From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org X-Spam-Level: X-Spam-Status: No, score=-3.8 required=3.0 tests=HEADER_FROM_DIFFERENT_DOMAINS, MAILING_LIST_MULTI,SIGNED_OFF_BY,SPF_HELO_NONE,SPF_PASS autolearn=no autolearn_force=no version=3.4.0 Received: from mail.kernel.org (mail.kernel.org [198.145.29.99]) by smtp.lore.kernel.org (Postfix) with ESMTP id 3D1FEC3A5A9 for ; Sun, 19 Apr 2020 20:37:00 +0000 (UTC) Received: from vger.kernel.org (vger.kernel.org [23.128.96.18]) by mail.kernel.org (Postfix) with ESMTP id 1FF4C21974 for ; Sun, 19 Apr 2020 20:37:00 +0000 (UTC) Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1726451AbgDSUg7 (ORCPT ); Sun, 19 Apr 2020 16:36:59 -0400 Received: from lindbergh.monkeyblade.net ([23.128.96.19]:53604 "EHLO lindbergh.monkeyblade.net" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1726067AbgDSUgN (ORCPT ); Sun, 19 Apr 2020 16:36:13 -0400 Received: from Galois.linutronix.de (Galois.linutronix.de [IPv6:2a0a:51c0:0:12e:550::1]) by lindbergh.monkeyblade.net (Postfix) with ESMTPS id 4CA71C061A0C for ; Sun, 19 Apr 2020 13:36:13 -0700 (PDT) Received: from p5de0bf0b.dip0.t-ipconnect.de ([93.224.191.11] helo=nanos.tec.linutronix.de) by Galois.linutronix.de with esmtpsa (TLS1.2:DHE_RSA_AES_256_CBC_SHA256:256) (Exim 4.80) (envelope-from ) id 1jQGfe-0007Jy-D8; Sun, 19 Apr 2020 22:36:06 +0200 Received: from nanos.tec.linutronix.de (localhost [IPv6:::1]) by nanos.tec.linutronix.de (Postfix) with ESMTP id A6E29FFBA2; Sun, 19 Apr 2020 22:36:05 +0200 (CEST) Message-Id: <20200419203336.039484088@linutronix.de> User-Agent: quilt/0.65 Date: Sun, 19 Apr 2020 22:31:41 +0200 From: Thomas Gleixner To: LKML Cc: x86@kernel.org, Kees Cook , Paolo Bonzini , Thomas Lendacky , Juergen Gross , Boris Ostrovsky Subject: [patch 04/15] x86/alternatives: Move temporary_mm helpers into C References: <20200419203137.214111265@linutronix.de> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-transfer-encoding: 8-bit X-Linutronix-Spam-Score: -1.0 X-Linutronix-Spam-Level: - X-Linutronix-Spam-Status: No , -1.0 points, 5.0 required, ALL_TRUSTED=-1,SHORTCIRCUIT=-0.0001 Sender: linux-kernel-owner@vger.kernel.org Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org The only user of these inlines is the text poke code and this must not be exposed to the world. No functional change. Signed-off-by: Thomas Gleixner --- arch/x86/include/asm/mmu_context.h | 55 ------------------------------------- arch/x86/kernel/alternative.c | 55 +++++++++++++++++++++++++++++++++++++ 2 files changed, 55 insertions(+), 55 deletions(-) --- a/arch/x86/include/asm/mmu_context.h +++ b/arch/x86/include/asm/mmu_context.h @@ -215,59 +215,4 @@ static inline bool arch_vma_access_permi unsigned long __get_current_cr3_fast(void); -typedef struct { - struct mm_struct *mm; -} temp_mm_state_t; - -/* - * Using a temporary mm allows to set temporary mappings that are not accessible - * by other CPUs. Such mappings are needed to perform sensitive memory writes - * that override the kernel memory protections (e.g., W^X), without exposing the - * temporary page-table mappings that are required for these write operations to - * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the - * mapping is torn down. - * - * Context: The temporary mm needs to be used exclusively by a single core. To - * harden security IRQs must be disabled while the temporary mm is - * loaded, thereby preventing interrupt handler bugs from overriding - * the kernel memory protection. - */ -static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm) -{ - temp_mm_state_t temp_state; - - lockdep_assert_irqs_disabled(); - temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm); - switch_mm_irqs_off(NULL, mm, current); - - /* - * If breakpoints are enabled, disable them while the temporary mm is - * used. Userspace might set up watchpoints on addresses that are used - * in the temporary mm, which would lead to wrong signals being sent or - * crashes. - * - * Note that breakpoints are not disabled selectively, which also causes - * kernel breakpoints (e.g., perf's) to be disabled. This might be - * undesirable, but still seems reasonable as the code that runs in the - * temporary mm should be short. - */ - if (hw_breakpoint_active()) - hw_breakpoint_disable(); - - return temp_state; -} - -static inline void unuse_temporary_mm(temp_mm_state_t prev_state) -{ - lockdep_assert_irqs_disabled(); - switch_mm_irqs_off(NULL, prev_state.mm, current); - - /* - * Restore the breakpoints if they were disabled before the temporary mm - * was loaded. - */ - if (hw_breakpoint_active()) - hw_breakpoint_restore(); -} - #endif /* _ASM_X86_MMU_CONTEXT_H */ --- a/arch/x86/kernel/alternative.c +++ b/arch/x86/kernel/alternative.c @@ -783,6 +783,61 @@ void __init_or_module text_poke_early(vo } } +typedef struct { + struct mm_struct *mm; +} temp_mm_state_t; + +/* + * Using a temporary mm allows to set temporary mappings that are not accessible + * by other CPUs. Such mappings are needed to perform sensitive memory writes + * that override the kernel memory protections (e.g., W^X), without exposing the + * temporary page-table mappings that are required for these write operations to + * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the + * mapping is torn down. + * + * Context: The temporary mm needs to be used exclusively by a single core. To + * harden security IRQs must be disabled while the temporary mm is + * loaded, thereby preventing interrupt handler bugs from overriding + * the kernel memory protection. + */ +static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm) +{ + temp_mm_state_t temp_state; + + lockdep_assert_irqs_disabled(); + temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm); + switch_mm_irqs_off(NULL, mm, current); + + /* + * If breakpoints are enabled, disable them while the temporary mm is + * used. Userspace might set up watchpoints on addresses that are used + * in the temporary mm, which would lead to wrong signals being sent or + * crashes. + * + * Note that breakpoints are not disabled selectively, which also causes + * kernel breakpoints (e.g., perf's) to be disabled. This might be + * undesirable, but still seems reasonable as the code that runs in the + * temporary mm should be short. + */ + if (hw_breakpoint_active()) + hw_breakpoint_disable(); + + return temp_state; +} + +static inline void unuse_temporary_mm(temp_mm_state_t prev_state) +{ + lockdep_assert_irqs_disabled(); + switch_mm_irqs_off(NULL, prev_state.mm, current); + + /* + * Restore the breakpoints if they were disabled before the temporary mm + * was loaded. + */ + if (hw_breakpoint_active()) + hw_breakpoint_restore(); +} + __ro_after_init struct mm_struct *poking_mm; __ro_after_init unsigned long poking_addr;