
Augmented Page Reclaim
We would like to share a work with you and see if there is enough interest to warrant a run for the mainline.
This work is a part of result from a decade of research and experimentation in memory overcommit at
Google: an augmented page reclaim that, in our experience, is performant, versatile and, more
importantly, simple.

Performance
On Android, our most advanced simulation that generates memory pressure from realistic user behavior
shows 18% fewer low-memory kills, which in turn reduces cold starts by 16%. This is on top of per-process
reclaim, a predecessor of MADV_COLD and MADV_PAGEOUT, against background apps.

On Borg (warehouse-scale computers), a similar approach enables us to identify jobs that underutilize
their memory and downsize them considerably without compromising any of our service level indicators.
Our findings are published in the papers listed below, e.g., 32% of memory usage on Borg has been idle
for at least 2 minutes.

On Chrome OS, our field telemetry reports 96% fewer low-memory tab discards and 59% fewer OOM kills
from fully-utilized devices and no UX regressions from underutilized devices. Our real-world benchmark
that browses popular websites in multiple tabs demonstrates 51% less CPU usage from kswapd and 45%
(some) and 52% (full) less PSI on v5.11-rc6 built from the tree below.

Versatility
Userspace can trigger aging and eviction independently via the debugfs interface note for working set
estimation, proactive reclaim, far memory tiering, NUMA-aware job scheduling, etc. The metrics from the
interface are easily interpretable, which allows intuitive provisioning and discoveries like the Borg example
above. For a warehouse-scale computer, the interface is intended to be a building block of a closed-loop
control system, with a machine learning algorithm being the controller.

Simplicity
The workflow note is well defined and each step in it has a clear meaning. There are no magic numbers or
heuristics involved but a few basic data structures that have negligible memory footprint. This simplicity
has served us well as the scale and the diversity of our workloads constantly grow.

Repo
git pull https://linux-mm.googlesource.com/page-reclaim refs/changes/80/1080/1

Gerrit: https://linux-mm-review.googlesource.com/c/page-reclaim/+/1080

FAQ

What is the motivation for this work?
In our case, DRAM is a major factor in total cost of ownership, and improving memory overcommit brings a
high return on investment. Moreover, Google-Wide Profiling has been observing the high CPU overhead
note from page reclaim.

Why not try to improve the existing code?
We have tried but concluded the two limiting factors note in the existing code are fundamental, and
therefore changes made atop them will not result in substantial gains on any of the aspects above.

https://linux-mm.googlesource.com/page-reclaim
https://linux-mm-review.googlesource.com/c/page-reclaim/+/1080


What particular workloads does it help?
This work optimizes page reclaim for workloads that are not IO bound, because we find they are the norm
on servers and clients in the cloud era. It would most likely help any workloads that share the common
characteristics note we observed.

How would it benefit the community?
Google is committed to promoting sustainable development of the community. We hope successful
adoptions of this work will steadily climb over time. To that end, we would be happy to learn your
workloads and work with you case by case, and we will do our best to keep the repo fully maintained. For
those whose workloads rely on the existing code, we will make sure you will not be affected in any way.

References

1. Long-term SLOs for reclaimed cloud computing resources

2. Profiling a warehouse-scale computer

3. Evaluation of NUMA-Aware Scheduling in Warehouse-Scale Clusters

4. Software-defined far memory in warehouse-scale computers

5. Borg: the Next Generation

note See Documentation/vm/multigen-lru.rst in the tree.

https://research.google/pubs/pub43017/
https://research.google/pubs/pub44271/
https://research.google/pubs/pub48329/
https://research.google/pubs/pub48551/
https://research.google/pubs/pub49065/

	Performance
	Versatility
	Simplicity
	Repo
	FAQ
	What is the motivation for this work?
	Why not try to improve the existing code?
	What particular workloads does it help?
	How would it benefit the community?

	References

