From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org X-Spam-Level: X-Spam-Status: No, score=-21.8 required=3.0 tests=BAYES_00,DKIM_SIGNED, DKIM_VALID,HEADER_FROM_DIFFERENT_DOMAINS,INCLUDES_CR_TRAILER,INCLUDES_PATCH, MAILING_LIST_MULTI,MENTIONS_GIT_HOSTING,SPF_HELO_NONE,SPF_PASS,URIBL_BLOCKED, USER_AGENT_GIT autolearn=unavailable autolearn_force=no version=3.4.0 Received: from mail.kernel.org (mail.kernel.org [198.145.29.99]) by smtp.lore.kernel.org (Postfix) with ESMTP id B67F0C43461 for ; Tue, 27 Apr 2021 20:58:16 +0000 (UTC) Received: from vger.kernel.org (vger.kernel.org [23.128.96.18]) by mail.kernel.org (Postfix) with ESMTP id 857FD613FE for ; Tue, 27 Apr 2021 20:58:16 +0000 (UTC) Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S239029AbhD0U66 (ORCPT ); Tue, 27 Apr 2021 16:58:58 -0400 Received: from mail-dm6nam11on2078.outbound.protection.outlook.com ([40.107.223.78]:41697 "EHLO NAM11-DM6-obe.outbound.protection.outlook.com" rhost-flags-OK-OK-OK-FAIL) by vger.kernel.org with ESMTP id S239012AbhD0U6y (ORCPT ); Tue, 27 Apr 2021 16:58:54 -0400 ARC-Seal: i=1; a=rsa-sha256; s=arcselector9901; d=microsoft.com; cv=none; b=LuEBXv03EUYWgcIu0sW2G3AB3oc4v4EoSa8Vrb19rh38fFepgf6sgWyWxXoUKVEn5Bl9lIbmQacZEENQV7St4Jn5+6O5Ynq7pvUlGovy52MaiVDAwuVz1hGK8qiZ7nMtAwG3FojFyPrG9hMBfe1s7HYiGyCcRFK8qLEKJfAy4yIwJ+P8bPepcTHrLvtq8+G4RqCcja4t5uDGHGaxQzJLWv37SgYjjS807P2ax1IqECbTekoiDii+oMdP4JYjbOeydu1HKsk75kAPCr/wuLAGAbWdxSHlwCIS+iALpzpU7kMw6KBlhqiV1+iDAoftuMLW36uLmuu4Rk+EZJmd68OQhQ== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=microsoft.com; s=arcselector9901; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-SenderADCheck; bh=oe9hZfvwQraROlb43KElI0O6sdqRqnmL1Rb66Fd2Nz4=; b=FZTaofZ4PFOjinbAcmsAmMKdeBiHFLjyLOor2SjJqTaVLNVUy0Oi07WXfSV8XsLQk0nYNrYkLOsqIZWXIhbuiti7AqTjESPLSm0HO1xHEkk1WQRujBwzWwIlc2kjRPyOnIFBAWY62x87FweZu/RKjw0up8Y2kiN62nLd5lhD+M3udb0Sx8nK+AnEgIOs6IIi5mBzwyP5fDqJM27JgYuJUk4qCQH5ZnCjXFJ67lQYaJNEnm3NQa1kWgl5Uu4o25wp++wKlGlS9g907K96dNe8aqY/NiKVnHjTNbjuX0CNj2t9SeNrt+2MUPr1suXzHk/JcZX+d4x1EtTDy4QDL5u0fw== ARC-Authentication-Results: i=1; mx.microsoft.com 1; spf=pass (sender ip is 149.199.62.198) smtp.rcpttodomain=kernel.org smtp.mailfrom=xilinx.com; dmarc=pass (p=none sp=none pct=100) action=none header.from=xilinx.com; dkim=none (message not signed); arc=none DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=xilinx.onmicrosoft.com; s=selector2-xilinx-onmicrosoft-com; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-SenderADCheck; bh=oe9hZfvwQraROlb43KElI0O6sdqRqnmL1Rb66Fd2Nz4=; b=LTTVRNEwk9HcL8dLX4ZsOhKLXvVO/PrO2WePc1UylDaHpLILACywY3gENfyt2xlZWjjASiHhU9GRwHIAX4KGtAyCKQNuxIvdNGOctfDQtQ1iiNOtauX1kyq7GyKHg8iOfSPbFLirhyG3VjJB22XEHTrbEm3MuG2NWqbwEb/WdP4= Received: from CY4PR13CA0047.namprd13.prod.outlook.com (2603:10b6:903:99::33) by PH0PR02MB7846.namprd02.prod.outlook.com (2603:10b6:510:52::16) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384) id 15.20.4065.21; Tue, 27 Apr 2021 20:58:02 +0000 Received: from CY1NAM02FT015.eop-nam02.prod.protection.outlook.com (2603:10b6:903:99:cafe::22) by CY4PR13CA0047.outlook.office365.com (2603:10b6:903:99::33) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384) id 15.20.4087.19 via Frontend Transport; Tue, 27 Apr 2021 20:58:02 +0000 X-MS-Exchange-Authentication-Results: spf=pass (sender IP is 149.199.62.198) smtp.mailfrom=xilinx.com; kernel.org; dkim=none (message not signed) header.d=none;kernel.org; dmarc=pass action=none header.from=xilinx.com; Received-SPF: Pass (protection.outlook.com: domain of xilinx.com designates 149.199.62.198 as permitted sender) receiver=protection.outlook.com; client-ip=149.199.62.198; helo=xsj-pvapexch02.xlnx.xilinx.com; Received: from xsj-pvapexch02.xlnx.xilinx.com (149.199.62.198) by CY1NAM02FT015.mail.protection.outlook.com (10.152.75.146) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256) id 15.20.4065.21 via Frontend Transport; Tue, 27 Apr 2021 20:58:02 +0000 Received: from xsj-pvapexch02.xlnx.xilinx.com (172.19.86.41) by xsj-pvapexch02.xlnx.xilinx.com (172.19.86.41) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256) id 15.1.2176.2; Tue, 27 Apr 2021 13:58:01 -0700 Received: from smtp.xilinx.com (172.19.127.96) by xsj-pvapexch02.xlnx.xilinx.com (172.19.86.41) with Microsoft SMTP Server id 15.1.2176.2 via Frontend Transport; Tue, 27 Apr 2021 13:58:01 -0700 Envelope-to: mdf@kernel.org, robh@kernel.org, trix@redhat.com, devicetree@vger.kernel.org, linux-fpga@vger.kernel.org, linux-kernel@vger.kernel.org Received: from [172.19.72.212] (port=51996 helo=xsj-xw9400.xilinx.com) by smtp.xilinx.com with esmtp (Exim 4.90) (envelope-from ) id 1lbUmP-0001hY-Dl; Tue, 27 Apr 2021 13:58:01 -0700 Received: by xsj-xw9400.xilinx.com (Postfix, from userid 21952) id 2BC9B6000FE; Tue, 27 Apr 2021 13:54:35 -0700 (PDT) From: Lizhi Hou To: CC: Lizhi Hou , , , , , , , , , , , Max Zhen Subject: [PATCH V5 XRT Alveo 01/20] Documentation: fpga: Add a document describing XRT Alveo drivers Date: Tue, 27 Apr 2021 13:54:12 -0700 Message-ID: <20210427205431.23896-2-lizhi.hou@xilinx.com> X-Mailer: git-send-email 2.17.1 In-Reply-To: <20210427205431.23896-1-lizhi.hou@xilinx.com> References: <20210427205431.23896-1-lizhi.hou@xilinx.com> MIME-Version: 1.0 Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: 8bit X-EOPAttributedMessage: 0 X-MS-PublicTrafficType: Email X-MS-Office365-Filtering-Correlation-Id: 47932d97-2678-4773-b0c8-08d909bf2575 X-MS-TrafficTypeDiagnostic: PH0PR02MB7846: X-Microsoft-Antispam-PRVS: X-MS-Oob-TLC-OOBClassifiers: OLM:10000; X-MS-Exchange-SenderADCheck: 1 X-Microsoft-Antispam: BCL:0; X-Microsoft-Antispam-Message-Info: v8RnvRdXF+L9O5BvYcL6xqvqFvEFToIORo59SubKFYxNC7IMaNy/I53hUcE5+YEfLEhUe8sjAlUmqU4xwIXXu34b27HaWb+ObdSRU/tJaL0OMVkiaOSZlpMgvrwGuWBLLTqv1q7wTXWmJ8mNZFLq2FfThpDGWyLB7Z7OxYFM2NumH90cozBBjrmcYZUKh85fnflNprrU8bShH8oDFcXwROHnTkddxx0lfFA6mGK/LkrmNGSbS5AD39W1RyIZjxfTdVqV8B500UV2Shner1OqwoBTXwvwhJWVJXVH/O5f0FePHPyURAmnj1pTc0k430gTm1OSklakPU8gz52M6nC7BE6lsgmPZ/fBa0VT6AIKMx0v0jTCiKItLWnmvQOW/NX7dBnqoOCXXoePefwEVAiZSvbPYOAyLcycjAOBmo5GhzpDFMOcwxHBU6NlSsz0kRzy9p6JjjEugTqdJmnyktTmBopVPz360pZhrB4I6FpQ6VSFr1ZUcamThloC5i2L+XmdfPwyVOHTK8uhLs/9+oj2DYmZkvxDZykLvHyWr+rEzieEH+uQaS7FuJ26HUfR4LXYbOA6qp9wDOJ6pK2dRGKe+CJaNb3N8OtFQwgjye4cmFXWfSdWkBay7My86Z9iihauB8PtLuJ8u1GkivH7MQJSOhrtFQkhGM2r+Qx0ihoBAv/3OOECsUnfYA2o8aZUyYJMSquVojP+rpDpyWEwjV/Sv6KCaE0ORzv0f3PsnXclS14= X-Forefront-Antispam-Report: CIP:149.199.62.198;CTRY:US;LANG:en;SCL:1;SRV:;IPV:NLI;SFV:NSPM;H:xsj-pvapexch02.xlnx.xilinx.com;PTR:unknown-62-198.xilinx.com;CAT:NONE;SFS:(4636009)(39850400004)(396003)(376002)(346002)(136003)(36840700001)(46966006)(336012)(426003)(26005)(6266002)(36756003)(6666004)(8936002)(4326008)(82740400003)(8676002)(2616005)(82310400003)(107886003)(47076005)(2906002)(316002)(186003)(42186006)(54906003)(5660300002)(1076003)(83380400001)(36906005)(36860700001)(356005)(6916009)(44832011)(70586007)(30864003)(478600001)(70206006)(7636003);DIR:OUT;SFP:1101; X-OriginatorOrg: xilinx.com X-MS-Exchange-CrossTenant-OriginalArrivalTime: 27 Apr 2021 20:58:02.0869 (UTC) X-MS-Exchange-CrossTenant-Network-Message-Id: 47932d97-2678-4773-b0c8-08d909bf2575 X-MS-Exchange-CrossTenant-Id: 657af505-d5df-48d0-8300-c31994686c5c X-MS-Exchange-CrossTenant-OriginalAttributedTenantConnectingIp: TenantId=657af505-d5df-48d0-8300-c31994686c5c;Ip=[149.199.62.198];Helo=[xsj-pvapexch02.xlnx.xilinx.com] X-MS-Exchange-CrossTenant-AuthSource: CY1NAM02FT015.eop-nam02.prod.protection.outlook.com X-MS-Exchange-CrossTenant-AuthAs: Anonymous X-MS-Exchange-CrossTenant-FromEntityHeader: HybridOnPrem X-MS-Exchange-Transport-CrossTenantHeadersStamped: PH0PR02MB7846 Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org Describe XRT driver architecture and provide basic overview of Xilinx Alveo platform. Signed-off-by: Sonal Santan Signed-off-by: Max Zhen Signed-off-by: Lizhi Hou --- Documentation/fpga/index.rst | 1 + Documentation/fpga/xrt.rst | 844 +++++++++++++++++++++++++++++++++++ 2 files changed, 845 insertions(+) create mode 100644 Documentation/fpga/xrt.rst diff --git a/Documentation/fpga/index.rst b/Documentation/fpga/index.rst index f80f95667ca2..30134357b70d 100644 --- a/Documentation/fpga/index.rst +++ b/Documentation/fpga/index.rst @@ -8,6 +8,7 @@ fpga :maxdepth: 1 dfl + xrt .. only:: subproject and html diff --git a/Documentation/fpga/xrt.rst b/Documentation/fpga/xrt.rst new file mode 100644 index 000000000000..c9faad5f18c4 --- /dev/null +++ b/Documentation/fpga/xrt.rst @@ -0,0 +1,844 @@ +.. SPDX-License-Identifier: GPL-2.0 + +================================== +XRTV2 Linux Kernel Driver Overview +================================== + +Authors: + +* Sonal Santan +* Max Zhen +* Lizhi Hou + +XRTV2 drivers are second generation `XRT `_ +drivers which support `Alveo `_ +PCIe platforms from Xilinx. + +XRTV2 drivers support *subsystem* style data driven platforms where driver's +configuration and behavior is determined by meta data provided by the platform +(in *device tree* format). Primary management physical function (MPF) driver +is called **xrt-mgnt**. Primary user physical function (UPF) driver is called +**xrt-user** and is under development. xrt driver framework and HW subsystem +drivers are packaged into a library module called **xrt-lib**, which is shared +by **xrt-mgnt** and **xrt-user** (under development). The xrt driver framework +implements a ``bus_type`` called **xrt_bus_type** which is used to discover HW +subsystems and facilitate inter HW subsystem interaction. + +Driver Modules +============== + +xrt-lib.ko +---------- + +Repository of all subsystem drivers and pure software modules that can potentially +be shared between xrt-mgnt and xrt-user. All these drivers are structured as +**xrt_driver** and are instantiated by xrt-mgnt (or xrt-user under development) +based on meta data associated with the hardware. The metadata is in the form of a +device tree as mentioned before. Each xrt driver statically defines a subsystem +node array by using node name or a string in its ``.endpoints`` property. And this +array is eventually translated to IOMEM resources in the instantiated xrt device. + +The xrt-lib infrastructure provides hooks to xrt drivers for device node +management, user file operations and ioctl callbacks. The core infrastructure also +provides bus functionality for xrt driver registration, discovery and inter xrt +driver leaf calls. + +.. note:: + See code in ``include/xleaf.h`` and ``include/xdevice.h`` + + +xrt-mgnt.ko +------------ + +The xrt-mgnt driver is a PCIe device driver driving MPF found on Xilinx's Alveo +PCIe device. It consists of one *root* driver, one or more *group* drivers +and one or more *xleaf* drivers. The root and MPF specific xleaf drivers are +in xrt-mgnt.ko. The group driver and other xleaf drivers are in xrt-lib.ko. + +The instantiation of specific group driver or xleaf driver is completely data +driven based on meta data (mostly in device tree format) found through VSEC +capability and inside firmware files, such as platform xsabin or user xclbin file. +The root driver manages the life cycle of multiple group drivers, which, in turn, +manages multiple xleaf drivers. This allows a single set of drivers to support +all kinds of subsystems exposed by different shells. The difference among all +these subsystems will be handled in xleaf drivers with root and group drivers +being part of the infrastructure and provide common services for all leaves +found on all platforms. + +The driver object model looks like the following:: + + +-----------+ + | xroot | + +-----+-----+ + | + +-----------+-----------+ + | | + v v + +-----------+ +-----------+ + | group | ... | group | + +-----+-----+ +------+----+ + | | + | | + +-----+----+ +-----+----+ + | | | | + v v v v + +-------+ +-------+ +-------+ +-------+ + | xleaf |..| xleaf | | xleaf |..| xleaf | + +-------+ +-------+ +-------+ +-------+ + +As an example for Xilinx Alveo U50 before user xclbin download, the tree +looks like the following:: + + +-----------+ + | xrt-mgnt | + +-----+-----+ + | + +-------------------------+--------------------+ + | | | + v v v + +--------+ +--------+ +--------+ + | group0 | | group1 | | group2 | + +----+---+ +----+---+ +---+----+ + | | | + | | | + +-----+-----+ +----+-----+---+ +-----+-----+----+--------+ + | | | | | | | | | + v v | v v | v v | + +------------+ +------+ | +------+ +------+ | +------+ +-----------+ | + | xmgnt_main | | VSEC | | | GPIO | | QSPI | | | CMC | | AXI-GATE0 | | + +------------+ +------+ | +------+ +------+ | +------+ +-----------+ | + | +---------+ | +------+ +-----------+ | + +>| MAILBOX | +->| ICAP | | AXI-GATE1 |<+ + +---------+ | +------+ +-----------+ + | +-------+ + +->| CALIB | + +-------+ + +After an xclbin is downloaded, group3 will be added and the tree looks like the +following:: + + +-----------+ + | xrt-mgnt | + +-----+-----+ + | + +-------------------------+--------------------+-----------------+ + | | | | + v v v | + +--------+ +--------+ +--------+ | + | group0 | | group1 | | group2 | | + +----+---+ +----+---+ +---+----+ | + | | | | + | | | | + +-----+-----+ +-----+-----+---+ +-----+-----+----+--------+ | + | | | | | | | | | | + v v | v v | v v | | + +------------+ +------+ | +------+ +------+ | +------+ +-----------+ | | + | xmgnt_main | | VSEC | | | GPIO | | QSPI | | | CMC | | AXI-GATE0 | | | + +------------+ +------+ | +------+ +------+ | +------+ +-----------+ | | + | +---------+ | +------+ +-----------+ | | + +>| MAILBOX | +->| ICAP | | AXI-GATE1 |<+ | + +---------+ | +------+ +-----------+ | + | +-------+ | + +->| CALIB | | + +-------+ | + +---+----+ | + | group3 |<--------------------------------------------+ + +--------+ + | + | + +-------+--------+---+--+--------+------+-------+ + | | | | | | | + v | v | v | v + +--------+ | +--------+ | +--------+ | +-----+ + | CLOCK0 | | | CLOCK1 | | | CLOCK2 | | | UCS | + +--------+ v +--------+ v +--------+ v +-----+ + +-------------+ +-------------+ +-------------+ + | CLOCK-FREQ0 | | CLOCK-FREQ1 | | CLOCK-FREQ2 | + +-------------+ +-------------+ +-------------+ + + +root +^^^^ + +The root driver is a PCIe device driver attached to MPF. It's part of the +infrastructure of the MPF driver and resides in xrt-mgnt.ko. This driver + +* manages one or more group drivers +* provides access to functionalities that requires pci_dev, such as PCIE config + space access, to other xleaf drivers through root calls +* facilities event callbacks for other xleaf drivers +* facilities inter-leaf driver calls for other xleaf drivers + +When root driver starts, it will explicitly create an initial group instance, +which contains xleaf drivers that will trigger the creation of other group +instances. The root driver will wait for all group and leaves to be created +before it returns from it's probe routine and claim success of the +initialization of the entire xrt-mgnt driver. If any leaf fails to initialize +the xrt-mgnt driver will still come online but with limited functionality. + +.. note:: + See code in ``lib/xroot.c`` and ``mgnt/root.c`` + + +group +^^^^^ + +The group driver represents a pseudo device whose life cycle is managed by +root and does not have real IO mem or IRQ resources. It's part of the +infrastructure of the MPF driver and resides in xrt-lib.ko. This driver + +* manages one or more xleaf drivers +* provides access to root from leaves, so that root calls, event notifications + and inter-leaf calls can happen + +In xrt-mgnt, an initial group driver instance will be created by the root. This +instance contains leaves that will trigger group instances to be created to +manage groups of leaves found on different partitions on hardware, such as +VSEC, Shell, and User. + +Every *fpga_region* has a group object associated with it. The group is +created when xclbin image is loaded on the fpga_region. The existing group +is destroyed when a new xclbin image is loaded. The fpga_region persists +across xclbin downloads. + +.. note:: + See code in ``lib/group.c`` + + +xleaf +^^^^^ + +The xleaf driver is a xrt device driver whose life cycle is managed by +a group driver and may or may not have real IO mem or IRQ resources. They +are the real meat of xrt-mgnt and manage HW subsystems they are attached to. + +A xleaf driver may not have real hardware resources when it merely acts as a +driver that manages certain in-memory states for xrt-mgnt. These in-memory +states could be shared by multiple other leaves. + +Leaf drivers assigned to specific hardware resources drive specific subsystem in +the device. To manipulate the subsystem or carry out a task, a xleaf driver may +ask help from the root via root calls and/or from other leaves via inter-leaf +calls. + +A xleaf can also broadcast events through infrastructure code for other leaves +to process. It can also receive event notification from infrastructure about +certain events, such as post-creation or pre-exit of a particular xleaf. + +.. note:: + See code in ``lib/xleaf/*.c`` + + +FPGA Manager Interaction +======================== + +fpga_manager +------------ + +An instance of fpga_manager is created by xmgnt_main and is used for xclbin +image download. fpga_manager requires the full xclbin image before it can +start programming the FPGA configuration engine via Internal Configuration +Access Port (ICAP) xrt driver. + +fpga_region +----------- + +For every interface exposed by the currently loaded xclbin/xsabin in the +*parent* fpga_region a new instance of fpga_region is created like a *child* +fpga_region. The device tree of the *parent* fpga_region defines the +resources for a new instance of fpga_bridge which isolates the parent from +child fpga_region. This new instance of fpga_bridge will be used when a +xclbin image is loaded on the child fpga_region. After the xclbin image is +downloaded to the fpga_region, an instance of group is created for the +fpga_region using the device tree obtained as part of the xclbin. If this +device tree defines any child interfaces then it can trigger the creation of +fpga_bridge and fpga_region for the next region in the chain. + +fpga_bridge +----------- + +Like the fpga_region, matching fpga_bridge is also created by walking the +device tree of the parent group. + +Driver Interfaces +================= + +xrt-mgnt Driver Ioctls +---------------------- + +Ioctls exposed by xrt-mgnt driver to user space are enumerated in the following +table: + +== ===================== ============================ ========================== +# Functionality ioctl request code data format +== ===================== ============================ ========================== +1 FPGA image download XMGNT_IOCICAPDOWNLOAD_AXLF xmgnt_ioc_bitstream_axlf +== ===================== ============================ ========================== + +A user xclbin can be downloaded by using the xbmgmt tool from the XRT open source +suite. See example usage below:: + + xbmgmt partition --program --path /lib/firmware/xilinx/862c7020a250293e32036f19956669e5/test/verify.xclbin --force + +xrt-mgnt Driver Sysfs +---------------------- + +xrt-mgnt driver exposes a rich set of sysfs interfaces. Subsystem xrt +drivers export sysfs node for every platform instance. + +Every partition also exports its UUIDs. See below for examples:: + + /sys/bus/pci/devices/0000:06:00.0/xmgnt_main.0/interface_uuids + /sys/bus/pci/devices/0000:06:00.0/xmgnt_main.0/logic_uuids + + +hwmon +----- + +xmgnt driver exposes standard hwmon interface to report voltage, current, +temperature, power, etc. These can easily be viewed using *sensors* command +line utility. + +Alveo Platform Overview +======================= + +Alveo platforms are architected as two physical FPGA partitions: *Shell* and +*User*. The Shell provides basic infrastructure for the Alveo platform like +PCIe connectivity, board management, Dynamic Function Exchange (DFX), sensors, +clocking, reset, and security. User partition contains user compiled FPGA +binary which is loaded by a process called DFX also known as partial +reconfiguration. + +For DFX to work properly physical partitions require strict HW compatibility +with each other. Every physical partition has two interface UUIDs: *parent* UUID +and *child* UUID. For simple single stage platforms, Shell → User forms parent +child relationship. + +.. note:: + Partition compatibility matching is key design component of Alveo platforms + and XRT. Partitions have child and parent relationship. A loaded partition + exposes child partition UUID to advertise its compatibility requirement.When + loading a child partition the xrt-mgnt management driver matches parent UUID of + the child partition against child UUID exported by the parent. Parent and + child partition UUIDs are stored in the *xclbin* (for user) or *xsabin* (for + shell). Except for root UUID exported by VSEC, hardware itself does not know + about UUIDs. UUIDs are stored in xsabin and xclbin. The image format has a + special node called Partition UUIDs which define the compatibility UUIDs. See + :ref:`partition_uuids`. + + +The physical partitions and their loading is illustrated below:: + + SHELL USER + +-----------+ +-------------------+ + | | | | + | VSEC UUID | CHILD PARENT | LOGIC UUID | + | o------->|<--------o | + | | UUID UUID | | + +-----+-----+ +--------+----------+ + | | + . . + | | + +---+---+ +------+--------+ + | POR | | USER COMPILED | + | FLASH | | XCLBIN | + +-------+ +---------------+ + + +Loading Sequence +---------------- + +The Shell partition is loaded from flash at system boot time. It establishes the +PCIe link and exposes two physical functions to the BIOS. After the OS boots, xrt-mgnt +driver attaches to the PCIe physical function 0 exposed by the Shell and then looks +for VSEC in PCIe extended configuration space. Using VSEC it determines the logic +UUID of Shell and uses the UUID to load matching *xsabin* file from Linux firmware +directory. The xsabin file contains metadata to discover peripherals that are part +of Shell and firmware(s) for any embedded soft processors in Shell. The xsabin file +also contains Partition UUIDs as described here :ref:`partition_uuids`. + +The Shell exports a child interface UUID which is used for the compatibility check +when loading user compiled xclbin over the User partition as part of DFX. When a user +requests loading of a specific xclbin the xrt-mgnt management driver reads the parent +interface UUID specified in the xclbin and matches it with child interface UUID +exported by Shell to determine if xclbin is compatible with the Shell. If match +fails loading of xclbin is denied. + +xclbin loading is requested using ICAP_DOWNLOAD_AXLF ioctl command. When loading +xclbin, xrt-mgnt driver performs the following *logical* operations: + +1. Copy xclbin from user to kernel memory +2. Sanity check the xclbin contents +3. Isolate the User partition +4. Download the bitstream using the FPGA config engine (ICAP) +5. De-isolate the User partition +6. Program the clocks (ClockWiz) driving the User partition +7. Wait for memory controller (MIG) calibration +8. Return the loading status back to the caller + +`Platform Loading Overview `_ +provides more detailed information on platform loading. + + +xsabin +------ + +Each Alveo platform comes packaged with its own xsabin. The xsabin is a trusted +component of the platform. For format details refer to :ref:`xsabin_xclbin_container_format` +below. xsabin contains basic information like UUIDs, platform name and metadata in the +form of device tree. See :ref:`device_tree_usage` below for details and example. + +xclbin +------ + +xclbin is compiled by end user using +`Vitis `_ +tool set from Xilinx. The xclbin contains sections describing user compiled +acceleration engines/kernels, memory subsystems, clocking information etc. It also +contains FPGA bitstream for the user partition, UUIDs, platform name, etc. + + +.. _xsabin_xclbin_container_format: + +xsabin/xclbin Container Format +------------------------------ + +xclbin/xsabin is ELF-like binary container format. It is structured as series of +sections. There is a file header followed by several section headers which is +followed by sections. A section header points to an actual section. There is an +optional signature at the end. The format is defined by header file ``xclbin.h``. +The following figure illustrates a typical xclbin:: + + + +---------------------+ + | | + | HEADER | + +---------------------+ + | SECTION HEADER | + | | + +---------------------+ + | ... | + | | + +---------------------+ + | SECTION HEADER | + | | + +---------------------+ + | SECTION | + | | + +---------------------+ + | ... | + | | + +---------------------+ + | SECTION | + | | + +---------------------+ + | SIGNATURE | + | (OPTIONAL) | + +---------------------+ + + +xclbin/xsabin files can be packaged, un-packaged and inspected using XRT utility +called **xclbinutil**. xclbinutil is part of XRT open source software stack. The +source code for xclbinutil can be found at +https://github.com/Xilinx/XRT/tree/master/src/runtime_src/tools/xclbinutil + +For example to enumerate the contents of a xclbin/xsabin use the *--info* switch +as shown below:: + + + xclbinutil --info --input /opt/xilinx/firmware/u50/gen3x16-xdma/blp/test/bandwidth.xclbin + xclbinutil --info --input /lib/firmware/xilinx/862c7020a250293e32036f19956669e5/partition.xsabin + + +.. _device_tree_usage: + +Device Tree Usage +----------------- + +As mentioned previously xsabin file stores metadata which advertise HW subsystems present +in a partition. The metadata is stored in device tree format with a well defined schema. +XRT management driver uses this information to bind *xrt drivers* to the subsystem +instantiations. The xrt drivers are found in **xrt-lib.ko** kernel module defined +earlier. + +Logic UUID +^^^^^^^^^^ +A partition is identified uniquely through ``logic_uuid`` property:: + + /dts-v1/; + / { + logic_uuid = "0123456789abcdef0123456789abcdef"; + ... + } + +Schema Version +^^^^^^^^^^^^^^ +Schema version is defined through ``schema_version`` node. And it contains ``major`` +and ``minor`` properties as below:: + + /dts-v1/; + / { + schema_version { + major = <0x01>; + minor = <0x00>; + }; + ... + } + +.. _partition_uuids: + +Partition UUIDs +^^^^^^^^^^^^^^^ +As mentioned earlier, each partition may have parent and child UUIDs. These UUIDs are +defined by ``interfaces`` node and ``interface_uuid`` property:: + + /dts-v1/; + / { + interfaces { + @0 { + interface_uuid = "0123456789abcdef0123456789abcdef"; + }; + @1 { + interface_uuid = "fedcba9876543210fedcba9876543210"; + }; + ... + }; + ... + } + + +Subsystem Instantiations +^^^^^^^^^^^^^^^^^^^^^^^^ +Subsystem instantiations are captured as children of ``addressable_endpoints`` +node:: + + /dts-v1/; + / { + addressable_endpoints { + abc { + ... + }; + def { + ... + }; + ... + } + } + +Subnode 'abc' and 'def' are the name of subsystem nodes + +Subsystem Node +^^^^^^^^^^^^^^ +Each subsystem node and its properties define a hardware instance:: + + + addressable_endpoints { + abc { + reg = <0xa 0xb> + pcie_physical_function = <0x0>; + pcie_bar_mapping = <0x2>; + compatible = "abc def"; + firmware { + firmware_product_name = "abc" + firmware_branch_name = "def" + firmware_version_major = <1> + firmware_version_minor = <2> + }; + } + ... + } + +:reg: + Property defines address range. '<0xa 0xb>' is BAR offset and length pair, both + are 64-bit integer. +:pcie_physical_function: + Property specifies which PCIe physical function the subsystem node resides. +:pcie_bar_mapping: + Property specifies which PCIe BAR the subsystem node resides. '<0x2>' is BAR + index and it is 0 if this property is not defined. +:compatible: + Property is a list of strings. The first string in the list specifies the exact + subsystem node. The following strings represent other devices that the device + is compatible with. +:firmware: + Subnode defines the firmware required by this subsystem node. + +Alveo U50 Platform Example +^^^^^^^^^^^^^^^^^^^^^^^^^^ +:: + + /dts-v1/; + + /{ + logic_uuid = "f465b0a3ae8c64f619bc150384ace69b"; + + schema_version { + major = <0x01>; + minor = <0x00>; + }; + + interfaces { + + @0 { + interface_uuid = "862c7020a250293e32036f19956669e5"; + }; + }; + + addressable_endpoints { + + ep_blp_rom_00 { + reg = <0x00 0x1f04000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_bram_ctrl-1.0\0axi_bram_ctrl"; + }; + + ep_card_flash_program_00 { + reg = <0x00 0x1f06000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_quad_spi-1.0\0axi_quad_spi"; + interrupts = <0x03 0x03>; + }; + + ep_cmc_firmware_mem_00 { + reg = <0x00 0x1e20000 0x00 0x20000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_bram_ctrl-1.0\0axi_bram_ctrl"; + + firmware { + firmware_product_name = "cmc"; + firmware_branch_name = "u50"; + firmware_version_major = <0x01>; + firmware_version_minor = <0x00>; + }; + }; + + ep_cmc_intc_00 { + reg = <0x00 0x1e03000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_intc-1.0\0axi_intc"; + interrupts = <0x04 0x04>; + }; + + ep_cmc_mutex_00 { + reg = <0x00 0x1e02000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_cmc_regmap_00 { + reg = <0x00 0x1e08000 0x00 0x2000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_bram_ctrl-1.0\0axi_bram_ctrl"; + + firmware { + firmware_product_name = "sc-fw"; + firmware_branch_name = "u50"; + firmware_version_major = <0x05>; + }; + }; + + ep_cmc_reset_00 { + reg = <0x00 0x1e01000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_ddr_mem_calib_00 { + reg = <0x00 0x63000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_debug_bscan_mgmt_00 { + reg = <0x00 0x1e90000 0x00 0x10000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-debug_bridge-1.0\0debug_bridge"; + }; + + ep_ert_base_address_00 { + reg = <0x00 0x21000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_ert_command_queue_mgmt_00 { + reg = <0x00 0x40000 0x00 0x10000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-ert_command_queue-1.0\0ert_command_queue"; + }; + + ep_ert_command_queue_user_00 { + reg = <0x00 0x40000 0x00 0x10000>; + pcie_physical_function = <0x01>; + compatible = "xilinx.com,reg_abs-ert_command_queue-1.0\0ert_command_queue"; + }; + + ep_ert_firmware_mem_00 { + reg = <0x00 0x30000 0x00 0x8000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_bram_ctrl-1.0\0axi_bram_ctrl"; + + firmware { + firmware_product_name = "ert"; + firmware_branch_name = "v20"; + firmware_version_major = <0x01>; + }; + }; + + ep_ert_intc_00 { + reg = <0x00 0x23000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_intc-1.0\0axi_intc"; + interrupts = <0x05 0x05>; + }; + + ep_ert_reset_00 { + reg = <0x00 0x22000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_ert_sched_00 { + reg = <0x00 0x50000 0x00 0x1000>; + pcie_physical_function = <0x01>; + compatible = "xilinx.com,reg_abs-ert_sched-1.0\0ert_sched"; + interrupts = <0x09 0x0c>; + }; + + ep_fpga_configuration_00 { + reg = <0x00 0x1e88000 0x00 0x8000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_hwicap-1.0\0axi_hwicap"; + interrupts = <0x02 0x02>; + }; + + ep_icap_reset_00 { + reg = <0x00 0x1f07000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_msix_00 { + reg = <0x00 0x00 0x00 0x20000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-msix-1.0\0msix"; + pcie_bar_mapping = <0x02>; + }; + + ep_pcie_link_mon_00 { + reg = <0x00 0x1f05000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_pr_isolate_plp_00 { + reg = <0x00 0x1f01000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_pr_isolate_ulp_00 { + reg = <0x00 0x1000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_uuid_rom_00 { + reg = <0x00 0x64000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_bram_ctrl-1.0\0axi_bram_ctrl"; + }; + + ep_xdma_00 { + reg = <0x00 0x00 0x00 0x10000>; + pcie_physical_function = <0x01>; + compatible = "xilinx.com,reg_abs-xdma-1.0\0xdma"; + pcie_bar_mapping = <0x02>; + }; + }; + + } + + + +Deployment Models +================= + +Baremetal +--------- + +In bare-metal deployments, both MPF and UPF are visible and accessible. xrt-mgnt +driver binds to MPF. xrt-mgnt driver operations are privileged and available to +system administrator. The full stack is illustrated below:: + + HOST + + [XRT-MGNT] [XRT-USER] + | | + | | + +-----+ +-----+ + | MPF | | UPF | + | | | | + | PF0 | | PF1 | + +--+--+ +--+--+ + ......... ^................. ^.......... + | | + | PCIe DEVICE | + | | + +--+------------------+--+ + | SHELL | + | | + +------------------------+ + | USER | + | | + | | + | | + | | + +------------------------+ + + + +Virtualized +----------- + +In virtualized deployments, privileged MPF is assigned to host but unprivileged +UPF is assigned to guest VM via PCIe pass-through. xrt-mgnt driver in host binds +to MPF. xrt-mgnt driver operations are privileged and only accessible to the MPF. +The full stack is illustrated below:: + + + .............. + HOST . VM . + . . + [XRT-MGNT] . [XRT-USER] . + | . | . + | . | . + +-----+ . +-----+ . + | MPF | . | UPF | . + | | . | | . + | PF0 | . | PF1 | . + +--+--+ . +--+--+ . + ......... ^................. ^.......... + | | + | PCIe DEVICE | + | | + +--+------------------+--+ + | SHELL | + | | + +------------------------+ + | USER | + | | + | | + | | + | | + +------------------------+ + + + + + +Platform Security Considerations +================================ + +`Security of Alveo Platform `_ +discusses the deployment options and security implications in great detail. -- 2.27.0