[tip/core/rcu,05/10] rcu: Fix missed wakeup of exp_wq waiters
diff mbox series

Message ID 20191210040154.2498-5-paulmck@kernel.org
State New
Headers show
  • Expedited grace-period updates for v5.6
Related show

Commit Message

Paul E. McKenney Dec. 10, 2019, 4:01 a.m. UTC
From: Neeraj Upadhyay <neeraju@codeaurora.org>

Tasks waiting within exp_funnel_lock() for an expedited grace period to
elapse can be starved due to the following sequence of events:

1.	Tasks A and B both attempt to start an expedited grace
	period at about the same time.	This grace period will have
	completed when the lower four bits of the rcu_state structure's
	->expedited_sequence field are 0b'0100', for example, when the
	initial value of this counter is zero.	Task A wins, and thus
	does the actual work of starting the grace period, including
	acquiring the rcu_state structure's .exp_mutex and sets the
	counter to 0b'0001'.

2.	Because task B lost the race to start the grace period, it
	waits on ->expedited_sequence to reach 0b'0100' inside of
	exp_funnel_lock(). This task therefore blocks on the rcu_node
	structure's ->exp_wq[1] field, keeping in mind that the
	end-of-grace-period value of ->expedited_sequence (0b'0100')
	is shifted down two bits before indexing the ->exp_wq[] field.

3.	Task C attempts to start another expedited grace period,
	but blocks on ->exp_mutex, which is still held by Task A.

4.	The aforementioned expedited grace period completes, so that
	->expedited_sequence now has the value 0b'0100'.  A kworker task
	therefore acquires the rcu_state structure's ->exp_wake_mutex
	and starts awakening any tasks waiting for this grace period.

5.	One of the first tasks awakened happens to be Task A.  Task A
	therefore releases the rcu_state structure's ->exp_mutex,
	which allows Task C to start the next expedited grace period,
	which causes the lower four bits of the rcu_state structure's
	->expedited_sequence field to become 0b'0101'.

6.	Task C's expedited grace period completes, so that the lower four
	bits of the rcu_state structure's ->expedited_sequence field now
	become 0b'1000'.

7.	The kworker task from step 4 above continues its wakeups.
	Unfortunately, the wake_up_all() refetches the rcu_state
	structure's .expedited_sequence field:

	wake_up_all(&rnp->exp_wq[rcu_seq_ctr(rcu_state.expedited_sequence) & 0x3]);

	This results in the wakeup being applied to the rcu_node
	structure's ->exp_wq[2] field, which is unfortunate given that
	Task B is instead waiting on ->exp_wq[1].

On a busy system, no harm is done (or at least no permanent harm is done).
Some later expedited grace period will redo the wakeup.  But on a quiet
system, such as many embedded systems, it might be a good long time before
there was another expedited grace period.  On such embedded systems,
this situation could therefore result in a system hang.

This issue manifested as DPM device timeout during suspend (which
usually qualifies as a quiet time) due to a SCSI device being stuck in
_synchronize_rcu_expedited(), with the following stack trace:


This commit therefore prevents such delays, timeouts, and hangs by
making rcu_exp_wait_wake() use its "s" argument consistently instead of
refetching from rcu_state.expedited_sequence.

Fixes: 3b5f668e715b ("rcu: Overlap wakeups with next expedited grace period")
Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
 kernel/rcu/tree_exp.h | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

diff mbox series

diff --git a/kernel/rcu/tree_exp.h b/kernel/rcu/tree_exp.h
index 3b59c3e..fa143e4 100644
--- a/kernel/rcu/tree_exp.h
+++ b/kernel/rcu/tree_exp.h
@@ -557,7 +557,7 @@  static void rcu_exp_wait_wake(unsigned long s)
 		smp_mb(); /* All above changes before wakeup. */
-		wake_up_all(&rnp->exp_wq[rcu_seq_ctr(rcu_state.expedited_sequence) & 0x3]);
+		wake_up_all(&rnp->exp_wq[rcu_seq_ctr(s) & 0x3]);
 	trace_rcu_exp_grace_period(rcu_state.name, s, TPS("endwake"));