato +circa la confusione tra gli indirizzi dello spazio utente e dello spazio +kernel, un miscuglio fra quantità big-endian e little-endian, il passaggio +di un valore intero dove ci sia aspetta un gruppo di flag, e così via. +Sparse deve essere installato separatamente (se il vostra distribuzione non +lo prevede, potete trovarlo su https://sparse.wiki.kernel.org/index.php/Main_Page); +può essere attivato sul codice aggiungendo "C=1" al comando make. + +Lo strumento "Coccinelle" (http://coccinelle.lip6.fr/) è in grado di trovare +una vasta varietà di potenziali problemi di codifica; e può inoltre proporre +soluzioni per risolverli. Un buon numero di "patch semantiche" per il kernel +sono state preparate nella cartella scripts/coccinelle; utilizzando +"make coccicheck" esso percorrerà tali patch semantiche e farà rapporto su +qualsiasi problema trovato. Per maggiori informazioni, consultate +:ref:`Documentation/dev-tools/coccinelle.rst `. + +Altri errori di portabilità sono meglio scovati compilando il vostro codice +per altre architetture. Se non vi accade di avere un sistema S/390 o una +scheda di sviluppo Blackfin sotto mano, potete comunque continuare la fase +di compilazione. Un vasto numero di cross-compilatori per x86 possono +essere trovati al sito: + + http://www.kernel.org/pub/tools/crosstool/ + +Il tempo impiegato nell'installare e usare questi compilatori sarà d'aiuto +nell'evitare situazioni imbarazzanti nel futuro. + + +Documentazione +-------------- + +La documentazione è spesso stata più un'eccezione che una regola nello +sviluppo del kernel. Nonostante questo, un'adeguata documentazione aiuterà +a facilitare l'inserimento di nuovo codice nel kernel, rende la vita più +facile per gli altri sviluppatori e sarà utile per i vostri utenti. In molti +casi, la documentazione è divenuta sostanzialmente obbligatoria. + +La prima parte di documentazione per qualsiasi patch è il suo changelog. +Questi dovrebbero descrivere le problematiche risolte, la tipologia di +soluzione, le persone che lavorano alla patch, ogni effetto rilevante +sulle prestazioni e tutto ciò che può servire per la comprensione della +patch. Assicuratevi che il changelog dica *perché*, vale la pena aggiungere +la patch; un numero sorprendente di sviluppatori sbaglia nel fornire tale +informazione. + +Qualsiasi codice che aggiunge una nuova interfaccia in spazio utente - inclusi +nuovi file in sysfs o /proc - dovrebbe includere la documentazione di tale +interfaccia così da permette agli sviluppatori dello spazio utente di sapere +con cosa stanno lavorando. Consultate: Documentation/ABI/README per avere una +descrizione di come questi documenti devono essere impostati e quali +informazioni devono essere fornite. + +Il file :ref:`Documentation/translations/it_IT/admin-guide/kernel-parameters.rst ` +descrive tutti i parametri di avvio del kernel. Ogni patch che aggiunga +nuovi parametri dovrebbe aggiungere nuove voci a questo file. + +Ogni nuova configurazione deve essere accompagnata da un testo di supporto +che spieghi chiaramente le opzioni e spieghi quando l'utente potrebbe volerle +selezionare. + +Per molti sottosistemi le informazioni sull'API interna sono documentate sotto +forma di commenti formattati in maniera particolare; questi commenti possono +essere estratti e formattati in differenti modi attraverso lo script +"kernel-doc". Se state lavorando all'interno di un sottosistema che ha +commenti kerneldoc dovreste mantenerli e aggiungerli, in maniera appropriata, +per le funzioni disponibili esternamente. Anche in aree che non sono molto +documentate, non c'è motivo per non aggiungere commenti kerneldoc per il +futuro; infatti, questa può essere un'attività utile per sviluppatori novizi +del kernel. Il formato di questi commenti, assieme alle informazione su come +creare modelli per kerneldoc, possono essere trovati in +:ref:`Documentation/translations/it_IT/doc-guide/ `. + +Chiunque legga un ammontare significativo di codice kernel noterà che, spesso, +i commenti si fanno maggiormente notare per la loro assenza. Ancora una volta, +le aspettative verso il nuovo codice sono più alte rispetto al passato; +inserire codice privo di commenti sarà più difficile. Detto ciò, va aggiunto +che non si desiderano commenti prolissi per il codice. Il codice dovrebbe +essere, di per sé, leggibile, con dei commenti che spieghino gli aspetti più +sottili. + +Determinate cose dovrebbero essere sempre commentate. L'uso di barriere +di memoria dovrebbero essere accompagnate da una riga che spieghi perché sia +necessaria. Le regole di sincronizzazione per le strutture dati, generalmente, +necessitano di una spiegazioni da qualche parte. Le strutture dati più +importanti, in generale, hanno bisogno di una documentazione onnicomprensiva. +Le dipendenze che non sono ovvie tra bit separati di codice dovrebbero essere +indicate. Tutto ciò che potrebbe indurre un inserviente del codice a fare +una "pulizia" incorretta, ha bisogno di un commento che dica perché è stato +fatto in quel modo. E così via. + +Cambiamenti interni dell'API +---------------------------- + +L'interfaccia binaria fornita dal kernel allo spazio utente non può essere +rotta tranne che in circostanze eccezionali. L'interfaccia di programmazione +interna al kernel, invece, è estremamente fluida e può essere modificata al +bisogno. Se vi trovate a dover lavorare attorno ad un'API del kernel o +semplicemente non state utilizzando una funzionalità offerta perché questa +non rispecchia i vostri bisogni, allora questo potrebbe essere un segno che +l'API ha bisogno di essere cambiata. In qualità di sviluppatore del kernel, +hai il potere di fare questo tipo di modifica. + +Ci sono ovviamente alcuni punti da cogliere. I cambiamenti API possono essere +fatti, ma devono essere giustificati. Quindi ogni patch che porta ad una +modifica dell'API interna dovrebbe essere accompagnata da una descrizione +della modifica in sé e del perché essa è necessaria. Questo tipo di +cambiamenti dovrebbero, inoltre, essere fatti in una patch separata, invece di +essere sepolti all'interno di una patch più grande. + +L'altro punto da cogliere consiste nel fatto che uno sviluppatore che +modifica l'API deve, in generale, essere responsabile della correzione +di tutto il codice del kernel che viene rotto per via della sua modifica. +Per una funzione ampiamente usata, questo compito può condurre letteralmente +a centinaia o migliaia di modifiche, molte delle quali sono in conflitto con +il lavoro svolto da altri sviluppatori. Non c'è bisogno di dire che questo +può essere un lavoro molto grosso, quindi è meglio essere sicuri che la +motivazione sia ben solida. Notate che lo strumento Coccinelle può fornire +un aiuto con modifiche estese dell'API. + +Quando viene fatta una modifica API incompatibile, una persona dovrebbe, +quando possibile, assicurarsi che quel codice non aggiornato sia trovato +dal compilatore. Questo vi aiuterà ad essere sicuri d'avere trovato, +tutti gli usi di quell'interfaccia. Inoltre questo avviserà gli sviluppatori +di codice fuori dal kernel che c'è un cambiamento per il quale è necessario del +lavoro. Il supporto al codice fuori dal kernel non è qualcosa di cui gli +sviluppatori del kernel devono preoccuparsi, ma non dobbiamo nemmeno rendere +più difficile del necessario la vita agli sviluppatori di questo codice. diff --git a/Documentation/translations/it_IT/process/5.Posting.rst b/Documentation/translations/it_IT/process/5.Posting.rst index d91b368704c4..b979266aa884 100644 --- a/Documentation/translations/it_IT/process/5.Posting.rst +++ b/Documentation/translations/it_IT/process/5.Posting.rst @@ -1,12 +1,348 @@ .. include:: ../disclaimer-ita.rst -:Original: :ref:`Documentation/process/4.Posting.rst ` +:Original: :ref:`Documentation/process/5.Posting.rst ` +:Translator: Federico Vaga .. _it_development_posting: Pubblicare modifiche ==================== -.. warning:: +Prima o poi arriva il momento in cui il vostro lavoro è pronto per essere +presentato alla comunità per una revisione ed eventualmente per la sua +inclusione nel ramo principale del kernel. Com'era prevedibile, +la comunità di sviluppo del kernel ha elaborato un insieme di convenzioni +e di procedure per la pubblicazione delle patch; seguirle renderà la vita +più facile a tutti quanti. Questo documento cercherà di coprire questi +argomenti con un ragionevole livello di dettaglio; più informazioni possono +essere trovare nella cartella 'Documentation', nei file +:ref:`translations/it_IT/process/submitting-patches.rst `, +:ref:`translations/it_IT/process/submitting-drivers.rst `, e +:ref:`translations/it_IT/process/submit-checklist.rst `. - TODO ancora da tradurre + +Quando pubblicarle +------------------ + +C'è sempre una certa resistenza nel pubblicare patch finché non sono +veramente "pronte". Per semplici patch questo non è un problema. +Ma quando il lavoro è di una certa complessità, c'è molto da guadagnare +dai riscontri che la comunità può darvi prima che completiate il lavoro. +Dovreste considerare l'idea di pubblicare un lavoro incompleto, o anche +preparare un ramo git disponibile agli sviluppatori interessati, cosicché +possano stare al passo col vostro lavoro in qualunque momento. + +Quando pubblicate del codice che non è considerato pronto per l'inclusione, +è bene che lo diciate al momento della pubblicazione. Inoltre, aggiungete +informazioni sulle cose ancora da sviluppare e sui problemi conosciuti. +Poche persone guarderanno delle patch che si sa essere fatte a metà, +ma quelli che lo faranno penseranno di potervi aiutare a condurre il vostro +sviluppo nella giusta direzione. + + +Prima di creare patch +--------------------- + +Ci sono un certo numero di cose che dovreste fare prima di considerare +l'invio delle patch alla comunità di sviluppo. Queste cose includono: + + - Verificare il codice fino al massimo che vi è consentito. Usate gli + strumenti di debug del kernel, assicuratevi che il kernel compili con + tutte le più ragionevoli combinazioni d'opzioni, usate cross-compilatori + per compilare il codice per differenti architetture, eccetera. + + - Assicuratevi che il vostro codice sia conforme alla linee guida del + kernel sullo stile del codice. + + - La vostra patch ha delle conseguenze in termini di prestazioni? + Se è così, dovreste eseguire dei *benchmark* che mostrino il loro + impatto (anche positivo); un riassunto dei risultati dovrebbe essere + incluso nella patch. + + - Siate certi d'avere i diritti per pubblicare il codice. Se questo + lavoro è stato fatto per un datore di lavoro, egli avrà dei diritti su + questo lavoro e dovrà quindi essere d'accordo alla sua pubblicazione + con una licenza GPL + +Come regola generale, pensarci un po' di più prima di inviare il codice +ripaga quasi sempre lo sforzo. + + +Preparazione di una patch +------------------------- + +La preparazione delle patch per la pubblicazione può richiedere una quantità +di lavoro significativa, ma, ripetiamolo ancora, generalmente sconsigliamo +di risparmiare tempo in questa fase, anche sul breve periodo. + +Le patch devono essere preparate per una specifica versione del kernel. +Come regola generale, una patch dovrebbe basarsi sul ramo principale attuale +così come lo si trova nei sorgenti git di Linus. Quando vi basate sul ramo +principale, cominciate da un punto di rilascio ben noto - uno stabile o +un -rc - piuttosto che creare il vostro ramo da quello principale in un punto +a caso. + +Per facilitare una revisione e una verifica più estesa, potrebbe diventare +necessaria la produzione di versioni per -mm, linux-next o i sorgenti di un +sottosistema. Basare questa patch sui suddetti sorgenti potrebbe richiedere +un lavoro significativo nella risoluzione dei conflitti e nella correzione dei +cambiamenti di API; questo potrebbe variare a seconda dell'area d'interesse +della vostra patch e da quello che succede altrove nel kernel. + +Solo le modifiche più semplici dovrebbero essere preparate come una singola +patch; tutto il resto dovrebbe essere preparato come una serie logica di +modifiche. Spezzettare le patch è un po' un'arte; alcuni sviluppatori +passano molto tempo nel capire come farlo in modo che piaccia alla comunità. +Ci sono alcune regole spannometriche, che comunque possono aiutare +considerevolmente: + + - La serie di patch che pubblicherete, quasi sicuramente, non sarà + come quella che trovate nel vostro sistema di controllo di versione. + Invece, le vostre modifiche dovranno essere considerate nella loro forma + finale, e quindi separate in parti che abbiano un senso. Gli sviluppatori + sono interessati in modifiche che siano discrete e indipendenti, non + alla strada che avete percorso per ottenerle. + + - Ogni modifica logicamente indipendente dovrebbe essere preparata come una + patch separata. Queste modifiche possono essere piccole ("aggiunto un + campo in questa struttura") o grandi (l'aggiunta di un driver nuovo, + per esempio), ma dovrebbero essere concettualmente piccole da permettere + una descrizione in una sola riga. Ogni patch dovrebbe fare modifiche + specifiche che si possano revisionare indipendentemente e di cui si possa + verificare la veridicità. + + - Giusto per riaffermare quando detto sopra: non mischiate diversi tipi di + modifiche nella stessa patch. Se una modifica corregge un baco critico + per la sicurezza, riorganizza alcune strutture, e riformatta il codice, + ci sono buone probabilità che venga ignorata e che la correzione importante + venga persa. + + - Ogni modifica dovrebbe portare ad un kernel che compila e funziona + correttamente; se la vostra serie di patch si interrompe a metà il + risultato dovrebbe essere comunque un kernel funzionante. L'applicazione + parziale di una serie di patch è uno scenario comune nel quale il + comando "git bisect" viene usato per trovare delle regressioni; se il + risultato è un kernel guasto, renderete la vita degli sviluppatori più + difficile così come quella di chi s'impegna nel nobile lavoro di + scovare i problemi. + + - Però, non strafate. Una volta uno sviluppatore pubblicò una serie di 500 + patch che modificavano un unico file - un atto che non lo rese la persona + più popolare sulla lista di discussione del kernel. Una singola patch + può essere ragionevolmente grande fintanto che contenga un singolo + cambiamento *logico*. + + - Potrebbe essere allettante l'idea di aggiungere una nuova infrastruttura + come una serie di patch, ma di lasciare questa infrastruttura inutilizzata + finché l'ultima patch della serie non abilita tutto quanto. Quando è + possibile, questo dovrebbe essere evitato; se questa serie aggiunge delle + regressioni, "bisect" indicherà quest'ultima patch come causa del + problema anche se il baco si trova altrove. Possibilmente, quando una + patch aggiunge del nuovo codice dovrebbe renderlo attivo immediatamente. + +Lavorare per creare la serie di patch perfetta potrebbe essere frustrante +perché richiede un certo tempo e soprattutto dopo che il "vero lavoro" è +già stato fatto. Quando ben fatto, comunque, è tempo ben speso. + + +Formattazione delle patch e i changelog +--------------------------------------- + +Quindi adesso avete una serie perfetta di patch pronte per la pubblicazione, +ma il lavoro non è davvero finito. Ogni patch deve essere preparata con +un messaggio che spieghi al resto del mondo, in modo chiaro e veloce, +il suo scopo. Per ottenerlo, ogni patch sarà composta dai seguenti elementi: + + - Un campo opzionale "From" col nome dell'autore della patch. Questa riga + è necessaria solo se state passando la patch di qualcun altro via email, + ma nel dubbio non fa di certo male aggiungerlo. + + - Una descrizione di una riga che spieghi cosa fa la patch. Questo + messaggio dovrebbe essere sufficiente per far comprendere al lettore lo + scopo della patch senza altre informazioni. Questo messaggio, + solitamente, presenta in testa il nome del sottosistema a cui si riferisce, + seguito dallo scopo della patch. Per esempio: + + :: + + gpio: fix build on CONFIG_GPIO_SYSFS=n + + - Una riga bianca seguita da una descrizione dettagliata della patch. + Questa descrizione può essere lunga tanto quanto serve; dovrebbe spiegare + cosa fa e perché dovrebbe essere aggiunta al kernel. + + - Una o più righe etichette, con, minimo, una riga *Signed-off-by:* + col nome dall'autore della patch. Queste etichette verranno descritte + meglio più avanti. + +Gli elementi qui sopra, assieme, formano il changelog di una patch. +Scrivere un buon changelog è cruciale ma è spesso un'arte trascurata; +vale la pena spendere qualche parola in più al riguardo. Quando scrivete +un changelog dovreste tenere ben presente che molte persone leggeranno +le vostre parole. Queste includono i manutentori di un sotto-sistema, e i +revisori che devono decidere se la patch debba essere inclusa o no, +le distribuzioni e altri manutentori che cercano di valutare se la patch +debba essere applicata su kernel più vecchi, i cacciatori di bachi che si +chiederanno se la patch è la causa di un problema che stanno cercando, +gli utenti che vogliono sapere com'è cambiato il kernel, e molti altri. +Un buon changelog fornisce le informazioni necessarie a tutte queste +persone nel modo più diretto e conciso possibile. + +A questo scopo, la riga riassuntiva dovrebbe descrivere gli effetti della +modifica e la motivazione della patch nel modo migliore possibile nonostante +il limite di una sola riga. La descrizione dettagliata può spiegare meglio +i temi e fornire maggiori informazioni. Se una patch corregge un baco, +citate, se possibile, il commit che lo introdusse (e per favore, quando +citate un commit aggiungete sia il suo identificativo che il titolo), +Se il problema è associabile ad un file di log o all' output del compilatore, +includeteli al fine d'aiutare gli altri a trovare soluzioni per lo stesso +problema. Se la modifica ha lo scopo di essere di supporto a sviluppi +successivi, ditelo. Se le API interne vengono cambiate, dettagliate queste +modifiche e come gli altri dovrebbero agire per applicarle. In generale, +più riuscirete ad entrare nei panni di tutti quelli che leggeranno il +vostro changelog, meglio sarà il changelog (e il kernel nel suo insieme). + +Non serve dirlo, un changelog dovrebbe essere il testo usato nel messaggio +di commit in un sistema di controllo di versione. Sarà seguito da: + + - La patch stessa, nel formato unificato per patch ("-u"). Usare + l'opzione "-p" assocerà alla modifica il nome della funzione alla quale + si riferisce, rendendo il risultato più facile da leggere per gli altri. + +Dovreste evitare di includere nelle patch delle modifiche per file +irrilevanti (quelli generati dal processo di generazione, per esempio, o i file +di backup del vostro editor). Il file "dontdiff" nella cartella Documentation +potrà esservi d'aiuto su questo punto; passatelo a diff con l'opzione "-X". + +Le etichette sopra menzionante sono usate per descrivere come i vari +sviluppatori sono stati associati allo sviluppo di una patch. Sono descritte +in dettaglio nel documento :ref:`translations/it_IT/process/submitting-patches.rst `; +quello che segue è un breve riassunto. Ognuna di queste righe ha il seguente +formato: + +:: + + tag: Full Name optional-other-stuff + +Le etichette in uso più comuni sono: + + - Signed-off-by: questa è la certificazione che lo sviluppatore ha il diritto + di sottomettere la patch per l'integrazione nel kernel. Questo rappresenta + il consenso verso il certificato d'origine degli sviluppatori, il testo + completo potrà essere trovato in + :ref:`Documentation/translations/it_IT/process/submitting-patches.rst `. + Codice che non presenta una firma appropriata non potrà essere integrato. + + - Co-developed-by: indica che la patch è stata sviluppata anche da un altro + sviluppatore assieme all'autore originale. Questo è utile quando più + persone lavorano sulla stessa patch. Da notare che questa persona deve + avere anche una riga "Signed-off-by:" nella patch. + + - Acked-by: indica il consenso di un altro sviluppatore (spesso il manutentore + del codice in oggetto) all'integrazione della patch nel kernel. + + - Tested-by: menziona la persona che ha verificato la patch e l'ha trovata + funzionante. + + - Reviwed-by: menziona lo sviluppatore che ha revisionato la patch; per + maggiori dettagli leggete la dichiarazione dei revisori in + :ref:`Documentation/translations/it_IT/process/submitting-patches.rst ` + + - Reported-by: menziona l'utente che ha riportato il problema corretto da + questa patch; quest'etichetta viene usata per dare credito alle persone + che hanno verificato il codice e ci hanno fatto sapere quando le cose non + funzionavano correttamente. + + - Cc: la persona menzionata ha ricevuto una copia della patch ed ha avuto + l'opportunità di commentarla. + +State attenti ad aggiungere queste etichette alla vostra patch: solo +"Cc:" può essere aggiunta senza il permesso esplicito della persona menzionata. + +Inviare la modifica +------------------- + +Prima di inviare la vostra patch, ci sarebbero ancora un paio di cose di cui +dovreste aver cura: + + - Siete sicuri che il vostro programma di posta non corromperà le patch? + Le patch che hanno spazi bianchi in libertà o andate a capo aggiunti + dai programmi di posta non funzioneranno per chi le riceve, e spesso + non verranno nemmeno esaminate in dettaglio. Se avete un qualsiasi dubbio, + inviate la patch a voi stessi e verificate che sia integra. + + :ref:`Documentation/translations/it_IT/process/email-clients.rst ` + contiene alcuni suggerimenti utili sulla configurazione dei programmi + di posta al fine di inviare patch. + + - Siete sicuri che la vostra patch non contenga sciocchi errori? Dovreste + sempre processare le patch con scripts/checkpatch.pl e correggere eventuali + problemi riportati. Per favore tenete ben presente che checkpatch.pl non è + più intelligente di voi, nonostante sia il risultato di un certa quantità di + ragionamenti su come debba essere una patch per il kernel. Se seguire + i suggerimenti di checkpatch.pl rende il codice peggiore, allora non fatelo. + +Le patch dovrebbero essere sempre inviate come testo puro. Per favore non +inviatele come allegati; questo rende molto più difficile, per i revisori, +citare parti della patch che si vogliono commentare. Invece, mettete la vostra +patch direttamente nel messaggio. + +Quando inviate le patch, è importante inviarne una copia a tutte le persone che +potrebbero esserne interessate. Al contrario di altri progetti, il kernel +incoraggia le persone a peccare nell'invio di tante copie; non presumente che +le persone interessate vedano i vostri messaggi sulla lista di discussione. +In particolare le copie dovrebbero essere inviate a: + + - I manutentori dei sottosistemi affetti della modifica. Come descritto + in precedenza, il file MAINTAINERS è il primo luogo dove cercare i nomi + di queste persone. + + - Altri sviluppatori che hanno lavorato nello stesso ambiente - specialmente + quelli che potrebbero lavorarci proprio ora. Usate git potrebbe essere + utile per vedere chi altri ha modificato i file su cui state lavorando. + + - Se state rispondendo a un rapporto su un baco, o a una richiesta di + funzionalità, includete anche gli autori di quei rapporti/richieste. + + - Inviate una copia alle liste di discussione interessate, o, se nient'altro + è adatto, alla lista linux-kernel + + - Se state correggendo un baco, pensate se la patch dovrebbe essere inclusa + nel prossimo rilascio stabile. Se è così, la lista di discussione + stable@vger.kernel.org dovrebbe riceverne una copia. Aggiungete anche + l'etichetta "Cc: stable@vger.kernel.org" nella patch stessa; questo + permetterà alla squadra *stable* di ricevere una notifica quando questa + correzione viene integrata nel ramo principale. + +Quando scegliete i destinatari della patch, è bene avere un'idea di chi +pensiate che sia colui che, eventualmente, accetterà la vostra patch e +la integrerà. Nonostante sia possibile inviare patch direttamente a +Linus Torvalds, e lasciare che sia lui ad integrarle,solitamente non è la +strada migliore da seguire. Linus è occupato, e ci sono dei manutentori di +sotto-sistema che controllano una parte specifica del kernel. Solitamente, +vorreste che siano questi manutentori ad integrare le vostre patch. Se non +c'è un chiaro manutentore, l'ultima spiaggia è spesso Andrew Morton. + +Le patch devono avere anche un buon oggetto. Il tipico formato per l'oggetto +di una patch assomiglia a questo: + +:: + + [PATCH nn/mm] subsys: one-line description of the patch + +dove "nn" è il numero ordinale della patch, "mm" è il numero totale delle patch +nella serie, e "subsys" è il nome del sottosistema interessato. Chiaramente, +nn/mm può essere omesso per una serie composta da una singola patch. + +Se avete una significative serie di patch, è prassi inviare una descrizione +introduttiva come parte zero. Tuttavia questa convenzione non è universalmente +seguita; se la usate, ricordate che le informazioni nell'introduzione non +faranno parte del changelog del kernel. Quindi per favore, assicuratevi che +ogni patch abbia un changelog completo. + +In generale, la seconda parte e quelle successive di una patch "composta" +dovrebbero essere inviate come risposta alla prima, cosicché vengano viste +come un unico *thread*. Strumenti come git e quilt hanno comandi per inviare +gruppi di patch con la struttura appropriata. Se avete una serie lunga +e state usando git, per favore state alla larga dall'opzione --chain-reply-to +per evitare di creare un annidamento eccessivo. diff --git a/Documentation/translations/it_IT/process/6.Followthrough.rst b/Documentation/translations/it_IT/process/6.Followthrough.rst index 160473bd9e39..df7d5fb28832 100644 --- a/Documentation/translations/it_IT/process/6.Followthrough.rst +++ b/Documentation/translations/it_IT/process/6.Followthrough.rst @@ -1,10 +1,240 @@ .. include:: ../disclaimer-ita.rst :Original: :ref:`Documentation/process/6.Followthrough.rst ` +:Translator: Alessia Mantegazza +.. _it_development_followthrough: + +============= Completamento ============= -.. warning:: +A questo punto, avete seguito le linee guida fino a questo punto e, con +l'aggiunta delle vostre capacità ingegneristiche, avete pubblicato una serie +perfetta di patch. Uno dei più grandi errori che possono essere commessi +persino da sviluppatori kernel esperti è quello di concludere che il +lavoro sia ormai finito. In verità, la pubblicazione delle patch +simboleggia una transizione alla fase successiva del processo, con, +probabilmente, ancora un po' di lavoro da fare. + +È raro che una modifica sia così bella alla sua prima pubblicazione che non +ci sia alcuno spazio di miglioramento. Il programma di sviluppo del kernel +riconosce questo fatto e quindi, è fortemente orientato al miglioramento +del codice pubblicato. Voi, in qualità di autori del codice, dovrete +lavorare con la comunità del kernel per assicurare che il vostro codice +mantenga gli standard qualitativi richiesti. Un fallimento in questo +processo è quasi come impedire l'inclusione delle vostre patch nel +ramo principale. + +Lavorare con i revisori +======================= + +Una patch che abbia una certa rilevanza avrà ricevuto numerosi commenti +da parte di altri sviluppatori dato che avranno revisionato il codice. +Lavorare con i revisori può rivelarsi, per molti sviluppatori, la parte +più intimidatoria del processo di sviluppo del kernel. La vita può esservi +resa molto più facile se tenete presente alcuni dettagli: + + - Se avete descritto la vostra modifica correttamente, i revisori ne + comprenderanno il valore e il perché vi siete presi il disturbo di + scriverla. Ma tale valore non li tratterrà dal porvi una domanda + fondamentale: come verrà mantenuto questo codice nel kernel nei prossimi + cinque o dieci anni? Molti dei cambiamenti che potrebbero esservi + richiesti - da piccoli problemi di stile a sostanziali ristesure - + vengono dalla consapevolezza che Linux resterà in circolazione e in + continuo sviluppo ancora per diverse decadi. + + - La revisione del codice è un duro lavoro, ed è un mestiere poco + riconosciuto; le persone ricordano chi ha scritto il codice, ma meno + fama è attribuita a chi lo ha revisionato. Quindi i revisori potrebbero + divenire burberi, specialmente quando vendono i medesimi errori venire + fatti ancora e ancora. Se ricevete una revisione che vi sembra abbia + un tono arrabbiato, insultante o addirittura offensivo, resistente alla + tentazione di rispondere a tono. La revisione riguarda il codice e non + la persona, e i revisori non vi stanno attaccando personalmente. + + - Similarmente, i revisori del codice non stanno cercando di promuovere + i loro interessi a vostre spese. Gli sviluppatori del kernel spesso si + aspettano di lavorare sul kernel per anni, ma sanno che il loro datore + di lavoro può cambiare. Davvero, senza praticamente eccezioni, loro + stanno lavorando per la creazione del miglior kernel possibile; non + stanno cercando di creare un disagio ad aziende concorrenti. + +Quello che si sta cercando di dire è che, quando i revisori vi inviano degli +appunti dovete fare attenzione alle osservazioni tecniche che vi stanno +facendo. Non lasciate che il loro modo di esprimersi o il vostro orgoglio +impediscano che ciò accada. Quando avete dei suggerimenti sulla revisione, +prendetevi il tempo per comprendere cosa il revisore stia cercando di +comunicarvi. Se possibile, sistemate le cose che il revisore vi chiede di +modificare. E rispondete al revisore ringraziandolo e spiegando come +intendete fare. + +Notate che non dovete per forza essere d'accordo con ogni singola modifica +suggerita dai revisori. Se credete che il revisore non abbia compreso +il vostro codice, spiegateglielo. Se avete un'obiezione tecnica da fargli +su di una modifica suggerita, spiegatela inserendo anche la vostra soluzione +al problema. Se la vostra spiegazione ha senso, il revisore la accetterà. +Tuttavia, la vostra motivazione potrebbe non essere del tutto persuasiva, +specialmente se altri iniziano ad essere d'accordo con il revisore. +Prendetevi quindi un po' di tempo per pensare ancora alla cosa. Può risultare +facile essere accecati dalla propria soluzione al punto che non realizzate che +c'è qualcosa di fondamentalmente sbagliato o, magari, non state nemmeno +risolvendo il problema giusto. + +Andrew Morton suggerisce che ogni suggerimento di revisione che non è +presente nella modifica del codice dovrebbe essere inserito in un commento +aggiuntivo; ciò può essere d'aiuto ai futuri revisori nell'evitare domande +che sorgono al primo sguardo. + +Un errore fatale è quello di ignorare i commenti di revisione nella speranza +che se ne andranno. Non andranno via. Se pubblicherete nuovamente il +codice senza aver risposto ai commenti ricevuti, probabilmente le vostre +modifiche non andranno da nessuna parte. + +Parlando di ripubblicazione del codice: per favore tenete a mente che i +revisori non ricorderanno tutti i dettagli del codice che avete pubblicato +l'ultima volta. Quindi è sempre una buona idea quella di ricordare ai +revisori le questioni sollevate precedetemene e come le avete risolte. +I revisori non dovrebbero star lì a cercare all'interno degli archivi per +famigliarizzare con ciò che è stato detto l'ultima volta; se li aiutate +in questo senso, saranno di umore migliore quando riguarderanno il vostro +codice. + +Se invece avete cercato di far tutto correttamente ma le cose continuano +a non andar bene? Molti disaccordi di natura tecnica possono essere risolti +attraverso la discussione, ma ci sono volte dove qualcuno deve prendere +una decisione. Se credete veramente che tale decisione andrà contro di voi +ingiustamente, potete sempre tentare di rivolgervi a qualcuno più +in alto di voi. Per cose di questo genere la persona con più potere è +Andrew Morton. Andrew è una figura molto rispettata all'interno della +comunità di sviluppo del kernel; lui può spesso sbrogliare situazioni che +sembrano irrimediabilmente bloccate. Rivolgersi ad Andrew non deve essere +fatto alla leggera, e non deve essere fatto prima di aver esplorato tutte +le altre alternative. E tenete a mente, ovviamente, che nemmeno lui +potrebbe non essere d'accordo con voi. + +Cosa accade poi +=============== + +Se la modifica è ritenuta un elemento valido da essere aggiunta al kernel, +e una volta che la maggior parte degli appunti dei revisori sono stati +sistemati, il passo successivo solitamente è quello di entrare in un +sottosistema gestito da un manutentore. Come ciò avviene dipende dal +sottosistema medesimo; ogni manutentore ha il proprio modo di fare le cose. +In particolare, ci potrebbero essere diversi sorgenti - uno, magari, dedicato +alle modifiche pianificate per la finestra di fusione successiva, e un altro +per il lavoro di lungo periodo. + +Per le modifiche proposte in aree per le quali non esiste un sottosistema +preciso (modifiche di gestione della memoria, per esempio), i sorgenti di +ripiego finiscono per essere -mm. Ed anche le modifiche che riguardano +più sottosistemi possono finire in quest'ultimo. + +L'inclusione nei sorgenti di un sottosistema può comportare per una patch, +un alto livello di visibilità. Ora altri sviluppatori che stanno lavorando +in quei medesimi sorgenti avranno le vostre modifiche. I sottosistemi +solitamente riforniscono anche Linux-next, rendendo i propri contenuti +visibili all'intera comunità di sviluppo. A questo punto, ci sono buone +possibilità per voi di ricevere ulteriori commenti da un nuovo gruppo di +revisori; anche a questi commenti dovrete rispondere come avete già fatto per +gli altri. + +Ciò che potrebbe accadere a questo punto, in base alla natura della vostra +modifica, riguarda eventuali conflitti con il lavoro svolto da altri. +Nella peggiore delle situazioni, i conflitti più pesanti tra modifiche possono +concludersi con la messa a lato di alcuni dei lavori svolti cosicché le +modifiche restanti possano funzionare ed essere integrate. Altre volte, la +risoluzione dei conflitti richiederà del lavoro con altri sviluppatori e, +possibilmente, lo spostamento di alcune patch da dei sorgenti a degli altri +in modo da assicurare che tutto sia applicato in modo pulito. Questo lavoro +può rivelarsi una spina nel fianco, ma consideratevi fortunati: prima +dell'avvento dei sorgenti linux-next, questi conflitti spesso emergevano solo +durante l'apertura della finestra di integrazione e dovevano essere smaltiti +in fretta. Ora essi possono essere risolti comodamente, prima dell'apertura +della finestra. + +Un giorno, se tutto va bene, vi collegherete e vedrete che la vostra patch +è stata inserita nel ramo principale de kernel. Congratulazioni! Terminati +i festeggiamenti (nel frattempo avrete inserito il vostro nome nel file +MAINTAINERS) vale la pena ricordare una piccola cosa, ma importante: il +lavoro non è ancora finito. L'inserimento nel ramo principale porta con se +nuove sfide. + +Cominciamo con il dire che ora la visibilità della vostra modifica è +ulteriormente cresciuta. Ci potrebbe portare ad una nuova fase di +commenti dagli sviluppatori che non erano ancora a conoscenza della vostra +patch. Ignorarli potrebbe essere allettante dato che non ci sono più +dubbi sull'integrazione della modifica. Resistete a tale tentazione, dovete +mantenervi disponibili agli sviluppatori che hanno domande o suggerimenti +per voi. + +Ancora più importante: l'inclusione nel ramo principale mette il vostro +codice nelle mani di un gruppo di *tester* molto più esteso. Anche se avete +contribuito ad un driver per un hardware che non è ancora disponibile, sarete +sorpresi da quante persone inseriranno il vostro codice nei loro kernel. +E, ovviamente, dove ci sono *tester*, ci saranno anche dei rapporti su +eventuali bachi. + +La peggior specie di rapporti sono quelli che indicano delle regressioni. +Se la vostra modifica causa una regressione, avrete un gran numero di +occhi puntati su di voi; la regressione deve essere sistemata il prima +possibile. Se non vorrete o non sarete capaci di sistemarla (e nessuno +lo farà per voi), la vostra modifica sarà quasi certamente rimossa durante +la fase di stabilizzazione. Oltre alla perdita di tutto il lavoro svolto +per far si che la vostra modifica fosse inserita nel ramo principale, +l'avere una modifica rimossa a causa del fallimento nel sistemare una +regressione, potrebbe rendere più difficile per voi far accettare +il vostro lavoro in futuro. + +Dopo che ogni regressione è stata affrontata, ci potrebbero essere altri +bachi ordinari da "sconfiggere". Il periodo di stabilizzazione è la +vostra migliore opportunità per sistemare questi bachi e assicurarvi che +il debutto del vostro codice nel ramo principale del kernel sia il più solido +possibile. Quindi, per favore, rispondete ai rapporti sui bachi e ponete +rimedio, se possibile, a tutti i problemi. È a questo che serve il periodo +di stabilizzazione; potete iniziare creando nuove fantastiche modifiche +una volta che ogni problema con le vecchie sia stato risolto. + +Non dimenticate che esistono altre pietre miliari che possono generare +rapporti sui bachi: il successivo rilascio stabile, quando una distribuzione +importante usa una versione del kernel nel quale è presente la vostra +modifica, eccetera. Il continuare a rispondere a questi rapporti è fonte di +orgoglio per il vostro lavoro. Se questa non è una sufficiente motivazione, +allora, è anche consigliabile considera che la comunità di sviluppo ricorda +gli sviluppatori che hanno perso interesse per il loro codice una volta +integrato. La prossima volta che pubblicherete una patch, la comunità +la valuterà anche sulla base del fatto che non sarete disponibili a +prendervene cura anche nel futuro. + + +Altre cose che posso accadere +============================= + +Un giorno, potreste aprire la vostra email e vedere che qualcuno vi ha +inviato una patch per il vostro codice. Questo, dopo tutto, è uno dei +vantaggi di avere il vostro codice "là fuori". Se siete d'accordo con +la modifica, potrete anche inoltrarla ad un manutentore di sottosistema +(assicuratevi di includere la riga "From:" cosicché l'attribuzione sia +corretta, e aggiungete una vostra firma "Signed-off-by"), oppure inviate +un "Acked-by:" e lasciate che l'autore originale la invii. + +Se non siete d'accordo con la patch, inviate una risposta educata +spiegando il perché. Se possibile, dite all'autore quali cambiamenti +servirebbero per rendere la patch accettabile da voi. C'è una certa +riluttanza nell'inserire modifiche con un conflitto fra autore +e manutentore del codice, ma solo fino ad un certo punto. Se siete visti +come qualcuno che blocca un buon lavoro senza motivo, quelle patch vi +passeranno oltre e andranno nel ramo principale in ogni caso. Nel kernel +Linux, nessuno ha potere di veto assoluto su alcun codice. Eccezione +fatta per Linus, forse. - TODO ancora da tradurre +In rarissime occasioni, potreste vedere qualcosa di completamente diverso: +un altro sviluppatore che pubblica una soluzione differente al vostro +problema. A questo punto, c'è una buona probabilità che una delle due +modifiche non verrà integrata, e il "c'ero prima io" non è considerato +un argomento tecnico rilevante. Se la modifica di qualcun'altro rimpiazza +la vostra ed entra nel ramo principale, esiste un unico modo di reagire: +siate contenti che il vostro problema sia stato risolto e andate avanti con +il vostro lavoro. L'avere un vostro lavoro spintonato da parte in questo +modo può essere avvilente e scoraggiante, ma la comunità ricorderà come +avrete reagito anche dopo che avrà dimenticato quale fu la modifica accettata. diff --git a/Documentation/translations/it_IT/process/7.AdvancedTopics.rst b/Documentation/translations/it_IT/process/7.AdvancedTopics.rst index 644ee2b7c476..cc1cff5d23ae 100644 --- a/Documentation/translations/it_IT/process/7.AdvancedTopics.rst +++ b/Documentation/translations/it_IT/process/7.AdvancedTopics.rst @@ -1,13 +1,191 @@ .. include:: ../disclaimer-ita.rst :Original: :ref:`Documentation/process/7.AdvancedTopics.rst ` - +:Translator: Federico Vaga .. _it_development_advancedtopics: Argomenti avanzati ================== -.. warning:: +A questo punto, si spera, dovreste avere un'idea su come funziona il processo +di sviluppo. Ma rimane comunque molto da imparare! Questo capitolo copre +alcuni argomenti che potrebbero essere utili per gli sviluppatori che stanno +per diventare parte integrante del processo di sviluppo del kernel. + +Gestire le modifiche con git +----------------------------- + +L'uso di un sistema distribuito per il controllo delle versioni del kernel +ebbe iniziò nel 2002 quando Linux iniziò a provare il programma proprietario +BitKeeper. Nonostante l'uso di BitKeeper fosse opinabile, di certo il suo +approccio alla gestione dei sorgenti non lo era. Un sistema distribuito per +il controllo delle versioni accelerò immediatamente lo sviluppo del kernel. +Oggigiorno, ci sono diverse alternative libere a BitKeeper. Per il meglio o il +peggio, il progetto del kernel ha deciso di usare git per gestire i sorgenti. + +Gestire le modifiche con git può rendere la vita dello sviluppatore molto +più facile, specialmente quando il volume delle modifiche cresce. +Git ha anche i suoi lati taglienti che possono essere pericolosi; è uno +strumento giovane e potente che è ancora in fase di civilizzazione da parte +dei suoi sviluppatori. Questo documento non ha lo scopo di insegnare l'uso +di git ai suoi lettori; ci sarebbe materiale a sufficienza per un lungo +documento al riguardo. Invece, qui ci concentriamo in particolare su come +git è parte del processo di sviluppo del kernel. Gli sviluppatori che +desiderassero diventare agili con git troveranno più informazioni ai +seguenti indirizzi: + + http://git-scm.com/ + + http://www.kernel.org/pub/software/scm/git/docs/user-manual.html + +e su varie guide che potrete trovare su internet. + +La prima cosa da fare prima di usarlo per produrre patch che saranno +disponibili ad altri, è quella di leggere i siti qui sopra e di acquisire una +base solida su come funziona git. Uno sviluppatore che sappia usare git +dovrebbe essere capace di ottenere una copia del repositorio principale, +esplorare la storia della revisione, registrare le modifiche, usare i rami, +eccetera. Una certa comprensione degli strumenti git per riscrivere la storia +(come ``rebase``) è altrettanto utile. Git ha i propri concetti e la propria +terminologia; un nuovo utente dovrebbe conoscere *refs*, *remote branch*, +*index*, *fast-forward merge*, *push* e *pull*, *detached head*, eccetera. +Il tutto potrebbe essere un po' intimidatorio visto da fuori, ma con un po' +di studio i concetti non saranno così difficili da capire. + +Utilizzare git per produrre patch da sottomettere via email può essere +un buon esercizio da fare mentre si sta prendendo confidenza con lo strumento. + +Quando sarete in grado di creare rami git che siano guardabili da altri, +vi servirà, ovviamente, un server dal quale sia possibile attingere le vostre +modifiche. Se avete un server accessibile da Internet, configurarlo per +eseguire git-daemon è relativamente semplice . Altrimenti, iniziano a +svilupparsi piattaforme che offrono spazi pubblici, e gratuiti (Github, +per esempio). Gli sviluppatori permanenti possono ottenere un account +su kernel.org, ma non è proprio facile da ottenere; per maggiori informazioni +consultate la pagina web http://kernel.org/faq/. + +In git è normale avere a che fare con tanti rami. Ogni linea di sviluppo +può essere separata in "rami per argomenti" e gestiti indipendentemente. +In git i rami sono facilissimi, per cui non c'è motivo per non usarli +in libertà. In ogni caso, non dovreste sviluppare su alcun ramo dal +quale altri potrebbero attingere. I rami disponibili pubblicamente dovrebbero +essere creati con attenzione; integrate patch dai rami di sviluppo +solo quando sono complete e pronte ad essere consegnate - non prima. + +Git offre alcuni strumenti che vi permettono di riscrivere la storia del +vostro sviluppo. Una modifica errata (diciamo, una che rompe la bisezione, +oppure che ha un qualche tipo di baco evidente) può essere corretta sul posto +o fatta sparire completamente dalla storia. Una serie di patch può essere +riscritta come se fosse stata scritta in cima al ramo principale di oggi, +anche se ci avete lavorato per mesi. Le modifiche possono essere spostate +in modo trasparente da un ramo ad un altro. E così via. Un uso giudizioso +di git per revisionare la storia può aiutare nella creazione di una serie +di patch pulite e con meno problemi. + +Un uso eccessivo può portare ad altri tipi di problemi, tuttavia, oltre +alla semplice ossessione per la creazione di una storia del progetto che sia +perfetta. Riscrivere la storia riscriverà le patch contenute in quella +storia, trasformando un kernel verificato (si spera) in uno da verificare. +Ma, oltre a questo, gli sviluppatori non possono collaborare se non condividono +la stessa vista sulla storia del progetto; se riscrivete la storia dalla quale +altri sviluppatori hanno attinto per i loro repositori, renderete la loro vita +molto più difficile. Quindi tenete conto di questa semplice regola generale: +la storia che avete esposto ad altri, generalmente, dovrebbe essere vista come +immutabile. + +Dunque, una volta che il vostro insieme di patch è stato reso disponibile +pubblicamente non dovrebbe essere più sovrascritto. Git tenterà di imporre +questa regola, e si rifiuterà di pubblicare nuove patch che non risultino +essere dirette discendenti di quelle pubblicate in precedenza (in altre parole, +patch che non condividono la stessa storia). È possibile ignorare questo +controllo, e ci saranno momenti in cui sarà davvero necessario riscrivere +un ramo già pubblicato. Un esempio è linux-next dove le patch vengono +spostate da un ramo all'altro al fine di evitare conflitti. Ma questo tipo +d'azione dovrebbe essere un'eccezione. Questo è uno dei motivi per cui lo +sviluppo dovrebbe avvenire in rami privati (che possono essere sovrascritti +quando lo si ritiene necessario) e reso pubblico solo quando è in uno stato +avanzato. + +Man mano che il ramo principale (o altri rami su cui avete basato le +modifiche) avanza, diventa allettante l'idea di integrare tutte le patch +per rimanere sempre aggiornati. Per un ramo privato, il *rebase* può essere +un modo semplice per rimanere aggiornati, ma questa non è un'opzione nel +momento in cui il vostro ramo è stato esposto al mondo intero. +*Merge* occasionali possono essere considerati di buon senso, ma quando +diventano troppo frequenti confondono inutilmente la storia. La tecnica +suggerita in questi casi è quella di fare *merge* raramente, e più in generale +solo nei momenti di rilascio (per esempio gli -rc del ramo principale). +Se siete nervosi circa alcune patch in particolare, potete sempre fare +dei *merge* di test in un ramo privato. In queste situazioni git "rerere" +può essere utile; questo strumento si ricorda come i conflitti di *merge* +furono risolti in passato cosicché non dovrete fare lo stesso lavoro due volte. + +Una delle lamentele più grosse e ricorrenti sull'uso di strumenti come git +è il grande movimento di patch da un repositorio all'altro che rende +facile l'integrazione nel ramo principale di modifiche mediocri, il tutto +sotto il naso dei revisori. Gli sviluppatori del kernel tendono ad essere +scontenti quando vedono succedere queste cose; preparare un ramo git con +patch che non hanno ricevuto alcuna revisione o completamente avulse, potrebbe +influire sulla vostra capacita di proporre, in futuro, l'integrazione dei +vostri rami. Citando Linus + +:: + + Potete inviarmi le vostre patch, ma per far si che io integri una + vostra modifica da git, devo sapere che voi sappiate cosa state + facendo, e ho bisogno di fidarmi *senza* dover passare tutte + le modifiche manualmente una per una. + +(http://lwn.net/Articles/224135/). + +Per evitare queste situazioni, assicuratevi che tutte le patch in un ramo +siano strettamente correlate al tema delle modifiche; un ramo "driver fixes" +non dovrebbe fare modifiche al codice principale per la gestione della memoria. +E, più importante ancora, non usate un repositorio git per tentare di +evitare il processo di revisione. Pubblicate un sommario di quello che il +vostro ramo contiene sulle liste di discussione più opportune, e , quando +sarà il momento, richiedete che il vostro ramo venga integrato in linux-next. + +Se e quando altri inizieranno ad inviarvi patch per essere incluse nel +vostro repositorio, non dovete dimenticare di revisionarle. Inoltre +assicuratevi di mantenerne le informazioni di paternità; al riguardo git "am" +fa del suo meglio, ma potreste dover aggiungere una riga "From:" alla patch +nel caso in cui sia arrivata per vie traverse. + +Quando richiedete l'integrazione, siate certi di fornire tutte le informazioni: +dov'è il vostro repositorio, quale ramo integrare, e quali cambiamenti si +otterranno dall'integrazione. Il comando git request-pull può essere d'aiuto; +preparerà una richiesta nel modo in cui gli altri sviluppatori se l'aspettano, +e verificherà che vi siate ricordati di pubblicare quelle patch su un +server pubblico. + +Revisionare le patch +-------------------- + +Alcuni lettori potrebbero avere obiezioni sulla presenza di questa sezione +negli "argomenti avanzati" sulla base che anche gli sviluppatori principianti +dovrebbero revisionare le patch. É certamente vero che non c'è modo +migliore di imparare come programmare per il kernel che guardare il codice +pubblicato dagli altri. In aggiunta, i revisori sono sempre troppo pochi; +guardando il codice potete apportare un significativo contributo all'intero +processo. + +Revisionare il codice potrebbe risultare intimidatorio, specialmente per i +nuovi arrivati che potrebbero sentirsi un po' nervosi nel questionare +il codice - in pubblico - pubblicato da sviluppatori più esperti. Perfino +il codice scritto dagli sviluppatori più esperti può essere migliorato. +Forse il suggerimento migliore per i revisori (tutti) è questo: formulate +i commenti come domande e non come critiche. Chiedere "Come viene rilasciato +il *lock* in questo percorso?" funziona sempre molto meglio che +"qui la sincronizzazione è sbagliata". - TODO ancora da tradurre +Diversi sviluppatori revisioneranno il codice con diversi punti di vista. +Alcuni potrebbero concentrarsi principalmente sullo stile del codice e se +alcune linee hanno degli spazio bianchi di troppo. Altri si chiederanno +se accettare una modifica interamente è una cosa positiva per il kernel +o no. E altri ancora si focalizzeranno sui problemi di sincronizzazione, +l'uso eccessivo di *stack*, problemi di sicurezza, duplicazione del codice +in altri contesti, documentazione, effetti negativi sulle prestazioni, cambi +all'ABI dello spazio utente, eccetera. Qualunque tipo di revisione è ben +accetta e di valore, se porta ad avere un codice migliore nel kernel. diff --git a/Documentation/translations/it_IT/process/8.Conclusion.rst b/Documentation/translations/it_IT/process/8.Conclusion.rst index e27885b86fa9..039bfc5a4108 100644 --- a/Documentation/translations/it_IT/process/8.Conclusion.rst +++ b/Documentation/translations/it_IT/process/8.Conclusion.rst @@ -1,12 +1,85 @@ .. include:: ../disclaimer-ita.rst :Original: :ref:`Documentation/process/8.Conclusion.rst ` +:Translator: Alessia Mantegazza .. _it_development_conclusion: Per maggiori informazioni ========================= -.. warning:: +Esistono numerose fonti di informazioni sullo sviluppo del kernel Linux +e argomenti correlati. Primo tra questi sarà sempre la cartella Documentation +che si trova nei sorgenti kernel. - TODO ancora da tradurre +Il file :ref:`process/howto.rst ` è un punto di partenza +importante; :ref:`process/submitting-patches.rst ` e +:ref:`process/submitting-drivers.rst ` sono +anch'essi qualcosa che tutti gli sviluppatori del kernel dovrebbero leggere. +Molte API interne al kernel sono documentate utilizzando il meccanismo +kerneldoc; "make htmldocs" o "make pdfdocs" possono essere usati per generare +quei documenti in HTML o PDF (sebbene le versioni di TeX di alcune +distribuzioni hanno dei limiti interni e fallisce nel processare +appropriatamente i documenti). + +Diversi siti web approfondiscono lo sviluppo del kernel ad ogni livello +di dettaglio. Il vostro autore vorrebbe umilmente suggerirvi +http://lwn.net/ come fonte; usando l'indice 'kernel' su LWN troverete +molti argomenti specifici sul kernel: + + http://lwn.net/Kernel/Index/ + +Oltre a ciò, una risorsa valida per gli sviluppatori kernel è: + + http://kernelnewbies.org/ + +E, ovviamente, una fonte da non dimenticare è http://kernel.org/, il luogo +definitivo per le informazioni sui rilasci del kernel. + +Ci sono numerosi libri sullo sviluppo del kernel: + + Linux Device Drivers, 3rd Edition (Jonathan Corbet, Alessandro + Rubini, and Greg Kroah-Hartman). In linea all'indirizzo + http://lwn.net/Kernel/LDD3/. + + Linux Kernel Development (Robert Love). + + Understanding the Linux Kernel (Daniel Bovet and Marco Cesati). + +Tutti questi libri soffrono di un errore comune: tendono a risultare in un +certo senso obsoleti dal momento che si trovano in libreria da diverso +tempo. Comunque contengono informazioni abbastanza buone. + +La documentazione per git la troverete su: + + http://www.kernel.org/pub/software/scm/git/docs/ + + http://www.kernel.org/pub/software/scm/git/docs/user-manual.html + + + +Conclusioni +=========== + +Congratulazioni a chiunque ce l'abbia fatta a terminare questo documento di +lungo-respiro. Si spera che abbia fornito un'utile comprensione d'insieme +di come il kernel Linux viene sviluppato e di come potete partecipare a +tale processo. + +Infine, quello che conta è partecipare. Qualsiasi progetto software +open-source non è altro che la somma di quello che i suoi contributori +mettono al suo interno. Il kernel Linux è cresciuto velocemente e bene +perché ha ricevuto il supporto di un impressionante gruppo di sviluppatori, +ognuno dei quali sta lavorando per renderlo migliore. Il kernel è un esempio +importante di cosa può essere fatto quando migliaia di persone lavorano +insieme verso un obiettivo comune. + +Il kernel può sempre beneficiare di una larga base di sviluppatori, tuttavia, +c'è sempre molto lavoro da fare. Ma, cosa non meno importante, molti degli +altri partecipanti all'ecosistema Linux possono trarre beneficio attraverso +il contributo al kernel. Inserire codice nel ramo principale è la chiave +per arrivare ad una qualità del codice più alta, bassa manutenzione e +bassi prezzi di distribuzione, alti livelli d'influenza sulla direzione +dello sviluppo del kernel, e molto altro. È una situazione nella quale +tutti coloro che sono coinvolti vincono. Mollate il vostro editor e +raggiungeteci; sarete più che benvenuti. diff --git a/Documentation/translations/it_IT/process/adding-syscalls.rst b/Documentation/translations/it_IT/process/adding-syscalls.rst index 9d02bbdf9a2c..e0a64b0688a7 100644 --- a/Documentation/translations/it_IT/process/adding-syscalls.rst +++ b/Documentation/translations/it_IT/process/adding-syscalls.rst @@ -1,12 +1,643 @@ .. include:: ../disclaimer-ita.rst :Original: :ref:`Documentation/process/adding-syscalls.rst ` +:Translator: Federico Vaga .. _it_addsyscalls: Aggiungere una nuova chiamata di sistema ======================================== -.. warning:: +Questo documento descrive quello che è necessario sapere per aggiungere +nuove chiamate di sistema al kernel Linux; questo è da considerarsi come +un'aggiunta ai soliti consigli su come proporre nuove modifiche +:ref:`Documentation/translations/it_IT/process/submitting-patches.rst `. - TODO ancora da tradurre + +Alternative alle chiamate di sistema +------------------------------------ + +La prima considerazione da fare quando si aggiunge una nuova chiamata di +sistema è quella di valutare le alternative. Nonostante le chiamate di sistema +siano il punto di interazione fra spazio utente e kernel più tradizionale ed +ovvio, esistono altre possibilità - scegliete quella che meglio si adatta alle +vostra interfaccia. + + - Se le operazioni coinvolte possono rassomigliare a quelle di un filesystem, + allora potrebbe avere molto più senso la creazione di un nuovo filesystem o + dispositivo. Inoltre, questo rende più facile incapsulare la nuova + funzionalità in un modulo kernel piuttosto che essere sviluppata nel cuore + del kernel. + + - Se la nuova funzionalità prevede operazioni dove il kernel notifica + lo spazio utente su un avvenimento, allora restituire un descrittore + di file all'oggetto corrispondente permette allo spazio utente di + utilizzare ``poll``/``select``/``epoll`` per ricevere quelle notifiche. + - Tuttavia, le operazioni che non si sposano bene con operazioni tipo + :manpage:`read(2)`/:manpage:`write(2)` dovrebbero essere implementate + come chiamate :manpage:`ioctl(2)`, il che potrebbe portare ad un'API in + un qualche modo opaca. + + - Se dovete esporre solo delle informazioni sul sistema, un nuovo nodo in + sysfs (vedere ``Documentation/translations/it_IT/filesystems/sysfs.txt``) o + in procfs potrebbe essere sufficiente. Tuttavia, l'accesso a questi + meccanismi richiede che il filesystem sia montato, il che potrebbe non + essere sempre vero (per esempio, in ambienti come namespace/sandbox/chroot). + Evitate d'aggiungere nuove API in debugfs perché questo non viene + considerata un'interfaccia di 'produzione' verso lo spazio utente. + - Se l'operazione è specifica ad un particolare file o descrittore, allora + potrebbe essere appropriata l'aggiunta di un comando :manpage:`fcntl(2)`. + Tuttavia, :manpage:`fcntl(2)` è una chiamata di sistema multiplatrice che + nasconde una notevole complessità, quindi è ottima solo quando la nuova + funzione assomiglia a quelle già esistenti in :manpage:`fcntl(2)`, oppure + la nuova funzionalità è veramente semplice (per esempio, leggere/scrivere + un semplice flag associato ad un descrittore di file). + - Se l'operazione è specifica ad un particolare processo, allora + potrebbe essere appropriata l'aggiunta di un comando :manpage:`prctl(2)`. + Come per :manpage:`fcntl(2)`, questa chiamata di sistema è un complesso + multiplatore quindi è meglio usarlo per cose molto simili a quelle esistenti + nel comando ``prctl`` oppure per leggere/scrivere un semplice flag relativo + al processo. + + +Progettare l'API: pianificare le estensioni +------------------------------------------- + +Una nuova chiamata di sistema diventerà parte dell'API del kernel, e +dev'essere supportata per un periodo indefinito. Per questo, è davvero +un'ottima idea quella di discutere apertamente l'interfaccia sulla lista +di discussione del kernel, ed è altrettanto importante pianificarne eventuali +estensioni future. + +(Nella tabella delle chiamate di sistema sono disseminati esempi dove questo +non fu fatto, assieme ai corrispondenti aggiornamenti - +``eventfd``/``eventfd2``, ``dup2``/``dup3``, ``inotify_init``/``inotify_init1``, +``pipe``/``pipe2``, ``renameat``/``renameat2`` --quindi imparate dalla storia +del kernel e pianificate le estensioni fin dall'inizio) + +Per semplici chiamate di sistema che accettano solo un paio di argomenti, +il modo migliore di permettere l'estensibilità è quello di includere un +argomento *flags* alla chiamata di sistema. Per assicurarsi che i programmi +dello spazio utente possano usare in sicurezza *flags* con diverse versioni +del kernel, verificate se *flags* contiene un qualsiasi valore sconosciuto, +in qual caso rifiutate la chiamata di sistema (con ``EINVAL``):: + + if (flags & ~(THING_FLAG1 | THING_FLAG2 | THING_FLAG3)) + return -EINVAL; + +(Se *flags* non viene ancora utilizzato, verificate che l'argomento sia zero) + +Per chiamate di sistema più sofisticate che coinvolgono un numero più grande di +argomenti, il modo migliore è quello di incapsularne la maggior parte in una +struttura dati che verrà passata per puntatore. Questa struttura potrà +funzionare con future estensioni includendo un campo *size*:: + + struct xyzzy_params { + u32 size; /* userspace sets p->size = sizeof(struct xyzzy_params) */ + u32 param_1; + u64 param_2; + u64 param_3; + }; + +Fintanto che un qualsiasi campo nuovo, diciamo ``param_4``, è progettato per +offrire il comportamento precedente quando vale zero, allora questo permetterà +di gestire un conflitto di versione in entrambe le direzioni: + + - un vecchio kernel può gestire l'accesso di una versione moderna di un + programma in spazio utente verificando che la memoria oltre la dimensione + della struttura dati attesa sia zero (in pratica verificare che + ``param_4 == 0``). + - un nuovo kernel può gestire l'accesso di una versione vecchia di un + programma in spazio utente estendendo la struttura dati con zeri (in pratica + ``param_4 = 0``). + +Vedere :manpage:`perf_event_open(2)` e la funzione ``perf_copy_attr()`` (in +``kernel/events/core.c``) per un esempio pratico di questo approccio. + + +Progettare l'API: altre considerazioni +-------------------------------------- + +Se la vostra nuova chiamata di sistema permette allo spazio utente di fare +riferimento ad un oggetto del kernel, allora questa dovrebbe usare un +descrittore di file per accesso all'oggetto - non inventatevi nuovi tipi di +accesso da spazio utente quando il kernel ha già dei meccanismi e una semantica +ben definita per utilizzare i descrittori di file. + +Se la vostra nuova chiamata di sistema :manpage:`xyzzy(2)` ritorna un nuovo +descrittore di file, allora l'argomento *flags* dovrebbe includere un valore +equivalente a ``O_CLOEXEC`` per i nuovi descrittori. Questo rende possibile, +nello spazio utente, la chiusura della finestra temporale fra le chiamate a +``xyzzy()`` e ``fcntl(fd, F_SETFD, FD_CLOEXEC)``, dove un inaspettato +``fork()`` o ``execve()`` potrebbe trasferire il descrittore al programma +eseguito (Comunque, resistete alla tentazione di riutilizzare il valore di +``O_CLOEXEC`` dato che è specifico dell'architettura e fa parte di una +enumerazione di flag ``O_*`` che è abbastanza ricca). + +Se la vostra nuova chiamata di sistema ritorna un nuovo descrittore di file, +dovreste considerare che significato avrà l'uso delle chiamate di sistema +della famiglia di :manpage:`poll(2)`. Rendere un descrittore di file pronto +per la lettura o la scrittura è il tipico modo del kernel per notificare lo +spazio utente circa un evento associato all'oggetto del kernel. + +Se la vostra nuova chiamata di sistema :manpage:`xyzzy(2)` ha un argomento +che è il percorso ad un file:: + + int sys_xyzzy(const char __user *path, ..., unsigned int flags); + +dovreste anche considerare se non sia più appropriata una versione +:manpage:`xyzzyat(2)`:: + + int sys_xyzzyat(int dfd, const char __user *path, ..., unsigned int flags); + +Questo permette più flessibilità su come lo spazio utente specificherà il file +in questione; in particolare, permette allo spazio utente di richiedere la +funzionalità su un descrittore di file già aperto utilizzando il *flag* +``AT_EMPTY_PATH``, in pratica otterremmo gratuitamente l'operazione +:manpage:`fxyzzy(3)`:: + + - xyzzyat(AT_FDCWD, path, ..., 0) is equivalent to xyzzy(path,...) + - xyzzyat(fd, "", ..., AT_EMPTY_PATH) is equivalent to fxyzzy(fd, ...) + +(Per maggiori dettagli sulla logica delle chiamate \*at(), leggete la pagina +man :manpage:`openat(2)`; per un esempio di AT_EMPTY_PATH, leggere la pagina +man :manpage:`fstatat(2)`). + +Se la vostra nuova chiamata di sistema :manpage:`xyzzy(2)` prevede un parametro +per descrivere uno scostamento all'interno di un file, usate ``loff_t`` come +tipo cosicché scostamenti a 64-bit potranno essere supportati anche su +architetture a 32-bit. + +Se la vostra nuova chiamata di sistema :manpage:`xyzzy(2)` prevede l'uso di +funzioni riservate, allora dev'essere gestita da un opportuno bit di privilegio +(verificato con una chiamata a ``capable()``), come descritto nella pagina man +:manpage:`capabilities(7)`. Scegliete un bit di privilegio già esistente per +gestire la funzionalità associata, ma evitate la combinazione di diverse +funzionalità vagamente collegate dietro lo stesso bit, in quanto va contro il +principio di *capabilities* di separare i poteri di root. In particolare, +evitate di aggiungere nuovi usi al fin-troppo-generico privilegio +``CAP_SYS_ADMIN``. + +Se la vostra nuova chiamata di sistema :manpage:`xyzzy(2)` manipola altri +processi oltre a quello chiamato, allora dovrebbe essere limitata (usando +la chiamata ``ptrace_may_access()``) di modo che solo un processo chiamante +con gli stessi permessi del processo in oggetto, o con i necessari privilegi, +possa manipolarlo. + +Infine, state attenti che in alcune architetture non-x86 la vita delle chiamate +di sistema con argomenti a 64-bit viene semplificata se questi argomenti +ricadono in posizioni dispari (pratica, i parametri 1, 3, 5); questo permette +l'uso di coppie contigue di registri a 32-bit. (Questo non conta se gli +argomenti sono parte di una struttura dati che viene passata per puntatore). + + +Proporre l'API +-------------- + +Al fine di rendere le nuove chiamate di sistema di facile revisione, è meglio +che dividiate le modifiche i pezzi separati. Questi dovrebbero includere +almeno le seguenti voci in *commit* distinti (ognuno dei quali sarà descritto +più avanti): + + - l'essenza dell'implementazione della chiamata di sistema, con i prototipi, + i numeri generici, le modifiche al Kconfig e l'implementazione *stub* di + ripiego. + - preparare la nuova chiamata di sistema per un'architettura specifica, + solitamente x86 (ovvero tutti: x86_64, x86_32 e x32). + - un programma di auto-verifica da mettere in ``tools/testing/selftests/`` + che mostri l'uso della chiamata di sistema. + - una bozza di pagina man per la nuova chiamata di sistema. Può essere + scritta nell'email di presentazione, oppure come modifica vera e propria + al repositorio delle pagine man. + +Le proposte di nuove chiamate di sistema, come ogni altro modifica all'API del +kernel, deve essere sottomessa alla lista di discussione +linux-api@vger.kernel.org. + + +Implementazione di chiamate di sistema generiche +------------------------------------------------ + +Il principale punto d'accesso alla vostra nuova chiamata di sistema +:manpage:`xyzzy(2)` verrà chiamato ``sys_xyzzy()``; ma, piuttosto che in modo +esplicito, lo aggiungerete tramite la macro ``SYSCALL_DEFINEn``. La 'n' +indica il numero di argomenti della chiamata di sistema; la macro ha come +argomento il nome della chiamata di sistema, seguito dalle coppie (tipo, nome) +per definire i suoi parametri. L'uso di questa macro permette di avere +i metadati della nuova chiamata di sistema disponibili anche per altri +strumenti. + +Il nuovo punto d'accesso necessita anche del suo prototipo di funzione in +``include/linux/syscalls.h``, marcato come asmlinkage di modo da abbinargli +il modo in cui quelle chiamate di sistema verranno invocate:: + + asmlinkage long sys_xyzzy(...); + +Alcune architetture (per esempio x86) hanno le loro specifiche tabelle di +chiamate di sistema (syscall), ma molte altre architetture condividono una +tabella comune di syscall. Aggiungete alla lista generica la vostra nuova +chiamata di sistema aggiungendo un nuovo elemento alla lista in +``include/uapi/asm-generic/unistd.h``:: + + #define __NR_xyzzy 292 + __SYSCALL(__NR_xyzzy, sys_xyzzy) + +Aggiornate anche il contatore __NR_syscalls di modo che sia coerente con +l'aggiunta della nuove chiamate di sistema; va notato che se più di una nuova +chiamata di sistema viene aggiunga nella stessa finestra di sviluppo, il numero +della vostra nuova syscall potrebbe essere aggiustato al fine di risolvere i +conflitti. + +Il file ``kernel/sys_ni.c`` fornisce le implementazioni *stub* di ripiego che +ritornano ``-ENOSYS``. Aggiungete la vostra nuova chiamata di sistema anche +qui:: + + COND_SYSCALL(xyzzy); + +La vostra nuova funzionalità del kernel, e la chiamata di sistema che la +controlla, dovrebbero essere opzionali. Quindi, aggiungete un'opzione +``CONFIG`` (solitamente in ``init/Kconfig``). Come al solito per le nuove +opzioni ``CONFIG``: + + - Includete una descrizione della nuova funzionalità e della chiamata di + sistema che la controlla. + - Rendete l'opzione dipendente da EXPERT se dev'essere nascosta agli utenti + normali. + - Nel Makefile, rendere tutti i nuovi file sorgenti, che implementano la + nuova funzionalità, dipendenti dall'opzione CONFIG (per esempio + ``obj-$(CONFIG_XYZZY_SYSCALL) += xyzzy.o``). + - Controllate due volte che sia possibile generare il kernel con la nuova + opzione CONFIG disabilitata. + +Per riassumere, vi serve un *commit* che includa: + + - un'opzione ``CONFIG``per la nuova funzione, normalmente in ``init/Kconfig`` + - ``SYSCALL_DEFINEn(xyzzy, ...)`` per il punto d'accesso + - il corrispondente prototipo in ``include/linux/syscalls.h`` + - un elemento nella tabella generica in ``include/uapi/asm-generic/unistd.h`` + - *stub* di ripiego in ``kernel/sys_ni.c`` + + +Implementazione delle chiamate di sistema x86 +--------------------------------------------- + +Per collegare la vostra nuova chiamate di sistema alle piattaforme x86, +dovete aggiornate la tabella principale di syscall. Assumendo che la vostra +nuova chiamata di sistema non sia particolarmente speciale (vedere sotto), +dovete aggiungere un elemento *common* (per x86_64 e x32) in +arch/x86/entry/syscalls/syscall_64.tbl:: + + 333 common xyzzy sys_xyzzy + +e un elemento per *i386* ``arch/x86/entry/syscalls/syscall_32.tbl``:: + + 380 i386 xyzzy sys_xyzzy + +Ancora una volta, questi numeri potrebbero essere cambiati se generano +conflitti durante la finestra di integrazione. + + +Chiamate di sistema compatibili (generico) +------------------------------------------ + +Per molte chiamate di sistema, la stessa implementazione a 64-bit può essere +invocata anche quando il programma in spazio utente è a 32-bit; anche se la +chiamata di sistema include esplicitamente un puntatore, questo viene gestito +in modo trasparente. + +Tuttavia, ci sono un paio di situazione dove diventa necessario avere un +livello di gestione della compatibilità per risolvere le differenze di +dimensioni fra 32-bit e 64-bit. + +Il primo caso è quando un kernel a 64-bit supporta anche programmi in spazio +utente a 32-bit, perciò dovrà ispezionare aree della memoria (``__user``) che +potrebbero contenere valori a 32-bit o a 64-bit. In particolar modo, questo +è necessario quando un argomento di una chiamata di sistema è: + + - un puntatore ad un puntatore + - un puntatore ad una struttura dati contenente a sua volta un puntatore + ( ad esempio ``struct iovec __user *``) + - un puntatore ad un tipo intero di dimensione variabile (``time_t``, + ``off_t``, ``long``, ...) + - un puntatore ad una struttura dati contenente un tipo intero di dimensione + variabile. + +Il secondo caso che richiede un livello di gestione della compatibilità è +quando uno degli argomenti di una chiamata a sistema è esplicitamente un tipo +a 64-bit anche su architetture a 32-bit, per esempio ``loff_t`` o ``__u64``. +In questo caso, un valore che arriva ad un kernel a 64-bit da un'applicazione +a 32-bit verrà diviso in due valori a 32-bit che dovranno essere riassemblati +in questo livello di compatibilità. + +(Da notare che non serve questo livello di compatibilità per argomenti che +sono puntatori ad un tipo esplicitamente a 64-bit; per esempio, in +:manpage:`splice(2)` l'argomento di tipo ``loff_t __user *`` non necessita +di una chiamata di sistema ``compat_``) + +La versione compatibile della nostra chiamata di sistema si chiamerà +``compat_sys_xyzzy()``, e viene aggiunta utilizzando la macro +``COMPAT_SYSCALL_DEFINEn()`` (simile a SYSCALL_DEFINEn). Questa versione +dell'implementazione è parte del kernel a 64-bit ma accetta parametri a 32-bit +che trasformerà secondo le necessità (tipicamente, la versione +``compat_sys_`` converte questi valori nello loro corrispondente a 64-bit e +può chiamare la versione ``sys_`` oppure invocare una funzione che implementa +le parti comuni). + +Il punto d'accesso *compat* deve avere il corrispondente prototipo di funzione +in ``include/linux/compat.h``, marcato come asmlinkage di modo da abbinargli +il modo in cui quelle chiamate di sistema verranno invocate:: + + asmlinkage long compat_sys_xyzzy(...); + +Se la chiamata di sistema prevede una struttura dati organizzata in modo +diverso per sistemi a 32-bit e per quelli a 64-bit, diciamo +``struct xyzzy_args``, allora il file d'intestazione +``then the include/linux/compat.h`` deve includere la sua versione +*compatibile* (``struct compat_xyzzy_args``); ogni variabile con +dimensione variabile deve avere il proprio tipo ``compat_`` corrispondente +a quello in ``struct xyzzy_args``. La funzione ``compat_sys_xyzzy()`` +può usare la struttura ``compat_`` per analizzare gli argomenti ricevuti +da una chiamata a 32-bit. + +Per esempio, se avete i seguenti campi:: + + struct xyzzy_args { + const char __user *ptr; + __kernel_long_t varying_val; + u64 fixed_val; + /* ... */ + }; + +nella struttura ``struct xyzzy_args``, allora la struttura +``struct compat_xyzzy_args`` dovrebbe avere:: + + struct compat_xyzzy_args { + compat_uptr_t ptr; + compat_long_t varying_val; + u64 fixed_val; + /* ... */ + }; + +La lista generica delle chiamate di sistema ha bisogno di essere +aggiustata al fine di permettere l'uso della versione *compatibile*; +la voce in ``include/uapi/asm-generic/unistd.h`` dovrebbero usare +``__SC_COMP`` piuttosto di ``__SYSCALL``:: + + #define __NR_xyzzy 292 + __SC_COMP(__NR_xyzzy, sys_xyzzy, compat_sys_xyzzy) + +Riassumendo, vi serve: + + - un ``COMPAT_SYSCALL_DEFINEn(xyzzy, ...)`` per il punto d'accesso + *compatibile* + - un prototipo in ``include/linux/compat.h`` + - (se necessario) una struttura di compatibilità a 32-bit in + ``include/linux/compat.h`` + - una voce ``__SC_COMP``, e non ``__SYSCALL``, in + ``include/uapi/asm-generic/unistd.h`` + +Compatibilità delle chiamate di sistema (x86) +--------------------------------------------- + +Per collegare una chiamata di sistema, su un'architettura x86, con la sua +versione *compatibile*, è necessario aggiustare la voce nella tabella +delle syscall. + +Per prima cosa, la voce in ``arch/x86/entry/syscalls/syscall_32.tbl`` prende +un argomento aggiuntivo per indicare che un programma in spazio utente +a 32-bit, eseguito su un kernel a 64-bit, dovrebbe accedere tramite il punto +d'accesso compatibile:: + + 380 i386 xyzzy sys_xyzzy __ia32_compat_sys_xyzzy + +Secondo, dovete capire cosa dovrebbe succedere alla nuova chiamata di sistema +per la versione dell'ABI x32. Qui C'è una scelta da fare: gli argomenti +possono corrisponde alla versione a 64-bit o a quella a 32-bit. + +Se c'è un puntatore ad un puntatore, la decisione è semplice: x32 è ILP32, +quindi gli argomenti dovrebbero corrispondere a quelli a 32-bit, e la voce in +``arch/x86/entry/syscalls/syscall_64.tbl`` sarà divisa cosicché i programmi +x32 eseguano la chiamata *compatibile*:: + + 333 64 xyzzy sys_xyzzy + ... + 555 x32 xyzzy __x32_compat_sys_xyzzy + +Se non ci sono puntatori, allora è preferibile riutilizzare la chiamata di +sistema a 64-bit per l'ABI x32 (e di conseguenza la voce in +arch/x86/entry/syscalls/syscall_64.tbl rimane immutata). + +In ambo i casi, dovreste verificare che i tipi usati dagli argomenti +abbiano un'esatta corrispondenza da x32 (-mx32) al loro equivalente a +32-bit (-m32) o 64-bit (-m64). + + +Chiamate di sistema che ritornano altrove +----------------------------------------- + +Nella maggior parte delle chiamate di sistema, al termine della loro +esecuzione, i programmi in spazio utente riprendono esattamente dal punto +in cui si erano interrotti -- quindi dall'istruzione successiva, con lo +stesso *stack* e con la maggior parte del registri com'erano stati +lasciati prima della chiamata di sistema, e anche con la stessa memoria +virtuale. + +Tuttavia, alcune chiamata di sistema fanno le cose in modo differente. +Potrebbero ritornare ad un punto diverso (``rt_sigreturn``) o cambiare +la memoria in spazio utente (``fork``/``vfork``/``clone``) o perfino +l'architettura del programma (``execve``/``execveat``). + +Per permettere tutto ciò, l'implementazione nel kernel di questo tipo di +chiamate di sistema potrebbero dover salvare e ripristinare registri +aggiuntivi nello *stack* del kernel, permettendo così un controllo completo +su dove e come l'esecuzione dovrà continuare dopo l'esecuzione della +chiamata di sistema. + +Queste saranno specifiche per ogni architettura, ma tipicamente si definiscono +dei punti d'accesso in *assembly* per salvare/ripristinare i registri +aggiuntivi e quindi chiamare il vero punto d'accesso per la chiamata di +sistema. + +Per l'architettura x86_64, questo è implementato come un punto d'accesso +``stub_xyzzy`` in ``arch/x86/entry/entry_64.S``, e la voce nella tabella +di syscall (``arch/x86/entry/syscalls/syscall_64.tbl``) verrà corretta di +conseguenza:: + + 333 common xyzzy stub_xyzzy + +L'equivalente per programmi a 32-bit eseguiti su un kernel a 64-bit viene +normalmente chiamato ``stub32_xyzzy`` e implementato in +``arch/x86/entry/entry_64_compat.S`` con la corrispondente voce nella tabella +di syscall ``arch/x86/entry/syscalls/syscall_32.tbl`` corretta nel +seguente modo:: + + 380 i386 xyzzy sys_xyzzy stub32_xyzzy + +Se una chiamata di sistema necessita di un livello di compatibilità (come +nella sezione precedente), allora la versione ``stub32_`` deve invocare +la versione ``compat_sys_`` piuttosto che quella nativa a 64-bit. In aggiunta, +se l'implementazione dell'ABI x32 è diversa da quella x86_64, allora la sua +voce nella tabella di syscall dovrà chiamare uno *stub* che invoca la versione +``compat_sys_``, + +Per completezza, sarebbe carino impostare una mappatura cosicché +*user-mode* Linux (UML) continui a funzionare -- la sua tabella di syscall +farà riferimento a stub_xyzzy, ma UML non include l'implementazione +in ``arch/x86/entry/entry_64.S`` (perché UML simula i registri eccetera). +Correggerlo è semplice, basta aggiungere una #define in +``arch/x86/um/sys_call_table_64.c``:: + + #define stub_xyzzy sys_xyzzy + + +Altri dettagli +-------------- + +La maggior parte dei kernel tratta le chiamate di sistema allo stesso modo, +ma possono esserci rare eccezioni per le quali potrebbe essere necessario +l'aggiornamento della vostra chiamata di sistema. + +Il sotto-sistema di controllo (*audit subsystem*) è uno di questi casi +speciali; esso include (per architettura) funzioni che classificano alcuni +tipi di chiamate di sistema -- in particolare apertura dei file +(``open``/``openat``), esecuzione dei programmi (``execve``/``exeveat``) +oppure multiplatori di socket (``socketcall``). Se la vostra nuova chiamata +di sistema è simile ad una di queste, allora il sistema di controllo dovrebbe +essere aggiornato. + +Più in generale, se esiste una chiamata di sistema che è simile alla vostra, +vale la pena fare una ricerca con ``grep`` su tutto il kernel per la chiamata +di sistema esistente per verificare che non ci siano altri casi speciali. + + +Verifica +-------- + +Una nuova chiamata di sistema dev'essere, ovviamente, provata; è utile fornire +ai revisori un programma in spazio utente che mostri l'uso della chiamata di +sistema. Un buon modo per combinare queste cose è quello di aggiungere un +semplice programma di auto-verifica in una nuova cartella in +``tools/testing/selftests/``. + +Per una nuova chiamata di sistema, ovviamente, non ci sarà alcuna funzione +in libc e quindi il programma di verifica dovrà invocarla usando ``syscall()``; +inoltre, se la nuova chiamata di sistema prevede un nuova struttura dati +visibile in spazio utente, il file d'intestazione necessario dev'essere +installato al fine di compilare il programma. + +Assicuratevi che il programma di auto-verifica possa essere eseguito +correttamente su tutte le architetture supportate. Per esempio, verificate che +funzioni quando viene compilato per x86_64 (-m64), x86_32 (-m32) e x32 (-mx32). + +Al fine di una più meticolosa ed estesa verifica della nuova funzionalità, +dovreste considerare l'aggiunta di nuove verifica al progetto 'Linux Test', +oppure al progetto xfstests per cambiamenti relativi al filesystem. + + - https://linux-test-project.github.io/ + - git://git.kernel.org/pub/scm/fs/xfs/xfstests-dev.git + + +Pagine man +---------- + +Tutte le nuove chiamate di sistema dovrebbero avere una pagina man completa, +idealmente usando i marcatori groff, ma anche il puro testo può andare. Se +state usando groff, è utile che includiate nella email di presentazione una +versione già convertita in formato ASCII: semplificherà la vita dei revisori. + +Le pagine man dovrebbero essere in copia-conoscenza verso +linux-man@vger.kernel.org +Per maggiori dettagli, leggere +https://www.kernel.org/doc/man-pages/patches.html + + +Non invocate chiamate di sistema dal kernel +------------------------------------------- + +Le chiamate di sistema sono, come già detto prima, punti di interazione fra +lo spazio utente e il kernel. Perciò, le chiamate di sistema come +``sys_xyzzy()`` o ``compat_sys_xyzzy()`` dovrebbero essere chiamate solo dallo +spazio utente attraverso la tabella syscall, ma non da nessun altro punto nel +kernel. Se la nuova funzionalità è utile all'interno del kernel, per esempio +dev'essere condivisa fra una vecchia e una nuova chiamata di sistema o +dev'essere utilizzata da una chiamata di sistema e la sua variante compatibile, +allora dev'essere implementata come una funzione di supporto +(*helper function*) (per esempio ``kern_xyzzy()``). Questa funzione potrà +essere chiamata dallo *stub* (``sys_xyzzy()``), dalla variante compatibile +(``compat_sys_xyzzy()``), e/o da altri parti del kernel. + +Sui sistemi x86 a 64-bit, a partire dalla versione v4.17 è un requisito +fondamentale quello di non invocare chiamate di sistema all'interno del kernel. +Esso usa una diversa convenzione per l'invocazione di chiamate di sistema dove +``struct pt_regs`` viene decodificata al volo in una funzione che racchiude +la chiamata di sistema la quale verrà eseguita successivamente. +Questo significa che verranno passati solo i parametri che sono davvero +necessari ad una specifica chiamata di sistema, invece che riempire ogni volta +6 registri del processore con contenuti presi dallo spazio utente (potrebbe +causare seri problemi nella sequenza di chiamate). + +Inoltre, le regole su come i dati possano essere usati potrebbero differire +fra il kernel e l'utente. Questo è un altro motivo per cui invocare +``sys_xyzzy()`` è generalmente una brutta idea. + +Eccezioni a questa regola vengono accettate solo per funzioni d'architetture +che surclassano quelle generiche, per funzioni d'architettura di compatibilità, +o per altro codice in arch/ + + +Riferimenti e fonti +------------------- + + - Articolo di Michael Kerris su LWN sull'uso dell'argomento flags nelle + chiamate di sistema: https://lwn.net/Articles/585415/ + - Articolo di Michael Kerris su LWN su come gestire flag sconosciuti in + una chiamata di sistema: https://lwn.net/Articles/588444/ + - Articolo di Jake Edge su LWN che descrive i limiti degli argomenti a 64-bit + delle chiamate di sistema: https://lwn.net/Articles/311630/ + - Una coppia di articoli di David Drysdale che descrivono i dettagli del + percorso implementativo di una chiamata di sistema per la versione v3.14: + + - https://lwn.net/Articles/604287/ + - https://lwn.net/Articles/604515/ + + - Requisiti specifici alle architetture sono discussi nella pagina man + :manpage:`syscall(2)` : + http://man7.org/linux/man-pages/man2/syscall.2.html#NOTES + - Collezione di email di Linux Torvalds sui problemi relativi a ``ioctl()``: + http://yarchive.net/comp/linux/ioctl.html + - "Come non inventare interfacce del kernel", Arnd Bergmann, + http://www.ukuug.org/events/linux2007/2007/papers/Bergmann.pdf + - Articolo di Michael Kerris su LWN sull'evitare nuovi usi di CAP_SYS_ADMIN: + https://lwn.net/Articles/486306/ + - Raccomandazioni da Andrew Morton circa il fatto che tutte le informazioni + su una nuova chiamata di sistema dovrebbero essere contenute nello stesso + filone di discussione di email: https://lkml.org/lkml/2014/7/24/641 + - Raccomandazioni da Michael Kerrisk circa il fatto che le nuove chiamate di + sistema dovrebbero avere una pagina man: https://lkml.org/lkml/2014/6/13/309 + - Consigli da Thomas Gleixner sul fatto che il collegamento all'architettura + x86 dovrebbe avvenire in un *commit* differente: + https://lkml.org/lkml/2014/11/19/254 + - Consigli da Greg Kroah-Hartman circa la bontà d'avere una pagina man e un + programma di auto-verifica per le nuove chiamate di sistema: + https://lkml.org/lkml/2014/3/19/710 + - Discussione di Michael Kerrisk sulle nuove chiamate di sistema contro + le estensioni :manpage:`prctl(2)`: https://lkml.org/lkml/2014/6/3/411 + - Consigli da Ingo Molnar che le chiamate di sistema con più argomenti + dovrebbero incapsularli in una struttura che includa un argomento + *size* per garantire l'estensibilità futura: + https://lkml.org/lkml/2015/7/30/117 + - Un certo numero di casi strani emersi dall'uso (riuso) dei flag O_*: + + - commit 75069f2b5bfb ("vfs: renumber FMODE_NONOTIFY and add to uniqueness + check") + - commit 12ed2e36c98a ("fanotify: FMODE_NONOTIFY and __O_SYNC in sparc + conflict") + - commit bb458c644a59 ("Safer ABI for O_TMPFILE") + + - Discussion from Matthew Wilcox about restrictions on 64-bit arguments: + https://lkml.org/lkml/2008/12/12/187 + - Raccomandazioni da Greg Kroah-Hartman sul fatto che i flag sconosciuti dovrebbero + essere controllati: https://lkml.org/lkml/2014/7/17/577 + - Raccomandazioni da Linus Torvalds che le chiamate di sistema x32 dovrebbero + favorire la compatibilità con le versioni a 64-bit piuttosto che quelle a 32-bit: + https://lkml.org/lkml/2011/8/31/244 -- 2.19.2