
Task isolation prctl interface
Certain types of applications benefit from running uninterrupted by background OS
activities. Realtime systems and high-bandwidth networking applications with user-
space drivers can fall into the category.

To create an OS noise free environment for the application, this interface allows
userspace to inform the kernel the start and end of the latency sensitive application
section (with configurable system behaviour for that section).

Note: the prctl interface is independent of nohz_full=.
The prctl options are:

• PR_ISOL_FEAT_GET: Retrieve supported features.
• PR_ISOL_CFG_GET: Retrieve task isolation configuration.
• PR_ISOL_CFG_SET: Set task isolation configuration.
• PR_ISOL_ACTIVATE_GET: Retrieve task isolation activation state.
• PR_ISOL_ACTIVATE_SET: Set task isolation activation state.

Summary of terms:

• feature:

A distinct attribute or aspect of task isolation. Examples of features
could be logging, new operating modes (eg: syscalls disallowed),
userspace notifications, etc. The only feature currently available is
quiescing.

• configuration:

A specific choice from a given set of possible choices that dictate how
the particular feature in question should behave.

• activation state:

The activation state (whether activate/inactive) of the task isolation
features (features must be configured before being activated).

Inheritance of the isolation parameters and state, across fork(2) and clone(2), can
be changed via PR_ISOL_CFG_GET/PR_ISOL_CFG_SET.

At a high-level, task isolation is divided in two steps:

1. Configuration.

2. Activation.

Section "Userspace support" describes how to use task isolation.
In terms of the interface, the sequence of steps to activate task isolation are:

1. Retrieve supported task isolation features (PR_ISOL_FEAT_GET).

2. Configure task isolation features (PR_ISOL_CFG_GET/PR_ISOL_CFG_SET).

3. Activate or deactivate task isolation features (PR_ISOL_ACTIVATE_GET/PR_ISOL_ACTIVATE_SET).

This interface is based on ideas and code from the task isolation patchset from Alex
Belits: https://lwn.net/Articles/816298/

1

https://lwn.net/Articles/816298/


Feature description
• ISOL_F_QUIESCE

This feature allows quiescing select kernel activities on return from system
calls.

Interface description
PR_ISOL_FEAT:

Returns the supported features and feature capabilities, as a bitmask:

prctl(PR_ISOL_FEAT, feat, arg3, arg4, arg5);

The ’feat’ argument specifies whether to return supported features (if zero),
or feature capabilities (if not zero). Possible values for ’feat’ are:

• 0: Return the bitmask of supported features, in the location pointed
to by (int *)arg3. The buffer should allow space for 8
bytes.

• ISOL_F_QUIESCE:

Return a structure containing which kernel activities are
supported for quiescing, in the location pointed to by (int
*)arg3:

struct task_isol_quiesce_extensions {
__u64 flags;
__u64 supported_quiesce_bits;
__u64 pad[6];

};

Where:
flags: Additional flags (should be zero).
supported_quiesce_bits: Bitmask indicating which features

are supported for quiescing.
pad: Additional space for future enhancements.

Features and its capabilities are defined at include/uapi/linux/task_isolation.h.

PR_ISOL_CFG_GET:

Retrieve task isolation configuration. The general format is:

prctl(PR_ISOL_CFG_GET, what, arg3, arg4, arg5);

The ’what’ argument specifies what to configure. Possible values are:

• I_CFG_FEAT:

Return configuration of task isolation features. The ’arg3’
argument specifies whether to return configured features (if
zero), or individual feature configuration (if not zero), as
follows.

2



– 0:
Return the bitmask of configured features, in the
location pointed to by (int *)arg4. The buffer
should allow space for 8 bytes.

– ISOL_F_QUIESCE:
Return the control structure for quiescing of back-
ground kernel activities, in the location pointed to
by (int *)arg4:
struct task_isol_quiesce_control {

__u64 flags;
__u64 quiesce_mask;
__u64 pad[6];

};

Where:
flags: Additional flags (should be zero).
quiesce_mask: A bitmask containing which activ-
ities are configured for quiescing.
pad: Additional space for future enhancements.

• I_CFG_INHERIT:

Retrieve inheritance configuration across fork/clone.
Return the structure which configures inheritance across
fork/clone, in the location pointed to by (int *)arg4:

struct task_isol_inherit_control {
__u8 inherit_mask;
__u8 pad[7];

};

See PR_ISOL_CFG_SET description for meaning of bits.

PR_ISOL_CFG_SET:

Set task isolation configuration. The general format is:

prctl(PR_ISOL_CFG_SET, what, arg3, arg4, arg5);

The ’what’ argument specifies what to configure. Possible values are:

• I_CFG_FEAT:

Set configuration of task isolation features. ’arg3’ specifies
the feature. Possible values are:

– ISOL_F_QUIESCE:
Set the control structure for quiescing of back-
ground kernel activities, from the location pointed
to by (int *)arg4:
struct task_isol_quiesce_control {

__u64 flags;
__u64 quiesce_mask;
__u64 pad[6];

};

3



Where:
flags: Additional flags (should be zero).
quiesce_mask: A bitmask containing which ker-
nel activities to quiesce.
pad: Additional space for future enhancements.
For quiesce_mask, possible bit sets are:
∗ ISOL_F_QUIESCE_VMSTATS

VM statistics are maintained in per-CPU coun-
ters to improve performance. When a CPU mod-
ifies a VM statistic, this modification is kept in
the per-CPU counter. Certain activities require a
global count, which involves requesting each CPU
to flush its local counters to the global VM coun-
ters.
This flush is implemented via a workqueue item,
which might schedule a workqueue on isolated
CPUs.
To avoid this interruption, task isolation can be
configured to, upon return from system calls, syn-
chronize the per-CPU counters to global counters,
thus avoiding the interruption.
To ensure the application returns to userspace with
no modified per-CPU counters, its necessary to
use mlockall() in addition to this isolcpus flag.

• I_CFG_INHERIT: Set inheritance configuration when a new task
is created via fork and clone.
The (int *)arg4 argument is a pointer to:

struct task_isol_inherit_control {
__u8 inherit_mask;
__u8 pad[7];

};

inherit_mask is a bitmask that specifies which part of task isola-
tion should be inherited:

– Bit ISOL_INHERIT_CONF: Inherit task isolation configu-
ration. This is the stated written via prctl(PR_ISOL_CFG_SET,
...).

– Bit ISOL_INHERIT_ACTIVE: Inherit task isolation activa-
tion (requires ISOL_INHERIT_CONF to be set). The new
task should behave, after fork/clone, in the same manner as
the parent task after it executed:

prctl(PR_ISOL_ACTIVATE_SET, &mask, ...);

PR_ISOL_ACTIVATE_GET:

Retrieve task isolation activation state.

The general format is:

prctl(PR_ISOL_ACTIVATE_GET, pmask, arg3, arg4, arg5);

4



’pmask’ specifies the location of a feature mask, where the current active
mask will be copied. See PR_ISOL_ACTIVATE_SET for description of
individual bits.

PR_ISOL_ACTIVATE_SET:

Set task isolation activation state (activates/deactivates task isolation).

The general format is:

prctl(PR_ISOL_ACTIVATE_SET, pmask, arg3, arg4, arg5);

The ’pmask’ argument specifies the location of an 8 byte mask containing
which features should be activated. Features whose bits are cleared will
be deactivated. The possible bits for this mask are:

• ISOL_F_QUIESCE:
Activate quiescing of background kernel activities. Quiescing
happens on return to userspace from this system call, and on re-
turn from subsequent system calls (unless quiesce_oneshot_mask
is configured, see below).

If the arg3 argument is non-zero, it specifies a pointer to:

struct task_isol_activate_control {
__u64 flags;
__u64 quiesce_oneshot_mask;
__u64 pad[6];

};

Where:

flags: Additional flags (should be zero).

quiesce_oneshot_mask: Quiescing for the kernel activities with
bits set on this mask will happen on the return from this
system call, but not on return from subsequent ones.

Quiescing can be adjusted (while active) by prctl(PR_ISOL_ACTIVATE_SET,
&new_mask, ...).

Userspace support
Task isolation is divided in two main steps: configuration and activation.

Each step can be performed by an external tool or the latency sensitive application
itself. util-linux contains the "chisol" tool for this purpose.

This results in three combinations:
1. Both configuration and activation performed by the latency sensitive application.

Allows fine grained control of what task isolation features are enabled and when (see
samples section below).

2. Only activation can be performed by the latency sensitive app (and configuration
performed by chisol). This allows the admin/user to control task isolation parameters,
and applications have to be modified only once.

5



3. Configuration and activation performed by an external tool. This allows unmod-
ified applications to take advantage of task isolation. Activation is performed by the
"-a" option of chisol.

Examples
The samples/task_isolation/ directory contains 3 examples:

• task_isol_userloop.c:

Example of program with a loop on userspace scenario.

• task_isol_computation.c:

Example of program that enters task isolated mode, performs an amount
of computation, exits task isolated mode, and writes the computation
to disk.

• task_isol_oneshot.c:

Example of program that enables one-shot mode for quiescing, enters
a processing loop, then upon an external event performs a number of
syscalls to handle that event.

This is a snippet of code to activate task isolation if it has been previously config-
ured (by chisol for example):

#include <sys/prctl.h>
#include <linux/types.h>

#ifdef PR_ISOL_CFG_GET
unsigned long long fmask;

ret = prctl(PR_ISOL_CFG_GET, I_CFG_FEAT, 0, &fmask, 0);
if (ret != -1 && fmask != 0) {

ret = prctl(PR_ISOL_ACTIVATE_SET, &fmask, 0, 0, 0);
if (ret == -1) {

perror("prctl PR_ISOL_ACTIVATE_SET");
return ret;

}
}
#endif

6


	Task isolation prctl interface
	Feature description
	Interface description

	Userspace support
	Examples

