--- archs/linux-2.6/include/linux/sched.h 2003-08-24 18:58:59.000000000 +1000 +++ linux-2.6/include/linux/sched.h 2003-08-24 20:29:37.000000000 +1000 @@ -281,7 +281,9 @@ struct signal_struct { #define MAX_RT_PRIO MAX_USER_RT_PRIO #define MAX_PRIO (MAX_RT_PRIO + 40) - + +#define rt_task(p) ((p)->prio < MAX_RT_PRIO) + /* * Some day this will be a full-fledged user tracking system.. */ @@ -339,12 +341,16 @@ struct task_struct { struct list_head run_list; prio_array_t *array; + unsigned long array_sequence; + unsigned long timestamp; + + unsigned long total_time, sleep_time; unsigned long sleep_avg; - unsigned long last_run; unsigned long policy; cpumask_t cpus_allowed; unsigned int time_slice, first_time_slice; + unsigned int used_slice; struct list_head tasks; struct list_head ptrace_children; @@ -552,6 +558,7 @@ extern int FASTCALL(wake_up_state(struct extern int FASTCALL(wake_up_process(struct task_struct * tsk)); extern int FASTCALL(wake_up_process_kick(struct task_struct * tsk)); extern void FASTCALL(wake_up_forked_process(struct task_struct * tsk)); +extern void FASTCALL(sched_fork(task_t * p)); extern void FASTCALL(sched_exit(task_t * p)); asmlinkage long sys_wait4(pid_t pid,unsigned int * stat_addr, int options, struct rusage * ru); --- archs/linux-2.6/kernel/fork.c 2003-08-24 18:58:59.000000000 +1000 +++ linux-2.6/kernel/fork.c 2003-08-24 20:32:15.000000000 +1000 @@ -911,33 +911,9 @@ struct task_struct *copy_process(unsigne p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL); p->pdeath_signal = 0; - /* - * Share the timeslice between parent and child, thus the - * total amount of pending timeslices in the system doesn't change, - * resulting in more scheduling fairness. - */ - local_irq_disable(); - p->time_slice = (current->time_slice + 1) >> 1; - /* - * The remainder of the first timeslice might be recovered by - * the parent if the child exits early enough. - */ - p->first_time_slice = 1; - current->time_slice >>= 1; - p->last_run = jiffies; - if (!current->time_slice) { - /* - * This case is rare, it happens when the parent has only - * a single jiffy left from its timeslice. Taking the - * runqueue lock is not a problem. - */ - current->time_slice = 1; - preempt_disable(); - scheduler_tick(0, 0); - local_irq_enable(); - preempt_enable(); - } else - local_irq_enable(); + /* Perform scheduler related accounting */ + sched_fork(p); + /* * Ok, add it to the run-queues and make it * visible to the rest of the system. --- archs/linux-2.6/kernel/sched.c 2003-08-24 18:58:59.000000000 +1000 +++ linux-2.6/kernel/sched.c 2003-08-24 22:15:30.000000000 +1000 @@ -66,73 +66,17 @@ * maximum timeslice is 200 msecs. Timeslices get refilled after * they expire. */ -#define MIN_TIMESLICE ( 10 * HZ / 1000) -#define MAX_TIMESLICE (200 * HZ / 1000) -#define CHILD_PENALTY 50 -#define PARENT_PENALTY 100 -#define EXIT_WEIGHT 3 -#define PRIO_BONUS_RATIO 25 -#define INTERACTIVE_DELTA 2 -#define MAX_SLEEP_AVG (10*HZ) -#define STARVATION_LIMIT (10*HZ) -#define NODE_THRESHOLD 125 - -/* - * If a task is 'interactive' then we reinsert it in the active - * array after it has expired its current timeslice. (it will not - * continue to run immediately, it will still roundrobin with - * other interactive tasks.) - * - * This part scales the interactivity limit depending on niceness. - * - * We scale it linearly, offset by the INTERACTIVE_DELTA delta. - * Here are a few examples of different nice levels: - * - * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0] - * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0] - * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0] - * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0] - * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0] - * - * (the X axis represents the possible -5 ... 0 ... +5 dynamic - * priority range a task can explore, a value of '1' means the - * task is rated interactive.) - * - * Ie. nice +19 tasks can never get 'interactive' enough to be - * reinserted into the active array. And only heavily CPU-hog nice -20 - * tasks will be expired. Default nice 0 tasks are somewhere between, - * it takes some effort for them to get interactive, but it's not - * too hard. - */ - -#define SCALE(v1,v1_max,v2_max) \ - (v1) * (v2_max) / (v1_max) +#define MIN_TIMESLICE ((1 * HZ / 1000) ? 1 * HZ / 1000 : 1) +#define MAX_TIMESLICE (20 * MIN_TIMESLICE) /* This cannot be changed */ -#define DELTA(p) \ - (SCALE(TASK_NICE(p), 40, MAX_USER_PRIO*PRIO_BONUS_RATIO/100) + \ - INTERACTIVE_DELTA) +#define MAX_SLEEP (HZ) -#define TASK_INTERACTIVE(p) \ - ((p)->prio <= (p)->static_prio - DELTA(p)) - -/* - * BASE_TIMESLICE scales user-nice values [ -20 ... 19 ] - * to time slice values. - * - * The higher a thread's priority, the bigger timeslices - * it gets during one round of execution. But even the lowest - * priority thread gets MIN_TIMESLICE worth of execution time. - * - * task_timeslice() is the interface that is used by the scheduler. - */ - -#define BASE_TIMESLICE(p) (MIN_TIMESLICE + \ - ((MAX_TIMESLICE - MIN_TIMESLICE) * (MAX_PRIO-1-(p)->static_prio)/(MAX_USER_PRIO - 1))) +#define NODE_THRESHOLD 125 -static inline unsigned int task_timeslice(task_t *p) -{ - return BASE_TIMESLICE(p); -} +#define TASK_PREEMPTS_CURR(p, rq) \ + ( (p)->prio < (rq)->curr->prio \ + || ((p)->prio == (rq)->curr->prio \ + && (p)->static_prio < (rq)->curr->static_prio) ) /* * These are the runqueue data structures: @@ -157,7 +101,8 @@ struct prio_array { */ struct runqueue { spinlock_t lock; - unsigned long nr_running, nr_switches, expired_timestamp, + unsigned long array_sequence; + unsigned long nr_running, nr_switches, nr_uninterruptible; task_t *curr, *idle; struct mm_struct *prev_mm; @@ -179,7 +124,6 @@ static DEFINE_PER_CPU(struct runqueue, r #define this_rq() (&__get_cpu_var(runqueues)) #define task_rq(p) cpu_rq(task_cpu(p)) #define cpu_curr(cpu) (cpu_rq(cpu)->curr) -#define rt_task(p) ((p)->prio < MAX_RT_PRIO) /* * Default context-switch locking: @@ -298,35 +242,79 @@ static inline void enqueue_task(struct t p->array = array; } +static void add_task_time(task_t *p, unsigned long time, int sleep) +{ + if (time == 0) + return; + + if (time > MAX_SLEEP) { + time = MAX_SLEEP; + p->total_time = 0; + p->sleep_time = 0; + } else { + unsigned long r; + + r = MAX_SLEEP - time; + p->total_time = (r*p->total_time + MAX_SLEEP/2) / MAX_SLEEP; + p->sleep_time = (r*p->sleep_time + MAX_SLEEP/2) / MAX_SLEEP; + } + + p->total_time += 1000 * time; + if (sleep) + p->sleep_time += 1000 * time; + + p->sleep_avg = (1000 * p->sleep_time) / p->total_time; +} + /* - * effective_prio - return the priority that is based on the static - * priority but is modified by bonuses/penalties. - * - * We scale the actual sleep average [0 .... MAX_SLEEP_AVG] - * into the -5 ... 0 ... +5 bonus/penalty range. - * - * We use 25% of the full 0...39 priority range so that: - * - * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs. - * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks. - * - * Both properties are important to certain workloads. + * The higher a thread's priority, the bigger timeslices + * it gets during one round of execution. But even the lowest + * priority thread gets MIN_TIMESLICE worth of execution time. */ -static int effective_prio(task_t *p) +static unsigned int task_timeslice(task_t *p, runqueue_t *rq) +{ + int idx, delta; + unsigned int base, timeslice; + + if (rt_task(p)) + return MAX_TIMESLICE; + +#if 0 + unsigned int timeslice = MIN_TIMESLICE + + ( (MAX_USER_PRIO - USER_PRIO(p->prio)) + * (MAX_TIMESLICE - MIN_TIMESLICE) ) + / MAX_USER_PRIO; +#endif + idx = min(find_next_bit(rq->active->bitmap, MAX_PRIO, MAX_RT_PRIO), + find_next_bit(rq->expired->bitmap, MAX_PRIO, MAX_RT_PRIO)); + idx = min(idx, p->prio); + delta = p->prio - idx; + + base = MIN_TIMESLICE * MAX_USER_PRIO / (delta + 1); + timeslice = base * (USER_PRIO(idx) + 4) / 4; + + if (timeslice <= 0) + timeslice = 1; + + return timeslice; +} + +static unsigned long task_priority(task_t *p) { int bonus, prio; if (rt_task(p)) return p->prio; - bonus = MAX_USER_PRIO*PRIO_BONUS_RATIO*p->sleep_avg/MAX_SLEEP_AVG/100 - - MAX_USER_PRIO*PRIO_BONUS_RATIO/100/2; + bonus = (MAX_USER_PRIO * p->sleep_avg) / 1000 / 2; + prio = USER_PRIO(p->static_prio) / 2 + (MAX_USER_PRIO / 2); - prio = p->static_prio - bonus; + prio = MAX_RT_PRIO + prio - bonus; if (prio < MAX_RT_PRIO) prio = MAX_RT_PRIO; if (prio > MAX_PRIO-1) prio = MAX_PRIO-1; + return prio; } @@ -347,34 +335,38 @@ static inline void __activate_task(task_ */ static inline void activate_task(task_t *p, runqueue_t *rq) { - long sleep_time = jiffies - p->last_run - 1; + unsigned long sleep = jiffies - p->timestamp; + p->timestamp = jiffies; - if (sleep_time > 0) { - int sleep_avg; + if (sleep > MAX_SLEEP) + sleep = MAX_SLEEP; - /* - * This code gives a bonus to interactive tasks. - * - * The boost works by updating the 'average sleep time' - * value here, based on ->last_run. The more time a task - * spends sleeping, the higher the average gets - and the - * higher the priority boost gets as well. - */ - sleep_avg = p->sleep_avg + sleep_time; + if (!in_interrupt() && current->mm) { + unsigned long boost = sleep / 2; + add_task_time(current, boost, 1); + add_task_time(p, sleep - boost, 1); + } else { + add_task_time(p, sleep, 1); + + if (in_interrupt()) + add_task_time(p, sleep / 2, 1); + } - /* - * 'Overflow' bonus ticks go to the waker as well, so the - * ticks are not lost. This has the effect of further - * boosting tasks that are related to maximum-interactive - * tasks. - */ - if (sleep_avg > MAX_SLEEP_AVG) - sleep_avg = MAX_SLEEP_AVG; - if (p->sleep_avg != sleep_avg) { - p->sleep_avg = sleep_avg; - p->prio = effective_prio(p); - } + p->prio = task_priority(p); + + if (rq->array_sequence != p->array_sequence) { + p->used_slice = 0; } + + if (!in_interrupt() && current->mm) { + unsigned long steal; + + steal = min((unsigned int)sleep / 2, + (task_timeslice(p, rq) - p->used_slice) / 2); + p->used_slice += steal; + current->used_slice -= steal; + } + __activate_task(p, rq); } @@ -383,6 +375,7 @@ static inline void activate_task(task_t */ static inline void deactivate_task(struct task_struct *p, runqueue_t *rq) { + p->array_sequence = rq->array_sequence; nr_running_dec(rq); if (p->state == TASK_UNINTERRUPTIBLE) rq->nr_uninterruptible++; @@ -426,7 +419,7 @@ static inline void resched_task(task_t * * be called with interrupts off, or it may introduce deadlock with * smp_call_function() if an IPI is sent by the same process we are * waiting to become inactive. - */ + n*/ void wait_task_inactive(task_t * p) { unsigned long flags; @@ -497,11 +490,9 @@ repeat_lock_task: } if (old_state == TASK_UNINTERRUPTIBLE) rq->nr_uninterruptible--; - if (sync) - __activate_task(p, rq); - else { - activate_task(p, rq); - if (p->prio < rq->curr->prio) + activate_task(p, rq); + if (!sync) { + if (TASK_PREEMPTS_CURR(p, rq)) resched_task(rq->curr); } success = 1; @@ -534,36 +525,74 @@ int wake_up_state(task_t *p, unsigned in } /* + * Perform scheduler related accounting for a newly forked process @p. + * @p is forked by current. + */ +void sched_fork(task_t *p) +{ + unsigned long ts; + unsigned long flags; + runqueue_t *rq; + + /* + * Share the timeslice between parent and child, thus the + * total amount of pending timeslices in the system doesn't change, + * resulting in more scheduling fairness. + */ + local_irq_disable(); + p->timestamp = jiffies; + rq = task_rq_lock(current, &flags); + ts = task_timeslice(current, rq); + task_rq_unlock(rq, &flags); + p->used_slice = current->used_slice + (ts - current->used_slice+1) / 2; + current->used_slice += (ts - current->used_slice) / 2; + /* + * The remainder of the first timeslice might be recovered by + * the parent if the child exits early enough. + */ + p->first_time_slice = 1; + if (current->used_slice >= ts) { + /* + * This case is rare, it happens when the parent has only + * a single jiffy left from its timeslice. Taking the + * runqueue lock is not a problem. + */ + current->used_slice = ts + 1; + preempt_disable(); + scheduler_tick(0, 0); + local_irq_enable(); + preempt_enable(); + } else + local_irq_enable(); +} + +/* * wake_up_forked_process - wake up a freshly forked process. * * This function will do some initial scheduler statistics housekeeping * that must be done for every newly created process. */ -void wake_up_forked_process(task_t * p) +void wake_up_forked_process(task_t *p) { unsigned long flags; runqueue_t *rq = task_rq_lock(current, &flags); p->state = TASK_RUNNING; - /* - * We decrease the sleep average of forking parents - * and children as well, to keep max-interactive tasks - * from forking tasks that are max-interactive. - */ - current->sleep_avg = current->sleep_avg * PARENT_PENALTY / 100; - p->sleep_avg = p->sleep_avg * CHILD_PENALTY / 100; - p->prio = effective_prio(p); + set_task_cpu(p, smp_processor_id()); - if (unlikely(!current->array)) - __activate_task(p, rq); - else { - p->prio = current->prio; - list_add_tail(&p->run_list, ¤t->run_list); - p->array = current->array; - p->array->nr_active++; - nr_running_inc(rq); - } + p->sleep_time = current->sleep_time / 40; + p->total_time = current->total_time / 40; + p->sleep_avg = current->sleep_avg; + + current->sleep_time = 2 * (current->sleep_time) / 3; + if (current->total_time != 0) + current->sleep_avg = (1000 * current->sleep_time) + / current->total_time; + + p->prio = task_priority(p); + __activate_task(p, rq); + task_rq_unlock(rq, &flags); } @@ -582,18 +611,13 @@ void sched_exit(task_t * p) local_irq_save(flags); if (p->first_time_slice) { - p->parent->time_slice += p->time_slice; - if (unlikely(p->parent->time_slice > MAX_TIMESLICE)) - p->parent->time_slice = MAX_TIMESLICE; + unsigned long flags; + runqueue_t *rq; + rq = task_rq_lock(p, &flags); + p->parent->used_slice -= task_timeslice(p, rq) - p->used_slice; + task_rq_unlock(rq, &flags); } local_irq_restore(flags); - /* - * If the child was a (relative-) CPU hog then decrease - * the sleep_avg of the parent as well. - */ - if (p->sleep_avg < p->parent->sleep_avg) - p->parent->sleep_avg = (p->parent->sleep_avg * EXIT_WEIGHT + - p->sleep_avg) / (EXIT_WEIGHT + 1); } /** @@ -995,13 +1019,29 @@ static inline void pull_task(runqueue_t * Note that idle threads have a prio of MAX_PRIO, for this test * to be always true for them. */ - if (p->prio < this_rq->curr->prio) + if (TASK_PREEMPTS_CURR(p, this_rq)) set_need_resched(); - else { - if (p->prio == this_rq->curr->prio && - p->time_slice > this_rq->curr->time_slice) - set_need_resched(); - } +} + +/* + * comment me + */ + +static inline int +can_migrate_task(task_t *tsk, runqueue_t *rq, int this_cpu, int idle) +{ + unsigned long delta; + + if (task_running(rq, tsk)) + return 0; + if (!cpu_isset(this_cpu, tsk->cpus_allowed)) + return 0; + + delta = jiffies - tsk->timestamp; + if (idle && (delta <= cache_decay_ticks)) + return 0; + + return 1; } /* @@ -1063,14 +1103,9 @@ skip_queue: * 3) are cache-hot on their current CPU. */ -#define CAN_MIGRATE_TASK(p,rq,this_cpu) \ - ((!idle || (jiffies - (p)->last_run > cache_decay_ticks)) && \ - !task_running(rq, p) && \ - cpu_isset(this_cpu, (p)->cpus_allowed)) - curr = curr->prev; - if (!CAN_MIGRATE_TASK(tmp, busiest, this_cpu)) { + if (!can_migrate_task(tmp, busiest, this_cpu, idle)) { if (curr != head) goto skip_queue; idx++; @@ -1171,20 +1206,6 @@ DEFINE_PER_CPU(struct kernel_stat, kstat EXPORT_PER_CPU_SYMBOL(kstat); /* - * We place interactive tasks back into the active array, if possible. - * - * To guarantee that this does not starve expired tasks we ignore the - * interactivity of a task if the first expired task had to wait more - * than a 'reasonable' amount of time. This deadline timeout is - * load-dependent, as the frequency of array switched decreases with - * increasing number of running tasks: - */ -#define EXPIRED_STARVING(rq) \ - (STARVATION_LIMIT && ((rq)->expired_timestamp && \ - (jiffies - (rq)->expired_timestamp >= \ - STARVATION_LIMIT * ((rq)->nr_running) + 1))) - -/* * This function gets called by the timer code, with HZ frequency. * We call it with interrupts disabled. * @@ -1201,17 +1222,11 @@ void scheduler_tick(int user_ticks, int if (rcu_pending(cpu)) rcu_check_callbacks(cpu, user_ticks); - /* note: this timer irq context must be accounted for as well */ - if (hardirq_count() - HARDIRQ_OFFSET) { - cpustat->irq += sys_ticks; - sys_ticks = 0; - } else if (softirq_count()) { - cpustat->softirq += sys_ticks; - sys_ticks = 0; - } - if (p == rq->idle) { - if (atomic_read(&rq->nr_iowait) > 0) + /* note: this timer irq context must be accounted for as well */ + if (irq_count() - HARDIRQ_OFFSET >= SOFTIRQ_OFFSET) + cpustat->system += sys_ticks; + else if (atomic_read(&rq->nr_iowait) > 0) cpustat->iowait += sys_ticks; else cpustat->idle += sys_ticks; @@ -1232,43 +1247,39 @@ void scheduler_tick(int user_ticks, int spin_lock(&rq->lock); /* * The task was running during this tick - update the - * time slice counter and the sleep average. Note: we - * do not update a thread's priority until it either - * goes to sleep or uses up its timeslice. This makes - * it possible for interactive tasks to use up their - * timeslices at their highest priority levels. + * time slice counter. Note: we do not update a thread's + * priority until it either goes to sleep or uses up its + * timeslice. */ - if (p->sleep_avg) - p->sleep_avg--; if (unlikely(rt_task(p))) { /* * RR tasks need a special form of timeslice management. * FIFO tasks have no timeslices. */ - if ((p->policy == SCHED_RR) && !--p->time_slice) { - p->time_slice = task_timeslice(p); - p->first_time_slice = 0; - set_tsk_need_resched(p); - - /* put it at the end of the queue: */ - dequeue_task(p, rq->active); - enqueue_task(p, rq->active); + if (p->policy == SCHED_RR) { + p->used_slice++; + if (p->used_slice >= task_timeslice(p, rq)) { + p->used_slice = 0; + p->first_time_slice = 0; + set_tsk_need_resched(p); + + /* put it at the end of the queue: */ + dequeue_task(p, rq->active); + enqueue_task(p, rq->active); + } } goto out_unlock; } - if (!--p->time_slice) { + + p->used_slice++; + if (p->used_slice >= task_timeslice(p, rq)) { dequeue_task(p, rq->active); set_tsk_need_resched(p); - p->prio = effective_prio(p); - p->time_slice = task_timeslice(p); + p->prio = task_priority(p); + p->used_slice = 0; p->first_time_slice = 0; - if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) { - if (!rq->expired_timestamp) - rq->expired_timestamp = jiffies; - enqueue_task(p, rq->expired); - } else - enqueue_task(p, rq->active); + enqueue_task(p, rq->expired); } out_unlock: spin_unlock(&rq->lock); @@ -1287,6 +1298,8 @@ asmlinkage void schedule(void) runqueue_t *rq; prio_array_t *array; struct list_head *queue; + unsigned long now; + unsigned long run_time; int idx; /* @@ -1307,7 +1320,11 @@ need_resched: rq = this_rq(); release_kernel_lock(prev); - prev->last_run = jiffies; + now = jiffies; + run_time = now - prev->timestamp; + + add_task_time(prev, run_time, 0); + spin_lock_irq(&rq->lock); /* @@ -1336,7 +1353,6 @@ pick_next_task: goto pick_next_task; #endif next = rq->idle; - rq->expired_timestamp = 0; goto switch_tasks; } @@ -1345,10 +1361,10 @@ pick_next_task: /* * Switch the active and expired arrays. */ + rq->array_sequence++; rq->active = rq->expired; rq->expired = array; array = rq->active; - rq->expired_timestamp = 0; } idx = sched_find_first_bit(array->bitmap); @@ -1360,7 +1376,9 @@ switch_tasks: clear_tsk_need_resched(prev); RCU_qsctr(task_cpu(prev))++; + prev->timestamp = now; if (likely(prev != next)) { + next->timestamp = now; rq->nr_switches++; rq->curr = next; @@ -2139,6 +2168,8 @@ asmlinkage long sys_sched_rr_get_interva int retval = -EINVAL; struct timespec t; task_t *p; + unsigned long flags; + runqueue_t *rq; if (pid < 0) goto out_nounlock; @@ -2153,8 +2184,10 @@ asmlinkage long sys_sched_rr_get_interva if (retval) goto out_unlock; + rq = task_rq_lock(p, &flags); jiffies_to_timespec(p->policy & SCHED_FIFO ? - 0 : task_timeslice(p), &t); + 0 : task_timeslice(p, rq), &t); + task_rq_unlock(rq, &flags); read_unlock(&tasklist_lock); retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; out_nounlock: